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We simulate quantum electrodynamics (QED) in a strong constant homogeneous external magnetic field
on a Euclidean space-time lattice using the rational hybrid Monte Carlo method, developed for simulating
lattice quantum chromodynamics (QCD). Our primary goal is to measure the chiral condensate in the limit
when the input electron mass m is zero. We observe a nonzero value, indicating that the external magnetic
field catalyzes chiral symmetry breaking as predicted by approximate truncated Schwinger-Dyson
methods. Such behavior is associated with dominance by the lowest Landau level which causes the
effective dimensional reduction from 3þ 1 dimensions to 1þ 1 dimensions for charged particles (electrons
and positrons) where the attractive forces of QED can produce chiral symmetry breaking with a dynamical
electron mass and associated chiral condensate. Since our lattice simulations use bare (lattice) parameters,
while the Schwinger-Dyson analyses work with renormalized quantities, direct numerical comparison will
require renormalization of our lattice results.
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I. INTRODUCTION

Theoretical studies of free electrons in external electro-
magnetic fields were some of the earliest applications of
relativistic quantum mechanics, [1–3], and exhibited some
of the features of quantum electrodynamics, such as the
Sauter-Schwinger effect [1,3] (the instability of the vacuum
in a strong electric field, with the production of electron-
positron pairs). [For a review of those field configurations
where an exact closed form solution as simple integral or
series is known, see, for example, the review article by
Gerald Dunne [4] ].
QED (quantum electrodynamics) in strong external

electromagnetic fields is of relevance to high and medium
energy physics, laser and accelerator physics, astrophysics
and cosmology, and condensed matter physics. See, for
example, V. Yakimenko et al. [5], for a discussion with
examples of the physics associated with QED in strong
electromagnetic fields.

Current and future experiments at SLAC, LBNL, and
ELI, which collide the light from petawatt lasers with
electron/positron beams or plasmas, produce environments
with electromagnetic fields strong enough to produce
quantum and QED effects [6–8]. This requires electromag-
netic fields which approach or exceed the critical values
Ecr ¼ m2=e or Bcr ¼ m2=e where m and e are the electron
mass and charge respectively. Another source of such
strong fields is in the charged particle beams at future
accelerators and their interactions, where fields could even
be strong enough that the electron loop expansion (the last
remnant of perturbation theory) breaks down [5]. Certain
compact astronomical objects, in particular those which are
sources of x- and gamma-ray emissions and are identified
as neutron stars are believed to have very strong surface
magnetic fields (magnetars). See for example [9]. Some
have postulated the presence of very strong magnetic fields
in the early universe as the source of the magnetic fields
observed in the universe today.
We simulate lattice QED in external electromagnetic

fields using the methods developed for simulating lattice
QCD. Although some of the more interesting physics from
an experimental point of view such as the Sauter-
Schwinger effect—the production of electron-positron
pairs from the unstable vacuum—are produced by strong
external electric fields, this electric field makes the action
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complex, the imaginary part describing vacuum decay.
Hence standard lattice simulations cannot be applied. We
therefore start with simulations of QED in external mag-
netic fields where the action is real and bounded below. We
simulate using a non-compact gauge action and staggered
fermions, using the RHMC algorithm to allow tuning to a
single electron “flavor”. For details see Sec. II.
We start with considering the case of “free” electrons in a

constant (in space and time) magnetic field with magnitude
B, comparing our lattice results with the known exact
solutions [3,4] to determine the range of B or more
precisely eB (e is the electron charge) over which there
is good agreement.
Next we perform simulations of full lattice QED at a

near-physical electron charge α ¼ e2=4π ¼ 1=137, on a
364 lattice with safe (36m ≫ 1, m ≪ 1) electron masses
m ¼ 0.1, m ¼ 0.2, comparing observables with those for
free (α ¼ 0) electrons in a magnetic field. We then perform
simulations at B ¼ 0 for a range of α on 364 lattices with
m ¼ 0.1, checking that the gauge action per site’s α
dependence is consistent with perturbation theory.
One of the theoretically most interesting predictions for

