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Imaginary chemical potentials serve as a useful tool to constrain the QCD phase diagram and to gain
insight into the thermodynamics of strongly interacting matter. In this study, we report on the first
determination of the phase diagram for arbitrary imaginary baryon and isospin chemical potentials at high
temperature using one-loop perturbation theory, revealing a nontrivial structure of Roberge-Weiss (RW)
phase transitions in this plane. Subsequently, this system is simulated numerically withNf ¼ 2 unimproved
staggered quarks on Nτ ¼ 4 lattices at a range of temperatures at one of the RW phase transitions. We
establish a lower bound for the light quark mass, where the first-order transition line terminates in a
tricritical point. It is found that this tricritical mass is increased as compared to the case of purely baryonic
imaginary chemical potentials, indicating that our setup is more advantageous for identifying critical
behavior toward the chiral limit. Finally, the dynamics of local Polyakov loop clusters is also studied in
conjunction with the RW phase transition.
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I. INTRODUCTION

Quantum chromodynamics (QCD) has for a long time
been established as the fundamental theory governing
strong interactions, yet its phase diagram escapes our
theoretical understanding in some of its most interesting
regions, namely correspondingly to ranges of temperature
T and baryon chemical potential μB that are relevant to the
physics of off central heavy-ion collisions, neutron stars’
inner composition and mergers, and, possibly, the early
universe around the QCD epoch. While the inherently
nonperturbative nature of strong interactions makes lattice
QCD the most suited approach to mapping out the QCD
phase diagram, the complex action problem triggered by a
nonzero baryon chemical potential represents a major
stumbling block to significantly extending in the μB

direction, our current knowledge of the phase diagram at
nonzero temperature and vanishing chemical potentials.
The introduction of a purely imaginary baryon chemical
potential, for which standard importance sampling tech-
niques are viable, is one of the strategies that have been
pursued in order to constrain the phase diagram at real μB
bymeans of analytic continuation [1,2]. Moreover, the QCD
phase diagram in the plane of temperature and purely
imaginary values of the baryon chemical potential has a
rich structure thatwas unveiled long ago [3] and that has been
by now the subject of several lattice studies [1,2,4–17]. In the
above-mentioned physical systems, besides T and μB, there
are further thermodynamic parameters affecting the dynam-
ics of strongly interacting matter, namely a nonzero isospin
and/or strangeness chemical potential. Despite μB-related
effects are typically dominant, a nonzero isospin chemical
potential μI, might play a crucial role for the evolution of an
early Universe characterized by large (compatibly with
observational constraints) lepton flavor asymmetries
[18,19]. With all other chemical potentials being zero
QCD at nonzero μI is also a sign-problem-free setup that
has been extensively studied over the past few years [20,21].
Parallel to the attention devoted to the impact on strong

interaction matter of the above-mentioned thermodynamic
parameters, the dependence of the phase diagram on
microscopic parameters of the theory, namely the quark
masses mf has been addressed in many studies in view of
the small mass that nature provided the light up and down
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quarks with and of the “enhanced criticality” expected on
symmetry grounds for the phase diagram of QCD in the
chiral limit. However, due to the singular nature of the
fermion determinant at vanishing quark masses, that
prevents direct simulations in this limit, extrapolations
become necessary in this case too, and it stays an open
question1 whether in the chiral limit, mu ¼ md ¼ 0, the
chiral phase transition is of first or second order [23]. In
particular, while results from simulations on coarse lattices,
or with unimproved actions, generically indicate that the
transition might be of first order, based on results from
calculations performed with improved staggered fermions
[15,24–26] one is rather lead to conclude that the first order
nature is, in fact, a lattice artefact.
A further interesting feature of the first order transitions

toward the chiral limit is that they have been observed to
become significantly stronger as a function of a nonzero,
purely imaginary chemical potential, both for staggered
[4,5,10,15] and Wilson [12,13] discretizations. This obser-
vation lead to several attempts to establish the existence of a
first order region employing improved fermion discretiza-
tions in setups with a nonzero imaginary chemical poten-
tial, μ≡ {θT.
Along the same lines, in the present manuscript we are

testing the effect of a nonzero purely imaginary isospin
chemical potential combined with a nonzero purely imagi-
nary baryon chemical potential. First, we map out the
corresponding phase diagram at high temperature using
both perturbative and nonperturbative approaches. Second,
we investigate whether the strength of first order transitions,
mass for mass, is further increased by a nonzero purely
imaginary isospin chemical potential. With the purely
imaginary baryon chemical potential tuned to take its critical
Roberge-Weiss (RW) value (see Sec. II), this is equivalent to
establishing the so-called light tricritical mass, by looking at
the nature of the transition at the endpoint (the RWendpoint)
of the line of first order phase transitions between center
sectors [6,8], but in the ðT; {μI; {μBÞ space [27].
Here, we address the nature of the RW endpoint using

simulations of Nf ¼ 2 unimproved staggered fermions on
Nτ ¼ 4 lattices in a range for the light quark masses that
contains the light tricritical mass as established in analo-
gous simulations carried out at nonzero purely imaginary
baryon chemical potential, but at zero purely imaginary
isospin chemical potential [9]. We also study the behavior
of center domains providing further insight into the
Roberge-Weiss phase transition.
Our manuscript is organized as follows: We begin, in

Sec. II, with the description of the symmetries and order
parameter for the Roberge-Weiss phase transitions in QCD
at nonzero imaginary baryon and isospin chemical potential

and the presentation of the perturbative high-temperature
phase diagram. This is followed by, the discussion of our
setup for simulations and analysis in Sec. III. In Secs. IV
and V we present and discuss our results on the light
tricritical endpoint and on Polyakov loop domains respec-
tively. In three Appendices we provide further details on the
perturbative calculation, the lattice ensembles and the
scaling analysis.

