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In this paper, we show the application of the quantum Metropolis sampling (QMS) algorithm to a toy
gauge theory with discrete non-Abelian gauge group D4 in (2þ 1)-dimensions, discussing in general how
some components of hybrid quantum-classical algorithms should be adapted in the case of gauge theories. In
particular, we discuss the construction of random unitary operators which preserve gauge invariance and act
transitively on the physical Hilbert space, constituting an ergodic set of quantum Metropolis moves between
gauge invariant eigenspaces, and introduce a protocol for gauge invariant measurements. Furthermore, we
show how a finite resolution in the energy measurements distorts the energy and plaquette distribution
measured via QMS, and propose a heuristic model that takes into account part of the deviations between
numerical results and exact analytical results, whose discrepancy tends to vanish by increasing the number of
qubits used for the energy measurements.
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I. INTRODUCTION

In recent decades, the application of Monte Carlo sim-
ulations on classical computers has proven to be a powerful
approach in the investigation of properties of quantum field
theories. Despite that, some regimes still appear not to be
accessible efficiently, especially in cases where the standard
path integral formulation, based on a quantum-to-classical
mapping (Trotter—Suzuki decomposition [1,2]), results in
an algorithmic sign problem. Such a problem prevents, for
example, a deeper understanding of the QCD phase diagram
with a finite baryonic chemical potential term [3–7] or with
a topological theta term [8–10]. Recent advancements in
quantum computing hardware and software give hope that
the sign problem can be avoided by directly using the
quantum formulation of the theories under study, therefore
without the need for a quantum-to-classical mapping. In
these regards, we consider the task of computing thermal
averages of observables (i.e. Hermitian operators), which
are essential for characterizing the phase diagram of lattice

quantum field theory and condensed matter systems. The
thermal average for an observable Ô at inverse temperature
β is defined as

hÔiβ ¼ Tr½Ôρ̂β�; ρ̂β ¼
e−βH

Z
; ð1Þ

where ρ̂β represents the density matrix of the system,
defined in terms of its Hamiltonian H, while Z¼Tr½e−βH�.
In the last two decades, different quantum algorithms have
been proposed for the task of thermal average estimation or
thermal state preparation [11–25]. In this work, we focus on
studying a non-Abelian lattice gauge theory toy model: a
finite gauge group D4 in 2þ 1 dimensions. While the
system we investigate is not generally affected by a sign
problem, some formal complications arise from the need
to ensure the gauge invariance for a Markov Chain
Monte Carlo method. Indeed, being this a gauge theory,
we are actually interested in the space Hphys of gauge
invariant (also called physical) states, representing only a
subspace of the full extended space Hext which is used to
define the dynamical variables of the system. So, the actual
physical density matrix we consider is

ρ̂ðphysÞβ ¼
e−βHjHphys

Tr½e−βHjHphys
� ; ð2Þ
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while the gauge constraints have to be encoded in the
algorithm. In this paper, we consider the quantum
Metropolis sampling (QMS) algorithm [26] to compute
thermal averages of the system. However, unlike what
happens with systems that allow an unconstrained thermal
estimation as expressed by Eq. (1) (see Refs. [27,28] for the
application of QMS to these cases), here we focus on the
new challenges emerging from requiring the gauge invari-
ance constraint at each step, such as how to select a set of
gauge invariant and ergodic Metropolis moves and how to
perform gauge invariant measurements. Our analysis takes
into account the systematic errors of the algorithm, but it
does not include sources of error induced by quantum noise.
In particular, since our results have been produced using a
noiseless emulator, gauge invariance can be exactly pre-
served, so we do not need to consider how it would be
broken by quantum noise (see Refs. [29–36] for discussions
about gauge-symmetry protection in noisy frameworks).
Section II introduces the system under investigation,

while a supplementary review of different (but compatible)
formulations possible for a lattice gauge theory with a
general finite gauge group is presented in Appendix A. In
Sec. III we give a brief overview of the QMS algorithm and
how it has to be adapted in general in order to preserve gauge
invariance at each step, for both evolution (Sec. II),
Metropolis updates (Sec. III B), and measurements
(Sec. III E). Appendix B contains the statement and sketch
of proof of a theorem used in Sec. III A to build a set of
gauge invariant Metropolis updates introduced in Sec. III B
and guarantee its ergodicity. Numerical results for the
thermal energy distribution and plaquette measurement
are displayed in Sec. IV. In order to assess and visualize
the accuracy of the measured thermal energy distributions
for different numbers of qubits for the energy resolution, we
use kernel density estimators, which are briefly reviewed in
Appendix C. Finally, conclusions and future perspectives are
discussed in Sec. V.

II. THE SYSTEM

In this section, we introduce the system under inves-
tigation, a lattice gauge theory with finite dihedral group
G ¼ D4 as gauge group, which can be considered as a toy
model for more interesting, but harder, systems such as
Yang–Mills theories with continuous Lie groups in (3þ 1)
dimensions.
A possible presentation for dihedral groups Dn in terms

of two generators s and r (which can be considered
respectively as a reflection and a rotation by 2π=n in a
2-dimensional plane) is the following

Dn ¼ hs; rjs2 ¼ rn ¼ srsr ¼ ei; ð3Þ

where e denotes the identity element.
Since jD4j ¼ 8, each link variable can be represented

with exactly 3 qubits. As our working basis for the extended

Hilbert space, we use the magnetic one, which is defined
using the values of the gauge group for each link: for a
single D4 link variable register, its 8 possible states of the
computational basis can then be mapped to group elements
as jx2; x1; x0i ↔ sx2r2x1þx0 , where s and r are the finite
generators appearing in the group presentation of Eq. (3)
specialized to n ¼ 4, while ðx2; x1; x0Þ∈Z3

2 is a triple of
binary digits labeling states of the computational basis.
Due to limited resources available, we consider a system

with a relatively small lattice with jVj ¼ 2 vertices and
jEj ¼ 4 link variables associated with the (oriented) lattice
edges E, namely a 2 × 1 square lattice with periodic
boundary conditions (PBC) in both directions, as depicted
in Fig. 1. Denoting byHUl

the Hilbert space of each gauge-
group-valued variable Ul, the so-called extended Hilbert
space representing the system can be written as a tensor
product Hext≡ ⊗fUlg HUl

¼ HU3
⊗ HU2

⊗ HU1
⊗ HU0

.
For later convenience, in the following discussions we use
the shorthand jU⃗i ¼ jU3i ⊗ jU2i ⊗ jU1i ⊗ jU0i to indi-
cate states of the extended Hilbert space in the computa-
tional link basis.
Since the system considered is actually a gauge theory,

only the subspace which is left invariant by the action of
arbitrary local gauge transformations G ¼ fðgvÞ∈GjVjg
should be considered physical. In terms of link variables,
the action of a generic local gauge transformation is

aðgvÞ∶ Uðvj←viÞ ↦ g†vjUðvj←viÞgvi ; ð4Þ

which lifts to a unitary operator acting on the Hilbert space
of states as

U aðgvÞ
¼
X
fUlg

jfUlgihfg†vhðlÞUlgvtðlÞgj; ð5Þ

where vtðlÞ and vhðlÞ are respectively the tail and head
vertices of the link l. Therefore, physical states are the ones
invariant with respect to generic local gauge transforma-
tions, which means

FIG. 1. Square lattice with 2 × 1 sites and periodic boundary
conditions used in this work. Vertices are denoted by vi, while
link variables are denoted by Ul; white dots are identified with
black ones, while dashed lines are identified with solid ones on
the opposite side. The left plaquette is highlighted with a circled
arrow and denoted by P0y.
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Hphys ≡ InvG½Hext�≡ ∩
ðgvÞ∈G

Ker½U aðgvÞ
− 1�: ð6Þ

While the extended dimension of the system considered is
jGjjEj ¼ 84 ¼ 4096 (i.e., 12 qubits on the system register),
as shown in Ref. [37] its physical dimension can be

computed as dimHphys ¼
P

C∈ conj class ðjGjjCjÞjEj−jVj, which

is 176 for our lattice and group choice. Notice that the left
plaquette in Fig. 1

