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Lattice QCD spectra can be used to constrain partial-wave scattering amplitudes that, while satisfying
unitarity, do not have to respect crossing symmetry and analyticity. This becomes a particular problem
when extrapolated far from real energies, e.g. in the case of broad resonances like the σ, leading to large
systematic uncertainties in the pole position. In this manuscript, we will show how dispersion relations can
implement the additional constraints, using as input lattice-determined ππ partial-wave scattering
amplitudes with isospin–0,1,2. We will show that only certain combinations of amplitude parametrizations
satisfy all constraints, and that when we restrict to these, the σ pole position is determined with minimal
systematic uncertainty. The evolution of the now well-constrained σ pole with varying light quark mass is
presented, showing how it transitions from a bound-state to a broad resonance.
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I. INTRODUCTION

Pion-pion scattering with isospin–0 plays a key role in
nuclear and particle physics, with the JP ¼ 0þ component
proving to be a feature of many low-energy phenomena of
contemporary interest such as spontaneous symmetry break-
ing [1], the long-range nucleon-nucleon interaction [2], and
hadronic contributions to the anomalous magnetic moment
of the muon [3]. At low energies, this partial wave is
dominated by the existence of the σ particle, the lightest
resonance in quantum chromodynamics (QCD). This
extremely short-lived statewhichmanifests as a slow energy
variation of the scattering amplitude, has only had its
complex energy plane pole position pinned down precisely
relatively recently [4–6]. How this state arises within QCD,
and its relationship to other light-scalar mesons, like the κ,
the f0ð980Þ, and the a0ð980Þ, remains unclear.
Our leading tool to study nonperturbative aspects of

QCD, including hadron scattering and resonances, is lattice

QCD. This is a first-principles numerical approach in which
only controlled approximations are made, and which
features the ability to vary the value of quark masses
and to explore the evolution of physical observables with
such variation. Access to scattering amplitudes comes via
computation of the discrete spectrum of states in the finite-
volume of the lattice, extracted from the time-dependence
of Euclidean correlation functions. A finite-volume quan-
tization condition often referred to as the Lüscher equation,
relates the spectrum to infinite-volume partial-wave scat-
tering amplitudes [7–18]. In practice, the computed spectra
are used to constrain unitarity-satisfying parametrizations
of the isospin–0 S–wave partial-wave amplitude, which
when analytically continued in the complex energy plane,
yield the σ pole [19–21].
With light quarkmasses chosen so that the pion has amass

of 391 MeV, the σ appears as a well-determined stable
bound-state pole below the ππ threshold. On the other hand,
in calculations at a pionmass of 239MeVit was found that a
wide range of parametrizations were capable of describing
the finite-volume spectrum, all giving compatible amplitude
determinations across the elastic scattering region, but these
various amplitudes feature resonant σ pole positions lying
deep in the complex plane which are scattered well outside
the level of statistical uncertainty [19].
This observation is closely related to the longstanding

challenge of accurately determining the σ pole position
from fits to experimental ππ elastic scattering data [22].
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In that case, a solution was found using dispersion relations
which implement the additional fundamental constraint of
crossing symmetry, leading to precise contemporary esti-
mates of the σ pole position [4–6,23]. Until recently there
had only been a single attempt to apply crossing symmetry
to ππ scattering amplitudes determined using lattice
QCD [20]. In that work the cross-channel effects were
treated only perturbatively in a unitarized chiral perturba-
tion theory framework.
In this manuscript we will apply dispersion relations,

which allow us to implement crossing symmetry non-
perturbatively, to lattice QCD data, considering two
unphysical values of the light quark mass lying in the
region where we believe the σ is transitioning from being
bound into being a broad resonance, showing that the
dominant systematic error on the σ pole position associated
with parametrization of partial-wave scattering amplitudes
can be almost entirely removed. Combining these results
with calculations at heavier quark masses, we present a
robust estimation within first-principles QCD of the evo-
lution of the σ pole with varying quark mass.
The Hadron Spectrum Collaboration (hadspec) has

performed lattice calculations with two flavors of dynami-
cal light quarks and a heavier dynamical strange quark
(Nf ¼ 2þ 1) yielding discrete finite-volume spectra in
channels with the quantum numbers of ππ scattering for
four values of the light quark mass, corresponding to pion
masses of 391, 330, 283, and 239 MeV [19,24–29]. The ππ
elastic partial-wave scattering amplitudes constrained using
these spectra feature a ρ in the isovector P–wave that is a
resonance at all quark masses, while the isoscalar S–wave
has an accurate interpretation only for the heaviest two
quark masses, where the σ appears as a well-determined
bound-state pole. Other lattice calculations exist for I ¼ 0,
with Nf ¼ 2 [20,21], for I ¼ 2 with Nf ¼ 2 [30], and
Nf ¼ 2þ 1 [31–33]. The ρ has been studied extensively
both for Nf ¼ 2 [34–41], Nf ¼ 2þ 1 [32,42–47] and for
Nf ¼ 2þ 1þ 1 [48]. For a review on the topic, we refer
the reader to Ref. [49].
In this manuscript, we will focus on the lightest two

quark masses calculated by hadspec. In both these cases,
the I ¼ 2 S–wave amplitude (S2) is weak, repulsive, and
acceptably described over the elastic region by a scattering
length approximation. The I ¼ 2 D–wave (D2) is
extremely weak across the elastic region. The I ¼ 1 P–
wave (P1) is dominated by the narrow ρ resonance, which
is well described by a Breit-Wigner amplitude, while the
F–wave is completely negligible. The I ¼ 0 S–wave
amplitude (S0) at both quark masses is a slowly varying
function of energy, but there is a significant change in the
behavior at threshold between the two quark masses,
indicating a rapid variation in the scattering length with
the quark mass. The generic functional forms used to
describe these amplitudes can be found in Appendix D, and
in the original works mentioned above. Additionally, the

I ¼ 2 channel atmπ ∼ 239 MeV, which had not previously
appeared in the literature, has been computed for this work
and is presented in Appendix E.
The S0 “lattice data” (at both quark masses) proves to be

describable by a large variety of unitarity-respecting para-
metrization forms, and these various descriptions lead to a
spread of σ pole estimates, with a scatter much larger than
their statistical uncertainties, as seen in Ref. [19]. It is clear,
then, that the lattice data in S0 alone, even when it has
rather small statistical errors, does not provide sufficient
constraint to uniquely determine the σ pole position. We
will use the additional constraint of crossing symmetry, in
the form of dispersion relations applied to the coupled
system of lattice data in all the partial waves above, to pin
down the location of the σ pole at mπ ∼ 283 and 239 MeV.
The manuscript is organized as follows: we briefly

summarize the specific dispersion relations used in this
work, applied to partial-wave amplitudes in Sec. II. In
Sec. III, we first define the metrics that quantify the degree
to which our dispersion relations are fulfilled. Then, we
apply these metrics to obtain a constrained system of
amplitudes that respect all S-matrix principles. Once this
set is obtained, in Sec. IV, we apply the dispersive outputs
to the study of the subthreshold and resonance regions in
Secs. IVA and IV B, respectively, including discussions of
the quark mass behavior of Adler zeroes and the σ pole
trajectory. Finally, we summarize our work in Sec. V.