II. QCD AT IMAGINARY BARYON AND ISOSPIN
CHEMICAL POTENTIAL

QCD in the presence of a purely imaginary baryon
potential, μB ¼ iθBT, exhibits a number of symmetries.
First, due to charge-conjugation symmetry it is even in θB,
ZQCDðθBÞ ¼ ZQCDð−θBÞ. Furthermore, under the com-
bined action of an SU(3) gauge transformation, which
satisfies

Gðx⃗; τ þ βÞ ¼ HGðx⃗; τÞ; H∈Zð3Þ; ð1Þ

with β≡ 1=T, and a shift of the imaginary chemical
potential one can show that

ZQCDðθBÞ ¼ ZQCDðθB þ 2πk=3Þ; k ¼ 0; 1; 2: ð2Þ

These symmetries imply a particular phase-structure in the
ðT; θBÞ-plane. As predicted by perturbative calculations
and later confirmed on the lattice, there exist first-order
transition lines, oriented parallel to the T-axis at critical
values of the imaginary baryon chemical potential,
θk;c ≡ ð2kþ 1Þπ=3; k∈Z. These lines terminate at a criti-
cal temperature, TRW;c. At low-T, the transition becomes a
crossover. The sectors, which the first-order lines separate,
are characterized by the phase of the expectation value of
the Polyakov loop, which is the trace of the Wilson line
which winds around the compactified time direction. In the
continuum, it takes the form

Pðx⃗Þ ¼ 1

3
TrPe{g

R
β

0
dτA0ðx⃗;τÞ; ð3Þ

where g is the gauge coupling, P denotes path-ordering,
and Aμ ≡ Aa

μλ
a, with λa; a ¼ 1;…; 8 the generators for

SU(3). For pure Yang-Mills theory, the Polyakov loop
represents the order parameter for Z(3) center symmetry
which is spontaneously broken across the deconfinement
transition. With the introduction of fermions, center sym-
metry is explicitly broken. However, at nonzero imaginary
baryon chemical potential, the minimum of the free energy
is still classified according to the orientation of the expect-
ation value of the Polyakov loop in the complex plane.
Moreover, for certain values of the imaginary baryon and
isospin chemical potentials, the explicit symmetry breaking
is even absent, see below.

1Though based on recent chirally extrapolated results a first-
order phase transition in the continuum for up to six degenerate
quark flavors seems to be ruled out [22].
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For Nf ¼ 2 mass-degenerate quarks, one can repeat the
analysis of Roberge and Weiss, giving each quark flavor a
different imaginary potential, say θu;d. For this we can
introduce the following basis

θu ¼ θB þ θI;

θd ¼ θB − θI: ð4Þ
One can now ask what are the symmetries of the Nf ¼ 2
partition function in terms of ðθB; θIÞ. It is immediately
clear that the theory is periodic in both variables θB and θI,
with the period equal to 2π. Furthermore, for two flavors
which are degenerate in mass, the theory is also invariant
under the transformations

ðθB; θIÞ → ðθB;−θIÞ;
ðθB; θIÞ → ðθB þ π; θI − πÞ;
ðθB; θIÞ → ðθB − π; θI þ πÞ: ð5Þ

The symmetries in Eq. (5) greatly constrain the shape of the
possible phase diagram in the ðθB; θIÞ-plane.
At high temperatures, this phase diagram can be calcu-

lated via perturbation theory, similarly to the one flavor
case [3]. We discuss the details of this calculation in
Appendix A, building on Refs. [28,29]. Our final results
are conveniently summarized in Fig. 1. The coloring
represents the center sectors of the Polyakov loop, which
minimize the one-loop effective potential at different values
of θB and θI. Along the vertical axis, the figure reproduces
the well-known structure with first-order phase transitions
at θB=ð2πÞ∈ f1=6; 1=2; 5=6g. In turn, along the horizontal

axis a transition occurs at the critical value θI=ð2πÞ ¼
θcI =ð2πÞ ≈ 0.25602409 marked by the red dot, as well as at
1 − θcI =ð2πÞ, in agreement with Ref. [7]. In between these
values two phases coexist, implying a Z(2) symmetry that is
broken spontaneously (orange and lilac colors in the
figure). Including both imaginary chemical potentials leads
to the characteristic “carpet”-like structure with hexagon-
shaped phase regions. We emphasize that at the meeting
point of three hexagons the Z(3) symmetry of the pure
gauge theory is recovered (but is, in fact, broken sponta-
neously). In Appendix A, we also report on the first lattice
simulations of this phase diagram that support the validity
of the perturbative picture.

III. LATTICE SIMULATIONS AND ANALYSIS

In our simulations we have employed unimproved rooted
staggered fermions together with the standard Wilson
gauge action. The rooting of the fermion determinant is
needed as each species of staggered fermion in (3þ 1)-
dimensions corresponds to four degenerate flavors of Dirac
fermions in the continuum limit. With regards to improved
actions, which aim at reducing lattice discretization errors
[30,31], this study is an exploratory one and represents a
proof of principle. The Nf ¼ 2 flavors of mass-degenerate
staggered fermions at nonzero imaginary isospin and
baryon chemical potential are described by, after the usual
Grassmann integration, the following partition function

Z ¼
Z

DUe−Sg½U�ðdetMðμuÞÞ1=4ðdetMðμdÞÞ1=4; ð6Þ

where the standard Wilson plaquette action is defined as

Sg ¼
βYM
3

X
p

ReTrcð1 −UpÞ; ð7Þ

with βYM ≡ 6=g2 and the sum running over all plaquettes of
the lattice. Here, Up denotes the path-ordered products of
gauge links for a given plaquette p. The unimproved
staggered Dirac operator reads

MðμfÞn;m

¼ 1

2

X3
ν¼1

ηn;νðUνðnÞδn;m−ν̂ − U†
νðn − ν̂Þδn;mþν̂Þ

þ 1

2
ηn;0ðe{aθfTU0ðnÞδn;m−0̂ − e−{aθfTU†

0ðn − 0̂Þδn;mþ0̂Þ
þ amδn;m; ð8Þ

where ηn;μ are the standard Kawamoto-Smit phases. The
temperature is defined by the temporal extent of the lattice,
T ¼ 1=ðaNτÞ. FixingNτ ¼ 4, we control the temperature by
varying the gauge coupling βYM. Thus, for a fixed bare quark
mass, one determines the critical βYM;c corresponding to the