QED in an external magnetic field is that the presence of
this external field breaks chiral symmetry at m ¼ 0. This
manifests itself by giving a small dynamical mass to the
electron which in turn gives rise to a non-zero chiral
condensate. These predictions were obtained using trun-
cated Schwinger-Dyson analyses, where the effects of the
truncations required to obtain results, are difficult to
estimate. The dynamical mass production was predicted
in [10–20]. Estimates of the chiral condensates are given
in [21,22] For a good review with a more complete set of
references see Ref. [23]. For a more recent review, see,
for example [24]. It is therefore important to check these
predictions using methods whose errors are easier to esti-
mate and which allow systematic improvements. Lattice
QED simulations are of this nature. However, the best
estimates of Gusynin, Miransky and Shovkovy [12] predict
a dynamical electron mass at our chosen eB ¼ 0.4848…
and a near-physical α ¼ 1=137, mdyn ∼ 3 × 10−35, far
below anything we could measure on the lattice. There-
fore we choose a stronger electron charge α ¼ 1=5, where
the predicted mdyn ≈ 3 × 10−4. Here our simulations show
evidence of chiral-symmetry breaking at a level 1 to 2
orders of magnitude greater than the “best” Schwinger-
Dyson results, however, our lattice QED results are for bare
quantities, whereas those using Schwinger-Dyson analyses
are for renormalized quantities.
Preliminary results were presented at Lattice 2021,

Lattice 2022 and Lattice 2023 [25–27].
Section II defines Lattice QED in an external magnetic

field. Section III compares the effects of an external
magnetic field on electrons on the lattice with those in
the continuum. Section IV presents simulations of Lattice
QED at α ¼ 1=137 in an external magnetic field. Section V

describes simulations of Lattice QED at α ¼ 1=5 in an
external magnetic field. Section VI presents discussions
and conclusions.

II. LATTICE QED IN AN EXTERNAL
MAGNETIC FIELD

In this section we describe the lattice transcription of
QED in an external magnetic field used for our simulations.
(Note that here and elsewhere in this paper we work in
lattice units, where the lattice spacing a is chosen to be 1.
This can always be obtained from a more general choice of
a by multiplying parameters and operators which have
nontrivial dimensions by sufficient powers of a to make
them dimensionless.) We use the noncompact gauge action

SðAÞ ¼ β

2

X
n;μ<ν

�
Aνðnþ μ̂Þ − AνðnÞ − Aμðnþ ν̂Þ þ AμðnÞ

�
2

ð1Þ

where n is summed over the lattice sites and μ and ν run
from 1 to 4 subject to the restriction. β ¼ 1=e2. This pre-
serves the continuum gauge group as that of 4-dimensional
translations of the gauge field Aμ. The action is still
quadratic in the gauge fields and hence describes a non-
interacting free field. Compacting the translations to Uð1Þ
introduces an extra parameter, the radius of compactifica-
tion and produces an interacting theory. What is more, the
strong interacting field theory becomes confining, while the
weak interacting remains nonconfining. Hence the com-
pactification produces a spurious phase transition from
strong to weak coupling, a complication which we consider
undesirable. As for the fermion action, gauge transforma-
tions, even in the continuum, multiply the fermion field by
a phase factor, which is a compact Uð1Þ transformation, so
the compact form is natural, and is the only form which is
gauge invariant. The functional integral to calculate the
expectation value for an observable OðAÞ is then

hOi ¼ 1

Z

Z
∞

−∞
Πn;μdAμðnÞe−SðAÞ

�
detMðAþ AextÞ

�
1=8OðAÞ

ð2Þ

whereM ¼ M†M andM is the staggered fermion action in
the presence of the dynamic photon field A and external
photon field Aext describing the magnetic [16] field B (or
rather eB). M is defined by

MðAþ AextÞ ¼
X
μ

Dμ

�
Aþ Aext

�þm ð3Þ

where the operator Dμ is defined by
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�
DμðAþ AextÞψ

�ðnÞ ¼ 1

2
ημðnÞ

�
eiðAμðnÞþAext;μðnÞÞψðnþ μ̂Þ

− e−iðAμðn−μ̂ÞþAext;μðn−μ̂ÞÞψðn − μ̂Þ�
ð4Þ

and ημ are the staggered phases. Note that this treatment of
the gauge-field–fermion interactions is compact and so has
period 2π in the gauge fields.
We implement the RHMC simulation method of Clark

and Kennedy [28,29], using a rational approximation to
M−1=8 and rational approximations to M�1=16. (Note that,
in the notation of Clark [29] Sec. III, α [not to be confused
with the fine structure constant] is 1=8.) To account for the
range of normal modes of the noncompact gauge action, we
vary the trajectory lengths τ over the range,

π

2
ffiffiffi
β

p ≤ τ ≤
4πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2βð4 −P
μ cosð2π=NμÞÞ

q ; ð5Þ

of the periods of the modes of this gauge action. Here Nμ is
the length of the lattice in the μ direction which is chosen to
be that of maximum extent [30]. (Note that we typically
only change the trajectory length after a trajectory has been
accepted.)
Aext are chosen in the symmetric gauge as