II. DISPERSION RELATIONS

Generically, crossing symmetry relates two-particle
scattering behavior in the s, t and u–channels in terms
of the same amplitude, Tðs; t; uÞ, evaluated in different
kinematical regions. For the case of ππ scattering with its
three isospin configurations, given Tðs; t; uÞ we can con-
struct the amplitudes of the different s-channel isospin
processes as

TI¼0ðs; t; uÞ ¼ 3Tðs; t; uÞ þ Tðt; s; uÞ þ Tðu; t; sÞ;
TI¼1ðs; t; uÞ ¼ Tðt; s; uÞ − Tðu; t; sÞ;
TI¼2ðs; t; uÞ ¼ Tðt; s; uÞ þ Tðu; t; sÞ: ð1Þ

All isospin amplitudes in ππ scattering are then related
through simple algebraic crossing relations. However,
crossing symmetry is obscured when amplitudes are
partial-wave projected in one channel,

tIlðsÞ ¼
1

64π

Z
1

−1
d cos θsTIðs; t; uÞPlðcos θsÞ; ð2Þ

with the scattering dynamics in the t and u–channels
appearing as a left-hand cut, i.e. as an imaginary part of
tIlðsÞ for s < 0. When the only constraint on the partial-
wave amplitude is data for s > sthr, typically the left-hand
cut remains undetermined.

RODAS, DUDEK, and EDWARDS PHYS. REV. D 109, 034513 (2024)

034513-2



In the case that a partial-wave is dominated by a narrow
resonance (like the ρ), the impact of the left-hand cut
singularity for real energies above threshold is typically
negligible, since the nearby resonance pole dominates.
However, when there is no resonance, or when there is a
broad resonance, deep in the complex plane (like the
physical σ), the left-hand cut contribution can be signifi-
cant, and there is a need to constrain it accurately.
In the case of ππ elastic scattering, the left-hand cuts of

the partial-waves with I ¼ 0, 1, 2, tIlðsÞ, can be constrained
by crossing symmetry, and dispersion relations provide an
approach to implement this symmetry using the analytic
properties of the amplitudes TIðs; t; uÞ. Such relations are
obtained by application of Cauchy’s theorem to TIðs; t; uÞ
[50], introducing subtractions to ensure that the integrals
converge at infinity. Upon partial-wave projection, the
dispersion relations take the form,

t̃IlðsÞ ¼ τIlðsÞ þ
X
I0;l0

Z
∞

4m2
π

ds0KII0
ll0 ðs0; sÞImtI

0
l0 ðs0Þ; ð3Þ

where scattering amplitudes consistent with crossing sym-
metry and unitarity will have t̃IlðsÞ ¼ tIlðsÞ. The fτIlðsÞg
are low-order polynomials in s featuring a number of free
parameters set by the number of subtractions, while the
kernels KII0

ll0 ðs0; sÞ are known functions (also depending
upon the number of subtractions, see Refs. [51,52]) that
encode the crossing relations.1 The structure of the kernels
ensures that the dispersed amplitudes have left-hand cuts
set by the dynamics in the crossed-channels.
For twice-subtracted dispersion relations, commonly

referred to as “Roy” equations [53], the functions τIlðsÞ
take the form

τ00ðsÞ=mπ ¼
1

3
ða00 þ 5a20Þ þ

1

3
ð2a00 − 5a20Þ

s
4m2

π
;

τ11ðsÞ=mπ ¼
1

18
ð2a00 − 5a20Þ

s − 4m2
π

4m2
π

;

τ20ðsÞ=mπ ¼
1

6
ð2a00 þ a20Þ −

1

6
ð2a00 − 5a20Þ

s
4m2

π
; ð4Þ

where the S–wave scattering-lengths,

aI0 ≡ Re tI0ðs ¼ 4m2
πÞ=mπ; ð5Þ

are parameters that can be fixed using the S0, S2 ampli-
tude behaviors at threshold, since the contribution of the
integrals in Eq. (3) goes to zero as

ffiffiffi
s

p
→ 2mπ .

Figure 1 illustrates the dispersive kernel functions relevant
for obtaining the S0 dispersed amplitude, K0I0

0l0 ðs0; sÞ, where
we observe that crossed-channels will have an influence at
elastic scattering energies, and that all contributions from
amplitudes at high energies are heavily suppressed due to the
subtraction scheme. The right column shows the kernels
evaluated at complex values of s where we observe the pole
singularity at real s0 ¼ s being smoothed out. The lowest
entry in the right column is evaluated in the region where the
σ pole is eventually found for mπ ∼ 239 MeV, and here we
observe that the influence of the crossed-channels,P1 and S2
(which contribute to the left-hand cut), will be significant.
The integrals in Eq. (3) run over all energies above the

elastic scattering threshold, and inevitably our knowledge
of ftIlðsÞg stops at some point, so it proves necessary to
parametrize the high-energy behavior, which we may do
using known Regge asymptotics. In our implementation,
we divide the integration from threshold to infinity into two
parts: an integration from threshold to sh where lattice
constrained amplitudes are used, and an integration from sh
to infinity where Regge parametrizations are used. For
both cases in our work, mπ ∼ 239, 283 MeV, we useffiffiffiffiffi
sh

p ¼ 0.22a−1t , which for mπ ∼ 239 MeV corresponds toffiffiffiffiffi
sh

p ¼ 5.6mπ ¼ 1.34 GeV. Details of the high-energy
Regge parametrizations which model t-channel exchanges
in the amplitudes TIðs; t; uÞ are presented in Appendix A.
The dispersed amplitudes t̃IlðsÞ in Eq. (3) are obtained by

evaluating the integrals numerically. The input lattice-
constrained partial-wave amplitudes carry statistical uncer-
tainties associated with being constrained by energy levels
computed on a finite ensemble of lattice configurations.
These are available in the form of (correlated) statistical
uncertainties on the parameters of each amplitude para-
metrization. In addition, as discussed in Appendix A 2, the
high-energy Regge parametrized amplitudes carry an
assigned conservative uncertainty. Given a set of fits to
lattice data with parameters faig, and Regge contributions
with a fixed fractional uncertainty, the dispersion relation
uncertainties Δf̃Ilðs; faigÞ are obtained by linearized (cor-
related) error propagation at each sampled energy point.
In this work, we will report results using minimally

subtracted relations (often referred to as “GKPYequations”
[52]), and twice-subtracted relations (“Roy equations”
[53]). A choice can be made to implement more than
the minimal number of subtractions needed for conver-
gence, which will have the practical consequence of
reducing the contribution of the partial-wave amplitudes
at high-energies, in particular in the region where they are
Regge-parametrized, in exchange for increased sensitivity
to the behavior of the amplitudes at the subtraction point,
which is typically the elastic threshold. We observe that the
twice-subtracted amplitudes are minimally sensitive to how
we parametrize the high-energy behavior, and while the
minimally subtracted amplitudes do show sensitivity to
estimated high-energy behavior, nevertheless, compatible

1The diagonal kernels, KII
llðs0; sÞ, contain a simple pole ∼ 1

π
1

s0−s
which ensures that Im t̃IlðsÞ is always exactly equal to ImtIlðsÞ for
real energies above threshold.
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results for amplitudes at low energies are obtained. In the
main body of the paper we will present only results
applying twice-subtracted dispersion relations, where, as
shown in Eq. (4), the τIlðsÞ are linear in s and depend only
upon the S–wave scattering lengths, a00, a

2
0. Results using

minimally subtracted dispersion relations are presented in
Appendix C.

