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Numerical computations in strongly interacting quantum field theories are often performed using
Monte Carlo sampling methods. A key task in these calculations is to estimate the value of a given physical
quantity from the distribution of stochastic samples that are generated using the Monte Carlo method.
Typically, the sample mean and sample variance are used to define the expectation values and uncertainties
of computed quantities. However, the Monte Carlo sample distribution contains more information than
these basic properties, and it is useful to investigate it more generally. In this work, the exact form of the
probability distributions of two-point correlation functions at zero momentum inOðNÞ lattice field theories
in the disordered phase and in infinite volume are determined. These distributions allow for a robust
investigation of the efficacy of the Monte Carlo sampling procedure and are shown also to allow for
improved estimators of the target physical quantity to be constructed. The theoretical expectations are
shown to agree with numerical calculations in the Oð2Þ model.
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I. INTRODUCTION

Quantum field theories (QFTs) are used pervasively in
theoretical particle, nuclear, and condensed-matter physics
to describe a wide range of physical phenomena. In many
cases, these QFTs are strongly interacting, and numerical
methods are needed in order to make predictions. In many
cases, the only effective numerical approach is to discretize
and compactify spacetime and use importance-sampling
Monte Carlo to estimate the Euclidean path integrals that
result. In many situations, this is a stochastically challeng-
ing task; numerical results for correlation functions
between fields at different points usually exhibit signal-
to-noise ratios that degrade exponentially in the separation
between the points. This makes extraction of physical
information such as the masses of excitations of the theory
difficult. To confront these difficulties, various strategies
for the reduction of variance in the Monte Carlo procedure
have been pursued [1–15]. Previous works have also
investigated the nature of statistical fluctuations in specific

QFTs empirically [16–23]. In Ref. [24], the first analytic
insights into the structure of the probability distribution
functions (PDFs) of correlation functions were presented
in the context of a scalar field theory. In general, knowl-
edge of the probability distributions can lead to more
efficient estimators of the mean.1 In the context of
Monte Carlo sampling, knowledge of the PDF can also
allow for statistical tests of thermalization and autocorre-
lation of the samples.
In this work, the PDFs of two-point correlation functions

in the lattice OðNÞ model in the disordered phase at
vanishing spatial momentum will be calculated, signifi-
cantly extending the results in Ref. [24].OðNÞmodels are a
generalization of the Ising model and have been studied
extensively since their initial definition in Ref. [25]. These
models exhibit many important phenomena; for example,
in two dimensions, the Oð2Þ model features a Berezinskii-
Kosterlitz-Thouless transition at low temperatures, while
OðNÞ models for N > 2 are asymptotically free and are
therefore strongly coupled at long distances (see Ref. [26]
for a review). In any dimension, theOðNÞmodel reduces to
a self-avoiding random walk as N → 0 as first demon-
strated in Ref. [27]. The OðNÞ model therefore provides an
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1For example, for a uniform distribution on the interval ½0; a�
for a > 0, the minimum-variance unbiased estimator of the mean,
μ̂U;mvue ¼ Nþ1

2N maxixi, can be shown to outperform the sample
mean by using specific properties of the PDF.
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interesting testing ground for extensions of the previous
work on PDFs of correlation functions and forms the
central basis of this work.
The structure of this work is as follows. In Sec. II, the

probability distributions of two-point correlation functions
at vanishing spatial momentum are calculated for a free
complex scalar field, equivalent to the Oð2Þ model. In
Sec. III, this is extended to the case of interacting OðNÞ
models in the disordered phase, and the derived form is
shown to hold at all temporal separations of the correlation
function. In Sec. IV, numerical results are presented for
interacting Oð2Þ models in two dimensions in the disor-
dered phase. These results confirm the predictions of Sec. III
and provide support for the assumptions needed to derive
the distributions. Using the PDFs of two-point correlation
functions in the Oð2Þ model, an improved estimator of the
mean is constructed in Sec. V. Section VI summarizes the
results and presents an outlook.

II. FREE COMPLEX FIELD

To introduce the calculation of correlation function
probability distributions, the case of a single free complex
scalar field is first discussed, generalizing the discussion of
the real scalar field in Ref. [24]. Let ψðt; x⃗Þ ¼ ϕ1ðt; x⃗Þ þ
iϕ2ðt; x⃗Þ be a free complex field, where ϕiðt; x⃗Þ∈R. A
dþ 1-dimensional free Euclidean lattice field theory will
be considered with L being the size of each of the spatial
directions in lattice units and β being the size of the
temporal direction. For a free lattice field theory, volume
averaged2 fields ϕ̄iðtÞ will decouple from other modes due
to momentum conservation. Therefore, the partition func-
tion for this sector of the theory can be written as

Z ¼
Z

Dϕ̄1e−
1
2
ϕ̄T
1
Dϕ̄1

Z
Dϕ̄2e−

1
2
ϕ̄T
2
Dϕ̄2 ; ð1Þ

where the vector notation

ϕ̄1;2 ¼

0
B@

ϕ̄1;2ð0Þ
� � �

ϕ̄1;2ðβ − 1Þ

1
CA ð2Þ

is used, with Dϕ̄i ¼
Qβ−1

t0¼0
dϕ̄iðt0Þ. D is a real symmetric

matrix arising from the kinetic operator after integrating
over the nonzero momentum modes; the exact form of D is
not relevant in what follows. Since all integrals are
Gaussian, one may choose to integrate out all of the field
variables except ϕ̄1ð0Þ, ϕ̄1ðtÞ, ϕ̄2ð0Þ, and ϕ̄2ðtÞ (in what
follows, only the temporal separation between the fields is

important, so the temporal location of one pair of fields is
chosen to be at 0 without loss of generality). The partition
function can then be expressed as

Z¼N ðtÞ
Z

dϕ̄1ð0Þdϕ̄1ðtÞdϕ̄2ð0Þdϕ̄2ðtÞ

×exp

 
−
σ2f
2

ðϕ̄1ð0Þ2þ ϕ̄1ðtÞ2þ ϕ̄2ð0Þ2þ ϕ̄2ðtÞ2Þ
σ4f −KfðtÞ2

!

×exp

 
KfðtÞ

σ4f −KfðtÞ2
ðϕ̄1ð0Þϕ̄1ðtÞþ ϕ̄2ð0Þϕ̄2ðtÞÞ

!
; ð3Þ

where

σ2f ¼ hϕ̄1ð0Þϕ̄1ð0Þi ¼ hϕ̄2ð0Þϕ̄2ð0Þi;
KfðtÞ ¼ hϕ̄1ðtÞϕ̄1ð0Þi ¼ hϕ̄2ðtÞϕ̄2ð0Þi; ð4Þ

and the normalization factor N ðtÞ can be calculated by
performing the remaining Gaussian integrals exactly and
imposing that Z ¼ 1:

N ðtÞ ¼ 1

ð2πÞ2ðσ4f − KfðtÞ2Þ
: ð5Þ

For Z defined by Eq. (3) to be finite, the condition
KfðtÞ < σ−2f must be satisfied. Furthermore, the inequality
KfðtÞ > 0 follows from the reflection positivity and Eq. (4).
It follows from this partition function that the joint

probability distribution of ϕ̄1ð0Þ; ϕ̄1ðtÞ; ϕ̄2ð0Þ; ϕ̄2ðtÞ taking
values u0; ut; v0; vt, respectively, is given by

Pϕ̄1ð0Þ;ϕ̄1ðtÞ;ϕ̄2ð0Þ;ϕ̄2ðtÞðu0; ut; v0; vtÞ

¼ 1

ð2πÞ2ðσ4f − KfðtÞ2Þ

× exp

�
−

σ2f
2ðσ4f − KfðtÞ2Þ

ðu20 þ u2t þ v20 þ v2t Þ

þ KfðtÞ
σ4f − KfðtÞ2

ðu0ut þ v0vtÞ
�
: ð6Þ

Since hϕ̄iðtÞϕ̄ið0Þi ∝ e−mt for i∈ f1; 2g and t ≫ 1
m̃−m,

where m is the energy of the first excited state and m̃ is the
energy of the second excited state with vanishing spatial
momentum, it follows that KfðtÞ ∝ e−mt in the same large-
time limit. The distributions of