Aext;1ði; j; k; lÞ ¼ −
eB
2
ðj − 1Þ i ≠ N1

Aext;1ði; j; k; lÞ ¼ −
eB
2
ðN1 þ 1Þðj − 1Þ i ¼ N1

Aext;2ði; j; k; lÞ ¼ þ eB
2
ði − 1Þ j ≠ N2

Aext;2ði; j; k; lÞ ¼ þ eB
2
ðN2 þ 1Þði − 1Þ j ¼ N2 ð6Þ

while Aext;3ðnÞ ¼ Aext;4ðnÞ ¼ 0 [31]. In practice we sub-
tract the average values of Aext;μ from these definitions. This
choice produces a magnetic field eB in the þz direction on
every 1, 2 plaquette except that with i ¼ N1, j ¼ N2, which
has the magnetic field eBð1 − N1N2Þ. Because of the
compact nature of the interaction, requiring eBN1N2 ¼
2πn for some integer n ¼ 0; 1;……; N1N2=2 makes the
value of this plaquette indistinguishable from eB. Hence
eB ¼ 2πn=ðN1N2Þ lies in the interval ½0; π�.
At the end of each accepted trajectory, we subtract

the multiple of 2π=Nμ from each Aμ which reduces the
magnitude of the lattice average of said Aμ to lie in the
range ð−π=Nμ; π=Nμ�. Since this is a gauge transformation
it does not change any physics. In addition we transform to
Landau gauge. Both these operations aim to prevent the
gauge fields from becoming too large.
One of the observables we calculate is the electron

contribution to the effective action per site −1
8V trace½lnðMÞ�.

For lnðMÞ we use a (30, 30) rational approximation to the
logarithm. Here we use the Chebyshev method of Kelisky
and Rivlin [32]. While this has worse errors than a Remez
approach, it preserves some of the properties of the
logarithm itself, and is applicable on the whole complex
plane cut along the negative real axis. (This would be
important if we had an electric field, in which case detM
would be complex).

III. “FREE” ELECTRONS IN AN EXTERNAL
MAGNETIC FIELD

We restrict ourselves to considering an external magnetic
field of strength B which is constant in space and time and
oriented in the þz direction. Classically “free” electrons in
such a magnetic field traverse helical orbits. The motion
parallel to the magnetic field is free, while that orthogonal
to the magnetic field is circular and hence bound.
Quantum mechanics restricts the motion perpendicular

to the field to a discrete set of transverse energy levels
known as the Landau levels [33]. As B increases, the radii
of these orbits decreases. The radius of the lowest Landau
level is 1=

ffiffiffiffiffiffi
eB

p
. This leads to an effective dimensional

reduction from 3þ 1 to 1þ 1 dimensions for charged
particles in a large magnetic field. The energy of the nth
Landau level is

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2eBnþm2

q
ð7Þ

where n ¼ 0; 1; 2…. The degeneracy of each n ¼ 0 energy
level is eB

2π Axy and that of each n > 0 energy level is eB
π Axy

where Axy is the area in the xy plane.
We now calculate the chiral condensate hψ̄ψi on the

lattice for masses m ¼ 0.1 and m ¼ 0.2 on a 364 lattice,
values which we use for our initial QED simulations at
α ¼ 1=137, over a range of allowed eB values. This is to
test the range of applicability of the lattice approach against
the known continuum results. The lattice chiral condensate

hψ̄ψi ¼ 1

4V
trace

�
M−1ðAextÞ

� ð8Þ

where M is defined in Sec. II. Because Aext is independent
of z and t, we only need to calculate the trace over one xy
plane. In fact, for m ¼ 0.1 and m ¼ 0.2, all terms in the
trace are almost identical. We compare this with the known
continuum result:

hψ̄ψi ¼ hψ̄ψijeB¼0 þ
meB
4π2

Z
∞

0

ds
s
e−sm

2

×

	
cothðeBsÞ − 1

eBs



: ð9Þ

where hψ̄ψijeB¼0 is taken from the lattice. This is necessary
because hψ̄ψijeB¼0 depends on the UV regulator, which is
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different on the lattice than in the continuum. (Note that we
have checked that we get the same result from Eq. (8) and
from summing over the normal modes on the lattice.)
Figure 1 compares the chiral condensates for free

electrons in an external magnetic field B for m ¼ 0.1
and for m ¼ 0.2 as functions of eB on a 364 lattice, and
compares them with the known continuum results. We
conclude that the lattice results are in acceptable agreement
with the continuum results for eB≲ 0.63 for each mass.
We also calculate the fermion effective action/site on the

lattice

Lf ¼ −
1

4V
ln
�
det½MðAextÞ�

�

¼ −
1

4V
trace

�
ln½MðAextÞ�

� ð10Þ

which we compare with the known continuum result:

Lf ¼ LfjB¼0 þ
ðeBÞ2
24π2

Z
∞

0

ds
s
e−m

2s

þ eB
8π2

Z
∞

0

ds
s2

e−m
2s

	
cothðeBsÞ − 1

eBs
−
eBs
3



: ð11Þ

Again we replace the divergent part of this quantity in the
continuum version with that of the lattice version to take
into account the difference between the continuum and
lattice regulators. Since the quadratically divergent part
of Lf, LfjeB¼0 is a constant (independent of eB) and the
logarithmically divergent term is proportional to ðeBÞ2,
while the leading contribution of the integral (the finite
part) is of order ðeBÞ4, the separation of the divergent and
the finite parts is straight forward in principle.
Figure 2 shows the fermion contributions to the effective

action on a 364 lattice as functions of eB, comparing the
lattice and continuum results for m ¼ 0.1 and m ¼ 0.2.
Again, we see good agreement over a range of eB values at
least as large as for the chiral condensate.

IV. LATTICE QED SIMULATIONS AT α= 1=137

We simulate lattice QED on a 364 lattice using the
approach presented in section II at lattice (bare) coupling
α ¼ 1=137 and lattice (bare) masses m ¼ 0.1 and m ¼ 0.2.
At this α, the difference between bare and renormalized
parameters is small (at most a few percent), and will
therefore be ignored. Hence we consider these simulations
to be performed at the physical electron charge. For
m ¼ 0.1 we simulate over a range of allowed eB values
in the interval 0 ≤ eB ≤ 2π × 160=362 ¼ 0.7757…, while
for m ¼ 0.2 we use a selection of allowed eB values in the
range 0 ≤ eB ≤ 2π × 200=362 ¼ 0.9696…. At each eB
we run for 12500 trajectories of lengths randomly chosen
from the periods of the modes of the gauge action. We store
a gauge configuration every 100 trajectories for future
analyses. Note that, since QED probably does not have a
UV completion, the action we choose should be considered
to define an effective field theory. Its form is chosen to
generate results consistent with QED perturbation theory
with a lattice regulator.
In Fig. 3 the chiral condensates as functions of eB for

α ¼ 1=137 are compared to those for free electrons in a
magnetic field (α ¼ 0). In both cases the condensate for
α ¼ 1=137 lies above that for free electrons. This was to be
expected, since the attractive force between electrons and
positrons in QED is predicted to enhance the chiral

(a)

(b)

FIG. 1. Electron chiral condensates hψ̄ψi as functions of eB,
comparing the continuum and lattice results for (a) m ¼ 0.1 and
(b) m ¼ 0.2.
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condensate. A truncated Schwinger-Dyson approach indi-
cates that chiral symmetry breaking with a dynamical
electron mass proportional to

ffiffiffiffiffiffi
eB

p
and a nonzero chiral

condensate proportional to ðeBÞ3=2 survives in the m → 0
limit, however small α might be. However, at α ¼ 1=137,
as stated in the introduction, the dynamical electron
contribution to the electron mass over the range of eBs
accessible to these simulations is negligible so that these
measurements could be checked by lattice perturbation
theory.

Figure 4 compares the effective fermion actions/site

Lf ¼ −
1

4V
ln
�
det½MðAþ AextÞ�

�

¼ −
1

4V
trace

�
ln½MðAþ AextÞ�

� ð12Þ

for QED with α ¼ 1=137, to its free-electron value as
functions of eB for m ¼ 0.1 and m ¼ 0.2. The effective
actions for QED are well above those without QED.

(a)

(b)

FIG. 3. Electron chiral condensates hψ̄ψi as functions of eB,
comparing the α ¼ 1=137 lattice results with the free-field
(α ¼ 0) lattice results for (a) m ¼ 0.1 and (b) m ¼ 0.2.