III. DISPERSIVE EVALUATION OF LATTICE
CONSTRAINED AMPLITUDES

As described above, the discrete energy spectra extracted
from lattice QCD calculations constrain definite isospin
partial-wave amplitudes one-by-one in the elastic scattering
region in a way that exactly respects unitarity, but which
has no constraint from crossing symmetry. Typically
multiple parametrizations prove to be capable of describing
the lattice data for real energies above threshold. We will
establish which combinations of partial-wave amplitude
parametrizations are compatible with first-principles using
dispersion relations. Upon input of a selected set of lattice
amplitudes, ftIlðsÞg, into the right-hand-side of Eq. (3), a
set of dispersed amplitudes, ft̃IlðsÞg, are produced which
have the same imaginary parts, but modified real parts. In
order for these amplitudes to be compatible with unitarity,
they must be statistically compatible with the input ampli-
tudes, ftIlðsÞg, in the elastic scattering region.

We assess the suitability of the dispersed amplitudes
using two metrics. The first, which we call d2, compares the
real part of the dispersed amplitude in one partial-wave
[f̃IlðsÞ≡ Re t̃IlðsÞ] with the real part of the input lattice
amplitude [fIlðsÞ≡ Re tIlðsÞ],

½d2�Il ≡
XNsmpl

i¼1

�
f̃IlðsiÞ − fIlðsiÞ

Δ½f̃IlðsiÞ − fIlðsiÞ�

�
2

; ð6Þ

where the difference is sampled at a large number of
equally spaced energy values in the elastic scattering
region, and where the uncertainty in the difference is
computed by linearly propagating the correlated uncertain-
ties on the lattice-fit amplitude parameters, and in addition,
the conservative uncertainty placed on the high-energy
Regge-like behavior (see Appendix A 2 for details).
The d2 metric can yield small values when at least one of

fIl or f̃
I
l has large statistical uncertainties, corresponding to

an (undesired) imprecise amplitude description, so we
choose to supplement it with a second χ2–like metric
which compares the central value of the dispersed ampli-
tude with the lattice data,

½χ̃2�Il≡
XNlat

i;j¼1

�
fi− f̃IlðsiÞ

Δi

�
corrðfi; fjÞ−1

�
fj− f̃IlðsjÞ

Δj

�
; ð7Þ
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FIG. 1. Real part of kernel functions in Eq. (3) contributing to dispersion of S0, ReK0I0
0l0 , plotted in units where 1 on the y-axis

represents a value 4m2
π . Left column: functions evaluated on the real s0–axis for three values of s—inset indicates the behavior in the

high-energy region. Right column: Kernel functions evaluated for complex values of s.
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where fi are the discrete values of Re tIl extracted from
solving the Lüscher finite-volume condition at energy
Ei ¼ ffiffiffiffi

si
p

. The construction of the corresponding uncer-
tainty, Δi, is described in Appendix B.
Figures 2 and 3, show examples of mπ ∼ 239 MeV and

mπ ∼ 283 MeV S0, P1 and S2 lattice amplitudes,2 and their
dispersively modified counterparts, illustrating how the
metrics defined above select consistent and reject incon-
sistent combinations. In practice, we find that there is little
variation in the metric values with change of P1 para-
metrization, so we opt to fix this to one particular successful
form for both analyses.3 We compute dispersed amplitudes
in the remaining space of choices ofS0,S2 parametrizations,
and retain only those combinationswhich haved2=Nsmpl<1

and χ̃2=Nlat < 2 for all partial-waves, S0; P1; S2.4

The values of the metrics for a large number of S0, S2
amplitude parametrizations are shown in Fig. 4 (for
mπ ∼ 239 MeV) and 5 (for mπ ∼ 283 MeV), where it is
clear that applying cuts on the metrics, and thus enforcing
both unitarity and crossing symmetry, leads to a much

reduced set of amplitudes relative to those which accept-
ably described the lattice energy levels in a conventional
“partial-wave–by–partial-wave” analysis. The value of the
relevant S–wave scattering length is provided for each
parametrization, and it is clear that this approach has
significantly reduced the range of acceptable values of
a00 and a20.
In the mπ ∼ 283 MeV case shown in Fig. 5, a00 is

large and positive, of much larger magnitude than in the
mπ ∼ 239 MeV case, while a20 remains small. Equations (3)
and (4) are such that a00 and t00ðs > 4m2

πÞ feature for all
partial-waves, and in order to get lineshapes compatiblewith
data, including weak scattering in I ¼ 2, a delicate cancel-
lation between the integral over t00ðsÞ and the contribution of
a00 is required. This is reflected in the relatively small number
of amplitudes found with small metric values.

IV. DISPERSED AMPLITUDES AWAY
FROM THE ELASTIC SCATTERING REGION

The acceptable dispersed amplitudes, t̃IlðsÞ, found in
the previous section (by virtue of small values of metrics),
have several desirable properties, owing to the fact that
they effectively respect unitarity, analyticity and crossing
symmetry.
An illustration of this comes in their behavior for

real energies below the elastic threshold, which for the

FIG. 2. Real parts of S0, P1, S2 scattering amplitudes for mπ ∼ 239 MeV. Data-points indicate the constraint provided by discrete
lattice QCD spectra. The top row show an example of parametrizations (red) which describe well the lattice data, but which generate
dispersed amplitudes (blue) that are in poor agreement, leading to large values of d2 and χ̃2. The second rows show a case where the
lattice amplitudes (green) prove to be in good agreement with the dispersed amplitudes. The colored numbers with an error estimate
show the S–wave scattering lengths in m−1

π units. The red(green) italic numbers show the χ̃2=N lat values for the input amplitudes,
whereas the blue numbers on those same panels show the χ̃2=Nlat values for the dispersed amplitude. Beneath each panel, values of the
quantity in the large parentheses in Eq. (6) at Nsmpl ¼ 91 points are given, and the numbers listed there show the d2=Nsmpl values.

2See Refs. [19,29] and Appendix D for details of the particular
functional forms used.

3A K-matrix with a single pole plus a constant, and a dispersed
phase-space subtracted so that its real part vanishes at the bare
K-matrix pole.

4The sensitivity to this particular choice is investigated in
Appendix B.
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lattice-constrained input amplitudes was essentially uncon-
strained and varied wildly between parametrizations, with
some even featuring unphysical singular behavior. In a
“partial-wave–by–partial-wave” analysis, this subthreshold
region is obtained only as an extrapolation, and should not
be expected to be accurate away from the data above or near
the threshold. On the other hand, our dispersed amplitudes,
ft̃IlðsÞg, implicitly include information both from the right-
and the left-hand cuts (via crossing), and we are in effect
interpolating between these, with the additional constraint

of analyticity being imposed by the use of dispersion
relations which originate in the Cauchy theorem. Similarly
the extrapolation into the complex energy plane, where
resonance poles are expected to be found, should be
rendered more stable.

A. Subthreshold region

The amplitude parametrizations used to describe lattice
QCD spectra above threshold (and sometimes slightly
below threshold) in a particular partial-wave are built to

FIG. 3. As Fig. 2 but for mπ ∼ 283 MeV. The lower panels sampled at Nsmpl ¼ 89 points.