P0y ¼
X
fUlg

½U†
0U

†
2U0U1�jU⃗ihU⃗j ð7Þ

is based on the vertex v0 and cycles in the clockwise
direction. This choice turns out to be convenient because
we can just use group inversion gates (U−1) and left group
multiplication gates (U×), defined in Ref. [38], to write the
gauge group value of the plaquette on the U1 register
without requiring additional ancillary registers, as shown in
Fig. 2. The general structure of Hamiltonian that we use in
this work is of the Kogut—Susskind form (without matter),
i.e., H ¼ HV þHK, consisting in a magnetic (or potential)
term, which encodes the contribution of spatial plaquettes,
and an electric (or kinetic) term, which encodes the
contribution of timelike plaquettes.1 Following the same
notation as Ref. [38], for a lattice gauge theory with D4

gauge group these terms can be written as a product over all
plaquette terms

HV ¼ −
1

g2
X
p

ReTr

" Y
hiji∈p

Uij

#
; ð8Þ

HK ¼ −LnTK; ð9Þ

where p extends over (path-ordered) plaquettes, g is the
coupling parameter of the theory, while LnTK is the matrix
logarithm of the kinetic part of the so-called transfer matrix
TK , defined as having matrix elements

hU⃗0jTKjU⃗i ¼
YjEj−1
l¼0

e
1

g2
Tr½ρfðU0−1

l UlÞ�; ð10Þ

where ρf denotes a fundamental (2-dimensional irreducible)
representation ofD4. As discussed in Sec. III A, an essential
ingredient in the implementation of the quantumMetropolis
sampling algorithm is the time evolution of the system. In
this case, this time evolution can be written as a second-
order Trotter expansion [1,2] with N time steps:

e−iHt → UðtÞ ¼
�
e−i

HKt
2N e−i

HV t
N e−i

HKt
2N

�
N
: ð11Þ

In particular, denoting the Trotter step size with Δt ¼ t
N, the

contribution of the potential term to the time evolution can
be written as

e−iHVΔt ¼
Y
p

Uð1Þ
V ðpÞ; ð12Þ

where Uð1Þ
V acts on a single plaquette p. For example, for the

left plaquette P0y one has

Uð1Þ
V ðP0yÞ ¼ e

− i
g2
TrρfðP0yÞΔt: ð13Þ

So, in addition to the inversion gate U−1 and the left group
multiplication gates U×, a gate implementing the trace of
group elements UTr is required. There are only two
elements of D4, e and r2, whose trace in the fundamental
representation ρfðgÞ is nonzero, i.e., TrρfðeÞ ¼ 2 and
Trρfðr2Þ ¼ −2. Therefore, one can perform the time
evolution for a single plaquette term in Eq. (13) by first
rotating (using the circuit S as depicted in Fig. 2) into a
convenient basis where the plaquette information is stored
in some register Ul, then applying a controlled phase gate
according to

UTrðθÞjx2; x1; x0iUl
¼ expf2iθð−Þx1δ0x2δ0x0gjx2; x1; x0iUl

;

ð14Þ

with θ ¼ 1
g2

t
N, and finally rotating back to the original link

basis (using S†, i.e., the inverse circuit of S in Fig. 2). By
the use of these 3 gates, named primitive gates in Ref. [38],

FIG. 2. Circuit implementing a change of basis from the basis
of the three link registers U0, U1 and U2 in Fig. 1 to a basis with
left plaquette P0y on the central register without further ancillary
registers [see Eq. (7)]. The gates U−1 and U× implement
respectively the group inversion and group multiplication (two
link registers involved), as defined in Ref. [38]. The same circuit
applied to the registers U3, U2 and U1 can be used to rotate into a
basis diagonal for the right plaquette operator.

1The concept of a timelike plaquette is usually introduced in
the standard discretized path-integral formulation obtained after
the Trotter—Suzuki decomposition, where also gauge variables
corresponding to temporal links are present. Having this in mind,
the electric terms can be derived from timelike plaquettes
imposing the temporal gauge, Ul ¼ 1 ∀ l timelike.
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one can perform the time evolution of the potential
term. Now we apply the same idea to the kinetic term

e−iHkΔt ¼Qhiji U
ð1Þ
K ði; jÞ. In particular, for the 4-link

lattice, one can write the kinetic part of the Hamiltonian as

Hk ¼ Hð1Þ
k ⊗ 1 ⊗ 1 ⊗ 1þ 1 ⊗ Hð1Þ

k ⊗ 1 ⊗ 1 ð15Þ

þ 1 ⊗ 1 ⊗ Hð1Þ
k ⊗ 1þ 1 ⊗ 1 ⊗ 1 ⊗ Hð1Þ

k ; ð16Þ

which is the sum of a single variable kinetic Hamiltonian

for each link variable of the theory, such that Hð1Þ
k ¼

−LnTð1Þ
k , where

hU0jTð1Þ
k jUi ¼ e

1

g2
Tr½ρfðU0†UÞ�

: ð17Þ

Each Uð1Þ
K term can be implemented by

Uð1Þ
K ði; jÞ ¼ UFUphaseU

†
F; ð18Þ

where UF is the fourth primitive gate, which performs the

Fourier transform of the D4 group and diagonalizes T
ð1Þ
K . To

implement UF, we used the circuit introduced in Ref. [38]
(an alternative is reported in Ref. [39]). In addition to each of
the 4 primitive gates, also the Uphase depends on the gauge

group. As discussed with more details in Appendix A, Tð1Þ
K

can be written as block diagonal on the basis of irreducible
representations (irreps). Therefore, it becomes diagonal after
the application of a Fourier transform gate UF, while the
Uphase gate is diagonal and its entries can be computed from
the contribution of each irrep subspace as reported in
Appendix A 1. Another possibility to define ab initio a
kinetic Hamiltonian for finite gauge groups is discussed in
Ref. [37], where the authors point out that there is a certain
degree of arbitrariness in this definition, which is fixed only
by imposing additional physical constraints. For example, it
is straightforward to show that, by requiring Lorentz
invariance of the space-time lattice, it is possible to match
this ab initio definition with the one derived from the
(Euclidean) Lagrangian formulation, as the one used in
Ref. [38] to implement the real-time simulations with D4

group. More details about this matching can be found in
Appendix A.

III. THE ALGORITHM

Here we give an overview of the algorithm we use to
compute thermal averages and discuss the specific chal-
lenges of its application and the adaptations that have to be
considered in the case of gauge theories in general, and for
the system introduced in Sec. II in particular.

A. Overview of quantum Metropolis sampling

In this section, we sketch the algorithm we use for the
following results. This is based on a generalization of the
classical Markov Chain Monte Carlo with Metropolis
importance sampling called quantum Metropolis sampling
(QMS) [26]. Here we just mention the main features of the
QMS which we use in the following discussion when
adapted to the case with gauge invariance. A more detailed
description of the QMS algorithm and its systematic errors
can be found in Refs. [26–28].
Given the Hamiltonian representing the system under

study, one can formally decompose it, according to the
spectral theorem, in terms of its spectrum and eigenspace
projectors H ¼Pk EkPVk

. The general idea of the QMS
algorithm consists of producing a Markov chain of pairs
eigenvalue-eigenstates

�
Ek0

jφ0i

�
→ � � �

�
Eki

jφii

�
→

�
Ekiþ1

jφiþ1i

�
→ � � �

�
EkM

jφMi

�
; ð19Þ

where each sampled state belongs to the corresponding H
eigenspace (i.e., hφijPVki

jφii ¼ 1). In the QMS algorithm,
after some number of steps M, required for thermalization
purposes, the probability of sampling a state in Vk repro-
duces the Gibbs weight expected from the density matrix

pk ¼ Tr½ρ̂ðβÞPVk
� ¼ μke−βEk=Z; ð20Þ

where μk ¼ Tr½Pk� denotes the multiplicity of Ek.
Therefore, the terminal eigenstate jφMi of a chain can
be used to perform a measurement of the observable one is
interested in, whose expectation value can then be
assembled as a simple average of different chains
hÔi ≃ Ō ¼ 1