(a)

(b)

FIG. 2. Electron effective actions/site −Lf as functions of eB,
comparing the continuum and lattice results for (a) m ¼ 0.1 and
(b) m ¼ 0.2.
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V. LATTICE QED SIMULATIONS AT α= 1=5,
eB= 2π × 100=362

We are interested in finding evidence of chiral symmetry
breaking for QED in (strong) external magnetic fields,
which survives in them → 0 limit. Since Schwinger-Dyson
analyses predict that this manifests itself as a dynamical
electron mass, which at α ¼ 1=137 and our chosen mag-
netic field eB¼ 0.4848… ismdyn ≈ 3× 10−35, in them ¼ 0

limit, far below anything we could measure on the lattice,
we simulate at a far stronger bare coupling, α ¼ 1=5. For a
renormalized α ¼ 1=5, the predicted mdyn ≈ 3 × 10−4 [12]

Eq. (51). (Note that [14] Eq. (4.22) gives essentially the
same result at renormalized α ¼ 1=5). Since equation (51)
actually gives the dimensionless ratio mdyn=

ffiffiffiffiffiffiffiffi
2eB

p
, we

have inserted the value of eB in lattice units to yield
mdyn in lattice units. This leads to hψ̄ψi ≈ 1.2 × 10−4, [22]
equation (B4) where we have again inserted the lattice
value of eB to yield a result in lattice units, which should
be measurable. Of course, since our α ¼ 1=5 is the bare
(lattice) α, there is no guarantee that it will give a
measurable result, we only know this a posteriori. Note
that, running the fine structure constant from 1=137 at m2

to 1=5 indicates that the cutoff for α ¼ 1=5 is so large as
to be beyond any physical interest. (In fact, the momen-
tum cutoff Λ1=5 with lowest order running obeys
logðΛ1=5=mÞ= logðΛ∞=mÞ ¼ ð137 − 5Þ=137, where Λ∞ is
the momentum cutoff at the Landau pole.) eB which is an
order of magnitude smaller than the cutoff squared is also
so large as to be only of purely theoretical interest.
First, we need to determine that α ¼ 1=5 is still in the

range of α values where perturbation theory holds. We do
this by performing simulations over a range of α values
from α ¼ 0 to α ¼ 1=5. These simulations were performed
at eB ¼ 0 and m ¼ 0.1. Our chosen observable for per-
forming this test is the gauge Lagrangian Lγ , the gauge
action/lattice site. For α ¼ 0, Lγ ¼ 1.5 by the equipartition
theorem. This value changes (decreases) only slowly with
increasing α as shown in Fig. 5.
The fact that Lγ is well approximated by a low order

polynomial in α with coefficients of decreasing magnitude
over the range 0 ≤ α ≤ 0.2 is consistent with the claim
that α ¼ 0.2 lies in the perturbative domain for eB ¼ 0.

(a)

(b)

FIG. 4. Electron effective actions/site −Lf as functions of eB,
comparing the α ¼ 1=137 lattice results with the free-field
(α ¼ 0) lattice results for (a) m ¼ 0.1 and (b) m ¼ 0.2.

FIG. 5. Photon Lagrangian density as a function of α for eB ¼ 0.
The curve is the fit LγðαÞ ¼ 1.5 − 0.187499αþ 0.0661374α2.
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We have also performed simulations at α ¼ 1, m ¼ 0.1 for
which Lγð1Þ ¼ 1.49047ð3Þ, that does not appear to be
consistent with perturbation theory, although one would
need more simulations in the range 0.2 ≤ α ≤ 1.0 to
check this.
Having chosen α ¼ 1=5 ¼ 0.2 for our lattice QED

simulations at strong coupling, we first perform simulations
at eB ¼ 0. Since we do not expect any chiral symmetry
breaking in the m → 0 limit, we expect that perturbation
theory should be valid, and this means that the chiral
condensate at nonzero mass will have the form mΛ2 times
some function of logðΛ2=m2Þ, where Λ is the momentum
cutoff. On the lattice, since we use units where the lattice
spacing is 1, Λ ¼ �π in each of the 4 directions x, y, z, t.
The proportionality to Λ2 means that the trace of the
propagator, which defines the chiral condensate, is domi-
nated by large momenta and hence short distances, and
should not be sensitive to the size of the lattice. The size of
the lattice is probed by small momenta which probe long
distances. Therefore we should be able to calculate the
condensate on relatively small lattices, even in the limit as
m → 0. We simulate over a range of electron masses
0.001 ≤ m ≤ 0.2 on a 364 lattice, noting that for the lowest
mass m ¼ 0.001, mNμ ¼ 0.036 ≪ 1, far outside the range
of “safe” values for which would require mNμ ≫ 1.
Figure 6 shows the chiral condensate hψ̄ψi as a function

of m on a 364 lattice for α ¼ 1=5. This graph also shows
the value of the chiral condensate at the lowest mass,
m ¼ 0.001, from a simulation on a larger (484) lattice,
which shows no sign of any appreciable dependence on
lattice size. In fact, hψ̄ψiðm ¼ 0.001Þ ¼ 4.3259ð7Þ × 10−4