CReðtÞ ¼Reðψ̄ðtÞψ̄�ð0ÞÞ ¼ ϕ̄1ðtÞϕ̄1ð0Þþ ϕ̄2ðtÞϕ̄2ð0Þ ð7Þ

and

CImðtÞ ¼ Imðψ̄ðtÞψ̄�ð0ÞÞ ¼ ϕ̄2ðtÞϕ̄1ð0Þ− ϕ̄1ðtÞϕ̄2ð0Þ ð8Þ

2In what follows, fields with bars will denote spatially
averaged fields: ŌðtÞ ¼ L−d

2

P
x⃗ Oðt; x⃗Þ. The scaling with L−d

2

is fixed by requiring that ŌðtÞ has finite and nonzero variance as
L → ∞.
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can be calculated from this joint probability density. The
corresponding characteristic functions3 can be calculated
from Eq. (6), giving

ΦCReðtÞðωÞ ¼ he−iωCReðtÞi
¼ he−iωϕ̄1ðtÞϕ̄1ð0Þihe−iωϕ̄2ðtÞϕ̄2ð0Þi

¼ ωR;þðtÞωR;−ðtÞ
ðω − iωR;þðtÞÞðωþ iωR;−ðtÞÞ

;

ΦCImðtÞðωÞ ¼
ωIðtÞ2

ðω − iωIðtÞÞðωþ iωIðtÞÞ
; ð9Þ

where the independence of ϕ̄1ðtÞ and ϕ̄2ðtÞ has been used
and ωR;þðtÞ;ωR;−ðtÞ;ωIðtÞ are defined by

ωR;þðtÞ ¼
1

σ2f þ KfðtÞ
;

ωR;−ðtÞ ¼
1

σ2f − KfðtÞ
;

ωIðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ4f − KfðtÞ2
q : ð10Þ

Consequently, the probability distributions PCRe;ImðtÞðxÞ ¼R
dωeiωxP̃CRe;ImðtÞðωÞ are given by

PCReðtÞðxÞ ¼
8<
:

ωR;þðtÞωR;−ðtÞ
ωR;þðtÞþωR;−ðtÞ e

−ωR;þðtÞx for x > 0

ωR;þðtÞωR;−ðtÞ
ωR;þðtÞþωR;−ðtÞ e

ωR;−ðtÞx for x < 0
;

PCImðtÞðxÞ ¼
ωIðtÞ
2

e−ωIðtÞjxj: ð11Þ

Since there is strong evidence that phase fluctuations
rather than magnitude fluctuations are central to signal-to-
noise degradation in many QFT contexts [8–10], it is also
of interest to calculate PRt

ðxÞ and PθtðxÞ where Rt ¼
jψ̄ðtÞψ̄�ð0Þj is the magnitude and θt ¼ arg ðψ̄ðtÞψ̄�ð0ÞÞ is
the phase of the correlation function. For this purpose, it is
useful to express the partition function in Eq. (3) in terms of
the polar fields defined by the relations

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ1ð0Þ2 þ ϕ2ð0Þ2

q
;

ξ0 ¼ arctan

�
ϕ2ð0Þ
ϕ1ð0Þ

�
;

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ1ðtÞ2 þ ϕ2ðtÞ2

q
;

ξt ¼ arctan

�
ϕ2ðtÞ
ϕ1ðtÞ

�
: ð12Þ

With this substitution, Eq. (3) becomes

Z ¼ 1

ð2πÞ2ðσ4f − KfðtÞ2Þ
Z

dr0drtdξ0dξtr0rt

× exp

�
−

σ2f
2ðσ4f − KfðtÞ2Þ

�
ðr20 þ r2t Þ þ 2

KfðtÞ
σ2f

r0rt cosðξt − ξ0Þ
��

: ð13Þ

Since this is independent of ξ0 þ ξt, the partition function can be integrated over this combination to give

Z ¼ 1

2πðσ4f − KfðtÞ2Þ
Z

dr0drtdθtr0rt exp

�
−

σ2f
2ðσ4f − KfðtÞ2Þ

�
ðr20 þ r2t Þ þ 2

KfðtÞ
σ2f

r0rt cosðθtÞ
��

; ð14Þ

where θt ¼ ξt − ξ0.
To find PθtðxÞ, one integrates over r0 and rt in Eq. (14) to obtain

Z ¼
1 − KfðtÞ2

σ4f

4π

Z
dθt�

1 − KfðtÞ2
σ4f

cos ðθtÞ2
�

2

2
642�1 − KfðtÞ2

σ4f
cos ðθtÞ2

�
þ π

KfðtÞ
σ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

KfðtÞ2
σ4f

cos ðθtÞ2
s

cosðθtÞ

þ 2 cosðθtÞ
KfðtÞ
σ2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

KfðtÞ2
σ4f

cos ðθtÞ2
s

þ arctan

0
B@ KfðtÞ2 cosðθtÞ
σ4f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KfðtÞ

σ2f
cos ðθtÞ2

r
1
CA
3
75: ð15Þ

3The characteristic function ΦAðωÞ of a random variable A is defined as ΦAðωÞ ¼
R
dxe−iωxPAðxÞ, where PAðxÞ is the probability

density function of A.
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For KfðtÞ ≪ σ−2f , Eq. (15) can be expressed as a series in
KfðtÞ=σ2f as

Z¼
Z

dθt

�
1

2π
þKfðtÞ

4σ2f
cosðθtÞþO

��
KfðtÞ
σ2f

�
2
��

; ð16Þ

and therefore the angular probability density is

PθtðxÞ ¼
1

2π
þ KfðtÞ

4σ2f
cosðxÞ þO

��
KfðtÞ
σ2f

�
2
�
; ð17Þ

where the domain of x is −π ≤ x < π.
To find PRt

ðxÞ, one integrates over θt in Eq. (14) and can
define Rt ¼ r0rt, leading in the limit KfðtÞ ≪ σ−2f to

Z ¼ 1

σ4f

Z
dr0drtr0rtI0ðKfðtÞr0rt=σ4fÞe

− 1

2σ2
f

ðr2
0
þr2t Þ

¼ 1

σ4f

Z
dRtdr0drtr0rtδðRt − r0rtÞ

× I0ðKfðtÞr0rt=σ4fÞe
− 1

2σ2
f

ðr2
0
þr2t Þ

¼ 1

σ4f

Z
∞

0

dRtI0

�
KfðtÞRt

σ4f

�
K0

�
Rt

σ2f

�
Rt; ð18Þ

after r0;t are integrated out, where InðxÞ and KnðxÞ are
modified Bessel functions of the first and second kinds,
respectively. Therefore, the radial probability density is

PRt
ðxÞ ¼ 1

σ4f
I0

�
KfðtÞx
σ4f

�
K0

�
x
σ2f

�
x: ð19Þ

III. PROBABILITY DISTRIBUTIONS OF OðNÞ
MODELS IN THE DISORDERED PHASE

In this section, an interacting Euclidean lattice field theory
with N real bosonic fields, ϕaðt; x⃗Þ, where a∈ f1;…; Ng
will be considered such that:

(i) The Euclidean action of the theory is real.
(ii) There is a unique, translationally invariant, gapped

vacuum jΩi.
(iii) ϕaðt; x⃗Þ is covariant under temporal and spatial

translations for a∈ f1;…; Ng.
(iv) The vacuum expectation value of ϕaðt; x⃗Þ, hΩjϕa

ðt; x⃗ÞjΩi, vanishes for a∈ f1;…; Ng.
In the following subsections, probability distributions of

the volume averaged fields defined at different times will be
presented4 in increasing generality. While the methods work
in the general case, some of the results will be presented for
the specific case where the theory is invariant under an

OðNÞ symmetry relating the N fields. As in the previous
section, L is the extent of each of the d spatial directions,
and β is the extent of the temporal direction.

A. Large-time limit

In this subsection, it will be shown that the distributions
of two-point correlation functions in OðNÞ models in the
disordered phase have a universal large-time limit.
The components of the (spatially averaged) N-component

field can be collected as a vector,

⃗ϕ̄ðtÞ ¼

0
BB@

ϕ̄1ðtÞ
..
.