�0.253(9)

�0.195(4)

�0.180(7)

�0.164(19)

�0.135(16)

�0.131(16)

�0.127(20)

�0.125(21)

�0.123(17)

�0.122(22)

�0.095(7)

�0.090(6)

�0.082(6)

0.
49
(9
)

0.
54
(1
3)

0.
58
(1
1)

0.
58
(9
)

0.
61
(1
2)

0.
63
(1
2)

0.
64
(1
2)

0.
64
(1
3)

0.
64
(1
3)

0.
66
(1
3)

0.
75
(1
6)

0.
76
(1
6)

0.
77
(1
7)

0.
78
(1
9)

0.
78
(1
6)

0.
78
(2
0)

0.
80
(1
9)

0.
82
(1
4)

0.
85
(1
2)

0.
96
(1
5)

1.
01
(1
5)

1.
03
(1
7)

1.
09
(1
7)

1.
09
(1
8)

0

10

20

30

40

FIG. 4. For mπ ∼ 239 MeV, for each combination of parametrizations of S0 (columns) and S2 (rows), each ordered by the magnitude
of their scattering length in m−1

π units, boxes are colored according to the average value of d2=Nsmpl (upper triangle) and χ̃2=Nlat (lower
triangle) over S0, P1, S2. The region indicated by the black outline shows parametrization combinations that have all amplitudes having
metric values below the cutoffs presented in the text.

RODAS, DUDEK, and EDWARDS PHYS. REV. D 109, 034513 (2024)

034513-6



exactly obey unitarity above threshold, but they are not
typically guaranteed to be free of unphysical behavior far
below threshold. Usually this is excused as irrelevant since
the amplitudes are only needed in a small region around the
real energy axis above threshold (for example when narrow
resonances are sought), but if extrapolation further into the
complex energy plane is required, such parametrization
artifacts may be problematic.
The use of dispersion relations can remedy this problem.

Since the dispersion relations take as input the amplitudes
only above threshold (where they are well constrained),
while the subthreshold behavior is controlled by the kernel
functions (which have correct analytic properties), the
behavior of the dispersed amplitudes below threshold is
rendered free of singularities.
This is illustrated in Figs. 6 and 7, where the S0 and S2

amplitudes are shown for mπ ∼ 239, 283 MeV. The upper
panels in each case shows the input lattice amplitudes
(where amplitudes that systematically fail the metric cuts
are shown in red) where subthreshold divergences are
observed to be present, as is a significant scatter of behavior
such that one can argue that the lattice data (above

threshold, in a single partial-wave) has not constrained
in any reliable way the amplitude behavior far below
threshold. On the other hand, in the lower panels, we
observe that all dispersed amplitudes satisfying the metric
cuts show broadly compatible singularity-free behavior
below threshold. The scatter of behaviors of acceptable
amplitudes is observed to be at the level of the uncertainty
(shown for one example amplitude by the gray band).
In Fig. 6, for mπ ∼ 239 MeV, both sets of dispersed

amplitudes are observed to feature a zero-crossing below
threshold, located near to s=m2

π ≈ 0.8 for S0 and s=m2
π ≈ 1.6

for S2. The presence of such zeroes, known as “Adler
zeroes,” is an expectation of chiral perturbation theory [54],
and we show in the figure the expected location at leading
order (s=m2

π ¼ 1
2
for S0 and s=m2

π ¼ 2 for S2). The zeroes
in the dispersed amplitudes are observed to differ from
these expectations, with a non-negligible spread.
In Fig. 7, formπ ∼ 283 MeV, the S2 amplitude is seen to

feature an Adler zero near s=m2
π ≈ 2.3, while the S0

amplitude does not appear to cross zero between the
left-hand cut and threshold, in contradiction to the expect-
ations of leading-order χPT. As such, we would argue that
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FIG. 5. As Fig. 4 but for mπ ∼ 283 MeV.

FIG. 6. S–wave amplitudes formπ ∼ 239 MeV. Top panel: central values of the real parts of S0 and S2, both above and below the two-
pion threshold, for all amplitude parametrizations. Those plotted in green correspond to input parametrizations that produce at least one
combination respecting the metric cuts presented above, while all others are plotted in red. Open circles on axis indicate the locations of
Adler zeroes in the leading-order of χPT. Bottom panel: real parts of the corresponding dispersive amplitudes for all amplitude
combinations respecting the metric cuts presented above. The uncertainty on one example amplitude is shown by the gray band.

DETERMINATION OF CROSSING-SYMMETRIC ππ … PHYS. REV. D 109, 034513 (2024)

034513-7



analyses of lattice QCD obtained spectra using amplitudes
which enforce an Adler zero fixed at the leading order
location are potentially introducing a systematic bias and
this may impact results such as scattering lengths or low-
lying pole positions.

B. Resonance poles in the dispersed amplitudes

The location of the ρ resonance pole in the dispersed P1
amplitudes is found to be compatible with the small spread
observed in the input lattice amplitudes, as expected for a
narrow resonance. On the other hand, for the σ pole in S0,
which at mπ ∼ 239 MeV is lying deep in the complex
plane, the acceptable dispersed amplitudes all have a pole
that lies in a much-reduced region, as shown in Fig. 8. As
hoped, the imposition of analyticity and crossing sym-
metry, constrained by lattice data in all relevant isospins
and low partial-waves, has led to a robust extraction of the σ
pole position, which is observed to be independent of any
significant parametrization dependence.
In the mπ ∼ 283 MeV case (Fig. 9), the S0 lattice

amplitudes indicated that the σ could be either a virtual
bound-state5 or a subthreshold resonance, depending upon
parametrization choice, with a spread in pole positions.

Those dispersed amplitudes that meet the metric cuts show
a reduced scatter in pole location. As described in Ref. [29],
when the complex conjugate pole pair of a subthreshold
resonance meet on the real axis below threshold the pole
location’s dependence on the amplitude parameters devel-
ops an infinite slope. Near this point, the slopes are large,
causing small uncertainties on the parameters to become
large uncertainties on the pole location. We do not plot the
dispersive pole locations for these noisy results but merely
comment that they are compatible with the plotted virtual
bound-state cases. In the current analysis, a definitive
statement about whether the state is a virtual bound-state,
or a subthreshold resonance at this pion mass cannot be
made. The ππ couplings of these plotted poles are also
presented in the figure, where we see that the dispersive
results have larger statistical uncertainties but reduced
systematic spread with respect to the conventional analyses
presented in Refs. [19,29].
In our mπ ∼ 283 MeV analysis, the selected dispersed

central values find no real Adler zero for S0. In those cases,
a very noisy third pole, companion to the pair of σ poles,
appears close to the left-hand cut in the unphysical
Riemann sheet.
In this work, we have considered two pion masses for

which the σ appears as a pole in the unphysical Riemann
sheet, while at higher pion masses lattice calculations
indicate that the σ is a bound-state pole on the physical

FIG. 8. For mπ ∼ 239 MeV, pole locations in S0 amplitude for lattice-fit amplitudes (gray) and dispersed amplitudes satisfying the
metric cuts described in the text (blue), and modulus of the couplings (as defined in Refs. [5,29]) extracted from the pole residues.

FIG. 7. As Fig. 6 but for mπ ∼ 283 MeV.