Nchains

PNchains
s¼1 Os. Since a random initial state

of the extended Hilbert space has almost surely a non-
vanishing overlap with the unphysical subspace, one
should explicitly initialize the chain in a gauge invariant
way. Indeed, for any gauge group G, it is always possible
to initialize in a gauge invariant state by setting every
link variable to the trivial2 irrep state (corresponding to its
0-mode), which is realized by an application of an inverse
Fourier transform gate to the zero-mode state for each link
register jψ0i ¼⊗l ðU†

Fj0̃iÞl; in the case of the group D4,
this initialization is also possible through the application of
Hadamard gates to each link register:

2If one is interested in studying gauge sectors with nonzero
static charges, one can choose as initial state any combination of
irreps states which are contained in that sector.
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jψ0i ¼ ⊗
l∈E

ðHad⊗3j000iÞl ¼ ⊗
l∈E

 
1ffiffiffi
8

p
X
x⃗∈Z3

2

jx2; x1; x0il
!
:

ð21Þ

The state jψ0i obtained is not an eigenstate of H, but it can
be projected into an approximate eigenstate through the
application of a quantum phase estimation (QPE) operator
[40,41], which is described more in detail in Sec. III C.
Indeed, the QPE is one of the main ingredients used to
encode and measure the energy of states and build the
accept-reject oracle of the QMS. The unitary operator used
for the QPE step is based on a controlled time evolution
described by Eq. (11), whose implementation is discussed
in Sec. II.
Another component of the QMS we need to mention is

the analog of the accept-reject procedure featured in the
classical Metropolis algorithm. This is retrieved by imple-
menting an oracle that makes use of a 1-qubit register,
which we call acceptance register, storing the condition for
acceptance or rejection [26], according to the Metropolis
probability [42] of transition between eigenstates given by

paccðjφii → jφjiÞ ¼ minð1; e−βðEj−EiÞÞ: ð22Þ

However, the quantum nature of the algorithm complicates
the rejection process: due to the no-cloning theorem, after a
measurement, it is not possible to retrieve from memory the
previous state anymore. To solve this issue, in Ref. [26] an
iterative procedure is proposed, whose purpose is to find a
state with the same energy as the previous one Ek ¼ Ei,
(i.e., in the same microcanonical ensemble): in this case,
even if the new state is not exactly the original one, the
whole process can be viewed as a standard Metropolis step,
followed by a microcanonical update. The transition
between eigenstates jφii → jφiþ1i is handled by performing
a random choice in a predefined set C of unitary operators
called moves. An application of these, followed by the
acceptance oracle, brings any state jφii to a superposition of
different possible eigenstates, each weighted by an addi-
tional contribution from the acceptance probability in
Eq. (22), while an energy measurement on this state makes
it collapse to a specific new eigenstate jφiþ1i. The new
eigenstate is then accepted or rejected according to a
measurement on the acceptance register. As discussed in
Sec. III B in more detail, in the case of gauge theories one
should also guarantee that the choice and implementation of
moves preserves gauge invariance of the trial state.
Furthermore, there is another issue due to the quantum

nature of the algorithm, emerging when one needs to
compute thermal averages of any (gauge invariant) observ-
able Ô not commuting with the Hamiltonian (½Ô; Ĥ� ≠ 0).
Measuring such observables will make the state in the
system register collapse to an eigenstate of Ô which, in
general, does not belong to any eigenspace of Ĥ, bringing

the Markov chain out of thermodynamic equilibrium after
measurement. Since any measurement should be performed
only once the Markov chain is stationary (or thermalized),
there are at least two ways to reach this goal: the simplest
one consists of resetting the Markov Chain, initializing the
system state again as in Eq. (21) and starting over with a
new chain; another possibility consists of measuring again
the energy of the resulting state and performing a certain
number r of QMS step to make the chain rethermalize
before a new measurement. As argued in Ref. [27], the
latter approach has the advantage of starting from a state
that has a higher overlap with the stationary distribution.
However, using this approach in the case of gauge theories,
we need to ensure the additional requirement of preserving
gauge invariance of the states at the measurement stage, as
described in Sec. III E.
The code of the QMS algorithm with D4 lattice gauge

theory, used to obtain the results for this paper, is
implemented with a hybrid quantum-classical emulator
developed by some of the authors and publicly available
in [43].

B. Gauge invariant ergodic moves

In the case of gauge theories, the algorithm discussed in
the previous section needs to be adapted in order to ensure
that the state is initialized and maintained as a gauge
invariant state. This means that the moveset C ¼ fUm ¼
eiθmAmg should satisfy both gauge invariance and ergo-
dicity. The former requirement can be satisfied by using
only gauge invariant generators fAmg, i.e., such that
½Am;Gv� ¼ 0 ∀ m; v. The condition of ergodicity, in the
case of QMS, means that the action of an arbitrary sequence
of moves is transitive in the space of physical states (i.e.,
gauge invariant states). This guarantees that the whole
physical Hilbert space is in principle within reach, but it
does not give information about efficiency. As in the case
of classical Markov Chain Monte Carlo with importance
sampling, the possibility of reaching any possible physical
state does not in general correspond to a uniform explora-
tion (unless the system is studied in the extremely
high-temperature regime, i.e., vanishing β as studied in
Sec. IVA), so the curse of dimensionality becomes
treatable.
In order to guarantee an ergodic exploration of the whole

physical Hilbert space, we exploit the property that a set
C ¼ fUmg made of moves generated using two random
Hermitian and gauge invariant generators is sufficient to
explore the whole physical Hilbert space (see Appendix B
for a more precise statement and a sketch of the proof). This
allows us to just use two random gauge invariant Hermitian
operators as infinitesimal generators of the special unitary
group SUðHphysÞ. At this point, there is some freedom in
this random selection but, in practice, we make a specific
choice that makes use of a useful partition of the generators
inspired by the proof of Theorem 1. First of all, we notice

QUANTUM COMPUTATION OF THERMAL AVERAGES FOR … PHYS. REV. D 109, 034510 (2024)

034510-5



that it is possible to associate the set of all gauge invariant
Hermitian operators that are diagonal in link basis3 to a
Cartan subalgebra of SUðHphysÞ. For the same reasons, the
Hermitian operators corresponding to projectors into differ-
ent irreps for individual link variables (appearing as the
generators of the kinetic part of the transfer matrix for each
link), can be associated to the roots elements of the algebra.
According to the root space decomposition [45], these two
(mutually noncommuting) sets of Hermitian operators form
a basis for the full algebra. Therefore, by Theorem 1 the
two generators, built as random linear combinations of
elements from both sets, generate the whole (special)
unitary group SUðHphysÞ. In the case of our system, in

practice, we considered a random linear combination Â1 ≡P
γ r

ð1Þ
γ Ŵγ of independent Wilson line operators to define

the generator for the first move R1 ¼ eiθ1Â1 , and a random

linear combination Â2 ≡Pl;j r
ð2Þ
j;l P

ðlÞ
j of irrep projectors

(defined in Appendix A for each link variable l) to define
the generator for the second move R2 ¼ eiθ2Â2 . This set of
moves C≡ fR1; R