on a 364 lattice compared with hψ̄ψiðm ¼ 0.001Þ ¼
4.3294ð7Þ × 10−4 on a 484 lattice. A simple linear extrapo-
lation from the lowest 2 masses (m ¼ 0.001,m ¼ 0.005),
which because of the curvature of this graph, should yield
an upper bound to the value at m ¼ 0, predicts hψ̄ψim¼0 ¼
5ð1Þ × 10−7, a value which curvature can easily lower to
zero. Hence the chiral condensate at m ¼ 0 for α ¼ 1=5
and eB ¼ 0 is consistent with zero.
To search for evidence of chiral symmetry breaking

at m ¼ 0 catalyzed by a strong magnetic field we per-
form simulations at α ¼ 1=5 and eB ¼ 2π × 100=362 ¼
2π × 25=182 ¼ 0.4848…, relatively large, while being
significantly below eB ¼ 0.63 above which measurements
of chiral condensates on the lattice for free fermions in an
external magnetic field show appreciable departures from
known continuum values. Here we need to make measure-
ments at m values small enough that our 364 lattice is too
small to yield infinite lattice values for the chiral con-
densate. However, the assumption that for large eB only the
lowest Landau levels (LLL) make significant contributions
to physics means that as long as the lattice projection in the
xy plane is considerably larger than that of the LLL, whose
radii are ≈1=

ffiffiffiffiffiffi
eB

p
, then the chiral condensates should not

depend on Nx ¼ Ny, no matter how small m becomes. For
this reason we fix Nx ¼ Ny ¼ 36 or Nx ¼ Ny ¼ 18 for our
simulations. Here we have checked for a limited number
of Nz ¼ Nt (36 and 64) that there is consistency between
Nx ¼ Ny ¼ 36 and Nx ¼ Ny ¼ 18 and hence that the
remaining massless particle (the photon) does not affect
this conclusion. For large eB the charged particles are thus
restricted to 1þ 1 dimensions (z and t). Since these 1þ 1
dimensional electrons and positrons are free to move in
the z and t directions one can expect that, at small mass, the
chiral condensates will depend on the lattice extents in the
those directions until Nz ¼ Nt exceeds the new scale
associated with chiral symmetry breaking. Were it not

(a)

(b)

FIG. 6. Electron chiral condensates hψ̄ψi as functions of m for
α ¼ 0, eB ¼ 0: (a) full mass range, (b) low mass region.
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for QED, chiral symmetry would not be broken in the limit
m → 0 unlike what occurs in 2þ 1 dimensions. The
relatively weak QED interactions in the z and t directions
can cause chiral symmetry breaking, giving dynamical
masses to the electrons and nonzero chiral condensates at
m ¼ 0. In the limit as m → 0, the dynamical masses can
only be proportional to

ffiffiffiffiffiffi
eB

p
and the condensates to

ðeBÞ3=2. eB gives the new intermediate or infrared scale
for chiral symmetry breaking as our simulations indicate.
We perform simulations at a selection of m values in the

range 0.001 ≤ m ≤ 0.2, starting with a 364 lattice at each
mass. At the lower masses we then increase the lattice size
to 362 × 642 and also consider 182 × 642 at m ¼ 0.001 for
comparison. Because at m ¼ 0.025, the increase in the
chiral condensate in going from a 364 lattice to a 362 × 642

lattice is very small, we conclude that a 364 lattice would
have been adequate, and that it is unnecessary to increase
the lattice sizes for anym > 0.025. Form ¼ 0.0125 there is
a small but significant increase in the chiral condensate in
going from a 364 lattice to a 362 × 642 lattice, from which
we conclude that a 364 lattice is too small, but a 362 × 642

lattice is probably adequate. For m ¼ 0.005 we conclude
that a 362 × 962 lattice is adequate while for m ¼ 0.001 we
needed the 182 × 1282 lattice.
Figure 7 shows the chiral condensates as functions of

