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The SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ standard model maps smoothly onto a conventional lattice gauge
formulation, including the parity violation of the weak interactions. The formulation makes use of the
pseudoreality of the weak group and requires the inclusion a full generation of both leptons and quarks. As
in continuum discussions, chiral eigenstates of the Dirac operator generate known anomalies, although with
rough gauge configurations these are no longer exact zero modes of the Dirac operator.
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Lattice gauge theory has a long history of successes in
the study of low energy QCD, the underlying theory of the
strong nuclear force. One might ask if the approach could
also be used for the weak interactions related to beta decay.
This is probably of little value for calculations since the
electroweak coupling is small and conventional perturba-
tion theory is highly accurate for most purposes. However,
from a theoretical point of view, a lattice theory provides a
path toward a mathematical definition of a field theory in
the limit where the lattice spacing is taken to zero. Putting
the weak interactions on the lattice is a first step toward a
formal definition of the theory. Within the picture, gauge
field topology should give rise to known anomalies,
including the weak interactions generating baryon decay
through the effective vertex elucidated by ’t Hooft [1]. A
crucial ingredient is the need to include entire generations
to properly cancel anomalies. The approach is similar in
spirit to Refs. [2–5], with the main difference being the
necessity to mingle both the weak and strong groups.
Although the approach can account for the parity violation
in weak decays, the inclusion of electromagnetism and a
nontrivial Higgs potential requires nonasymptotically free
couplings. Thus the path to a rigorous definition of the
continuum limit remains elusive.
To remain as close to traditional lattice methods [6–8] as

possible, consider all gauge fields as unitary group ele-
ments on the bonds of a four-dimensional hypercubic
lattice. This includes elements of SUð3Þ for the strong
interactions, SUð2Þ for the weak isospin group and Uð1Þ

for hypercharge, reflecting the fields of the usual standard
model [9]. Denote these bond variables correspondingly as
Usu3, Usu2, Uy. These fields self-interact through the
standard gauge invariant plaquette form, although nothing
here precludes improvement schemes. The goal is to main-
tain exact local gauge symmetry under all three groups.
For one generation, include eight fermion fields, repre-

sented by

ur; ug; ub; dr; db; dg; ν; e−: ð1Þ

The three colors fr; g; bg are explicit for the up and down
quarks u, d. Included also are the neutrino field ν and the
electron e−. These are all anticommuting Grassmann
variables located on the lattice sites. In addition on each
site are independent conjugate Grassmann variables

ur; ug; ub; dr; db; dg; ν; e−: ð2Þ

With more generations this pattern is repeated for each.
All fermion fields are four component Dirac spinors.

These can be divided into right and left handed parts

ψL ¼ ð1 − γ5Þψ=2;
ψR ¼ ð1þ γ5Þψ=2;
ψ̄L ¼ ψ̄ð1þ γ5Þ=2;
ψ̄R ¼ ψ̄ð1 − γ5Þ=2: ð3Þ

The weak interactions only couple directly to the left-
handed parts while the strong group and hypercharge see
both chiralities. Within the single generation of fermions,
the three gauge groups behave rather differently. For the
strong interactions there are two vectorlike triplets under
SUð3Þ,
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u ¼

0
B@

ur

ug

ub

1
CA; d ¼

0
B@

dr

dg

db

1
CA: ð4Þ

In contrast, under the weak interactions there are four left-
handed doublets

r¼
�
ur

dr

�
L

; g¼
�
ug

dg

�
L

; b¼
�
ub

db

�
L

; l¼
�

ν

e−

�
L

:

ð5Þ

Here the doublets are labeled by their color or lepton
nature. Finally hypercharges for the eight fermions are
taken as conventional in the standard model, differing
between the left- and right-handed fermions. As listed in
Eq. (1) for the left-handed parts the assignments are

YL ¼ ð1=3; 1=3; 1=3; 1=3; 1=3; 1=3;−1;−1Þ; ð6Þ

and for the right-handed components

YR ¼ ð4=3; 4=3; 4=3;−2=3;−2=3;−2=3; 0;−2Þ: ð7Þ

For the right-handed fields these values are twice the
electromagnetic charge while for the left-handed parts they
differ from twice the physical charges by �1. All gauge
fields are neutral under hypercharge.
The local gauge symmetries correspond to rotations of

the various fields on the lattice sites. The strong group acts
on the two quark triplets

ψud → gsu3ψud: ð8Þ

Meanwhile the weak group acts on left-handed doublets but
leaves the right-hand fields untouched