†
1; R2; R

†
2g is ergodic in the sense of

allowing the reachability of all physical eigenstates after a
finite sequence of applications. This is theoretically guar-
anteed with probability 1 by Theorem 1, and checked
numerically in Sec. IVA.
While the choice of a particular moveset is arbitrary,

provided ergodicity is guaranteed, it is possible to define
an efficiency metric for the moveset in terms of autocor-
relation times of the main observables considered, similar
to standard Markov Chain Monte Carlo algorithms.
Indeed, while a rotation (move) closer to the identity
would make the average acceptance probability larger, it
will also most likely change only slightly the state, since
the probability of transitioning to different energy eigens-
paces would be lower. In general, a moveset should be
chosen to achieve an optimal tradeoff between Metropolis
acceptance and mixing, for which autocorrelation times
possibly attain the lowest possible value. It is important to
stress that, while the QMS algorithm can handle systems
that would otherwise exhibit an algorithmic sign problem
if investigated with classical algorithms, there is no addi-
tional quantum advantage in performing the Markov chain
with this approach. Indeed, we expect that the same kind of
behavior of the autocorrelation times, such as critical
slowing down in the continuum limit and for larger system
sizes observed for classical algorithms would be present
also in this case. However, since results in this work appear
to be mostly affected by finite-energy-representation
artifacts and not by efficiency problems, we have not

focused on assessing and improving the moveset effi-
ciency, leaving the exploration of possible optimization
opportunities for the moveset to future works.
As a final consideration, we should mention that the

procedure of writing down all independent Wilson lines
(i.e., products of link variables on closed loops) used in the
construction of one of the generators does not scale well for
larger lattices. One possibility, instead of precomputing the
action of all of Wilson loops, is to build random closed
loops with arbitrary length, possibly with an exponential tail
in the random distribution preventing them from diverging
in practice, and using them to build generators on the fly.
This would in general require more steps to allow arbitrary
overlaps with physical states, but it would be manageable in
principle. Another possibility would be to formally identify
how a generic transformation of a link variable acts on
neighboring link variables, i.e., the ones that share the same
vertices in the lattice, and considering the projection of the
output state that preserves the gauge sector. In principle, this
can be done by a generic transformation on the link variable
register, followed by a measurement of the Gauss law
operators (or of the gauge invariant projectors for each
vertex, in the case of finite groups). However, in this case,
there would be a non-negligible probability that the pro-
jective measurement yields an unphysical state, forcing the
whole chain to be restarted.

C. Effects of quantum phase estimation
on measured spectrum

One of the most significant sources of systematic errors
in QMS is due to the quantum phase estimation (QPE) step,
used to estimate the energy of the system state. The
operator ΦQPE has the effect of “writing” an estimate of
the eigenvalue Ek associated with the eigenvector ϕk on the
energy register, which is represented by qe qubits:

ΦQPE∶ j0i⊗qe jϕki ↦ jEkijϕki: ð23Þ

In practice, this is done by defining a uniform grid in the

range between some chosen EðgridÞ
min and EðgridÞ

max , which are
respectively mapped to the states j00…0i and j11…1i of
the computational basis for the energy register. The other

states correspond to the grid sites EðgridÞ
j ¼ EðgridÞ

min þ εj for
all j ¼ 0;…; 2qe − 1, and with uniform grid spacing

ε ¼ EðgridÞ
max −EðgridÞ

min
2qe−1 . In the following discussions, we refer to

these levels as the QPE grid. Besides very special cases, the
energy levels of the system Ek do not fit with the sites of the
grid, so we need to take care of QPE. This means also that
the individual states in the chain would only be approximate
eigenstates, making the actual exact spectrum be distorted
by the presence of the QPE grid. The effect of this kind of
error coming from a finite energy resolution used in the
accept-reject stage has been investigated in the case of
classical Markov chains (see Refs. [46,47]). As discussed in

3In Ref. [44]) has been proved that, for Lie groups, the set of all
Wilson lines (as gauge invariant Hermitian operators) is sufficient
to span the whole space of gauge invariant functions in link basis,
but this is not guaranteed to hold for some gauge theories with
finite gauge group.
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Refs. [26,48,49], the squared amplitude of the jth state of
the grid for a QPE applied to a system state with true energy
Ek is

jck;jj2 ¼
1

4qe

sin2
h
π
ε ðEk − EðgridÞ

j Þ
i

sin2
h

π
ε2qe ðEk − EðgridÞ

j Þ
i ; ð24Þ

which is peaked around the true eigenvalue Ek. Since the
energy measurements of the QMS lie on the QPE grid, the
whole energy distribution sampled would be affected by
this QPE distorsion, but we still need to take into account
the different contribution associated with each eigenvalue
coming from the Gibbs weights in Eq. (20). Having access
to the exact spectrum and energy distribution, we can
write a rough estimate of the QPE-distorted energy
distribution using the coefficients in Eq. (24) to determine
a “distorsion” map

Ek → Ẽk ¼
X
j

jck;jj2EðgridÞ
j ; ð25Þ

wk ¼
e−βEk

Z
→ w̃k ¼

X
k

e−βẼk

Z̃
: ð26Þ

The first equation describes the mean value of the energy
applying a QPE to an exact eigenstate with energy Ek,
according to Eq. (24). The weights in Eq. (26) can then be
assembled to build the expected QPE-distorted distribu-
tion as follows:

pðQPEdÞ
j ¼

X
k

jck;jj2w̃k: ð27Þ

At the same time, the expectation value of the energy is
expected to be represented more accurately as follows:

hHi ¼
X
j

Ejwj → hHiðQPEdÞ ¼
X
k

Ẽkw̃k: ð28Þ

Actually, the distortion described by Eq. (27) is not the
only effect of the introduction of a QPE grid: indeed, for a
step jφii → jφji of the Markov Chain, the acceptance
probability pacc in Eq. (22) involves states which are not
exactly eigenstates of the Hamiltonian, but a superposition
of them. In particular, as shown by the behavior of
numerical results presented in Sec. IV, Eq. (27) is
speculative and inaccurate in some regimes, and it appears
to represent well the QMS data only at small values of β.
Understanding how the QPE affects the statistical weights
is not a trivial problem. However, as argued in Sec. IV B,
this source of systematic error is expected to disappear as
the number of qubits in the energy register is increased and
the artifacts of the finite representation become negligible.

D. Revert procedure and tolerance

As mentioned in III A, when the chain step i → j is
rejected, the limitations imposed by the no-cloning theorem
are overcome by means of an iterative procedure, which
stops whenever a measurement yields the same energy as

the previous state: EðgridÞ
j ¼ EðgridÞ

i . In general, it is useful to
set a maximum number of iterations for this procedure, after
which the Markov Chain is aborted and the system state is
initialized again, requiring a new thermalization stage. This
occurrence affects the efficiency of the algorithm, reducing
the typical length of allowed Markov chains and slowing
down the general sampling rate of observables measured,
and becomes worse as the number of qubits qe in the energy
register and the inverse temperature β are increased. Indeed,
the higher β, the more likely a move step is rejected due to a
lower acceptance probability. At the same time, the higher
qe, the more difficult is to revert back to the same site of the

grid that corresponds to the previous state EðgridÞ
i , i.e. the

average number of needed iterations increases dramatically.
To this end, we propose a simple solution, consisting a

relaxation of the constraint EðgridÞ
j ¼ EðgridÞ

i to a more easily

achievable condition jEðgridÞ
j − EðgridÞ

i j ≤ εmtol, where mtol

represents the accepted tolerance in grid units, while ε ¼
EðgridÞ
max −EðgridÞ

min
2qe−1 is the grid spacing. Notice that at β ¼ 0 all moves

are always automatically accepted, since the Metropolis
acceptance probability Eq. (22) is one for transition between
any eigenstates. Therefore, there is no need to use a nonzero
tolerance in this case (i.e., mtol ¼ 0 for β ¼ 0).

E. Rethermalization and gauge invariant measurements

As mentioned in Sec. III A, when a rethermalization
strategy is used, one should perform measurements in a
gauge invariant fashion, in order to ensure gauge invariance
of the state even after measurement. Since any gauge
invariant observable Ô (such as the trace of the real part
of a plaquette operator) commutes with a generic local
gauge transformation G, each of its eigenspaces must also
commute, i.e., Ô ¼Ps λsPVs

and ½G;PVs
� ¼ 0, where we

denote the eigenvalues and eigenspaces of Ô by pairs of
ðλs; VsÞ, while PVs

is the projector operator into the
eigenspace Vs. A proper gauge invariant measurement
should then project into these eigenspaces (or any unions
of subsets of them), otherwise there is no guarantee that the
collapsed state after measurement would be gauge invariant.
For example, in the case of a measurement of the trace of a
plaquette withD4 gauge group, the possible values observed
are 2ð1Þ, −2ð1Þ and 0ð6Þ (with multiplicity of the eigenspaces
shown in parenthesis). Once the product of link variables
composing a plaquette Pl is stored in a gauge group-valued
register, the corresponding eigenspaces of the real part of the
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trace can be expressed using projectors which are diagonal
in the magnetic basis, introduced in Sec. II, as follows:

ReTrρfðPlÞ ¼ ðþ2ÞPVþ2
þ ð−2ÞPV−2

þ ð0ÞPV0
ð29Þ

¼ þ2jeihejPl − 2jr2ihr2jPl; ð30Þ

where j·iPl denotes a plaquette register and ρfð·Þ is a
fundamental representation of D4. If we directly measured
the state on the three qubits representing the left plaquette
P0y, we would get the correct eigenvalue (either þ2, −2
or 0), but the state resulting from the collapse would in
general not be gauge invariant anymore (at least, not if the
measurement returns V0, whose multiplicity is 6).
In other words, one should always be careful not to

export, naively, classical computational schemes which are
not suitable to a quantum context. In classical simulations
of lattice gauge theories, it is usual to write numerical codes
which go through the computation of nongauge-invariant
quantities before obtaining the desired gauge invariant
observable; for instance, like in this particular case, closed
parallel transports are first computed, which are not gauge
invariant and transform in the adjoint representation, taking
their gauge invariant trace thereafter. This computational
scheme does not work in this context, at least if one wants
to keep a gauge invariant physical state through all the steps
of the quantum computation.
Instead, in order to keep gauge invariance of the resulting

state, we can first perform a measurement discriminating
between V 0 ≡ Vþ2 þ V−2 and V0 and then, conditionally to
the results, if a collapse into V 0 happens, another meas-
urement is done to discriminate between Vþ2 and V−2. This
measurement procedure is sketched in Fig. 3 and described
in detail in the caption. Notice that the terminal state is
collapsed to an eigenstate of the (real part of the trace of
the) plaquette, but unlike destroying the state after meas-
urement, we can continue using it as a starting point for
rethermalization.

IV. NUMERICAL RESULTS

In this section we are going to illustrate the numerical
results obtained for the quantum simulation, through the
QMS algorithm discussed in the previous section, of the
thermal ensembles of the pure-gauge D4 lattice gauge
theory with topology depicted in Fig. 1. We will discuss, in
particular, the sampled distribution over the Hamiltonian
eigenvalues, comparing it with theoretical predictions, as
well as the average energy and plaquette.
For the purpose of studying mainly the gauge adapta-

tion of this algorithm (and not the physics of the system),
without loss of generality, in the following discussion we
use the Hamiltonian made of the terms (8) and (9), always
fixing the gauge coupling to the value 1

g2 ¼ 0.8, which

results in a spectrum well spread between EðphysÞ
min ≃

−11.172 and EðphysÞ
max ≃ −1.998. In order to prevent

leak effects on the boundary of the QPE grid range
(see discussion in Sec. III C), we made a common
conservative choice of the range for all the number of
qubits for the energy register investigated (qe ¼ 3;…; 7),

namely ½EðgridÞ
min ; EðgridÞ

max � ¼ ½−13; 0�. The systematic error
coming from a finite Trotter size has been assessed and,
for the following results, we found it to have negligible
effects on the spectrum distribution for N ¼ 10 time steps
for each power of the time evolution operator in the QPE

(i.e., δt ∼ πð1−2−qe Þ
10·ΔEðgridÞ).

The QMS has been implemented based on the set of
gauge-invariant ergodic moves illustrated in the previous
section, namely, C≡ fR1; R

†
1; R2; R

†
2g, assigning an equal

25% probability of selecting one of the 4 moves at each
step. Furthermore, as discussed in Sec. III D, to gain better
efficiency, at the cost of losing some resolution in energy, it
is useful to set a tolerance margin mtol ¼ 3 for the revert
procedure whenever a move is rejected, which happens
more frequently at higher values of β. For our results at
β ¼ 0.5, we use mtol ¼ 3 for qe ≥ 5.

FIG. 3. Hybrid protocol implementing a gauge invariant measurement for the plaquette value ReTrρfðP0yÞ. The S gate group is
implemented with the circuit shown in Fig. 2. The result of the first measurement might yield either m1 ¼ 0 or m1 ¼ 1: in the first case,
the terminal state is projected into the V0 eigenspace of ReTrρfðP0yÞ and nothing else has to be done; in the second case (i.e., for
m1 ¼ 1), a further measurement on the P0y register yields either m2 ¼ 0 or m2 ¼ 1, while the state is projected respectively on either
Vþ2 or V−2. The auxiliary register can then be reset to 0 according to the result of the first measurement m1 with a flip gate.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Histogram and KDE representations of the energy distribution at β ¼ 10−7 for the exact spectrum, the spectrum
distorted as expected by QPE [see Eq. (28)] and the data measured via QMS using qe ¼ 3, 5 and 7 qubits for the energy register
and about 834k, 439k and 56k measurement samples. QMS data has been obtained using 1 rethermalization step (without plaquette
measurement) and 50 thermalization steps, with errors estimated via blocking and bootstrap resampling. (a) Binned histogram of the
energy distribution (qe ¼ 3). (b) KDE of energy distribution (qe ¼ 3, σKDE ≃ 1.86). (c) Binned histogram of the energy distribution
(qe ¼ 5). (d) KDE of energy distribution (qe ¼ 5, σKDE ≃ 0.42). (e) Binned histogram of energy distribution (qe ¼ 7). (f) KDE of
energy distribution (qe ¼ 7, σKDE ≃ 0.10).
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A. Tests of ergodicity and gauge invariance

We first consider the case at infinite temperature
(β ¼ 0), which would ideally result in a uniform sampling
of the whole physical Hilbert space (i.e., ρðβ ¼ 0Þ ¼
j dimHphysj−1PHphys

). Therefore, a proper sampling of
this distribution would serve both as a check of gauge
invariance and ergodicity. Indeed, no unphysical energy
levels should be detected and all eigenspaces of H
should be explored with the correct physical multiplicity

μðphysÞk ¼ dim ðVk ∩ HphysÞ.
In the present work, we use two approaches to represent

the energy distributions for the exact, QPE-distorted, and
numerical data: on one hand, we make histograms on bins
around QPE grid points and with bin size corresponding
to grid spacing; on the other hand, given the different
domains between the exact spectrum and the one measured
on the QPE grid, we perform a smoothing of the distri-
butions using the kernel density estimation (KDE) tech-
nique. More details on such technique are illustrated and
discussed in Appendix C. Figure 4 shows the energy
distributions measured at β ¼ 0 (i.e., the whole physical
spectrum) for different numbers of qubits in the energy
registers, using both a histogram representation with bins
centered on the QPE grid sites and a KDE representation
with smoothing parameter of the KDE kernel functions set

to match the bin size of the histograms, i.e., σKDE ¼ ΔEðgridÞ
2qe−1 .

The energy distribution distorted by QPE as described in
Sec. III C and the one of the exact spectrum are also shown
in comparison.
We can investigate more precisely the discrepancy

between the exact distribution, the one expected from
the exact one distorted by QPE onto the measurement

grid, and the measured data via QMS, by computing the
cumulative distribution. The result of this is shown in Fig. 5
for qe ¼ 7 qubits, which is the case that most accurately
represents the exact results.