ϕ̄NðtÞ

1
CCA; ð20Þ

and a natural object to consider is the PDF P
q⃗· ⃗ϕ̄ð0ÞðuÞ that

represent the probability q⃗ · ⃗ϕ̄ð0Þ takes the value u for some
fixed vector q⃗∈RN. In the limit where the temporal extent β
is taken to infinity, this is given by

P
q⃗· ⃗ϕ̄ð0ÞðuÞ ¼ lim

β→∞
Tr
�
e−βHδ

�
q⃗ · ⃗ϕ̄ð0Þ − u

��
¼ hΩjδ

�
q⃗ · ⃗ϕ̄ð0Þ − u

�
jΩi: ð21Þ

In Ref. [24], the large-time behavior of the analogous
quantity for a single field was derived. Generalizing this to
the present case leads to

lim
L→∞

hΩjδðq⃗ · ⃗ϕ̄ð0Þ − uÞjΩi ¼ 1ffiffiffiffiffiffi
2π

p
σðq⃗Þ e

− u2

2σðq⃗Þ2 : ð22Þ

Here, the quantity σðq⃗Þ can be shown to be given by

σðq⃗Þ2 ¼ q⃗TΣq⃗ ð23Þ

in terms of a symmetric matrix Σ with components

Σab ¼ lim
L→∞

hΩjϕ̄að0Þϕ̄bð0ÞjΩi: ð24Þ

The characteristic function

Φ
q⃗· ⃗ϕ̄ð0ÞðωÞ ¼

Z
dxe−iωxP

q⃗· ⃗ϕ̄ð0ÞðxÞ ð25Þ

of q⃗ · ⃗ϕ̄ð0Þ evaluated at ω ¼ 1 can be calculated in the large
volume limit as

4Some of the arguments used in this section are closely related
to the proofs of the Central Limit Theorem for random vectors;
see for example Ref. [28].
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Φ
q⃗· ⃗ϕ̄ð0Þð1Þ ¼ lim

L→∞
hΩje−iq⃗· ⃗ϕ̄ð0ÞjΩi

¼ e−
1
2
σðq⃗Þ2

¼ e−
1
2
q⃗TΣq⃗; ð26Þ

where the second equality follows from Eq. (22).
By making use of the numerical equivalence between the

characteristic function of ⃗ϕ̄ evaluated at q⃗ and the character-

istic function of q⃗ · ⃗ϕ̄ð0Þ evaluated at 1, this leads to

Φ ⃗ϕ̄ð0Þðq⃗Þ ¼ lim
L→∞

hΩje−iq⃗· ⃗ϕ̄jΩi
¼ Φ

q⃗· ⃗ϕ̄ð0Þð1Þ
¼ e−

1
2
q⃗TΣq⃗: ð27Þ

By performing the inverse Fourier transform the large

volume probability density function P ⃗ϕ̄ð0Þðu⃗Þ of
⃗ϕ̄ð0Þ can

be determined and is given by

P ⃗ϕ̄ð0Þðu⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN detΣ
p e−

1
2
u⃗TΣ−1u⃗: ð28Þ

Thus, the probability distribution of an N-component field
is an N-dimensional correlated Gaussian. This will be
useful in defining more complicated joint and product
distributions.
The joint probability distribution of ⃗ϕ̄ðtÞ and ⃗ϕ̄ð0Þ taking

vector values u⃗ and v⃗, respectively, is defined by

P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ ¼ lim
β→∞

Tr½e−βHδð ⃗ϕ̄ðtÞ − u⃗Þδð ⃗ϕ̄ð0Þ − v⃗Þ�

¼
X
n

e−EnthΩjδð ⃗ϕ̄ð0Þ − u⃗Þjni

× hnjδð ⃗ϕ̄ð0Þ − v⃗ÞjΩi
≡X

n

PðnÞ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ; ð29Þ

where each term in the summation in the last line
arises from the contributions of successively higher energy
states. That is, En ≤ Enþ1 with E0 ¼ 0, and the sum is over
states jni with vanishing spatial momentum such that

hΩjδð ⃗ϕ̄ðtÞ − u⃗Þjni ≠ 0 for some u⃗∈RN .
In the large-time limit, only the vacuum intermediate

state is relevant in Eq. (29), and the leading term is given by

Pð0Þ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ ¼ lim
t→∞

P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ

¼ hΩjδð ⃗ϕ̄ðtÞ − u⃗ÞjΩihΩjδð ⃗ϕ̄ð0Þ − v⃗ÞjΩi
¼ P ⃗ϕ̄ð0Þðu⃗ÞP ⃗ϕ̄ð0Þðv⃗Þ

¼ 1

ð2πÞN detΣ
e−

1
2
u⃗TΣ−1u⃗−1

2
v⃗TΣ−1v⃗: ð30Þ

In the case of a theory with OðNÞ symmetry, further
simplifications occur as it can be shown5 for that case that

Σab ¼ σ2δab; ð31Þ

for some σ > 0.
For N > 2, the only OðNÞ-invariant quadratic bilocal

operator is C•ðtÞ ¼
P

N
a¼1 ϕ̄aðtÞϕ̄að0Þ, and the product

distribution for this quantity is

PC•ðtÞðxÞ≡
Z

du⃗dv⃗P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þδðu⃗ · v⃗ − xÞ; ð32Þ

which, as in Eq. (29), can be expanded in terms of the
contributions of intermediate states as

PC•ðtÞðxÞ ¼
X
n

PðnÞ
C•ðtÞðxÞ: ð33Þ

The large-time limit of PC•
ðtÞ will be derived below;

see Eq. (63).
Similarly, the characteristic function of C•ðtÞ can be

expanded in partial contributions as

ΦC•ðtÞðωÞ≡
Z

dx e−iωxPC•ðtÞðxÞ

¼
X
n

ΦðnÞ
C•ðtÞðωÞðu⃗; v⃗Þ: ð34Þ

B. Leading corrections

In this section, the leading correction Pð1Þ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ in
P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ away from the t → ∞ limit will be derived.

For this purpose, it is assumed that the first multiplet of
excited states with vanishing spatial momentum transform
in the fundamental representation of OðNÞ and may be
labeled as jm; ai for a∈ f1;…; Ng. The state jm; ai can be
created by acting6 with ϕ̄aðtÞ on the vacuum

jm; ai ¼ lim
T→−∞

e−mTϕ̄aðTÞjΩi ð35Þ

as hΩjϕ̄að0ÞjΩi ¼ 0 by assumption. The leading correction
as t → ∞ is given by

5The fact that Σab is diagonal follows from invariance under
the OðNÞ transformation ϕaðt; x⃗Þ → −ϕaðt; x⃗Þ for fixed a with
ϕbðt; x⃗Þ invariant for b ≠ a. The fact that Σ is proportional to the
identity follows from the requirement of invariance under the
OðNÞ transformation ϕaðt; x⃗Þ → −ϕbðt; x⃗Þ, ϕbðt; x⃗Þ → ϕaðt; x⃗Þ
for fixed a and b with ϕcðt; x⃗Þ invariant for c ∉ fa; bg.