FIG. 1. The phase diagram of the theory in the ðθB; θIÞ-plane
based on the perturbative effective action. The colors denote the
orientation of the phase of the volume-averaged Polyakov loop for
which the one-loop effective action is minimized. The red dot
marks the critical isospin chemical potential at θB ¼ 0. The bluedot
marks the point where we performed dedicated lattice simulations
for the RW endpoint. This picture holds at T → ∞ while the
situation close to the RW critical point remains an open question.
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RW critical point. A detailed overview of the ensembles
generated for this study is presented in Appendix B.
As discussed in the previous section, the primary

observable used in determining the RW critical point is
the volume-averaged Polyakov loop

P ¼ 1

V

X
x⃗

1

3
Tr

YNτ−1

τ¼0

U0ðx⃗; τÞ; ð9Þ

where the sum runs over all spatial lattice indices and the
spatial volume is given by V ≡ N3

s. We simulate at the point
ðπ; π=6Þ in the ðθB; θIÞ-plane, marked by the light blue dot
in Fig. 1. This point is critical in the θB direction but a safe
distance away from the first critical value of θI.
Furthermore, at this point in θB the two Polyakov loop
sectors which the first-order line separates at large-T differ
in the sign of the imaginary part of P. Thus, as one
increases the temperature from the low-T region where the
RW transition is a crossover, the distribution of ImP
changes from being a Gaussian centered about zero to
being bimodal whose mean is also zero.
The change in the shape of the distribution of ImP

associated with the crossing of the RW critical point can
be accurately characterized by studying the normalized
moments

Bnðβ; m; θiÞ≡ hðO − hOiÞni
hðO − hOiÞ2in=2 ; ð10Þ

whereO represents a generic lattice observable. For the case
of O ¼ ImP, it is clear that Z(2) center symmetry demands
hImPi ¼ 0.We can enforce this byhandknowing that a finite
ensemblegenerated fromaMarkov chainwill have a nonzero

mean with some associated statistical error. The momentB4,
commonly referred to as the kurtosis, will be used in our
analysis. In particular, one expects its value to vary from 3 in
the low-T limit to 1 in the high-T limit. The low-T behavior,
however, has been found to be subject to finite-volume
effects, making the dependence of B4 on T nonmonoto-
nous [12].
To accurately determine the order of the phase transition,

a finite-volume scaling analysis will be performed on the
kurtosis. This will allow us to determine βc, as well as
the critical exponent ν and the value of the kurtosis at the
critical point, B4;c, which are universal in the thermody-
namic limit, V → ∞, and dependent on the nature of the
phase transition. As the kurtosis is dimensionless as defined
in Eq. (10), the scaling form is written as follows

B4ðβ;NsÞ ¼ gðxÞ≡ gððβ − βcÞN1=ν
s Þ; ð11Þ

where g is a universal scaling function and we have also
introduced the scaling variable x≡ ðβ − βcÞN1=ν

s . What
Eq. (11) tells us is that as we approach the thermodynamic
limit, the kurtosis computed for NV different spatial
volumes and a fixed quark mass should collapse when
plotted as a function of the scaling variable x. An efficient
and generic way to determine the critical parameters from
the scaling behavior of the kurtosis is to define a quantity

Qðβ; ν; fNðiÞ
s gÞ ¼ 1

2Δx

Z þΔx

−Δx
dx

�
NV

XNV

i¼1

ðB4;iðxÞÞ2

−
�XNV

i¼1

B4;iðxÞ
�2�

; ð12Þ

FIG. 2. Results of our analysis for the kurtosis B4 as obtained for quark mass am ¼ 0.04 and aspect ratiosNs=Nτ ∈ f4; 5; 6g. In (a) one
notices how the three volumes intersect roughly at the same point. The collapse plot in (b) shows how all three volumes lie on a single
curve around the critical point at x ¼ 0 and is obtained with the critical parameters βc and ν as obtained via Eq. (12). (a) “Raw”
(simulated) and “rew” (reweighted) kurtosis. (b) Collapse plot for the reweighted kurtosis.
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where NV is the number of volumes involved in the
collapse measurement, and B4;iðxÞ denotes the Binder
cumulant obtained on ith volume. We call the quantity
Q the quality of the collapse. This quantity estimates the
average variance of the kurtosis and is minimized as a
function of both βc and ν. Here, the interval over which we
integrate, ½−Δx;þΔx�, is symmetric about the origin with
Δx being chosen appropriately such that a final estimate for
the critical parameters can be obtained in the limit Δx → 0.
This collapse optimization can be performed including

different sets of aspect ratios for onemass. Foram ¼ 0.04 the
intersection point for the kurtosis plots at Ns=Nτ ∈ f3; 4g is
visibly different than the common one forNs=Nτ ∈ f4; 5; 6g
[5.36490(17) vs 5.36435(5)]. The results for the latter set of
aspect ratios are shown in Fig. 2(a). That means that the
aspect ratio 3 at this mass is too far from the thermodynamic
limit for the kurtosis scaling in Eq. (11) to work.
Optimization for the sets Ns=Nτ ¼ f4; 5g, f5; 6g and
f4; 5; 6g, the latter optimization is shown in Fig. 2(b), results
in ν values 0.46(4), 0.411(31) and 0.435(17) respectively,
that arewithin error bars from each other. Still we see that the
value of ν decreases when introducing larger aspect ratio into
optimization,which is an indicationof the fact that theνvalue
in the thermodynamic limit for this mass is 1=3, i.e., that this
mass belongs to the first order transition region. For our final
result we used the collapse optimization of Ns=Nτ ¼ f4; 5g
for all three masses we studied.
Further details related to the quality of the collapse can be

found in Appendix C. There, the multistep procedure which
was used to obtain the final values of the critical parameters is
described. The consistency of this approach gives one
confidence in the measured values and their estimated errors
for the aspect ratios considered in this study.