B. Thermal averages at finite temperatures

As done in the previous section for vanishing values of β,
here we discuss results at β ¼ 0.1 and β ¼ 0.5. Figures 6
and 7 show the energy distributions in these two cases,
while Fig. 8 reports the thermal averages of the energy
estimated for all β and numbers of qubits considered.
While the distribution at β ¼ 0.1 is relatively similar to

the case of vanishing β, with the expected effect of the QPE
distortion described in Sec. III C matching quite well with
QMS measurements, the behavior of data at β ¼ 0.5
appears worse. The top and middle panels of Fig. 9 show
the behavior of the quantity

dsupðP1; P2Þ≡ sup
E
jP1ðEÞ − P2ðEÞj; ð31Þ

with P1 and P2 two distinct cumulative distributions. While
Figs. 5(b), 6(d), and 7(d) give a detailed view of the relative
discrepancies between the three distributions, the distance
expressed in Eq. (31) (which is the same used in
Kolmogorov—Smirnov tests) puts a strong bound on the
quality of convergence between the three kinds of distri-
butions we consider, namely the one of the exact (physical)
spectrum, of its QPE-distorted counterpart, and of the QMS
energy measurements. The general behavior in the top and
middle panels of Fig. 9 seems to be consistent with the
expected QPE distortion, discussed in Sec. III C, with a
systematic error of QMS data which tends to decrease by
increasing the energy resolution (i.e., qe), even if not always

(a) (b)

FIG. 5. Cumulative energy distribution and pointwise probability distance at β ¼ 10−7, for the exact spectrum, the QPE-distorted
spectrum [see Eq. (27)], and for QMS measurements. Data has been obtained using qe ¼ 7 qubits for the energy register, with 1
rethermalization step (no plaquette measurement), 50 thermalization steps, about 55800 measurement samples with errors estimated via
blocking and 100 bootstrap resamples. (a) Cumulative energy distributions. (b) Pointwise distance of cumulative energy distributions.
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in a monotonical fashion. A particular exception to this is
observed for the point at β ¼ 0.5 and qe ¼ 5. Our tentative
explanation is the following. With fixed extrema of the grid
and β, incrementing the number of grid sites might allow
some of the eigenvalues of the real spectrum to be located in
the middle between two sites of the grid, leaking a
contribution to both, and making a measurement on one
of the two neighboring grid points to set the state in a
superposition of eigenstates with relatively similar energy
but not exactly in the same eigenspace. The argument made
in Sec. III C to account for the QPE distortion, which
assumes an energy distribution coming from a stationary
chain with distorted weights but still made of exact
eigenstates, does not hold anymore, and this explains
why data in this particular case do not follow the expected
QPE-distorted distribution as well as for other numbers of

qubits qe for the energy register. This effect is similar to
what is experienced with floating point artifacts in classical
computing, and it is expected to vanish (in general, non-
monotonically) by increasing qe. At the same time, even
using the fixed grid with qe ¼ 5, this effect shows up in
particular when increasing β from 0.1 to 0.5. Therefore, the

weights pðQPEdÞ
k used in Eq. (27) to predict the effects of the

QPE distortion are not accurate enough. In order to get an
intuitive picture of the reasons for this effect, we introduce a
quantity that assesses the average weighted distance
between the QPE grid and the spectrum. Let us consider
a real spectrum Σ ¼ fσkg, with weights pk and a uniform

grid fxj ¼ aþ ðb−aÞ
ð2q−1Þ jgqj¼0

in the range ½a; b�. We can

define a measure of the relative QPE-weighted distance
between the spectrum and the grid as the following quantity:

(a) (b)

(c) (d)

FIG. 6. Energy distribution at β ¼ 0.1, for the exact spectrum, the QPE-distorted spectrum [see Eq. (27)], and for QMSmeasurements.
Data has been obtained using qe ¼ 7 qubits for the energy register, with 1 rethermalization step (no plaquette measurement), 50
thermalization steps, about 23600 measurement samples with errors estimated via blocking and 100 bootstrap resamples. (a) Binned
histogram of energy distribution. (b) KDE of energy distribution (σKDE ≃ 0.10). (c) Cumulative energy distributions. (d) Pointwise
distance of cumulative energy distributions.
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GridDistðq;βÞ≡X
σk∈Σ

pkðβÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2q−1
j¼0

jσk− xjj2 · jck;jj2
vuut ; ð32Þ

where the weights jck;jj2 depend on both real spectrum and
grid according to Eq. (24). The bottom panel in Fig. 9 shows
how the particular anomalous point discussed above is
affected by a higher relative weighted distance than the other
points, which would generally be expected to follow a
monotonically decreasing trend. Since the quantity GridDist
correlates well with the behavior observed in QMS data (top
panel in Fig. 9), it appears reasonable to assume that the
source of QPE distortion is not completely predicted by
Eq. (27), which represents only a rough approximation for
β > 0. Furthermore, this effect is amplified by the fact that
the spectrum studied here is not quasicontinuous, due to the

small volume of the lattice and the finiteness of the
gauge group.

C. Gauge invariant measurement

As discussed in Sec. III E, in order to perform a
rethermalization step instead of thermalization, it is neces-
sary to keep the state gauge invariant also during the
measurement of an observable not commuting with the
Hamiltonian. In the case of the thermal average of the (trace
of the) left plaquette operator, a measurement with the
protocol discussed in the caption to Fig. 3 yields only three
possible values, namely −2, 0, and 2. Since both data and
exact distribution lie on that discrete domain, it does not
make sense to compare them using histograms or KDE.
Instead, we report the distribution in Table I for β ¼ 10−7,
Table II for β ¼ 0.1 and Table III for β ¼ 0.5. The presence

(a) (b)

(c) (d)

FIG. 7. Energy distribution at β ¼ 0.5, for the exact spectrum, the QPE-distorted spectrum [see Eq. (27)], and for QMSmeasurements.
Data has been obtained using qe ¼ 7 qubits for the energy register, with 1 rethermalization step (no plaquette measurement), 50
thermalization steps, about 3400 measurement samples with errors estimated via blocking and 100 bootstrap resamples. (a) Binned
histogram of energy distribution. (b) KDE of energy distribution (σKDE ≃ 0.10). (c) Cumulative energy distributions. (d) Pointwise
distance of cumulative energy distributions.
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FIG. 8. Thermal averages of the energy measured via QMS, and comparison with expected QPE-distorted estimate [see Eq. (28)] and
exact value.

FIG. 9. Accuracy of distributions as maximum of the pointwise distance between cumulative distributions for the exact spectrum, the
QPE-distorted spectrum and QMS data (top and middle panels), and GridDist estimate [defined in Eq. (32)] between exact spectrum and
QPE grid (bottom panel) as a function of the number of qubits qe in the energy register (with fixed measurement range ½−13; 0�) and for
different values of inverse temperature β. A small offset in the horizontal axis for different values of β has been added to improve
readability.
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of a finite resolution for energy measurements (i.e., the QPE
grid), discussed in Sec. III C and manifest in the results of
Sec. IVB, does not only affect the energy distribution
measured with QMS, but reflects also on the measured
distribution of other observables such as the average pla-
quette. For this reason, the degradation in the quality of the
results at higher values of β is all the more manifest in this
case. In general, increasing the number of qubits qe would
improve the quality of the results, even if not in a monotonic
fashion (see discussion in Sec. IV B), but the lower
acceptance probability and the slower speed of emulation
make it difficult to obtain a better estimate of these effects for
an asymptotically large number of qubits.

V. CONCLUSIONS

To summarize, this paper treats the problem of studying
lattice gauge theories with the quantum Metropolis sam-
pling algorithm, discussing in particular the implementa-
tion for a (2þ 1)-dimensional lattice gauge theory with
finite gauge group D4. The challenges we encountered and
tackled along the process include the following:

(i) determining how to build a set of Metropolis
quantum updates (i.e., unitary operators) which
preserves both gauge invariance of the states and
is ergodic on the physical Hilbert space of the
system (in the sense discussed in Sec. III B);

(ii) building a protocol to perform measurements of
physical observables without breaking the gauge
invariance of the state after measurement; and

(iii) taking into account the distortion introduced by a
finite energy resolution for quantum phase estima-
tion (QPE) to predict the expected energy distribu-
tion of the QMS measurements.

The numerical results for β ¼ 0, presented in Sec. IVA,
demonstrate that the conditions of ergodicity and gauge
invariance are satisfied, and the general behavior, while
presenting some discrepancy with the exact diagonalization
results, show an excellent agreement with the expectations
coming from taking into account the effects of QPE
distortion discussed in Sec. III C. For higher values of β,
the sampling becomes less efficient because of a generally
smaller acceptance rate, and the sampled distribution exhib-
its an even higher distortion as shown from the results in
Sec. IV B. We provide a tentative explanation of the reasons
for these discrepancies by introducing a quantity (GridDist)
which quantifies heuristically the Gibbs-weighted average
square distance between the QPE grid on which energy
measurements are performed, and the actual spectrum of the
system. We show that this quantity correlates well with the
source of distortion, which, in general, does not follow a
monotonically decreasing trend of the systematic error. This
effect, due to a mismatch between the real spectrum and the
QPE grid, has been also observed in Ref. [28].
As future perspectives, it would be interesting to inves-

tigate systematically how the choice of different sets of
moves affects efficiency. Furthermore, one can introduce
fermionic matter or a topological theta term on similar
gauge systems with the application of other algorithms of
thermal average estimation proposed in literature. Indeed,
since the gauge adaptations we made to the QMS algorithm
require ideas applied to several quantum components
besides the already well-known time evolution for D4

(used to define the quantum phase estimation, Sec. III C),
we believe that the results and ideas we considered in this
work might be useful also for different quantum algorithms
meant to be applied to general lattice gauge theories.