6The factor of e−mT is included so that in an expansion of
e−mT ϕ̄aðTÞjΩi in terms of the eigenstates of the theory, the
coefficient jm; ai is independent of T and the coefficients of all
other terms vanish in the limit T → −∞.
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Pð1Þ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ ¼ e−mt
X
a

hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
jm; aihm; ajδ

�
⃗ϕ̄ð0Þ − v⃗

�
jΩi: ð36Þ

To calculate this expression, hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
jm; ai must be determined. From Eq. (35), it follows that

hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
jm; ai ¼ lim

T→−∞
e−mThΩjδ

�
⃗ϕ̄ð0Þ − u⃗

�
ϕ̄aðTÞjΩi: ð37Þ

The insertion of ϕ̄aðTÞ can be obtained through the response to a time-dependent, but spatially constant source term as

hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
ϕ̄aðTÞjΩi ¼

∂

∂Ja
hΩjδ

�
⃗ϕ̄ð0Þ − u⃗

�
eJ⃗·

⃗ϕ̄ðTÞjΩijJ⃗¼0
: ð38Þ

For the infinite temporal extent, hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
eJ⃗·

⃗ϕ̄ðTÞjΩi is equal to a path integral expression:

hΩjδ
�
⃗ϕ̄ð0Þ − u⃗

�
eJ⃗·

⃗ϕ̄ðTÞjΩi ¼ lim
β→∞

I
ϕ⃗ð0;x⃗Þ¼ϕ⃗ðβ;x⃗Þ

Dϕe−S½ϕ⃗ðt;x⃗Þ�þJ⃗·ϕ⃗ðTÞδ
�
⃗ϕ̄ð0Þ − u⃗

�
: ð39Þ

The above expression has the interpretation as the
probability of ⃗ϕ̄ð0Þ having the value u⃗ in the presence

of the source term J⃗ · ⃗ϕ̄ðTÞ. Under the assumption that
there is still a unique vacuum in the presence of an
infinitesimal source term (that is, no spontaneous sym-
metry breaking), the vacuum expectation value of

δð ⃗ϕ̄ð0Þ − u⃗Þwill change infinitesimally for an infinitesimal
source, and the system observed at t ¼ 0 will continue to
have a finite correlation length. Moreover, as the source is
chosen to be spatially constant, the system will remain
uniform in space. In the present discussion, it is assumed

that the expectation value of h ⃗ϕ̄ð0; x⃗Þi vanishes. In the
presence of an infinitesimal source term at time T,
indicated by a subscript J, T, the expectation value may

shift infinitesimally as h ⃗ϕ̄ð0; x⃗ÞiJ;T ¼ WðTÞJ⃗, whereWðTÞ
is an undetermined N × N matrix. FromOðNÞ invariance,7
it follows that WðTÞ ¼ ρðTÞI, where I is the identity
matrix and ρðTÞ is a real function. It follows that the
results of Sec. III A can be used for the shifted fields

ϕ⃗0ð0; x⃗Þ ¼ ϕ⃗ð0; x⃗Þ −WðTÞJ⃗. Therefore, from Eq. (28), it
follows that

P ⃗
ϕð0Þðu⃗; J⃗; TÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN detΣðJ⃗; TÞ

q e−
1
2
ðu⃗−WðTÞJ⃗ÞTΣðJ⃗;TÞ−1ðu⃗−WðTÞJ⃗Þ; ð40Þ

where P ⃗ϕ̄ð0Þðu⃗; J⃗; TÞ is the probability that ⃗ϕ̄ð0Þ is equal to
u⃗ in the presence of source J⃗ which is inserted at time T.
The matrix ΣðJ⃗; TÞ transforms in the adjoint representa-

tion of OðNÞ,

ΣðRJ⃗; TÞ ¼ RΣðJ⃗; TÞRT; ð41Þ

and consequently, the linear term in the expansion of
ΣðJ⃗; TÞ in J⃗ vanishes [the only invariant tensor of the
OðNÞ group with two indices is δab]. It follows that, to first
order in J⃗, one can replace ΣðJ⃗; TÞ by Σ ¼ σ2I where σ is
defined by Eq. (31). Therefore, P ⃗ϕ̄ð0Þðu⃗; J⃗; TÞ can be

expanded in J⃗ as

P ⃗ϕ̄ð0Þðu⃗; J⃗; TÞ ¼ Pð0Þ
⃗ϕ̄ð0Þ

ðu⃗Þ − ρðTÞðJ⃗ ·∇u⃗ÞPð0Þ
⃗ϕ̄ð0Þ

ðu⃗Þ þOðJ2Þ

¼ Pð0Þ
⃗ϕ̄ð0Þ

ðu⃗Þð1þ ρðTÞðJ⃗ · Σ−1u⃗ÞÞ þOðJ2Þ

¼ Pð0Þ
⃗ϕ̄ð0Þ

ðu⃗Þ
�
1þ ρðTÞ

σ2
J⃗ · u⃗

�
þOðJ2Þ: ð42Þ

Defining ρ ¼ limT→−∞ e−mTρðTÞ [which is finite since
ρðTÞ ∝ emT for T → −∞], from Eqs. (37) and (38), one
obtains

hΩjδð ⃗ϕ̄ð0Þ − u⃗Þjm; ai ¼ ρ

σ2
Pð0Þ

⃗ϕ̄ð0Þ
ðu⃗Þua: ð43Þ

It follows that the first order correction to the joint
distribution function (arising from the lowest energy
excited multiplet of states) is

Pð1Þ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ ¼ e−mtΔu⃗ · v⃗Pð0Þ
⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ

ðu⃗; v⃗Þ; ð44Þ

7For N ≠ 2, SOðNÞ invariance is enough to arrive at this
conclusion. For N ¼ 2, invariance under reflection needs to be
assumed as otherwise WabðTÞ ∝ ϵab is also a valid possibility
where ϵab is the two-dimensional (2D) Levi-Civita symbol.
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where Δ ¼ ρ2

σ4
> 0. Therefore, including the first order correction, the full joint distribution is given by

P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ ¼
1

ð2πÞNσ2N e−
1

2σ2
ðu⃗·u⃗þv⃗·v⃗Þð1þ e−mtΔu⃗ · v⃗Þ þOðe−m0tÞ

¼ 1

ð2πÞNσ2N e−
1

2σ2
ðu⃗·u⃗þv⃗·v⃗Þþe−mtΔu⃗·v⃗ þOðe−m0tÞ; ð45Þ

where 2m ≥ m0 > m and in the second line the correction term has been exponentiated. It follows that forN ¼ 2, the results
of the Sec. II are valid up to the first order in KfðtÞ with the identification KfðtÞ≡ e−mtΔσ4.
In a similar fashion, one obtains the first order correction to PC•

ðtÞ in Eq. (33) as

Pð1Þ
C•ðtÞðxÞ ¼

e−mtΔ
2π

Z
dωeiωx

Z
du⃗dv⃗e−iωu⃗·v⃗u⃗ · v⃗Pð0Þ

⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ
ðu⃗; v⃗Þ

¼ e−mtΔ
2π

Z
dωeiωx

�
i
∂

∂ω

�Z
du⃗dv⃗e−iωu⃗·v⃗Pð0Þ

⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þ
ðu⃗; v⃗Þ

¼ 1

2π

Z
dωeiωx

�
ie−mtΔ

∂

∂ω

�
Φ0

C•ðTÞðωÞ: ð46Þ

From the above relation, up to the first order correction,
it is seen that ΦC•ðtÞðωÞ is given as

ΦC•ðtÞðωÞ ¼ Φð0Þ
C•ðtÞðωÞ þ ie−mtΔ

∂

∂ω
Φð0Þ

C•ðtÞðωÞ þOðe−m0tÞ

¼ Φð0Þ
C•ðtÞðωþ ie−mtΔÞ þOðe−m0tÞ: ð47Þ

From this expression, it is clear that including the first order
correction to the characteristic function ΦC•ðtÞðωÞ is equiv-
alent to a shift in the argument in the imaginary direction
that decreases as t → ∞.