5A pole on the real energy axis below threshold on the
unphysical Riemann sheet.
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Riemann sheet. In these latter cases, a dispersive analysis is
typically not required to determine accurately the σ pole
location, as it is tightly constrained by finite-volume energy
levels lying close to the pole. Nevertheless, it is possible to
construct applicable dispersion relations by explicitly
including the σ in T0ðs; t; uÞ as “fixed” poles in s and u.
The s–channel pole remains a pole when the amplitude is
projected into the s–channel S–wave, while the u–channel
pole generates a cut that is present in all partial-waves.
Recently, Ref. [55] applied dispersion relations in an
approach different to that explored in this paper, in a case
where a bound-state σ is present using lattice data at
mπ ∼ 391 MeVpreviously published by hadspec, finding a σ
pole compatible with the undispersed analysis in Ref. [28].
Finally, taking the now robust σ pole results from

dispersive analysis at mπ ∼ 239, 283 MeVand supplement-
ing them with two heavier quark masses where dispersive
analysis is not required, we show in Fig. 10 the evolution
with changing quark mass of the σ pole. In distinction
to the narrow P–wave ρ resonance, which exhibits a simple
quark-mass dependence corresponding to an approximately

constant coupling to ππ [29,56,57], the S–wave σ under-
goes a rapid transition from bound to resonant state,
appearing to pass through a virtual bound-state stage in
a narrow region of pion mass.

V. SUMMARY

We have presented a dispersive approach to analyze
elastic hadron-hadron scattering information provided by
lattice QCD, applied here to the case of ππ scattering at
two pion masses. We have observed that the sensitivity of
S–wave scattering lengths and broad resonance pole
locations to choice of parametrization form can be largely
eliminated. The method also yields reliably the scattering
amplitudes below threshold, and in this region we have
pinned down the location of amplitude zeroes (Adler
zeroes) when they appear. This indicates that reliable
results can be extracted from lattice QCD calculations
without the need to enforce amplitude features, such as
Adler zeroes, not directly motivated by the lattice data. The
now well-constrained amplitudes obtained in this study can

FIG. 9. As Fig. 8 but for mπ ∼ 283 MeV. Cases in which the pole locations feature very large uncertainties have been excluded for
clarity of presentation.

FIG. 10. σ pole evolution with changing light-quark mass corresponding to mπ ∼ 391 (green, bound-state, nondispersive, taken from
Ref. [19]), 330 MeV (blue, bound-state, nondispersive, taken from Ref. [29]), 283 MeV (red, virtual bound-state, dispersive), 239 MeV
(orange, resonance, dispersive). Gray points correspond to dispersive extractions from experimental data given in Refs. [4–6].

DETERMINATION OF CROSSING-SYMMETRIC ππ … PHYS. REV. D 109, 034513 (2024)

034513-9



be used in future lattice QCD calculations in which the
ππ S–wave scattering system is coupled to external cur-
rents [58–61], where well-defined form-factors of reso-
nances can be extracted from pole residues, providing
structural information that will aid in the determination of
the compositeness of the σ as the light quark mass is varied.
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APPENDIX A: DISPERSIVE INPUTS

As described in the text, when implementing Eq. (3) the
input Im tI

0
l0 ðs0Þ is needed over the entire energy region from

threshold to infinity. In practice, we split this integral into

two pieces, below sh where lattice-obtained partial-wave
amplitudes are used, and above sh, where Regge-like
parametrizations are used. Due to the polynomial suppres-
sion of the integral kernels at high-energies, the sensitivity
of dispersed amplitudes at low energies to the details of the
amplitudes above sh is weak.

1. Lattice obtained partial-wave input

The partial-wave lattice inputs are described by using
parametrizations presented in Refs. [19,29], parametriza-
tions fitted to the results presented in Ref. [27], or para-
metrizations fitted to the results presented in Appendix E.
For a detailed summary of the functional forms used, see
Appendix D. They are constrained as follows:
S2;D2: these amplitudes, whose spectra are compatible

with there being no inelasticity, are constrained by fitting
energy levels up to around atEcm ¼ 0.22 for both
mπ ∼ 239, 283 MeV masses. They describe weak repulsive
nonresonant scattering.
P1: this amplitude is constrainedby fitting energy levels up

to aroundatEcm¼0.185ð0.19Þ formπ∼239ð283ÞMeV,very
slightly above the KK̄ threshold. As presented in Ref. [27],
there is negligible inelasticity up toatEcm¼0.22, and as such,
we use an extrapolation of the determined elastic amplitude
up to sh. This partial wave is dominated by the ρ resonance in
the elastic region,which canbe fittedwell by functional forms
with few free parameters, such as a Breit-Wigner form. These
amplitudes have a smooth featureless extrapolation up to sh.
The fact that the phase-shift is very close to 180° in the
inelastic region means the imaginary part that enters the
dispersion relations is very close to zero.
S0: this amplitude is constrained by fitting energy levels up

to around atEcm ¼ 0.1585ð0.16Þ for mπ ∼ 239ð283Þ MeV,
slightly below theKK̄ threshold. The amplitudes feature slow
energy dependence in the elastic region. The presence of a
scalar resonance analogous to the f0ð980Þ can cause the KK̄
amplitude to turn on rapidly, and we have not yet attempted
coupled-channel descriptions in this region, where 4π chan-
nelsmay also be relevant. In practice,we use extrapolations of
the elastic amplitude up to sh, and for different parametriza-
tions, these extrapolations can differ significantly. However,
as observed in Figs. 4 and 5, the main variation in the
dispersion relation metrics comes from the behavior of the
amplitudes at threshold (characterized by the scattering
length), so it appears that there is little sensitivity to this
extrapolation region, suppressed as it is by the rapidly
decreasing dispersion relation kernels.

2. High-energy parametrization

Generally, it is observed that scattering amplitudes at
high energy cease to show features of individual resonan-
ces, becoming smooth functions of energy. In the limit
s ≫ t, the complex angular momentum, or “Regge”
approach proves to be an efficient method to parametrize
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scattering amplitudes in terms of a modest number of
parameters describing t–channel Regge trajectories and
their residues [70–72]. This approach has been used
extensively to describe experimental scattering data, with
good descriptions of ππ scattering at high energy being
obtained by inclusion of Pomeron, ρ and f2 trajectories
[52,73,74].
For the current analysis at unphysical values of the light

quark mass, we lack any high-energy scattering data with
which to constrain a Regge parametrization, but we can use
the relationship between Regge trajectories and resonance
states exchangeable in the t–channel to infer the required
quark-mass scaling. In particular, we will use an average of
the parametrizations given in Refs. [52,73] (specifically we
use the “CFD” results from Ref. [52]), adapted to our pion
masses in a simplistic approach. These formulas provide us
with a description for the three different isospins in the
t-channel exchanges It ¼ 0, 1, 2.
The Pomeron trajectory is typically associated with

gluonic exchanges, and as such we will assume that the
parameters obtained from fits to physical data can be
used without adjustment for the changed light quark mass.
We will also assume that the It ¼ 2 Regge trajectory, which
plays a very minor role, does not depend on the quark mass.
On the other hand, the ρ trajectory includes the ρ resonance,
and the residue of this trajectory in ππ scattering can be
related to the decay width for ρ → ππ, which does change
with varying light quark mass. We keep the Regge
trajectory αρðsÞ fixed at the physical value, and only adjust
the residue for the changed quark mass. Equation (E.5)
from Ref. [51],

Γρ ¼
λ

96πM2
ρ
ðM2

ρ − 4M2
πÞ32; ðA1Þ

indicates how to scale the residue (which is proportional
to λ) given the Mρ, Γρ computed in lattice QCD at an
unphysical light quark mass. For mπ ∼ 239 MeV we
take Mρ ¼ 793.7 MeV and Γρ ¼ 91.2 MeV, while for
mπ∼283MeV we use Mρ¼798.6MeV and Γρ¼60.5MeV.