IV. RESULTS ON THE LIGHT ROBERGE-WEISS
TRICRITICAL ENDPOINT

An accurate determination of the critical properties of the
theory defined by the partition function in Eq. (6) in the RW

plane has implications for establishing the order of the
transition in the chiral limit at μ ¼ 0 as well as for the QCD
phase diagram in the ðT; μBÞ plane. While not to be
expected a priori, it was empirically observed that the
RW and chiral phase transition temperatures coincide
[15,17] in the chiral limit and that the width of the first
order triple region in Nf ¼ 2 QCD at μB ¼ {μcritRW is much
larger than that of the first order region at μ ¼ 0 (see Figs. 3
and 4) making the former significantly less expensive to be
reached than the latter.
With knowledge of the tricritical point, in previous

studies the Z2 line stemming from the light RW tricritical
point in the ðmu;d; μBÞ plane was mapped-out and then
extrapolated toward the target tricritical point expected in
the chiral limit, in order to determine the order of the chiral
phase transition at μB ¼ 0. To achieve this, one is interested
in determining the nature of the transition at the endpoint,
βc, as a function of the quark mass. At very small and very
large quark mass, the RW endpoint is known to be a first-
order triple point. At intermediate masses the RW endpoint
becomes a second-order critical point. This critical point is
known to be in the 3D Ising (Z2) universality class. In this
situation, the first-order RW line is analogous to the first-
order line lying along the T-axis for the Ising model with the
endpoint corresponding to Tc and the deviation in the θB-
direction corresponding to the external magnetic field. There
exist two tricritical massesmtc, which separate the Z2 regions
from the first-order triple point regions. Previous studieswith
both staggered andWilson fermions have obtained estimates
for the lower tricritical mass mltc [12,32].
It is unknown how the tricritical masses are affected

when one turns on a nonzero imaginary isospin chemical
potential. These values are not restricted by any symmetry
and thus can shift to either larger or smaller values.
Considering the value amltc ¼ 0.043ð5Þ of the bare quark
mass corresponding to the light tricritical RW endpoint as
obtained in previous studies [9] with the same fermion
discretization and Nτ, but with θI ¼ 0, we have performed

FIG. 3. Qualitative sketch of the “back-plane” of the three-dimensional Nf ¼ 2 Columbia plot in the space of mud, μI, μB.
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simulations in the range am∈ ½0.04; 0.07�. Using finite-size
scaling methods for the kurtosis, described in Sec. III, we
were able to obtain the critical exponent ν, as a function of
the bare quark mass. The optimal collapse parameters βc

and ν do not depend significantly on Δx in the range we
considered, thus allowing a good extrapolation to Δx ¼ 0.
(see Fig. 5). The resulting critical exponent ν is shown in
Fig. 6. While for all the masses we studied ν is compatible
with the tricritical value, we can do a linear fit of the data to
estimate the lower tricritical mass from νðamltcÞ ¼ 0.5. To
do that, at each quark mass we generated n ¼ 1000 random
samples according to a normal distribution whose mean
value is ν obtained at each mass, and whose width
corresponds to the estimated error. For each sample we
have produced a linear fit as a function of the quark mass in
order to obtain estimates of amltc. The histogram of the
estimates is shown in Fig. 7. Due to the fact that the
histogram has long tails, we estimated the uncertainty of
amltc using the region that contains 68% of the estimates
(leaving 16% below, and 16% above). This approach gives
us amltc ¼ 0.0461…0.0882 with a median value of 0.0658.
Our estimate from the median, converted to a pion mass
value, is shown in Fig. 4, together with other estimates
obtained in the literature (for zero isospin chemical
potential). We observe that 86% of the obtained estimates
are above the estimate of the lower tricritical mass amltc ¼
0.043 obtained in [9] at zero isospin chemical potential,
which provides us with a confidence value for the

FIG. 4. Overview of light (tri)critical values of the pion mass from the present and previous studies. The estimate for mtricr:
π;light from our

results for light tricritical quark masses amltc obtained in this work are taken by fitting the data in Ref. [16] to mπ ¼ Cm1=2
u;d , and a linear

fit for dependence of lattice spacing a on mu;d at βc.

FIG. 5. The dependence of the critical parameters, obtained
from the minimization of Q, as a function of Δx for am ¼ 0.04
using Ns ∈ f16; 20g. The errors on each each point were
estimated using 500 bootstrap estimators for the kurtosis. The
result (shaded points) is clearly stable with respect toΔx, and thus
one can safely extrapolate to Δx ¼ 0 (solid points).

FIG. 6. The final, extrapolated to Δx → 0, estimates for ν as a
function of quark mass. Each of these points was determined
using aspect ratios 4 and 5. While all the points are compatible
within errors with tricritical behavior, the general trend implies
that the lower tricritical mass is above 0.05.

FIG. 7. The histogram of the estimates of the bare lower
tricritical mass amltc. Green vertical lines denote the median
and the 68% confidence interval.

BASTIAN B. BRANDT et al. PHYS. REV. D 109, 034515 (2024)

034515-6



conclusion that the introduction of isospin chemical poten-
tial increases the bare lower tricritical mass.

V. RESULTS ON CENTER DOMAINS

Further insight into the properties of the Roberge-Weiss
transition can be gained if one studies not just the volume-
averaged Polyakov loop but also its local distribution, i.e.
the Polyakov loop domains. Moreover, local Polyakov
loops are intimately connected to localized eigenmodes of
the Dirac operator, which have also been studied at the
RW transition [33]. Polyakov loop domains were pre-
viously used to study the deconfinement phase transition
both in pure Yang-Mills theories [34–37], and even in
QCD with dynamical fermions (despite the Polyakov loop
not strictly being an order parameter of full QCD) [38].
Since the Polyakov loop is an order parameter of the
Roberge-Weiss phase transition, we can expect this
approach to be as useful in our case as in Yang-Mills
theory.
In the symmetric phase the volume-averaged Polyakov

loop is fluctuating around zero, while in the broken
symmetry phase the phase space is divided into two
symmetric regions fluctuating around finite positive and
negative values of the imaginary part of the Polyakov
loop. To study the symmetry breaking that occurs at
β > βc, we consider in further calculations a subset of
generated configurations belonging to one of the sectors,
namely the one in which the imaginary part of the volume-
averaged Polyakov loop P is positive. On each such
configuration, we define a local Polyakov loop value
PðxÞ, and decompose it into its absolute value ρðxÞ and
phase ϕðxÞ,