C. All times

It has been shown in Eqs. (30) and (45) that both in the
large-time limit and even including its first correction, the
joint probability density P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ is given by a

coupled Gaussian probability density, in the infinite volume
limit. In this subsection, it will be shown that this fact is
valid including all corrections in the infinite volume limit.
Consider a division of the spatial volume into boxes of

sizes l > ξ, where ξ is the correlation length in lattice units.
Boxes are enumerated by I ¼ 1;…; K with each box
having E ¼ Ld

K sites. For each box, box-averaged fields
are defined as

ϕ̄a;IðtÞ ¼
1ffiffiffiffi
E

p
X
x⃗∼I

ϕaðt; x⃗Þ; ð48Þ

where the summation over x⃗ ∼ I is over all sites in the Ith
box. One notes immediately that

ϕ̄aðtÞ ¼
1ffiffiffiffi
K

p
X
I

ϕ̄a;IðtÞ: ð49Þ

For I ≠ J, ϕ̄a;IðtÞ can be considered independent of ϕ̄b;Jðt0Þ
up to the corrections proportional to e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2IJþðt−t0Þ2

p
=ξ, where

lIJ is the distance between centers of the boxes I and J in
lattice units.
For each box I, a 2N-tuple of fields,

Q⃗IðtÞ ¼

0
BBBBBBB@

ϕ̄1;IðtÞ
� � �

ϕ̄N;IðtÞ
ϕ̄1;Ið0Þ
� � �

ϕ̄N;Ið0Þ

1
CCCCCCCA
; ð50Þ

will be considered. The joint distribution of ⃗ϕ̄ðtÞ and ⃗ϕ̄ð0Þ
is then equivalent to the distribution of Q⃗ðtÞ, where Q⃗ðtÞ is
defined by

Q⃗ðtÞ ¼ 1ffiffiffiffi
K

p
XK
I¼1

Q⃗IðtÞ: ð51Þ
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The goal here is to show that this vector follows a Gaussian probability distribution. The main assumption needed to
show this is the independence of Q⃗IðtÞ and Q⃗JðtÞ for I ≠ J. The errors due to this approximation can be made arbitrarily
small in the infinite volume limit by taking l; K → ∞. Therefore, in the infinite volume limit, one may write

lim
V→∞

PQ⃗ðtÞðz⃗Þ ¼ lim
K→∞

Z YK
I¼1

dz⃗Iδ

�
z⃗ −

1ffiffiffiffi
K

p
X
J¼1

z⃗J

�
PQ⃗IðtÞðz⃗IÞ

¼ 1

ð2πÞ2N lim
K→∞

1

ð2πÞ2NK

Z
dw⃗eiðz⃗−

1ffiffi
K

p
P

J¼1
z⃗JÞ·w⃗YK

I¼1

dz⃗Idw⃗IΦQ⃗1ðtÞðw⃗IÞeiw⃗I ·z⃗I

¼ 1

ð2πÞ2N
Z

dw⃗eiw⃗·z⃗ lim
K→∞

YK
I¼1

ΦQ⃗1ðtÞ

�
w⃗ffiffiffiffi
K

p
�

¼ 1

ð2πÞ2N
Z

dw⃗eiw⃗·z⃗ lim
K→∞

�
ΦQ⃗1ðtÞ

�
w⃗ffiffiffiffi
K

p
��

K

¼ 1

ð2πÞ2N
Z

dw⃗eiw⃗·z⃗ lim
K→∞

exp

�
−

1

2K
w⃗TΣ̂ðtÞw⃗þO

�
1

K
ffiffiffiffi
K

p
��

K

¼ 1

ð2πÞ2N
Z

dw⃗eiw⃗·z⃗e−
1
2
w⃗T Σ̂ðtÞw⃗

¼ 1

ð2πÞN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σ̂ðtÞ

q e−
1
2
z⃗T Σ̂ðtÞ−1 z⃗; ð52Þ

where translational invariance has been used to set ΦQ⃗IðtÞ ¼
ΦQ⃗1ðtÞ for all I. Note also that ΦQ⃗1ðtÞð0Þ ¼ 1 and

Φ0
Q⃗1ðtÞ

ð0Þ ¼ 0, which permits one to write ΦQ⃗1ðtÞðw⃗Þ ¼
expð− 1

2
ðw⃗ÞTΣ̂ðtÞw⃗þOðw3ÞÞ. Here,

Σ̂ðtÞ ¼
 

Σ Σ̃ðtÞ
Σ̃ðtÞ Σ

!
; ð53Þ

where Σab ¼ σ2δab was introduced in Sec. III A and
Σ̃abðtÞ ¼ hϕ̄a;1ðtÞϕ̄b;1ð0Þi ¼ hϕ̄aðtÞϕ̄bð0Þi. From OðNÞ
invariance, it follows that Σ̃abðtÞ ¼ KðtÞδab for some
KðtÞ. Therefore, Σ̂ðtÞ can be written in the form
Σ̂ðτaÞðτ0bÞðtÞ ¼ δabΣ̄ττ0 where τ∈ f1; 2g with different τ
corresponding to different times (τ ¼ 1, 2 correspond to 0
and t, respectively) and Σ̄ττ0 ðtÞ is given by

Σ̄ðtÞ ¼
 

σ2 KðtÞ
KðtÞ σ2

!
: ð54Þ

It follows that Σ̂−1
ðτaÞðτ0bÞðtÞ ¼ δabΣ̄−1

ττ0 , where Σ̄
−1
ττ0 is given as

Σ̄−1ðtÞ ¼ 1

σ4 − KðtÞ2
 

σ2 −KðtÞ
−KðtÞ σ2

!
: ð55Þ

Therefore, the joint probability distribution of ⃗ϕ̄ðtÞ and ⃗ϕ̄ð0Þ
in the limit L → ∞ is given from Eq. (52) as

P ⃗ϕ̄ðtÞ; ⃗ϕ̄ð0Þðu⃗; v⃗Þ ¼
1

ð2πÞNðσ4 − KðtÞ2ÞN2

× exp

�
−
σ2ðju⃗j2 þ jv⃗j2Þ
2ðσ4 − KðtÞ2Þ þ KðtÞðu⃗ · v⃗Þ

σ4 − KðtÞ2
�
:

ð56Þ
Note that this expression has been derived without taking
t → ∞ and reduces to Eq. (6) for N ¼ 2.

D. Distribution of C•ðtÞ
For arbitrary t and β, it follows from Eq. (56) that PC•

ðxÞ
is given by

PC•ðtÞðx;ωþ;ω−;NÞ¼
Z

dudvδðx− u⃗ · v⃗ÞP ⃗̄ϕðtÞ; ⃗̄ϕð0Þðu⃗;v⃗Þ

¼ 1

2π

Z
∞

−∞
dωeiωx

ðωþω−ÞN2
ðω−iωþÞN2ðωþiω−ÞN2

;

ð57Þ
where the poles ω� are given by

ω� ¼ 1

σ2 � KðtÞ ; ð58Þ

and the dependence on N is made explicit. Note that
Eq. (57) defines

ΦC•ðtÞðωÞ ¼
ðωþω−ÞN2

ðω − iωþÞN2ðωþ iω−ÞN2
: ð59Þ
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The integral in Eq. (57) will be calculated explicitly for
x > 0; the result for x < 0 can be obtained using
the relation PC•ðtÞðx;ωþ;ω−; NÞ ¼ PC•ðtÞð−x;ω−;ωþ; NÞ.
The calculation begins with the observation that

PC•ðtÞðx;ωþ;ω−; NÞ is an analytic function of N for
ReðNÞ > 0. This can be seen by using the relation
eiωx ¼ − i

x ∂ωe
iωx to find another expression for

PC•ðtÞðx;ωþ;ω−; NÞ through integration by parts:

PC•ðtÞðx;ωþ;ω−; NÞ ¼ −iðωþω−ÞN2
2πx

�
eiωx

ðω − iωþÞN2ðωþ iω−ÞN2
�
ω¼∞

ω¼−∞

þ iNðωþω−ÞN2
4πx

Z
∞

−∞
dω

ð2ω − iðωþ − ω−ÞÞeiωx
ðω − iωþÞ1þN

2ðωþ iω−Þ1þN
2

: ð60Þ

The analyticity of PC•ðtÞðx;ωþ;ω−; NÞ for ReðNÞ > 0 then follows because the first term above vanishes for ReðN > 0Þ
and the integral in the second term is absolutely convergent for ReðNÞ > 0.
Assuming x > 0, one can deform the integration contour of the integral given in Eq. (57) to the upper complex plane; see

Fig. 1. For 0 < ReðNÞ < 2, the contribution of the integral over the semicircle below ωþ vanishes as the radius of the
semicircle goes to 0. Therefore, for 0 < ReðNÞ < 2,

PC•ðtÞðx > 0;ωþ;ω−; NÞ ¼ ðωþω−ÞN2
2π

2 sin

�
πN
2

�Z
∞

ωþ
dy

expð−yxÞ
ðy − ωþÞN2ðyþ ω−ÞN2

¼ e
1
2
ðω−−ωþÞx

�
ωþω−

ωþ þ ω−

�N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ ω−

p ffiffiffi
π

p
ΓðN

2
Þ x

N−1
2 KN−1

2

�
1

2
ðωþ þ ω−Þx

�
; ð61Þ

where as before KnðxÞ is a modified Bessel function. Since this expression is analytic for ReðNÞ > 0, it can be continued to
all ReðNÞ > 0.
Imposing the above relation between x > 0 and x < 0, the full distribution can be expressed compactly as