TABLE II. Distribution of trace of plaquette at β ¼ 0.1.
Thermalization steps: 50, Rethermalization steps: 20, blocksize:
50; The number of samples collected for qe ¼ 3, qe ¼ 5, and
qe ¼ 7 are respectively about 6200, 16600, and 2400.

qe p−2 p0 p2 hTrP0yi
3 0.132(4) 0.670(6) 0.199(5) 0.133(15)
5 0.130(3) 0.679(5) 0.190(1) 0.123(9)
7 0.131(8) 0.676(15) 0.193(10) 0.124(28)

Exact 0.12331 0.67295 0.20374 0.0536

TABLE III. Distribution of trace of plaquette at β ¼ 0.5.
Thermalization steps: 50, Rethermalization steps: 20, blocksize:
10; The number of samples collected for qe ¼ 3, qe ¼ 5, and
qe ¼ 7 are respectively about 850, 1500, and 123.

qe p−2 p0 p2 hTrP0yi
3 0.061(8) 0.52(2) 0.42(2) 0.71(4)
5 0.075(6) 0.59(1) 0.34(1) 0.53(3)
7 0.049(16) 0.53(4) 0.42(4) 0.7(1)

Exact 0.04349 0.49712 0.45940 0.27727

TABLE I. Distribution of trace of plaquette at β ¼ 10−7.
Thermalization steps: 50, Rethermalization steps: 20, blocksize:
50; The number of samples collected for qe ¼ 3, qe ¼ 5, and
qe ¼ 7 are respectively about 38600, 122000, and 17900.

qe p−2 p0 p2 hTrP0yi
3 0.159(2) 0.685(3) 0.157(2) −0.004ð6Þ
5 0.159(1) 0.680(2) 0.160(1) −0.002ð3Þ
7 0.160(3) 0.681(4) 0.159(3) −0.004ð8Þ
Exact 0.15909 0.68182 0.15909 0.0
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APPENDIX A: OVERVIEW OF LATTICE
GAUGE THEORIES WITH FINITE GROUPS
AND MATCHING BETWEEN TRANSFER

MATRIX FORMULATIONS

Here we briefly review some concepts of gauge
theories with finite gauge groups. In particular, we establish
the precise connection between the Hamiltonian and trans-
fer matrix formulation by discussing the match between
Casimir coefficients for the kinetic part of the Hamiltonian
(which can be obtained also from group-theoretical con-
siderations, i.e., see [37]), and the transfer matrix approach
based on the Euclidean Lagrangian formulation. The
relation between real space (link basis) and irrep basis is
the following [50]:

D
g
���gjαβE ¼

ffiffiffiffiffiffiffi
dj
jGj

s
ρjðgÞαβ; ðA1Þ

where j labels the unitary irreps ρj∶ G → UðdjÞ with

dimension dj, and we denote by jgjαβE the irreps basis

to distinguish it from the real space basis. Notice that there
are two indexes for each irrep αβ, labeling the matrix

element, and that
P

j d
2
j ¼ jGj (a sum over j will always

denote a summation over all irreps). For the Peter–Weyl
theorem, the irreps form then a complete basis that can be
considered as an analog of the Fourier basis. Let us
introduce also the projectors into irrep spaces:

Pj ≡
X
αβ

���gjαβEDgjαβ���; ðA2Þ

which, by Peter-Weyl and the completeness relation for
irreps, form a partition of identity

P
j Pj ¼ 1 (and also,

satisfy the relations PjPj0 ¼ δjj0Pj).
Using L̂½g� ≡Pg̃ jg̃ihgg̃j and R̂½g� ≡Pg̃ jg̃ihg̃g†j, the

form of the projectors in real space is the following:

Pj ¼
X

α;β;g;g0

dj
jGj ρjðg

0ÞαβρjðgÞ†βαjg0ihgj ¼
dj
jGj
X
h

χjðhÞR̂†
½h�;

ðA3Þ

where χj is the character of the jth irrep. In terms of irreps,
the right and left multiplication operators take the form

L̂½g� ¼
X
g0
jg0ihgg0j ¼

X
j;α0;α;β

½ρjðgÞ�α;α0
���gjα0βEDgjαβ���; ðA4Þ

R̂½g� ¼
X
g0
jg0ihg0g†j ¼

X
j;α;β0;β

½ρjðgÞ�β;β0
���gjαβ0EDgjαβ���; ðA5Þ

where we used the orthogonality relations:

X
g

½ρj0 ðgÞ�α0;β0 ½ρjðgÞ��α;β ¼
jGj
dj

δj0;jδα0;αδβ0β: ðA6Þ

With some more effort, also the link operator (non-
Hermitian) can be written in terms of the irreps. Indeed,
using the Clebsch-Gordan coefficients for the group, which
are defined via the relation

ρj0 ðgÞ�α0;β0ρj00 ðgÞα00;β00 ¼
X
J;A;B

CðJ;A;BÞ
ðj0;α0;β0Þ;ðj00;α00;β00ÞρJðgÞ�A;B: ðA7Þ

one can write

Ûα;β ¼
X
g∈G

ρfðgÞα;βjgihgj ¼
X
J⃗0;J⃗00

ffiffiffiffiffiffiffiffiffiffiffiffi
dJ0dJ00

p
df

Cðf;α;βÞ
J⃗0;J⃗00

���eJ⃗0ED eJ⃗00���;
ðA8Þ

where we use the shorthand J⃗0 ≡ ðj0; α0; β0Þ and
J⃗00 ≡ ðj00; α00; β00Þ, which identifies different matrix ele-
ments for each irrep with a single multi-index.
For a projector P, we have eαP ¼ 1þ ðeα − 1ÞP ¼

ð1 − PÞ þ eαP, therefore, for a partition of unity set of
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projectors fPjgj, such that⊕j Pj ¼ 1 and PjPj0 ¼ 0, there
is a group-theoretical (GT) motivated expression for
the electric/kinetic term of the Hamiltonian based on the
Casimir operator as a sum over irreps and constant inside
conjugacy classes:

ĤðGTÞ
k ¼ α

X
j

fjPj: ðA9Þ

Indeed, as discussed in [37,50], this is the most general
Hamiltonian that can be used to describe a gauge invariant
theory. The transfer matrix corresponding to a finite
(Euclidean) time Δt ¼ 1 integration with the Hamiltonian
(A9) becomes then:

T̂ðGTÞ
k ≡ e−α

P
j
fjPj ¼

X
j

e−αfjPj ðA10Þ

¼
X
h

�X
j

dj
jGj e

−αfjχjðhÞ
�
R̂†
½h�: ðA11Þ

The (Euclidean) Lagrangian formulation of the transfer
matrix [38,51] instead reads

T̂ðLÞ
k ≡X

g0;g

eβReTr½ρfðg0g†Þ�jg0ihgj ¼
X
h

e
β
2
ðχfðhÞþχfðh−1ÞÞR̂½h�;

ðA12Þ

where ρf is a fundamental representation and χf is the
corresponding character and β ¼ 1

g2. Matching the two

expressions (A10) and (A12) can be done by noticing
the same structure:

1

jGj
X
j

dje−αfjχjðhÞ ↔ e
β
2
ðχfðhÞþχfðh−1ÞÞ ∀ h∈G; ðA13Þ

which can be inverted in terms of α and the co-
efficients fj using character orthogonality, such that
( 1
jGj
P

g χjðgÞχj0 ðgÞ ¼ δj;j0)

e−αfj ¼ 1

dj

X
g∈G

e
β
2
ðχfðgÞþχfðg−1ÞÞχjðgÞ ∀ j: ðA14Þ

In the case of continuous groups, Eq. (A14) can be further
manipulated with a saddle point expansion for β → ∞ (see
for example Ref. [52]), resulting in a match of the type
αfjPj ∼ g2

P
a ðÊa

j Þ2, with Êa
j being the components of the

electric field operators associated to the jth irrep. For finite
groups, an expansion in terms of g2 is not available, as
argued in the following section, but one can still determine
the dominant term in the strong coupling regime.