ψ rgbl →

�
gsu2

1 − γ5
2

þ 1þ γ5
2

�
ψ rgbl: ð9Þ

In addition to the fermions, on each site is a complex
doublet Higgs field

H ¼
�
H1

H2

�
: ð10Þ

Both components of this field have hypercharge Y ¼ 1.
This field also rotates under the weak isospin

H → gsu2H ð11Þ

but does not see the strong group.
The group SUð2Þ is pseudoreal in the sense that a unitary

transformation relates the complex conjugate of any
element to itself. With the usual conventions

g� ¼ τ2gτ2: ð12Þ

This means that in addition to the initial Higgs doublet
there is another combination

H0 ≡ τ2H�τ2 ¼
�−H�

2

H�
1

�
ð13Þ

that transforms equivalently,

H0 → gsu2H0 ð14Þ

with hypercharge Y ¼ −1. Finally the hypercharge gauge
group rotates the phases of all fields by an angle propor-
tional to their respective hypercharge,

ψ → eiθYψ ψ : ð15Þ
It is important that these three gauge groups commute

with each other. The weak group does not change the colors
of the quarks. The strong group does not break weak
isospin. And the hypercharge assignments are constant
within each chirality of the strong and weak multiplets.
The appearance of an even number of fundamental weak

doublets is essential.Witten [10] has discussed how a closed
path in SUð2Þ field space can change the sign of the fermion
determinant. This phase ambiguity is extensively reviewed
in [11] and is closely related to the ’t Hooft vertex [1]
connection to spin flips from the anomaly in vector multip-
lets. With only a left-hand multiplet there is nothing to flip
into. With an even number of multiplets this can be
compensated among them, as discussed later.
The couplings of the fields to the various gauge bosons

are contained in the standard hopping terms between sites,
including such terms for the Higgs field. All left-handed
weak doublets rotate by the Usu2 while the right-handed
counterparts do not see that matrix. The leptons do not
interact with the Usu3 while the quarks do. All fermions
rotate appropriately under hypercharge.
To complete the picture requires the Higgs mechanism

[12–16]. This will serve two purposes: generating masses
and eliminating doublers associated with naive fermion
hopping. The Higgs mass is adjusted via a self interaction
potential VðjHjÞ, as in the continuum treatment of the
standard model. A quartic term is necessary in V in order to
adjust the expectation value v ¼ hjHji to map directly onto
conventional continuum phenomenology.
Concentrating on the weak interactions, for each fermion

doublet there are two distinct on-site combinations that are
invariant under the weak gauge group:

H†ψ ¼ H�
1ψ1 þH�

2ψ2; H0†ψ ¼ −H2ψ1 þH1ψ2: ð16Þ

It is convenient to divide out the Higgs expectation v and
think of the physical left-handed particles as “composite”
with physical charges Q:
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eL ¼ H†l=v; Q ¼ ðYl − YHÞ=2 ¼ −1;

νL ¼ H0†l=v; Q ¼ ðYl þ YHÞ=2 ¼ 0;

u½rgb�L ¼ H†½rgb�=v; Q ¼ ðYrgb − YHÞ=2 ¼ 2=3;

d½rgb�L ¼ H0†½rgb�=v; Q ¼ ðYrgb þ YHÞ=2 ¼ −1=3:

ð17Þ

This is similar to working perturbatively in the “unitary”
gauge, although in proper lattice gauge spirit all gauges are
integrated over. Indeed, without gauge fixing, the Higgs
field rotates rapidly over directions and cannot have an
expectation value.
For each left-handed doublet one can form a combina-

tion which is invariant under the weak group:

χL ¼ 1

v

�
H†ψL

H0†ψL

�
: ð18Þ

This allows construction of gauge singlet mass terms for the
doublet:

ψ̄RMχL þ H:c: ð19Þ

Here M is an arbitrary mass matrix and can include any
intergenerational mixings. To be consistent with the strong
group, M should be independent of color.
The same mechanism that gives the fermions masses can

now be adapted to eliminate doublers using a Wilson-like
[7] mechanism. First remove the SUð2Þ dependence with
the Higgs field as in the mass term. Then include the
Wilson projection operator ð1� γμÞ=2 for fermions to hop
to neighboring sites. Thus, for each doublet hopping from
site i to iþ eμ add to the action