PC•ðtÞðx;ωþ;ω−; NÞ ¼ e
1
2
ðω−−ωþÞx

�
ωþω−

ωþ þ ω−

�N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ ω−

p
ffiffiffi
π

p
Γ
�
N
2

� jxjN−1
2 KN−1

2

�
1

2
ðωþ þ ω−Þjxj

�
: ð62Þ

For large times KðtÞ → 0 and ω� → 1
σ2
in Eq. (62), so it

follows that
Pð0Þ
C•ðtÞðx; σ; NÞ ¼ lim

t→∞;β→∞
PC•ðtÞðx; σ2Þ

¼ 2
1−N
2 σ−N−1

Γ
�

N
2

� ffiffiffi
π

p jxjN−1
2 KN−1

2

�jxj
σ2

�
: ð63Þ

For N ¼ 1, Eq. (63) reduces to the result found previously
in Ref. [24], and more generally, this case is referred to as
the Matérn covariance [29].

IV. NUMERICAL ANALYSIS
FOR THE Oð2Þ MODEL

In this section, the relations derived in Sec. III will be
tested numerically for the case N ¼ 2 in two dimensions.
The action of the theory is given8 by

FIG. 1. The integration contour used to evaluate PC•
ðx;ωþ;

ω−;NÞ for x > 0.

8For these calculations, an adaptation of the publicly available
code in Ref. [30] is used, where periodic boundary conditions
are assumed and a heat bath algorithm is used to generate
configurations.
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S ¼
X
i

��
2−

θ

2

�
jψ ij2 þ

χ

4
jψ ij4

�
−
1

2

X
hiji

ψ⋆
i ψ j þ ψ⋆

j ψ i;

ð64Þ

where i labels the sites,
P

hiji indicates summation over all
pairs of neighboring points, θ and χ are the couplings, and
ψ i is a complex field [equivalent to the Oð2Þ model]. The
simulations are performed for various geometries L × β
and for various sets of couplings that are parametrized by a
single parameter s through the relations

χ ¼ − ln s;

θ ¼ − ln ð1 − sÞ: ð65Þ

To demonstrate the validity of the various results
introduced in Secs. II and III, and in particular to test
the assumptions made in deriving them, it is useful to
consider the total variation T between the empirical
distribution EðqÞ determined from the numerical calcula-
tions and any proposed probability distribution PðqÞ:

T ¼ 1

2

Z
dqjEðqÞ − PðqÞj: ð66Þ

This quantity is unity if the distributions have support on
disjoint domains and vanishes when the distributions are
identical. Results will be presented for C•ðtÞ, so compar-

isons are made to the distributions Pð0Þ
C•
ðtÞ valid at asymp-

totically large times [Eq. (63)] and to the improved
distribution PC•

ðtÞ [Eq. (62)] that incorporates corrections
to the asymptotic case. The asymptotic distribution depends
on a single parameter (σ), and the improved distribution
depends on two parameters (ω�). In comparing the
empirical distributions to these analytic forms, the follow-
ing estimators for ω� and σ are used. Assume that one has
N samples xi of C•ðtÞ, where i∈ f1;…;N g. Then,
estimators for ω� and σ are given9 as

ω̂þ ¼
1 −

ffiffiffiffiffiffiffiffi
ˆjxj−x̂
ˆjxjþx̂

r
x̂

;

ω̂− ¼

ffiffiffiffiffiffiffiffi
ˆjxjþx̂
ˆjxj−x̂

r
− 1

x̂
;

σ̂ ¼
ffiffiffiffiffi
ˆjxj

q
; ð67Þ

where x̂ and ˆjxj are defined by

x̂ ¼ 1

N

X
i

xi;

ˆjxj ¼ 1

N

X
i

jxij: ð68Þ

In Fig. 2, the total variation is shown for a fixed
geometry and couplings as a function of the temporal
separation of the operators in the correlation function for
various values of the number of samples used in the
numerical calculations. Comparisons to both the asymp-
totic and improved distributions are shown. Since peri-
odic temporal boundary conditions are used, the results
are approximately symmetric around the midpoint of the

(a)

(b)

FIG. 2. The logarithm of the total variation as a function of
temporal separation for three different sample sizes, N , for s ¼
0.56; L ¼ 100; β ¼ 40 for the large-time limit in (a) and with the
corrections in (b).

9The validity of these estimators, in the infinite sample size

limit, follows from Eq. (11), noting that Pð0Þ
C•ðtÞðxÞ is equivalent to

PCImðtÞðxÞ with the identification ωIðtÞ ¼ 1
σ2ðtÞ.
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temporal extent. As can be seen, the sample size
sets a lower floor on the total variation in both
cases, but results for N ¼ 106 samples are sufficient to
cleanly resolve deviations from the asymptotic distribu-
tion, with that deviation achieving its minimum around
the temporal midpoint. For the improved distribution, the
total variation has not saturated even at N ¼ 106 and
should be viewed as an upper bound on the true total
variation.
Figure 3 shows the dependence of the total variation on

the temporal extent of the lattice geometry for fixed spatial
extent and a single choice of the couplings. Similarly, Fig. 4
shows the dependence of the total variation on the spatial
lattice extent for a fixed set of couplings and temporal
extent. In both figures, the total variation is shown in

comparison to the asymptotic and improved probability
distributions. As can be seen in Fig. 3, the temporal extent of
the lattice geometry significantly affects the total variation,
with the periodicity requirement competing against the
approach of the correlation function to the asymptotic
distribution. Even for the improved distribution, deviations
of the total variation are statistically resolved when the
correlation function is measured for short time separations
(including the effects of periodicity). The behavior of
the total variation with respect to the spatial volume seen
in Fig. 4 is in agreement with the discussions in the previous
sections. As the spatial volume increases for a fixed t,
the empirical distributions of the correlation function
approach the analytic forms derived above assuming the
infinite volume limit. For the couplings chosen in Fig. 4,

(a)

(b)

FIG. 4. The logarithm of the total variation as a function of
correlation function time for four values of the spatial extent, L,
with a fixed choice of s ¼ 0.56, β ¼ 40, N ¼ 106 for the large-
time limit in (a) and with the corrections in (b).

(a)

(b)

FIG. 3. The logarithm of the total variation as a function of
correlation function time for two choices of the temporal extent,
β, with fixed values of s ¼ 0.56, L ¼ 100,N ¼ 106 for the large-
time limit in (a) and with the corrections in (b).
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L ¼ 100 is sufficient to see agreement with the asymptotic
result, at least to the precision allowed by the finite
sample size.
Figure 5 show the variation of the total variation with

respect to the parameter s that determines the couplings
through Eq. (65). As s increases from s ¼ 0 toward s ∼ 0.6,
the theory moves toward the critical surface that separates
the quasiordered and disordered phases. As this surface is
approached, the correlation length diverges, and as a
consequence, the temporal separation of the correlation
function and the spatial and temporal extents of the lattice
geometry necessary to see agreement with the results in
Secs. II and III (to a given accuracy) are correspondingly
larger. As seen in Fig. 5, for larger values of s, corresponding
to larger correlation lengths, the contamination from

nonasymptotic contributions is more significant. This is
particularly apparent for the total variation with respect to the
asymptotic distribution, Eq. (63), but the trend is also seen in
the deviation from the improved distribution, Eq. (62). A
similar effect is seen comparing Figs. 6 and 4(b), which only
differ in the value of s that is used; clearly, for the case with
the larger correlation length, larger deviations from the
improved distribution are seen.
The numerical results above summarized through cal-

culations of the total variation with respect to the asymp-
totic and improved distributions provide strong evidence
for the validity of the assumptions that have been used to
derive the results of the previous sections. To provide
further support, Figs. 7–9 show histograms of the empirical
probability distributions for the real part of the correlation
function PC•ðtÞ obtained for various couplings and geom-
etries at representative temporal separations. As has been
seen in studies of correlation function distributions in other
contexts [8–10,16,19,23], the distributions are strongly
asymmetric under reflection about x ¼ 0 at small times
but become increasingly symmetric as t increases. Note that
in all cases, the distributions have support for x < 0 and so
are not describable by log-normal distributions [19].
Figures 7–9 also show the best fits for the asymptotic and

improved analytic distributions in each case. As can be seen
from the figures, for large enough spatial volume, the
improved distribution accurately describes the histograms
for all of the temporal separations that are presented. The
asymptotic distribution (necessarily symmetric about
x ¼ 0) provides a poor description at small times, but
the disagreement decreases as t increases.
Finally, in Fig. 10, histograms of the phase differences

between the spatially averaged fields at 0 and t are

FIG. 6. The logarithm of the total variation with respect to the
improved distribution as a function of the temporal separation in
the correlation function for various different spatial extents L, for
β ¼ 40, N ¼ 106, and s ¼ 0.59.