The residue, β, present for ρ exchange, given in
Refs. [52,73], is scaled by the ratio of the lattice λ to
the physical value, which we take as λphys ¼ 72. The
ρ–computed ratio is also used (as a crude first approxima-
tion) to scale the f2 residue.
The Regge implementations of Refs. [52,73], with the

quark-mass scaled residues, are used to calculate the ππ
cross sections in the s-channel, according to

σIsðsÞ ¼ ImTIsðs; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p : ðA2Þ

Figure 11 shows these for the mπ ∼ 239 MeV case, along
with the average of the two parametrizations, with a
conservatively assigned, uncorrelated 30% error for each
It total Regge amplitude contribution, which we propagate
through our dispersive analysis.
These amplitudes are used in the dispersion relations

from sh up to infinity, but note that their contributions are
heavily suppressed by the kernels, which as shown in
Fig. 1, fall rapidly with increasing energy. In Fig. 12, we
present the contribution of the high-energy parametrized
amplitude to the dispersed amplitudes in the elastic
scattering region. We define

f̃IlðsÞjRegge ≡
X
I0;l0

Z
∞

sh

ds0ReKII0
ll0 ðs0; sÞIm tI

0
l0 ðs0Þ

����
Regge

;

ðA3Þ

and compare this to the total dispersed amplitude, which is
dominated by the amplitudes constrained by lattice QCD
data for s < sh. The plotted ratio between the high-energy
contribution and the relative uncertainty, Δ½f̃IlðsÞ − fIlðsÞ�,
indicates that the results of the analysis presented above
are not sensitive to the detailed modeling of the Regge
amplitudes.

FIG. 11. Regge contributions to σIs¼0ðsÞ (left), σIs¼1ðsÞ (center) and σIs¼2ðsÞ (right) for mπ ∼ 239 MeV. Parametrizations taken from
Ref. [52] (blue) and Ref. [73] (orange), scaled to be applicable to the current pion mass. In our dispersive analysis, we use the average of
the two (gray) assigning a conservative 30% fractional uncertainty to each It amplitude.
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APPENDIX B: DISPERSED
AMPLITUDE METRICS

As discussed in the manuscript, we retain only those
dispersed amplitudes which are both compatible with
unitarity, determined by having real part in agreement with
the input amplitude (which itself was exactly unitarity
preserving), and which provide a reasonable description of
the original lattice data. These criteria are assessed using
two numerical metrics.
A metric which compares the real part of the dispersed

amplitude, f̃IlðsÞ≡ Re t̃IlðsÞ, to the real part of the input
amplitude, fIlðsÞ≡ Re tIlðsÞ, in order to enforce unitarity, is

½d2�Il ≡
XNsmpl

i¼1

�
f̃IlðsiÞ − fIlðsiÞ

Δ½f̃IlðsiÞ − fIlðsiÞ�

�
2

: ðB1Þ

The sampling of points in the sum runs from just above
the ππ threshold.6 Excluding the lowest 30 MeV above
threshold reduces the sensitivity to high-order derivatives of
the scattering amplitude at threshold, a sensitivity that is
peculiar to this particular difference. In total, we use 91
equally spaced points for mπ ∼ 239 MeV and 89 points for
mπ ∼ 283 MeV in the evaluation of this metric. The uncer-
tainty on the difference at each energy sample (appearing in
the denominator) is calculated by linear propagation of
the (correlated) amplitude parameter uncertainties and the
(uncorrelated) high-energy Regge model uncertainty.

In order to compare the dispersed amplitudes directly to
the “lattice amplitude data,” we use a χ2-like construction
which accounts for both the correlation between different
lattice data points and the correlation between the ampli-
tude uncertainty and the energy uncertainty of each point,

½χ̃2�Il ≡
XNlat

i;j¼1

�
fi − f̃IlðsiÞ

Δi

�
corrðfi; fjÞ−1

�
fj − f̃IlðsjÞ

Δj

�
;

Δ2
i ¼

�
Δfi

df̃IlðsiÞ
dEi

ΔEi

��
1 −ci
−ci 1

�� Δfi
df̃IlðsiÞ
dEi

ΔEi

�
;

ðB2Þ

FIG. 12. Top row: blue curves show the real part of the S0, P1, S2 partial-wave amplitudes formπ ∼ 239 MeV (amplitude combination
indicated by the black star in Fig. 14). The gray curves lying close to zero in each case show the contribution to the amplitude,
f̃IlðsÞjRegge, coming from the high-energy amplitude parametrization [as defined in Eq. (A3)]. Bottom row: ratio, in absolute value, of

f̃IlðsÞjRegge and the denominator in the parenthesis of Eq. (6), indicating the high-energy contribution in units of the relative uncertainty
at each energy.

FIG. 13. Geometric illustration of the construction of a linear-
ized χ2 contribution for a data-point having x, y correlation of −1.
The data-point shown will contribute 1 to the χ2 in agreement
with the apparent 1σ deviation from the curve along the diagonal
direction.

6In practice, this difference is calculated at 100 evenly spaced
energy values in the range between the two-pion threshold and
at

ffiffiffi
s

p ¼ 0.14, of which points above 2atmπ þ 0.005 are used to
obtain the d2 value. The energy of the first point used is around
at

ffiffiffi
s

p ¼ 0.0841ð0.0995Þ for mπ ∼ 239ð283Þ MeV.
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In the second expression, the “x, y” correlation, ci, for
points obtained from a linearized, Lüscher finite-volume
analysis is �1, and in Fig. 13 we present a geometric
illustration of the construction of the effective uncertainty,
compatible with the equation above, for the case ci ¼ −1.
Δ2

i is an “effective variance weight”; explicit examples
with and without correlations between the x and y values,
and a justification of the formula above are given in
Refs. [75,76].7 The values of ci and corrðfi; fjÞ are obtained
from the original lattice ensemble distributions.8

Applying these metrics to the amplitudes obtained from
the dispersion relations generates Figs. 4 and 5. In the
manuscript we apply cuts of d2=Nsmpl < 1 and χ̃2=Nlat < 2,
retaining only those amplitudes which satisfy these for all
partial-waves, S0; P1; S2. In Fig. 14, we show the effect of

relaxing these cuts somewhat. The four superimposed
boundaries correspond to:

white: amplitude combinations with all d2=Nsmpl < 3

and χ̃2=Nlat < 3,
gray: amplitude combinations with all d2=Nsmpl < 1

and χ̃2=Nlat < 3,
dark gray: amplitude combinations with all d2=Nsmpl<2

and χ̃2=Nlat < 2,
black: amplitude combinations with all d2=Nsmpl < 1

and χ̃2=Nlat < 2,
and the figure indicates that somewhat looser cuts can
slightly increase the range of acceptable scattering length
values, but as shown in Fig. 15 (for the sample points
indicated by the white and gray stars in Fig. 14), they do so
by allowing increasing departures from unitarity, or from an
acceptable description of the lattice data.
Nevertheless, if one allows these looser cuts, we note

that the σ pole location remains within the region estab-
lished by the tighter cuts, as shown in Fig. 16, indicating
that our particular choice of metric cuts is not introducing a
significant systematic error.