PðxÞ ¼ 1

3
Tr

YNt−1

τ¼0

U0ðx; τÞ ¼ ρðxÞe{ϕðxÞ: ð13Þ

While the distribution of the absolute value of the local
Polyakov loop does not change much with β, the distri-
bution of the phase becomes more and more asymmetric as
β increases. This is clearly displayed in Fig. 8. To get a
numeric estimate of this asymmetry, we assign each spatial
site to a sector, according to the following rule [35]:

ℑPðxÞ > 0; for ϕ∈
�
π

3
þ δ; π − δ

�

ℑPðxÞ < 0; for ϕ∈
�
−π þ δ;−

π

3
− δ

�

ℜPðxÞ > 0; for ϕ∈
�
−
π

3
þ δ;

π

3
− δ

�

vacuum; otherwise ð14Þ

where δ is a cutoff parameter that can be freely tuned, and
sector 0 is denoted as the “cutoff” sector.
Looking at the dependence of the average population of

each sector on β, shown in Fig. 9, one can see that the
population of the sector with ℑPðxÞ > 0 increases with β,
while the population of the sector with ℑPðxÞ < 0
decreases, becoming close to the population of the sector
with ℜPðxÞ > 0 at large β. The figure also shows that at
each value of β, the populations of the sectors with
ℑPðxÞ > 0 and ℑPðxÞ < 0 are clearly different. This
illustrates the fact that while the behavior of the sector
abundances is an indication of the phase transition, it does
not allow one to resolve the exact location of the transition
in our region (β=βc ¼ 1� 10−3).

FIG. 8. The dependence of the average number of Polyakov loops per configuration having a given absolute value (a), or given phase
(b) for am ¼ 0.04, Ns ¼ 20. The data points are connected by straight lines to better visualise the shape of the distributions.
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Another interesting observable which distinguishes the
symmetric from the asymmetric phase is the distribution of
the sizes of clusters—connected components of spatial sites
belonging to the same sector. Formally integrating over the
fermion fields and the spacelike gauge fields one can
formulate QCD in terms of local Polyakov loops—the only
remaining gauge-invariant degrees of freedom. Considering
that the local Polyakov loops are concentrated around the
Zð3Þ center values, the theory can be approximated with a
generalized Potts model, where the partition sum can be
defined as a sum over the sets of sizes of clusters of spins
aligned in the same direction. One can extract the expected
distribution of cluster sizes from such approximated model
and compare with the cluster size distribution obtained
from a full theory simulation, setting the model parameters,
and obtaining a check of the model overall validity as a
description of full theory. An example of such a check is
done for in pure gauge SU(2) theory in [37], which showed
good agreement with the liquid droplet model [39]. We can
expect that a similar strategy would also work in our case.

For this work, instead of comparing the distributions with a
fixed model, we just use the fact that a coexistence of two
phases at a phase transition point is a sign of a first-order
phase transition. For an effective Potts cluster model that
would mean the existence of “large” clusters (clusters with
size proportional to the lattice size) in both sectors with
ℑPðxÞ > 0 and ℑPðxÞ < 0.
The cluster size distributions for QCD at imaginary

values of the baryon and isospin chemical potential are
shown in Fig. 10. One can see that for the sector with
ℑPðxÞ > 0, this distribution consists of one largest cluster,
whose size is proportional to the spatial size of the lattice
(about N3

s=2), and a “sea” of smaller ones. For β > βc, the
distribution in other sectors contains just the sea, though the
size of these small clusters is on average larger than the size
of the “sea” clusters in the sector with ℑPðxÞ > 0. This is
due to the fact that in the sector with ℑPðxÞ > 0 the
dominant cluster adsorbs a larger part of the sea. In this
case, the distribution of the sizes in the sea for the sectors
with ℑPðxÞ < 0 and ℜPðxÞ > 0 is similar. On the other
hand, for β < βc, the dominant cluster in the sector with
ℑPðxÞ > 0 becomes smaller, and a smaller cluster in the
sectors with ℑPðxÞ < 0 with size proportional to the lattice
size can form. Here the sea size distribution has a clear
hierarchy: nℜPðxÞ>0ðsÞ>nℑPðxÞ<0ðsÞ>nℑPðxÞ>0ðsÞ for small
cluster size s, which can be explained by adsorption of sea
clusters into dominant clusters in both sectors with nonzero
imaginary Polyakov loop component. This behavior is
clearly visible in Fig. 10 and is similar to the one shown
for SU(2) Yang-Mills theory in [37]. The difference
between the two types of distributions is clearly visible
even at this small distance from the transition point.

VI. CONCLUSIONS

In this paper we studied Nf ¼ 2-flavor QCD at nonzero
imaginary quark and isospin chemical potentials.

FIG. 9. The average number of local Polyakov loops belonging
to each of the sectors defined in Eq. (14) as a function of β, for
am ¼ 0.04, Ns ¼ 20, δ ¼ 0.2.

FIG. 10. The average number of connected clusters of a given size for am ¼ 0.04, Ns ¼ 20 at small and large β. (a) β ¼ 5.3600 < βc.
(b) β ¼ 5.3700 > βc.
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Generalizing the calculation of Roberge and Weiss [3], we
calculated the associated phase diagram at high temper-
atures perturbatively and cross-checked it with first lattice
simulations. We proceeded by selecting a particular point
on this phase diagram that corresponds to a first-order
phase transition at high T and performed a dedicated
scaling study using staggered fermions. The nature of
the transition at the RW endpoint as a function of quark
mass could be determined by studying the distribution of
the imaginary part of the Polyakov loop. A finite-size
scaling analysis of the kurtosis and the subsequent linear
extrapolation of the resulting critical index ν give 86% con-
fidence that the light tricritical mass mtc at nonzero isospin
chemical potential is larger than at zero isospin chemical
potential. This analysis was aided by the development of an
accurate and reproducible method for obtaining both the
critical coupling βc and the critical exponent ν through a
quantitative fit collapse which does not rely on fit-Ansätze
and can accurately estimate the associated errors. An
exploratory study of the dynamics of local Polyakov loop
domains has shown that the distribution of the absolute
value of the local Polyakov loops does not change
significantly across the transition, while the distribution
of the phases of the local Polyakov loops becomes
increasingly asymmetric when β increases.
The results we obtained in our proof of concept