ψ̄Riþeμð1þ γμÞχLi
=2þ ψ̄Rið1 − γμÞχLiþeμ

=2þ H:c: ð20Þ

Here the appropriate strong and hypercharge matrices are
suppressed for notational simplicity. In a sense this term
mimics an irrelevant operator proportional to ψ̄∂2ψ which
moves all doubler masses to the cutoff scale. As with the
usual Wilson procedure, this requires an additive mass
renormalization. Because of this all masses need to be fine-
tuned. In this approach the smallness of neutrino masses is
not natural.
Combining the Higgs field with the SUð2Þ bond vari-

ables allows construction of gauge invariant operators to
create the physical W and Z bosons. For example

Wþ
μ ∼H0†

iþeμ
Usu2iþeμ;iHi ð21Þ

has charge Q ¼ 1 and represents the Wþ with associated
spin in the bond direction. Similarly theW− corresponds to

W− ∼H†
iþeμ

Usu2iþeμ;iH
0
i: ð22Þ

In addition there are two neutral combinations:

H0†
iþeμ

Usu2iþeμ;iH
0
i; H†

iþeμ
Usu2iþeμ;iHi: ð23Þ

While these generally mix, the second term appears in the
action as the hopping term for the Higgs field. Remaining is
an operator for the physical Z.
Note that the parameter count is essentially the same as

in the usual continuum discussions of the standard model.
In addition to the three independent gauge couplings and
the Higgs parameters, all fermion masses need to be tuned
to their physical values. In particular, an explanation for the
small neutrino masses is lacking. The Wilson parameter
represents the cutoff scale for the fermions and as usual
should be connected to the lattice spacing.
This basically completes the model, but it is instructive

to consider how the usual quantum anomalies come into
play. With dimensional regularization these effects appear
via the fermionic measure not being chirally symmetric
[17]. With Wilson fermions, the anomalies are moved into
the behavior of heavy doubler states. This is similar in spirit
to discussions of anomalies with Pauli-Villars regulation
[18–20] with additional heavy states added near the cutoff.
In continuum discussions anomalies are frequently tied

to topology in the gauge fields and the index theorem
[21,22] relating to zero modes in the Dirac operator. On the
lattice the space of allowed configurations is simply
connected and does not support separate topological sectors
absent some sort of smoothing condition [23]. However
such restrictions destroy reflection positivity [24] and will
interfere with any Hamiltonian formulation.
It is interesting to contrast this picture with the overlap

approach of Neuberger [25–27] where one projects the
relevant eigenvalues onto exact zero modes. This has been
successful to all orders in perturbation theory [28]. It does,
however, eliminate exact locality of the Dirac operator
[29,30]. In addition the projection process encounters
singularities as one transits between topological sectors
[31]. In the current approach, the Dirac operator remains
local while robust zero modes are lost.
The formulation presented here preserves gamma-five

Hermeticity for the Dirac operator,

γ5Dγ5 ¼ D†: ð24Þ

Indeed most lattice fermion prescriptions, with the excep-
tion of twisted mass [32], satisfy this. An immediate
consequence is that on diagonalizing D all eigenvalues
are either real or in complex conjugate pairs. (Since D is not
a normal operator, consider either left or right eigenvalues
for this discussion.)
If the gauge fields are sufficiently smooth, the index

theorem does apply and modes of nontrivial chirality are
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well known. However, since the space of lattice fields is
simply connected, there must exist a path connecting a
configuration with such chiral states to one without, as
discussed in Ref. [31]. In terms of the eigenvalues of D, a
complex conjugate pair joins on the real axis and splits
apart as two real eigenvalues. One can move to the small
real part while the other moves off to the doubler region, as
sketched in Fig. 1. Reference [33] demonstrated that such a
path does exist and does not need to pass through a barrier
of large action, although it does require local fields to
violate the smoothness condition of [23].
Consider the space spanned by the real eigenvalues of D.

On this subspace γ5 commutes with D and can be simulta-
neously diagonalized. Thus the states can be labeled by
chirality. The usual topological structures are represented by
an imbalance of small eigenvalues of one chirality over the
other. If a gauge field configuration with such a mode is now
smoothed, the small eigenvalue will be driven to zero and
satisfy the continuum index theorem. As the full trace of γ5
must vanish, such zero modes have corresponding modes of
the opposite chirality in the doubler region.
These chiral eignmodes are directly tied to quantum

anomalies as discussed by ’t Hooft [1]. Small or zero
eigenvalues suppress the partition function

Z¼
Z

ðdAÞðdψ̄dψÞe−Sgþψ̄Dψ ¼
Z

ðdAÞe−SgðAÞ
Y

λi: ð25Þ

On the surface, this suggests that zero modes are irrelevant
as they do not appear in the partition function. But ’t Hooft
showed how certain observables can overcome this sup-
pression. To see this, first introduce abstract sources η and η̄

Zðη; η̄Þ ¼
Z

ðdAÞ ðdψ̄dψÞ e−Sgþψ̄Dψþψ̄ηþη̄ψ : ð26Þ

Differentiation (in a Grassmann sense) with respect to the
sources generates the Green’s functions of the theory.