(a)

(b)

FIG. 5. The logarithm of the total variation as a function of the
temporal separation for various values of the parameter s that
determines the couplings. Fixed values of L ¼ 100, β ¼ 40, and
N ¼ 106 are used and results are shown for the large-time limit in
(a) and with the corrections in (b).
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(a)

(b)

(c)

FIG. 7. Probability distribution of C•ðtÞ for s ¼ 0.52;
L ¼ 40; β ¼ 40, and N ¼ 106 for t ¼ 1 in (a), for t ¼ 10 in
(b), and for t ¼ 19 in (c). Improved and asymptotic (asym)
distributions are as described in the text.

(a)

(b)

(c)

FIG. 8. Probability distribution of C•ðtÞ for s ¼ 0.59;
L ¼ 40; β ¼ 40, and N ¼ 106 for t ¼ 1 in (a), for t ¼ 10 in
(b), and for t ¼ 19 in (c). Improved and asymptotic (asym)
distributions are as described in the text.
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(a)

(b)

(c)

FIG. 9. Probability distribution of C•ðtÞ for s ¼ 0.59;
L ¼ 130; β ¼ 40, and N ¼ 106 for t ¼ 1 in (a), for t ¼ 10 in
(b), and for t ¼ 19 in (c). Improved and asymptotic (asym)
distributions are as described in the text.

(a)

(b)

(c)

FIG. 10. Probability distribution of the phase difference for
s ¼ 0.56; L ¼ 130; β ¼ 40, and N ¼ 106 for t ¼ 1 in (a), for
t ¼ 10 in (b), and for t ¼ 19 in (c).
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presented for various times for s ¼ 0.56. As seen in
previous studies [8,9,23], these phase distributions become
increasingly broad as t increases. The figure also shows fits
of the asymptotic phase distribution given in Eq. (15) to
these histograms; in all cases, this form provides an
accurate description of the histograms, significantly
improving on an assumption of wrapped normality made
in previous studies [10].

V. IMPROVED ESTIMATORS

In this section, an improved estimator for the mean of
CReðtÞ will be presented. A detailed discussion of the
concepts and examples considered in this section can be
found in Ref. [31]. According to the Cramér-Rao bound, a
classical result in estimation theory, if θ̂ is an unbiased
estimator10 of a parameter θ, its variance Varðθ̂Þ satisfies
the bound,

Varðθ̂Þ ≥ 1

N IðθÞ ; ð69Þ

where N is the sample size and IðθÞ is the Fisher
information defined by

IðθÞ ¼
Z

∞

−∞
dxPðx; θÞ

�
d logPðx; θÞ

dθ

�
2

; ð70Þ

where Pðx; θÞ is the distribution of the samples, para-
metrized by θ. Asymptotically, when the maximum like-
lihood estimator exists, it saturates the Cramér-Rao bound
and therefore has the least variance among all unbiased
estimators. However, in some cases, there are other
examples of minimum-variance unbiased estimators for
finite sample size. As a simple example,11 if one considers
the uniform distribution supported on the interval ½0; θ�, the
minimum-variance unbiased estimator of the mean of θ is
given by

μ̂U;mvue ¼
N þ 1

2N
max

i
xi: ð71Þ

In fact, for this example, the ratio of the variance of the
minimum-variance unbiased estimator defined above to the
variance of the sample mean μ̂U;sm can be calculated easily
and is found to be

Varðμ̂U;mvueÞ
Varðμ̂U;smÞ

¼ 3

N þ 2
; ð72Þ

which vanishes as the sample size goes to infinity. In certain
cases, an estimator with smaller mean squared error12

(MSE) can be constructed if a bias is accepted. For
example, for the example considered above, a biased
estimator μ̂U;b can be constructed as

μ̂U;b ¼
N þ 2

2ðN þ 1Þmax
i
xi; ð73Þ

whose MSE is less than that of μ̂U;mvue.
In the context of the Oð2Þ model correlation functions,

using the analytic form of the PDF in Eq. (11) for the real
part of the correlation function, it can be shown that the
sample mean μ̂Re;sm is efficient within the class of unbiased
estimators of μRe. According to the bivariate generalization
of the Cramér-Rao bound, given the parameters
θ⃗ ¼ fθ1; θ2g, the variance of the an unbiased estimator
T̂ of a quantity T ¼ Tðθ1; θ2Þ is given by

VarðT̂Þ ≥ 1

N

X2
i;j¼1

∂T
∂θi

∂T
∂θj

I−1ij ; ð74Þ

where Iij is defined by

Iij ¼
Z

∞

−∞
dxPðx; θ⃗Þ ∂logPðx; θ⃗Þ

∂θi

∂logPðx; θ⃗Þ
∂θj

: ð75Þ

It is convenient to choose the parameters as θ1 ¼ ωRe;þ,
θ2 ¼ ωRe;−. From Eq. (11), it follows that

μRe ¼
1

ωR;þ
−

1

ωR;−
;

σ2Re ¼
1

ω2
R;þ

þ 1

ω2
R;−

: ð76Þ

Choosing T ¼ μRe, it is found from Eqs. (74) and (76)
that VarðT̂Þ ≥ 1

N σ2Re for all unbiased estimators T̂ of T. For

the sample mean μ̂Re;sm ¼ 1
N

PN
i¼1 xi, the variance is

Varðμ̂Re;smÞ ¼ 1
N σ2Re, so the sample mean is the minimum

variance unbiased estimator in this case.
The PDF of CReðtÞ given in Eq. (11) also allows for the

construction of improved estimators that outperform the
sample mean of CReðtÞ. In particular, a biased estimator for
μRe can be defined as

μ̂Re;b ¼
1

N þ 1

XN
i¼1

xi: ð77Þ

The mean squared error for μ̂Re;b is given by10In what follows, “hats” will be used to denote estimators,
which depend on the given sample and therefore are random
variables.

11In this case, the Fisher information IðθÞ is divergent, and
therefore the Cramér-Rao bound is not available.

12The MSE of an estimator μ̂ of μ is defined by
MSEðμ̂Þ ¼ hðμ̂ − μÞ2i.
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MSEðμ̂Re;bÞ ¼ hðμ̂Re;b − μReÞ2i

¼
	

1

ðN þ 1Þ2
�XN

i¼1

xi

�2

−
2

N þ 1
μRe
XN
i¼1

xi þ μ2Re




¼ 1

ðN þ 1Þ2 ðN ðσ2Re þ μ2ReÞ þN ðN − 1Þμ2ReÞ −
N − 1

N þ 1
μ2Re

¼ N σ2Re þ μ2Re
ðN þ 1Þ2 : ð78Þ

From Eq. (76) and the form of the PDF, it follows that

σ2Re > μ2Re. Therefore, MSEðμ̂Re;bÞ < σ2Re
Nþ1

, and

MSEðμ̂Re;bÞ
MSEðμ̂Re;smÞ

<
N

N þ 1
; ð79Þ

showing that μ̂Re;b is a marginally more efficient estimator
of the mean than the sample mean, albeit a biased one.
The bias of μ̂Re;b can be calculated easily and is found
to be

Biasðμ̂Re;bÞ ¼ −
μRe

N þ 1
; ð80Þ

which vanishes asN → ∞. While μ̂Re;b is only marginally
more efficient than the sample mean for N → ∞,
other biased estimators may exist that improve on this
behavior. With recent interest in so-called “master field”
Monte Carlo calculations [32], where a small number of
samples of large volume lattice geometries are envisioned,
even improvements that are only significant at finite
sample sizes are of interest.
The validity of improved estimators such as μ̂Re;b rests on

the use of data that arise from asymptotically large volumes
such that the distributions derived in Sec. III apply. Before
such estimators are used, it is important to assess whether
deviations from the predicted distributions are empirically
apparent.