simulations at nonzero imaginary quark and isospin chemi-
cal potential imply that the addition of imaginary isospin
shifts the light tricritical mass to larger values. This result
indicates that our setup is so far the most advantageous for
mapping out the critical Z2 line as it bends toward smaller
masses while the values of the imaginary chemical poten-
tials are reduced, and for searching for first order phase
transitions in the chiral limit employing improved discre-
tizations, with which so far only upper bounds for the
critical/tricritical mass values could be established.
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APPENDIX A: EFFECTIVE POTENTIAL AND
PHASE DIAGRAM AT HIGH TEMPERATURE

In this appendix we discuss the one-loop effective
potential at nonzero imaginary baryon and isospin chemical
potentials. The calculation is based on the perturbative
analysis due to Roberge and Weiss [3,42,43]. Some of the
details have already been presented in Refs. [28] and [29].
We treat the Polyakov loop in terms of a homogeneous

background SU(3) color field A0 and investigate the
effective potential for it as a function of the chemical
potentials. After diagonalizing the color field, the Polyakov
loop P is parameterized via a sum over the exponentialized
eigenvalues

P ¼ 1

3
ðe{ϕ1 þ e{ϕ2 þ e{ϕ3Þ; ϕ3 ¼ −ϕ1 − ϕ2; ðA1Þ

where 0 ≤ ϕ1;2 < 2π. The constraint for the third eigen-
value ensures that the untraced Polyakov loop has unit
determinant.
The effective potential Veff is obtained as the sum of a

gluonic VG
eff and a fermionic contribution VF

eff . For each
quark flavor f, the chemical potential shifts the color field
as A0 → A0 þ θf1 and therefore the eigenvalues as
ϕj → ϕj þ θf . Generalizing the results of Refs. [42] and
[43] to two (massless) flavors, we obtain

VG
effðϕ1;ϕ2Þ ¼

πT4

24

X3
j;k¼1

�
1 −

��
ϕj

π
−
ϕk

π

�
mod 2

− 1

�
2
�

2

;

ðA2Þ

VF
effðϕ1;ϕ2; θu; θdÞ

¼ −
πT4

12

X
f¼u;d

X3
j¼1

�
1 −

��
ϕj þ θf

π
þ 1

�
mod 2

− 1

�
2
�

2

:

ðA3Þ

Note that VF
eff depends explicitly on the chemical poten-

tials, while VG
eff is independent of them.

Identifying the ground state as a function of θu and θd—
or, equivalently, as a function of θB and θI—amounts to
minimizing Veff in ϕ1;2. Just like in the case without
isospin chemical potential [3], the minima always occur at
ϕ1 ¼ ϕ2 ¼ f0; 2π=3;−2π=3g, corresponding to the three
center sectors P ¼ f1; e{2π=3; e−{2π=3g of the Polyakov
loop. This is exemplified in Fig. 11, which shows the
effective potential as a function of ϕ1 ¼ ϕ2 for various
values of both chemical potentials. Mapping the complete
range of the parameters θB and θI gives the phase diagram
shown in Fig. 1.
To cross-check the perturbative results, we also consid-

ered full lattice QCD simulations of the same phase
diagram. We use the action discussed in Sec. III with an
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inverse gauge coupling of βYM ¼ 5.2 and degenerate
quark masses ma ¼ 0.025. This coincides with the setup
of Ref. [44], where real isospin chemical potentials were
considered. We perform simulations on 83 × 4 lattices,
corresponding to the deconfined phase at a series of
different values of θB and θI. A standard hybrid
Monte Carlo simulation was observed to freeze in incor-
rect Polyakov loop sectors (i.e., in the one corresponding
to a random initial configuration) even in this small
volume. To circumvent this problem, we included an
additional update step after every twentieth trajectory,
offering the system a Z(3) transformation in a random
direction,U0 → U0 · expð�{2π=3Þ on a random time slice.
The action difference was computed exactly via the
propagator matrix representation [45], which allows to
express the fermion determinant analytically as a function
of the quark chemical potential. Since the Z(3)

transformation can also be viewed as a change of θB by
�2π=3, a single calculation of the eigenvalues of the
propagator matrix suffices to get the up and down quark
determinant both before and after the Z(3) rotation.
The efficiency of the update procedure is visualized in

Fig. 12(a), which shows a section of theMonte Carlo history
of the phase of P at θB=ð2πÞ ¼ 0.3 and θI=ð2πÞ ¼ 0.25. At
thesevalues the system is close to a Z(3) symmetric point and
therefore frequent jumps between all three sectors are
observed. The average phase of the Polyakov loop, as
measured using the simulations including these kind of
updates, is shown in Fig. 12(b). The color coding is the
same as in Fig. 1. For chemical potentials in the interior of the
hexagons, the system selects one sector during thermal-
ization and then also remains there for most of the simulation
time. These lattice results are shown by the big dots. In turn,
the small dots indicate runs, where frequent jumps between

FIG. 11. The normalized effective potential as a function of the fields ϕ1;2=ð2πÞ for different values of θB and of θI. In each case the
minimum is located at one of the center sectors.

FIG. 12. (a) Monte Carlo history of the phase of the Polyakov loop. After every twentieth trajectory a Z(3) update is proposed either in
the clockwise (downward arrow) or counter-clockwise (upward arrow) direction in the complex plane. Accepted (rejected) proposals are
indicated by blue (red) arrows. (b) Polyakov loop sectors in the plane of imaginary isospin and baryon chemical potentials, as obtained
from lattice simulations. The color coding represent the phase of the Polyakov loop and the size of the dots is related to its variance
(small dots indicate large variances).
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different sectors are observed—this happens close to the
boundaries between sectors, where Z(2) or Z(3) symmetry
breakingoccurs.We remark thatwe only calculated the lower
left quadrant of the plot and obtained the remaining parts by
symmetry. In summary, the lattice results fully confirm the
findings of the perturbative analysis.