mass at α ¼ 1=5 for eB¼ 2π × 100=362 ¼ 2π × 25=182 ¼
0.4848…. This strongly suggests that the condensates
approach a finite, non-zero limit as m → 0. From the
obvious curvature of this graph (through the uppermost
point at each m), a straight line through the points for the 2
lightest masses will pass through m ¼ 0 at a point marking
an upper bound to the m ¼ 0 condensate. This value is
3.977… × 10−3. To estimate a lower bound, we need to
fit a smooth curve to the condensates for the smallest
masses for which we have simulations. This requires
choosing a functional form which displays increasing
curvature as m → 0, and fitting it to the condensates for
the lowest masses. The first form we choose is: fðmÞ ¼
aþ bmþ cm logðmÞ þ dm2. Fitting this to the conden-
sates at m ¼ 0.001, m ¼ 0.005, m ¼ 0.0125 and m ¼
0.025 gives values for a, b, c, d. The zero mass intercept
is a ¼ 3.45… × 10−3. Adding more points to the fit
increases the m ¼ 0 intercept. The curvature shows the
expected behavior. Setting d ¼ 0 and fitting only the
points m ¼ 0.001, m ¼ 0.005, and m ¼ 0.0125 raises
the intercept slightly to a ¼ 3.5097… × 10−3, and sug-
gests setting c ¼ b and only using m ¼ 0.001, m ¼ 0.005
for the fit. Thus we have reduced fðmÞ to fðmÞ ¼
aþ bmð1þ logðmÞÞ. This lowers the intercept slightly
to a ¼ 3.50565 × 10−3. Including the point at m ¼
0.0125 to the fit changes the parameters a and b only
slightly and gives an excellent fit (χ2=DOF ≈ 0.7). We now
consider an alternative fit to fðmÞ ¼ aþ bmc. Fitting this
to the condensates at m ¼ 0.001, m ¼ 0.005, m ¼ 0.0125

yields an intercept a ≈ 3.16 × 10−3. Adding the point at
m ¼ 0.025 to the fit gives an excellent fit (χ2=DOF ≈ 0.5),
lowers the intercept to a ≈ 3.14 × 10−3 and makes slight
changes to b and c). In conclusion, a conservative estimate
of the condensate at m ¼ 0 is that it lies in the range:

3 × 10−3 ≤ hψ̄ψim¼0 < 4 × 10−3

This compares with the “best” Schwinger-Dyson esti-
mates for the chiral condensate at α ¼ 1=5, eB ¼
0.4848…., Nf ¼ 1, m ¼ 0, which predicts that hψ̄ψim¼0≈
1.2 × 10−4. Of course, a direct comparison is not possible

(a)

(b)

FIG. 7. Electron chiral condensates hψ̄ψi as functions of m for
α ¼ 0, eB ¼ 2π × 100=362: (a) full mass range, (b) low mass
region.
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because the parameters in the lattice are bare (lattice)
parameters, while those in the Schwinger-Dyson estimates
are renormalized quantities. We discuss this further in the
Discussion and Conclusions section.

VI. DISCUSSION AND CONCLUSIONS

We simulate lattice QED in a strong external magnetic
field using the RHMC method developed for simulating
lattice QCD. Much of our effort is aimed at seeking
evidence for chiral symmetry breaking in the limit that
the lattice (bare) mass approaches zero, catalyzed by the
external magnetic field, as predicted by less reliable
truncated Schwinger-Dyson analyses. Such chiral sym-
metry breaking is facilitated in part by the electrons and
positrons preferentially occupying the lowest Landau level
(LLL) with its radius 1=

ffiffiffiffiffiffi
eB

p
due to the external magnetic

field causing an effective dimensional reduction from 3þ 1
to 1þ 1 for charged particles. The attractive force due to
QED then produces chiral symmetry breaking. The broken
chiral symmetry manifests itself by producing a dynamical
mass for the electron and a non-zero chiral condensate.
We simulate Lattice QED in a constant (in space

and time) external magnetic field B, (eB ¼ ∇ × Aext),
with staggered electrons, using the RHMC method. We
choose the bare α ¼ e2=4π ¼ 1=5, eB ¼ 2π × 100=362 ¼
0.4848… and a range of electron masses and lattice sizes
sufficient to extrapolate the chiral condensate hψ̄ψi to
m ¼ 0. We estimate hψ̄ψi ¼ 3–4 × 10−3 at m ¼ 0, defi-
nitely non zero, indicating that chiral symmetry is broken.
Note that the parameters and fields in the action are bare
lattice quantities. This compares with the renormalized
condensate of ≈1.2 × 10−4 from the best Schwinger-
Dyson estimates. The lowest non-trivial contributions
to the renormalization constants evaluated at p2 ¼ m2