Completing the square and performing the integral over
the fermions gives

Z ¼
Z

ðdAÞ e−Sgþη̄D−1η=4
Y

λi: ð27Þ

If the sources overlap with one of the small real eigenmodes,
the inverse of the corresponding eigenvalue can enter the
Green’s function and cancel the suppression in the partition
function.
This effect is well understood for the strong interactions.

A chiral eigenmode couples left-handed quarks to right-
handed ones, resulting in a nonvanishing spin flip ampli-
tude, even if the quarks are massless. The mixing of various
pseudoscalars through the process is sketched in Fig. 2.
This vertex is tied to the mass of the eta-prime meson.
Except in certain special cases, such as the large number of
colors limit [34], the resulting value needs to be determined
through simulations. Note that there remains a second
chiral eigenmode in the doubler region, but due to the large
masses of the doublers this only gives a constant factor to
the partition function.
The consequences of the anomaly for the weak inter-

actions are less familiar, primarily since the effect is quite
small. The nonperturbative chiral modes will be suppressed
exponentially in the inverse electroweak coupling.
Although tiny, the effects are crucial to understanding
the structure of the theory. For each left-handed SUð2Þ
doublet, its conjugate field is right handed,

ψc ¼ τ2γ2ψ
�: ð28Þ

For example, the antineutrino is right handed. Of our four
doublets fr; g; b; lg, take two and pair them with the
conjugates of the other two and then antisymmetrize over
the combinations. Using sources that overlap with a low
chiral mode gives a nonvanishing value for the four point
“vertex”

u

u
d

d

R

L

R

L

���� ’

FIG. 2. The chiral anomaly produces a spin flip amplitude
involving all quark species. The nonvanishing of this diagram
induces a mass for the eta prime and causes a mixing of the up
and down quark masses when they are not degenerate. Figure
taken from Ref. [35].

Im �

Re �

FIG. 1. The merging of two complex eigenvalues to form two
real ones, one of which can become small with the other moving
into the doubler region. The background region represents the
spectrum of free Wilson fermions. If the fields are smoothed into
a classical instanton, the small eigenvalue becomes the zero mode
from topology and the index theorem.
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εijklhψ̄c
i ψ̄

c
jD

−1ψkψ li ≠ 0: ð29Þ

Here the indices run over the four doublets fr; g; b; lg.
This effective interaction violates both baryon and lepton

number but preserves the difference B − L. While this
discussion is for the Euclidean formulation of the theory, in
a Hamiltonian approach the process proceeds from modes
crossing in and out of the Dirac sea [36,37]. In the process,
fermion number changes by two units. This is consistent
with SUð2Þ since the group is pseudoreal. It is also
consistent with the SUð3Þ symmetry since 3̄∈ 3 ⊗ 3 and
two flavors are going to one antiflavor. A version of this
vertex appears in a proposed domain wall approach to the
weak interactions [38–40]. The net process can be thought
of as an effective mixing of the antineutron with the
neutrino and the antiproton with the electron

�
nc

pc

�
R

⇔

�
ν

e−

�
L

: ð30Þ

Through this mechanism proton decay p → eþ þ π is
allowed, although it is extremely small being suppressed
exponentially in 1=α. As with the eta-prime mass, the
numerical value for this process is dynamical and can only
be determined through simulations.

In summary, one generation of the standard model fits
nicely into a conventional lattice gauge framework. The
approach keeps the SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ gauge sym-
metries exact. To be consistent with known anomalies, the
approach requires including each generation in its entirety.
The small baryon and lepton violation demonstrated by
’t Hooft appears in the lattice approach through the
appearance of chiral eigenmodes of the Dirac operator.
Unlike in the continuum where differentiable fields are
assumed, these modes are not forced to occur exactly at
zero. The overall picture is close in spirit to confiningmodels
[41–43]. The main remaining issue concerns asymptotic
freedom, absent both in electromagnetism and the Higgs
quartic self coupling. This leaves an obstacle toward defining
the theory in the continuum limit. For electromagnetism this
suggests a possible unification with further gauge fields at
high energies. For the Higgs it hints at composite models or
possibly involving gravity at the highest energies [44,45].

This manuscript has been authored under Contract
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exclusive, royalty-free license to publish or reproduce the
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