APPENDIX B: OVERVIEW OF LATTICE
ENSEMBLES

At each value of the quark mass m, spatial volume Ns,
and β, four independent Markov chains were produced.
Typically, a single chain was thermalized starting from a
thermalized configuration at a nearby value of β at the same
spatial volume and quark mass. Taking into account
autocorrelations [46], each chain was required to have at
least Oð100Þ independent events for B4ðImPÞ, which is
roughly the total number of configurations divided by twice
the integrated autocorrelation time. Most importantly, we
used the number of standard deviations in the kurtosis
values of the two maximally separated chains nmax

σ ðB4Þ as
an indicator for the reasonableness of the accumulated
statistics. This quantity should be as small as possible, and
we typically aim at having it not much larger than 4. A full
overview of the ensembles used in this study is given in
Table I.

APPENDIX C: COLLAPSE QUALITY
OPTIMIZATION

Here we give further details regarding the quantitative
collapse. In order to construct the integrand of Eq. (12) as a
continuous function of x, we use a cubic spline interpo-
lation for each volume Ns at a given quark mass m. As it is
costly to perform a dense scan in β at each volume, one
employs the standard technique of multi-histogram
reweighting [47,48]. This gives us a dense training grid
with Δβ∈ ½10−5; 10−4� and assures us that systematic errors
associated with the interpolation are minimal. Furthermore,
for each ensemble we also generate Nest ¼ 500 estimators
for B4 using a bootstrap resampling of the raw data which is
then used to produced reweighted samples. Thus, this
allows us to compute an analogous set of estimators
Qi;est at each Δx which will allow us to quantify the
statistical error for fβc; νg.

The minimization of Eq. (12) and the estimation of the
error for a given Δx strongly depends on the search
intervals in both critical parameters. One must choose
intervals

ν∈ ½νmin; νmax�; βc ∈ ½βc;min; βc;max�; ðC1Þ

which contain a minimum of Q, ðν̃; β̃cÞ, where
∂Q=∂λijλi¼λ̃i

¼ 0, λi ∈ fν; βcg; i ¼ 1, 2. Typically, Q has

a very steep profile in βc around β̃c. Thus, one can first
perform the collapse with some initial, broad interval for βc.
This interval can be chosen by hand based on the
approximate crossing point of the reweighted data plotted
as a function of β. Assuming a reasonable interval for νwas
given (in general, ν∈ ½1=3; 0.63�), this typically leads to
very accurate estimate β̃c, from which a much narrower
interval in βc can be used in a refined search. This
procedure for refining the search interval in βc is beneficial
in that it allows one to select a larger interval in the scaling
variable x over which we integrate. This is due to the fact
that the maximum allowed value of the scaling variable is
given by

Δxmax¼max
i
fðβðiÞmax−βc;maxÞN1=νmax

s;i ;ðβc;min−βðiÞminÞN1=νmax
s;i g;
ðC2Þ

where each spatial volume Vi ¼ N3
s;i contains data for the

kurtosis in the interval ½βðiÞmin; β
ðiÞ
max�. Thus by narrowing the

region in βc, one can still obtain a reasonably large interval
in x without overly constraining the search interval in ν. We
note here that in practice, we usually take 5 equally-spaced
values of Δx∈ ð0;Δxmax�. Unlike in the βc direction, Q is
very flat in the ν direction which can lead to difficulties
when choosing the interval. To illustrate this, we plot the
profile ofQðβc; νÞ form ¼ 0.04 at fixed Δx in Fig. 13. One
must, then, be sure to choose the interval such that
ν∈ ½νmin; νmax�, as choosing νmin too large can miss the
desired minimum completely. Furthermore, when choosing
the interval for ν one must also take into account the
minimization of Q on the bootstrap estimators. These
minimizations on the estimators yield ν̄i, i ¼ 1;…; Nest.
In fact, it can be that ν̄ lies within our search interval while a

TABLE I. Table summarizing the ensembles used in this study. Due to large autocorrelation times, the number of
configurations sharply increases as one goes to larger aspect ratios.

Total statistics | Number of β values | nmax
σ ðB4Þ

Nf am Aspect ratio 3 Aspect ratio 4 Aspect ratio 5 Aspect ratio 6

2 0.04 1.2 M | 3 | 2.1 2.5 M | 5 | 3.3 3.1 M | 5 | 2.2 7.2 M | 4 | 2.9
0.05 1.2 M | 3 | 2.5 2.6 M | 5 | 2.5 7.4 M | 5 | 3.4
0.06 1.6 M | 3 | 4.5 2.9 M | 5 | 2.4 6.6 M | 6 | 2.7
0.07 5.8 M | 6 | 4.2 6.3 M | 6 | 3.0 11.7 M | 6 | 2.2
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fraction of the ν̄i lie outside of the interval. We have found
that with good enough statistics, one should choose
½νmin; νmax� such that less than 20% of the estimates for
ν at any given Δx lie within the search interval. For

estimators whose minimum ν̄i lies outside of ½νmin; νmax�,
we have discarded these from our error estimates. A
depiction of a distribution for ν obtained from the bootstrap
estimators at a given Δx at m ¼ 0.04 is shown in Fig. 14.
From this distribution, one can estimate the error which will
then be used in the extrapolation of our estimate of the
critical exponent to Δx → 0.
To gain a better understanding of the procedure for

minimizing Q, we take a closer look at its relation to the
kurtosis at the various spatial volumes. Assuming that the
kurtosis B4;i, on each lattice size Vi is a smooth function
around the critical point we can write

B4;iðβc þ xVa
i Þ ¼ B4;iðβcÞ þ xVa

i B
0
4;iðβcÞ

þ 1

2
x2V2a

i B00
4;iðβcÞ þOðx2Þ; ðC3Þ

where a≡ ð3νÞ−1. Inserting this expression into Eq. (12)
and integrating with respect to x, we can obtain the
following approximate expression for Q

Qðβc; aÞ ¼ Q0ðβcÞ þ
Δx2

4
Q2ðβc; aÞ þOðΔx4Þ; ðC4Þ

FIG. 13. (a) Displays the profile of Q for m ¼ 0.04, Ns ¼ 16, 20, and Δx ≈ 0.02, in the region of the minimum. One immediately
notices how steep Q is with respect to βc while the ν direction is very shallow. (b),(c) present profiles of Q and Q̃ as functions of ν only,
for βc ¼ βc for the same physical parameters as in (a).