dyn

are typically Oðα logðΛ2=m2
dynÞÞ≈ 1–3 where Λ ≈ π is the

momentum cutoff on the lattice. If instead one chooses to
renormalize at momentum scale μ with μ2 ¼ eB, these
contributions are reduced to Oðα logðΛ2=eBÞÞ ≈ 0.6. In
either case, renormalization cannot be ignored. This con-
trasts with our simulations with α ¼ 1=137, m ¼ 0.1; 0.2,
where the renormalization constants are evaluated at
p2 ¼ m2, so the lowest non-trivial order corrections are
typicallyOðα logðΛ2=m2Þ ≈ 0.05; 0.04Þ and can be ignored
if one can tolerate errors of a few percent (in actual fact
for our external magnetic fields the errors are somewhat
smaller than this). There are two ways that one might check
the consistency between the Schwinger-Dyson approach
and the Lattice QED simulations. The first is to follow the
methods developed for renormalizing lattice QCD. The
dimensional reduction from 3þ 1 to 1þ 1 dimensions
caused by the external magnetic field adds extra compli-
cations. The second approach is to repeat the Schwinger-
Dyson analysis on the lattice action based on methods
developed for lattice perturbation theory, in terms of bare

parameters. Of course, it would be best to use both
methods.
Experience with lattice QCD indicates that we should

expect large taste breaking effects from the use of staggered
fermions (and, in particular, rooted staggered fermions).
See for example the review article [34], and its guide to the
literature. In lattice QCD these effects are, to lowest order,
Oða2Λ2

QCDÞ where a is the lattice spacing. For lattice QED
in an external magnetic field these effects should be, to
lowest order Oða2eBÞ or, since we have chosen a ¼ 1,
OðeBÞ. Hence we should be able to reduce taste breaking
by reducing the external magnetic field. We are therefore
repeating our simulations with a smaller magnetic field.
Another way one can see that this should decrease errors
is to note that with a smaller magnetic field, the lowest
Landau level covers more lattice sites so that discretization
errors should be reduced. With the smaller magnetic field,
we should be able to test that the chiral condensate scales as
ðeBÞ3=2 as predicted.
It would be interesting to apply lattice simulations to

QED with Nf ¼ 2 flavors in an external magnetic field,
where such chiral symmetry breaking would imply sponta-
neous dynamical breaking of flavor symmetry with asso-
ciated Goldstone bosons. Note that these Goldstone bosons
are uncharged and hence reside in 3þ 1 dimensions and
therefore spontaneous breaking of continuous chiral sym-
metry is allowed despite the electrons being restricted to
1þ 1 dimensions.
One of the first calculations planned for stored configu-

rations is to measure the effect that QED in an external
magnetic field has on the Coulomb field of a point charge
in said magnetic field. It has been predicted that the
Coulomb field will be partially screened and distorted
by the presence of the external magnetic field [35–38]. This
effect can and will be measured on our stored configura-
tions at α ¼ 1=137 where renormalization can be safely
ignored, with expected errors of at most a few percent. Such
an analysis will be performed using Wilson loops, possibly
with smearing.
We plan to calculate electron propagators on our stored

configurations with α ¼ 1=5, eB ¼ 0.4848… on lattice
sizes from 362 × 642 to 182 × 128 to extract the electron
mass extrapolated tom ¼ 0. When configurations from our
current and ongoing simulations at eB ¼ 0.1163… become
available we will then be able to check that mdyn ∝

ffiffiffiffiffiffi
eB

p
,

and extract the electron wave function renormalization
constant. We will also attempt to calculate the photon
propagator, although this will be considerably more diffi-
cult, since its falloff with separation of its endpoints will be
statistics limited.
The one parameter left to calculate will be the renormal-

ized coupling constant which, unless this can be calculated
perturbatively, might well require additional simulations.
Of at least as much interest is the behavior of QED in an

external electric field, which exhibits the Sauter-Schwinger
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effect. As pointed out earlier, this has a complex action and
traditional lattice simulations which rely on importance
sampling cannot be used. A good starting point is to
simulate lattice QED with both external electric and
magnetic fields where these fields are obtained by a boost
from a pure external magnetic field, since the physics
should be the same as that for this magnetic field alone. One
method we might try is a complex Langevin (CLE)
simulation. This has some chance of succeeding for
QED in external electric fields or electric and magnetic
fields, whereas it failed for QCD in a quark-number
chemical potential, because for pure non-compact Uð1Þ
lattice gauge theory, which is a free field theory and hence a
collection of harmonic oscillators, the real trajectory is an
attractive fixed-point of the CLE, while for pure compact
SUð3Þ lattice gauge theory it is a repulsive fixed point. We
will first need to check if the real trajectory remains an
attractive fixed point for the Uð1Þ lattice gauge theory CLE
simulation when the electron fields are included making it
lattice QED, but without the external electric fields. If so,

we plan to try CLE when the external electric or electric and
magnetic fields are added.
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