APPENDIX C: MINIMALLY SUBTRACTED
DISPERSION RELATIONS (“GKPY”)

Minimally subtracted dispersion relations, often referred
to as GKPY equations, are constructed making only those
subtractions required to get convergence, namely one
subtraction [52]. The smaller number of subtractions means
the high-energy contributions to the dispersion relations are
not as strongly suppressed, with the kernel functions, in
this case, falling off as s−2 rather than s−3 as was the
case for twice-subtracted (“Roy”) dispersion relations.
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FIG. 14. Formπ ∼ 239 MeV, for each combination of parametrizations of S0 (columns) and S2 (rows), each ordered by the magnitude
of their scattering length in m−1

π units, the box is colored according to the average value of d2=Nsmpl (upper triangle) and χ̃2=Nlat (lower
triangle) over S0, P1, S2. The different regions indicated by the color contours show the parametrization combinations respecting the
cuts described in the text. Three example parametrization combinations are indicated by black, gray, and white stars, which are used for
illustration in other figures.

7The methods described in Refs. [75–77] present a solution to
fitting data with errors in both x, y variables, for which the xi
values are iterated, with the suggested starting point xi ¼ Ei for
our case.

8A few data points appear very close to local maxima or
minima of f̃IlðsiÞ, for which the linearized statistical uncertainty

on fi and/or the derivative df̃IlðsiÞ
dEi

are almost zero. In these cases,
the error is underestimated. For these problematic fi points,
we took the maximum statistical or systematic error, when
varying the energy level Ei within uncertainties. For f̃IlðsiÞ,
the second order correction d2f̃IlðsiÞ

d2Ei
ðΔEiÞ2=2 is sizeable for

some points (over 30% of j df̃IlðsiÞdEi
ΔEij), and in those cases we

substituted df̃IlðsiÞ
dEi

ΔEi by either df̃IlðsiÞ
dEi

ΔEiþd2f̃IlðsiÞ
d2Ei

ðΔEiÞ2=2 or
df̃IlðsiÞ
dEi

ΔEi −
d2f̃IlðsiÞ
d2Ei

ðΔEiÞ2=2, selecting the term that produces
the larger value for Δ2

i .
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The subtraction functions in this case are just constants
which, as before, depend only on the S-wave scattering
lengths,

τ00ðsÞ=mπ ¼
1

3
ða00 þ 5a20Þ;

τ11ðsÞ=mπ ¼
1

12
ð2a00 − 5a20Þ;

τ20ðsÞ=mπ ¼
1

6
ð2a00 þ a20Þ: ðC1Þ

In contrast to the twice-subtracted equations, the dispersive
integrals do not go to zero as

ffiffiffi
s

p
→ 2mπ , and their value in

this limit must conspire with the τ values above to generate
the correct threshold behavior. These minimally subtracted

equations have two main advantages over the twice-
subtracted variant. First, the error on the dispersed ampli-
tudes grows less quickly with increasing energy above
threshold, which in previous analyses led to lower uncer-
tainties on resonance pole locations and residues [5].
Second, the scattering length values can be determined,
rather than needing to be supplied as input. The primary
disadvantage of minimally subtracted equations is their
sensitivity to the high-energy region of scattering, on
which, in this lattice application, we have relatively little
constraint. We will return to this later in this section.
In the left panel of Figs. 17 and 18 we show the d2 and χ̃2

metrics for the output of minimally subtracted dispersion
relations using the same lattice amplitude parametrizations
as shown in Figs. 4 and 5. The black boundary super-
imposed on the plot is the one selected according to the
metric cuts applied to the twice-subtracted results, and we
see that a large fraction of acceptable solutions of the
minimally subtracted dispersion relations also lie in this
region.
In the right panel of Fig. 17 we show a metric designed to

show how well the Olsson sum rule [78],

ReT̃It¼1ð4m2
π; 0Þ ¼

4m2
π

π

Z
∞

4m2
π

ds0
ImTIt¼1ðs0; 0Þ
s0ðs0 − 4m2

πÞ
; ðC2Þ

is satisfied. In this expression, the t–channel definite
isospin amplitude can be expressed in terms of the
s–channel definite isospin amplitudes by

TIt¼1ðs; tÞ ¼ 1

3
T0ðs; tÞ þ 1

2
T1ðs; tÞ − 5

6
T2ðs; tÞ; ðC3Þ

FIG. 15. For mπ ∼ 239 MeV, real parts of S0, P1, S2 partial-wave amplitudes for input (red) and dispersed output (blue). Amplitude
combinations correspond to the stars in Fig. 14: white (upper panel), gray (lower panel). Labels as described in the caption of Fig. 2.

FIG. 16. For mπ ∼ 239 MeV, S0 pole locations for lattice-fit
amplitudes (gray), dispersed amplitudes satisfying the tighter
metric cuts described in the text (blue), and for the two sample
points (white and gray stars in Fig. 14) satisfying looser
cuts (red).
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and these are expressed in terms of a sum over the partial-
wave amplitudes. The t–channel amplitude at threshold is
equal to a combination of the S–wave scattering lengths,

ReTIt¼1ð4m2
π; 0Þ ¼

32π

6
ð2a00 − 5a20Þmπ; ðC4Þ

so the quantity plotted, ð ψ
ΔψÞ2, where

ψ ¼ 2a00 − 5a20 −
6mπ

8π2

Z
∞

4m2
π

ds0
ImTIt¼1ðs0; 0Þ
s0ðs0 − 4m2

πÞ
; ðC5Þ

should vanish if this dispersive sum rule is fulfilled.
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FIG. 18. As Fig. 17, but for mπ ∼ 283 MeV.
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FIG. 17. Formπ ∼ 239 MeV, left panel shows average values of d2=Nsmpl (upper triangle) and χ̃2=N lat (lower triangle) for each pair of
S0 (columns) and S2 (rows) parametrizations, computed using minimally subtracted dispersion relations. The black outline indicates
those amplitudes that passed the metric cuts in the twice-subtracted case. Right panel shows values of ð ψ

ΔψÞ2 as defined in the text, testing
the degree to which the Olsson sum rule is satisfied.

FIG. 19. See Fig. 12 for comparison. Dispersed amplitudes produced by twice-subtracted (blue) and minimally subtracted (orange)
dispersion relations applied to input amplitudes indicated by the black star in Fig. 14. Contributions to each from the high-energy
parametrization is shown by the gray and purple curves, respectively. Bottom panels: ratio, in absolute value, of f̃IlðsÞjRegge and the
denominator in the parenthesis of Eq. (6), indicating the high-energy contribution in units of the relative uncertainty at each energy,
described by the same colors as before.
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Figure 19 shows an example of the dispersed amplitudes
coming from minimally subtracted dispersion relations
compared to those from twice-subtracted dispersion rela-
tions for the same set of input lattice amplitude para-
metrizations, indicated by the black star in Fig. 14. The
amplitudes are observed to be compatible within errors over
the entire energy region plotted, but if one examines the
contribution to the minimally subtracted amplitudes of the
high-energy part of the input, one sees it is much larger than
for the twice-subtracted variants. Measured as a fraction of
the relative uncertainty Δ½f̃IlðsÞ − fIlðsÞ�, depicted in the
bottom row, it is seen to contribute at a level where one
would worry about the correctness of the crudely scaled
Regge parametrization used. As such we do not consider
these results to be model-independent consequences of the
lattice QCD calculation. Nevertheless, the amplitude agree-
ment with the twice-subtracted results inspires us to
examine the σ pole location, and as shown in Fig. 20,
we see that there is reasonable agreement with the twice-
subtracted results with, as anticipated, smaller uncertainties
on the pole location and the pole residue.