FIG. 14. A histogram displaying the distribution of the critical
exponent ν for the bootstrap estimators for m ¼ 0.04, Ns ¼ 16,
20. A total of Nboot ¼ 500 were used with less than 100 being
discarded due to Q not having a minimum in the allowed
physical range.
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where we have introduced

Q0ðβcÞ ¼ NV

XNV

i¼1

½B4;iðβcÞ�2 −
�XNV

i¼1

B4;iðβcÞ
�2
; ðC5Þ

Q02ðβc; aÞ ¼ NV

XNV

i¼1

B4;iðβcÞV2a
i B00

4;iðβcÞ

−
XNV

i¼1

B4;iðβcÞ
XNV

j¼1

V2a
j B00

4;iðβcÞ; ðC6Þ

Q11ðβc; aÞ ¼ NV

XNV

i¼1

½Va
i B

0
4;iðβcÞ�2 −

�XNV

i¼1

Va
i B

0
4;iðβcÞ

�2
;

ðC7Þ

and have defined Q2 ≡Q02 þQ11. One immediately
notices that Eq. (C5) is independent of the critical

exponent. The minimization of Q0 has a clear meaning:
Q0 is just the variance of B4 over the various lattice sizes at
a given value of βc. In particular, if we indeed have a true
intersection of all the cumulants, then at that pointQ0 → 0,
and thus this term achieves its minimum. A further
consequence if there is a true intersection point is that
Q02 also vanishes. This is evident from Eq. (C6). Finally,
we note that the quantity Q11 can be interpreted as the
variance of the set of rescaled derivatives of the kurtosis and
depends on both critical parameters.
What the above discussion implies is that for small

values of Δx, one can encounter problems determining the
critical exponent ν. This scenario can frequently occur as it
is not always possible to have data which cover a large
enough range in the scaling variable x. One possibility to
alleviate this problem is to modify the Q function which
one attempts to minimize. One can note that Q is the sum of
the L2 norms of the pairwise differences of B4;i functions.
Changing the norm to the Sobolev norm H1 adds a
ν-dependent leading-order term which yields

Q̄ ¼ 1

2Δx

Z
Δx

−Δx
dx

�
NV

XNV

i¼1

½B4;iðxÞ�2 −
�XNV

i¼1

B4;iðxÞ
�2

þ NV

XNV

i¼1

½B0
4;iðxÞ�2 −

�XNV

i¼1

B0
4;iðxÞ

�2�
: ðC8Þ

However, it turns out that the minimization of this
function still suffers from the problem that it is possible
to return a value of ν which does not lie within the
desired physical range. The reason for this is that if we
take Δx to zero while assuming that we have fixed βc to
the exact intersection point, the minimization in ν is
equivalent to finding the minimum of the variance of

B0
4;iðx ¼ 0Þ ¼ ð1=N1=ν

s;i ÞB0
4;iðβ ¼ βcÞ. By decreasing ν, it is

possible to make all B0
4;iðx ¼ 0Þ less than any given

positive value, so that the variance, and therefore Q̄ be
itself, would go to zero at ν → 0. To remove this problem,
we can normalize the two pairs of terms in Eq. (C8) by
their corresponding mean values at x ¼ 0

Q̃ ¼ 1

2Δx

Z
Δx

−Δx
dx

�
NV

PNV
i¼1 ½B4;iðxÞ�2 − ½PNV

i¼1 B4;iðxÞ�2�
1
NV

PNV
i¼1 B4;ið0Þ

	
2

þ NV
PNV

i¼1 ½B0
4;iðxÞ�2 − ½PNV

i¼1 B
0
4;iðxÞ�2�

1
NV

PNV
i¼1 B

0
4;ið0Þ

	
2

�
: ðC9Þ

TABLE II. The final results and comparison of two minimization procedures. For each mass the critical coupling
constant βc and the critical index ν were obtained from optimization of the collapse for spatial sizes Ns ¼ 16, 20.
The first set of columns corresponds to performing the minimization explicitly tuning the range of βc and ν. The
second set of columns describes the results of the two-step minimization procedure described in this appendix.

Tuning the interval Two-step procedure

m βc ν Bc βc ν Bc

0.0400 5.36436(14) 0.463(21) 1.771(20) 5.36434(15) 0.46(4) 1.779(20)
0.0500 5.37596(14) 0.476(17) 1.800(17) 5.37598(14) 0.478(33) 1.796(16)
0.0600 5.38686(12) 0.484(18) 1.778(13) 5.38687(13) 0.49(4) 1.772(13)
0.0700 5.39674(12) 0.511(23) 1.824(11) 5.39664(11) 0.495(23) 1.854(12)
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The profile of Q̃ defined in this way has a clear minimum
as can be seen from Fig. 13(c).
To obtain our final estimates for the critical parameters of

the theory, we have used the following strategy. First, an
initial scan is made using a continuous minimization
algorithm for Q̃. This gives us an initial estimate for both
the critical coupling and exponent. Using this information,
one can construct a smaller search interval in both variables
taking for each parameter the interval of �3σ around the
previously obtained minimum. Then a discrete second

search for the minimum is performed for the original Q,
where each parameter interval is divided into 100 sub-
intervals. An alternative continuous search for the mini-
mum of the original Q in the estimated small region was
also attempted giving compatible parameter values. The
results are displayed in Table II. The critical parameters
obtained from the initial search using Q̃ were found to have
good agreement with the two subsequent searches with Q.
This gives one added confidence in the results of the
procedure.
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