VI. CONCLUSIONS

In the present work, the exact probability distributions
of the two-point correlation functions of the OðNÞ model
in the disordered phase at vanishing spatial momentum
and infinite volume have been derived. Numerical tests
have been performed for the N ¼ 2 case and are found to
support the assumptions needed in the analytic deriva-
tions. Note that the results presented here fundamentally
rest on the basic principles of (three-dimensional) volume
averaging and the Gaussian nature of fluctuations; the key
results in this work are the applications of these concepts

to correlations between these fluctuations as relevant for
the particular statistical questions being investigated.
While the theories discussed in the present work are
relatively simple, the insights gained from having
an analytic description of the PDF of correlation func-
tions are quite far reaching. They provide a means of
assessing the reliability of numerical Monte Carlo cal-
culations and an alternative method whereby the spec-
trum of a theory can be accessed from a single time slice
[24]. As shown in Sec. V for the case of the Oð2Þ model,
knowledge of the PDF allows better estimators of the
expectation value of a correlation function than the
sample mean. If such estimators could be found for
the expectation values of correlation functions in lattice
quantum field theories in general, it would provide an
interesting path toward addressing the commonly occur-
ring signal-to-noise problem.
As discussed earlier, the arguments presented here

generalize readily to correlation functions of bosonic
theories without an OðNÞ symmetry, although the expres-
sions for the PDFs become more complicated. For N ¼ 1,
the discussion above can be13 extended to the case of the
broken phase by expressing the probability distributions
as a superposition of correlation function distributions
associated with the multiple different vacua. For N > 1,
the broken phase has Goldstone bosons and therefore has
infinite correlation length in the absence of explicit
symmetry breaking. Consequently, the arguments pre-
sented here do not immediately generalize to this case. In
principle, the arguments used in this study can be applied
to higher-point correlation functions, although the result-
ing expressions for PDFs are expected to be more
complicated. Finally, it is likely that the framework
developed here can be adapted to correlation functions
of glueball interpolating operators and of large Wilson
loops in pure gauge theories. These directions will be
explored in subsequent work.

13Except when d ¼ 1. In this case, solitonic vacua also appear,
and as these vacua do not have a mass gap, further discussion
is needed.
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[7] M. Cè, L. Giusti, and S. Schaefer, Phys. Rev. D 93, 094507
(2016).

[8] M. L. Wagman and M. J. Savage, arXiv:1704.07356.
[9] M. L. Wagman, Statistical angles on the lattice QCD signal-

to-noise problem, Ph.D. thesis, University of Washington,
Seattle (main), 2017.

[10] W. Detmold, G. Kanwar, and M. L. Wagman, Phys. Rev. D
98, 074511 (2018).

[11] W. J. Porter and J. E. Drut, Phys. Rev. A 95, 053619 (2017).
[12] M. Dalla Brida, L. Giusti, T. Harris, and M. Pepe, Phys.

Lett. B 816, 136191 (2021).
[13] W. Detmold, G. Kanwar, M. L. Wagman, and N. C.

Warrington, Phys. Rev. D 102, 014514 (2020).
[14] G. Kanwar, Machine learning and variational algorithms for

lattice field theory, Ph.D. thesis, Massachusetts Institute of
Technology, 2021.

[15] W. Detmold, G. Kanwar, H. Lamm, M. L. Wagman, and
N. C. Warrington, Phys. Rev. D 103, 094517 (2021).

[16] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos,
A. Parreno, M. J. Savage, A. Torok, and A. Walker-Loud,
Phys. Rev. D 80, 074501 (2009).

[17] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N.
Nicholson, Phys. Rev. Lett. 107, 201601 (2011).

[18] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N. Nicholson,
Proc. Sci. LATTICE2011 (2011) 017 [arXiv:1112.4023].

[19] T. DeGrand, Phys. Rev. D 86, 014512 (2012).
[20] D. Grabowska, D. B. Kaplan, and A. N. Nicholson, Phys.

Rev. D 87, 014504 (2013).
[21] A. N. Nicholson, D. Grabowska, and D. B. Kaplan, J. Phys.

Conf. Ser. 432, 012032 (2013).
[22] J. E. Drut and W. J. Porter, Phys. Rev. E 93, 043301 (2016).
[23] M. L. Wagman and M. J. Savage, Phys. Rev. D 96, 114508

(2017).
[24] C. Yunus and W. Detmold, Phys. Lett. B 840, 137890

(2023).
[25] H. E. Stanley, Phys. Rev. Lett. 20, 589 (1968).
[26] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[27] P. de Gennes, Phys. Lett. 38A, 339 (1972).
[28] A. W. van der Vaart, Cambridge Series in Statistical and

Probabilistic Mathematics: Asymptotic Statistics Series
Number 3 (Cambridge University Press, Cambridge,
England, 2000).

[29] M. G. Genton, J. Mach. Learn. Res. 2, 299 (2002).
[30] A. Romero, Phi-4-model, https://github.com/Physics-

Simulations/Phi-4-Model (2020).
[31] R. W. Keener, Theoretical Statistics (Springer, New York,

2010).
[32] M. Lüscher, EPJ Web Conf. 175, 01002 (2018).

CORRELATION FUNCTION DISTRIBUTIONS FOR OðNÞ … PHYS. REV. D 109, 034512 (2024)

034512-17

https://doi.org/10.1016/j.cpc.2008.10.017
https://doi.org/10.1016/j.cpc.2008.10.017
https://doi.org/10.1016/j.cpc.2009.03.009
https://doi.org/10.1016/j.cpc.2009.03.009
https://doi.org/10.1007/JHEP05(2011)056
https://doi.org/10.1007/JHEP05(2011)056
https://doi.org/10.1103/PhysRevD.90.034503
https://doi.org/10.1103/PhysRevD.90.034503
https://doi.org/10.1016/j.physletb.2014.07.056
https://doi.org/10.1016/j.physletb.2014.07.056
https://doi.org/10.1103/PhysRevD.95.034503
https://doi.org/10.1103/PhysRevD.95.034503
https://doi.org/10.1103/PhysRevD.93.094507
https://doi.org/10.1103/PhysRevD.93.094507
https://arXiv.org/abs/1704.07356
https://doi.org/10.1103/PhysRevD.98.074511
https://doi.org/10.1103/PhysRevD.98.074511
https://doi.org/10.1103/PhysRevA.95.053619
https://doi.org/10.1016/j.physletb.2021.136191
https://doi.org/10.1016/j.physletb.2021.136191
https://doi.org/10.1103/PhysRevD.102.014514
https://doi.org/10.1103/PhysRevD.103.094517
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevLett.107.201601
https://arXiv.org/abs/1112.4023
https://doi.org/10.1103/PhysRevD.86.014512
https://doi.org/10.1103/PhysRevD.87.014504
https://doi.org/10.1103/PhysRevD.87.014504
https://doi.org/10.1088/1742-6596/432/1/012032
https://doi.org/10.1088/1742-6596/432/1/012032
https://doi.org/10.1103/PhysRevE.93.043301
https://doi.org/10.1103/PhysRevD.96.114508
https://doi.org/10.1103/PhysRevD.96.114508
https://doi.org/10.1016/j.physletb.2023.137890
https://doi.org/10.1016/j.physletb.2023.137890
https://doi.org/10.1103/PhysRevLett.20.589
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1016/0375-9601(72)90149-1
https://github.com/Physics-Simulations/Phi-4-Model
https://github.com/Physics-Simulations/Phi-4-Model
https://github.com/Physics-Simulations/Phi-4-Model
https://doi.org/10.1051/epjconf/201817501002