APPENDIX D: PARAMETRIZATION
FUNCTIONAL FORMS

We summarize in this section the functional forms used to
describe the input partial-wave amplitudes, with parameters
constrained by describing lattice QCD finite-volume energy
levels. A similar discussion can be found in Ref. [29] where
their application to describe lattice spectra is presented.
An elastic partial wave can be recast in terms of a real

phase-shift as

tIlðsÞ ¼
1

ρðsÞ e
iδIlðsÞ sin δIlðsÞ ¼

1

ρðsÞ
1

cot δIlðsÞ − i
; ðD1Þ

where ρðsÞ ¼ 2k=
ffiffiffi
s

p
is the two-pion phase-space and

k ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

p
is the scattering momentum.

At low energies, slow variation of S–waves can be
described by a low-order expansion in k2, called the
effective range expansion,

k2lþ1 cot δIl ¼ FI
lðsÞ

�
1

aIl
þ 1

2
rIlk

2 þ…

�
; ðD2Þ

where the conventional choice is FI
lðsÞ ¼ 1, for which aIl is

interpreted as the scattering length and rIl as the effective
range. Additional desired features can be included with
other choices of FI

lðsÞ, an example being an Adler zero,
enforced by using FI

lðsÞ ¼ ð4m2
π − sAÞ=ðs − sAÞ.

Alternatively, we can make use of a conformal mapping
expansion by defining

ΦI
lðsÞ ¼

2ffiffiffi
s

p k2lþ1 cot δIlðsÞ; ðD3Þ

which is real analytic between the elastic and inelastic
thresholds. One can introduce an effective inelastic thresh-
old, s0, and the opening of the left-hand-cut at s ¼ 0, by
using [79,80],

ωðsÞ ¼
ffiffiffi
s

p
− α

ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p
ffiffiffi
s

p þ α
ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p : ðD4Þ

In this expression, α and s0 are fixed parameters that
determine which energy region is mapped into a unit disk of
ω. For S2 we set s0 ¼ 0.09a−2t and α ¼ 0.8. For S0 we use
α ¼ 0.8; 1, and consider two values, s0 ¼ 0.032a−2t ;
0.04a−2t . Expanding the desired function as a polynomial
in this variable,

ΦI
lðsÞ ¼ FI

lðsÞ
XN
n¼0

Bnω
n; ðD5Þ

we expect convergence with a low-order N. Again, one may
build in additional properties byusingFI

lðsÞ other than 1. For
example, when a narrow resonance is known to be present, it
is convenient to set FI

lðsÞ ¼ ðs −m2
RÞ=m2

R. Furthermore, as
detailed in Ref. [81], spurious singularities appearing below
threshold can be removed by adding a function γIlðsÞ, so that,

FIG. 20. For mπ ∼ 239 MeV. Left: S0 pole locations for twice-subtracted dispersed amplitudes satisfying the metric cuts described in
the text (blue), and for the same amplitude combinations used in minimally subtracted dispersion relations (orange). Right:
corresponding couplings extracted from the pole residues.
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ΦI
lðsÞ ¼ FI

lðsÞ
�
γIlðsÞ þ

XN
n¼0

Bnω
n

�
: ðD6Þ

Partial-waves dominated by narrow resonances, like P1,
are typically well described in the vicinity of the pole by a
Breit-Wigner form,

tl¼1ðsÞ ¼
1

ρðsÞ
ffiffiffi
s

p
ΓðsÞ

m2
BW − s − i

ffiffiffi
s

p
ΓðsÞ ; ðD7Þ

where the energy-dependent width is given by

ΓðsÞ ¼ g2BW
6π

k3
s . Another, more flexible, parametrization

which allows for the presence of resonances, and which
generalizes nicely to the case of coupled-channel ampli-
tudes, is the K-matrix approach [82],

ðtIlðsÞÞ−1 ¼ ðKI
lðsÞÞ−1 − iρðsÞ; ðD8Þ

where a common parametrization choice is a sum of poles
plus a finite-order polynomial,

KI
lðsÞ ¼ ð2kÞ2l

�X
r

g2r
m2

r − s
þ
X
p

γpsp
�
: ðD9Þ

This form can be modified to include an Adler zero by
taking KðsÞ → ðs − sAÞKðsÞ. Another choice is to model
ðKI

lðsÞÞ−1 directly.
The simple phase-space, ρðsÞ, defined above has an

unphysical singularity at s ¼ 0, but this can be removed by
writing a once-subtracted dispersion relation leading to the
Chew-Mandelstam function [83],

IðsÞ ¼ IðsMÞ þ
s − sM

π

Z
∞

sthr

ds0
−ρðs0Þ

ðs0 − sMÞðs0 − sÞ ; ðD10Þ

which has Im IðsÞ ¼ −ρðsÞ above the two-pion threshold,
as required by unitarity, and which, when subtracted at

threshold, takes the simple form IðsÞ ¼ ρðsÞ
π log½ρðsÞþ1

ρðsÞ−1�.
In this work, the input amplitudes constrained by lattice

QCD energy levels span a range of forms presented above.
The P1 amplitudes are fixed to the successful “pole plus
constant” K-matrix with Chew-Mandelstam phase-space,
but many forms are used for the S0 and S2 amplitudes,
leading to a total of over 700 input amplitude combinations
being tested within dispersion relations.
The S0 and S2 partial-waves are described by input

amplitudes both with and without explicit Adler zeroes.
As shown in Ref. [52], dispersive analyses applied to
physical ππ scattering data suggest that Adler zeroes may
not be located at the tree-level locations. In our input
amplitudes, we fix the Adler zeroes either to their tree-
level values, or to the extremes of the “CFD” dispersive
range in Ref. [52], extrapolated to our pion masses with
sA ¼ sphysA ðmπ=m

phys
π Þ2. In the case of the S0 wave for

mπ ∼ 283 MeV, we also consider a couple of parametriza-
tions inwhich theAdler zero location is allowed to float in the
description of the lattice QCD energy levels, and in this case
alone we find that this does not degrade significantly the
precision of the fit. In other cases, allowing the Adler zero
location to float leads to an extremely imprecise estimate of
the location.

FIG. 21. I ¼ 2 partial-wave amplitudes for mπ ∼ 239 MeV. For S–wave (upper two panels), four example parametrizations are
shown: a two-term conformal mapping (black), an effective range expansion with two terms (green), and two choices with an Adler zero
fixed at the leading-order χPT location, a two-term conformal mapping (red), and an effective range expansion with two terms (orange).
The D–wave phase-shift is shown in the lower panel illustrated with two parametrizations: a scattering length (red), and a conformal
mapping with one term (black). Data points with very large uncertainties have been removed from the plots.
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APPENDIX E: mπ ∼ 239 MeV I = 2 AMPLITUDES

References [19,27] reported on extractions of I ¼ 0

and I ¼ 1 finite-volume spectra from a 323 × 256 aniso-
tropic Clover lattice with light-quark masses such that
mπ ∼ 239 MeV. The corresponding spectra on this lattice
with I ¼ 2 have not previously appeared in the literature,
but have been computed for the purposes of this manuscript
using the same techniques, range of energies, and similar
operators to the ones reported in Ref. [29]. As observed in
the previous work, the D–wave is very weak and repulsive,

and can be described with a single parameter. The S–wave
shows stronger repulsion, with a phase-shift whose
magnitude grows with energy. Figure 21 shows discrete
values of S andD–wave phase-shifts determined from these
spectra along with a sample of parametrizations. The
parametrizations used here to describe the data correspond
to a subsect of those types described above and in Sec. III of
[29]. A compilation of the scattering lengths obtained from
these fits was presented in Fig. 5 of that work, and their
explicit values, in m−1

π units, are given as part of Fig. 4.
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