1. Non-Abelian finite group: D4

For G ¼ D4, there are 5 conjugacy classes C0 ¼ feg,
C1 ¼ fr; r3g, C2 ¼ fr2g, C3 ¼ fs; sr2g, C4 ¼ fsr; sr3g,
and 5 irreps with characters as shown in Table IV. The
fundamental representation is j ¼ 4, the only one with
dimension 2, and can be expressed as a real representation
ρfðgÞ ¼ ρfðsx2r2x1þx0Þ ¼ ðσxÞx2ðiσyÞ2x1þx0 parameterized
by a triple of binary digits ðx2; x1; x0Þ∈Z3

2, while the
other 1-dimensional irreps all coincide with their charac-
ters. The Casimir eigenvalues fj can be computed using the
matching conditions in Eq. (A14), which results in

f0 ¼ −
1

α
logð6þ 2 coshð2βÞÞ; ðA15Þ

f1 ¼ f2 ¼ f3 ¼ −
1

α
logð4 sinh2ðβÞÞ; ðA16Þ

f4 ¼ −
1

α
logð2 sinhð2βÞÞ: ðA17Þ

Notice that the irrep labeled with j ¼ 4 corresponds to the
fundamental representation (being dj≤3 ¼ 1), and contrib-
utes to the projector in Eq. (A2) with d24 ¼ 4 states (one for
each matrix element). At this point, one can proceed in
conventionally fixing the Casimir eigenvalue of the zero-
mode (i.e., the trivial irrep ρ0) to zero, which means that
shifting all the coefficients (in other terms, isolating the
overall scalar prefactor of the transfer matrix) results in

f̃0 ¼ 0; f̃1 ¼ f̃2 ¼ f̃3 ∼
8e−2β

α
; f̃4 ∼

6e−2β

α
: ðA18Þ

In the case of continuous groups, one can match in the usual
saddle point expansion for small 1β ¼ g2 (see Ref. [52]) but,
for finite groups, this is not available. Instead, one can
express the Hamiltonian in terms of e−2β for large β (or
equivalently, small g). Notice that, with the identification
α ¼ e−2β, one recovers the same Casimir coefficients found
in Refs. [37,50], using the elements in the conjugacy classes
Γ ¼ C1 ∪ C3 ∪ C4 ¼ fr; r3; s; sr; sr2; sr3g as generators,
which yields fj¼0 ¼ 0, fj¼1;2;3 ¼ 8, and fj¼4 ¼ 6.
Therefore, following Eq. (A18), a possible group-theoretical
Hamiltonian expression forD4, compatible with the transfer

TABLE IV. Characters of irreducible representations ρj of
D4 group.

j dj χjfeg χjfr; r3g χjfr2g χjfs; sr2g χjfsr; sr3g
0 1 1 1 1 1 1
1 1 1 1 1 −1 −1
2 1 1 −1 1 1 −1
3 1 1 −1 1 −1 1
4 2 2 0 −2 0 0
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matrix integrated with a fixed finite time as the one used in
Ref. [38], is the following

ĤðGT;D4Þ ¼ γe−2β⨁
l∈E

½8
X3
j¼1

ðjj̃ihj̃jÞl þ 6
X
α;β

ðjg4αβihg4αβjÞl�
− β ⨁

p∈Plaq
ReTr□p; ðA19Þ

where states corresponding to 1-dimensional irreps are
denoted by a single number jj̃i instead of a triple
j gj; α; βi. In cases when the model is expected to represent
continuum physics, or even to build effective theories, the
anisotropy coefficient γ still needs to be tuned in order to
preserve the lines of constant physics. For completeness, we
also report the nonvanishing Clebsch-Gordan coefficients
for D4, shown in Table V. Furthermore, the elements of the
individual link variables in the irrep basis can be explicitly
written as

Û0;0¼
1ffiffiffi
2

p ½ðj0̃iþj3̃iÞh g4;0;0jþðj0̃iþj2̃iÞh g4;1;1j� ðA20Þ

Û0;1¼
1ffiffiffi
2

p ½ðj0̃i− j3̃iÞh g4;0;1jþðj2̃i− j1̃iÞh g4;1;0j� ðA21Þ

Û1;0¼
1ffiffiffi
2

p ½ðj2̃i− j1̃iÞh g4;0;1jþðj0̃i− j1̃iÞh g4;1;0j� ðA22Þ

Û1;1¼
1ffiffiffi
2

p ½ðj1̃iþj2̃iÞh g4;0;0jþðj0̃iþj3̃iÞh g4;1;1j�: ðA23Þ

In general, Eq. (A20) can used in combination with the
Clebsch-Gordan coefficients to obtain explicit expressions
for the plaquette terms of the Hamiltonian in irrep basis.

APPENDIX B: DENSITY CONDITION
FOR THE FREE PRODUCTS OF RANDOM

ELEMENTS OF A PERFECT GROUP

The main goal of this section is to show that the free
product of two random elements of a perfect group is dense
in the same group with probability 1. For our purposes, we
state the result in the case of the SUðNÞ group, which maps
to a sequence of quantum unitary gates whose concatena-
tion (circuit) acts transitively on a N-dimensional subspace
(i.e., the physical Hilbert space of the gauge theory).
Theorem 1. Let us consider two elements R1, R2 drawn

randomly and independently from G ¼ SUðNÞ in such a
way that the probabilities are nonzero on the whole group
(i.e. the distributions involved have compact support
everywhere). Then the set generated by the free product
of R1 and R2, i.e. fQk

i¼1ðRpi
1 R

qi
2 Þjpi; qi ∈Z; k∈Ng, is

dense in SUðNÞ.
Proof. In Theorem 6 of Ref. [53], it is proved that for a

semi-simple Lie algebra L there exists two elements

a; b∈L generating the whole algebra. This connects to
Theorems 7 and 8 of Ref. [53], which states that if G is a
connected and perfect4 Lie group with lie algebra L , and
L is generated by two elements, therefore, also G is
generated by two elements, which can be taken in an
arbitrarily small neighborhood of the identity, and the

TABLE V. Clebsh-Gordan coefficients for D4 group.

ðJ; A; BÞ ðj0; α0; β0Þ ðj00; α00; β00Þ CðJ;A;BÞ
ðj0;α0;β0Þ;ðj0;α0;β0Þ

(0) (0) (0) 1
(0) (1) (1) 1
(0) (2) (2) 1
(0) (3) (3) 1
(0) (4, 0, 0) (4, 0, 0) 1=2
(0) (4, 0, 1) (4, 0, 1) 1=2
(0) (4, 1, 0) (4, 1, 0) 1=2
(0) (4, 1, 1) (4, 1, 1) 1=2
(1) (0) (1) 1
(1) (2) (3) 1
(1) (4, 0, 0) (4, 1, 1) 1=2
(1) (4, 0, 1) (4, 1, 0) −1=2
(1) (4, 1, 0) (4, 0, 1) −1=2
(1) (4, 1, 1) (4, 0, 0) 1=2
(2) (0) (2) 1
(2) (1) (3) 1
(2) (4, 0, 0) (4, 1, 1) 1=2
(2) (4, 0, 1) (4, 1, 0) 1=2
(2) (4, 1, 0) (4, 0, 1) 1=2
(2) (4, 1, 1) (4, 0, 0) 1=2
(3) (0) (3) 1
(3) (1) (2) 1
(3) (4, 0, 0) (4, 0, 0) 1=2
(3) (4, 0, 1) (4, 0, 1) −1=2
(3) (4, 1, 0) (4, 1, 0) −1=2
(3) (4, 1, 1) (4, 1, 1) 1=2
(4, 0, 0) (0) (4, 0, 0) 1
(4, 0, 1) (0) (4, 0, 1) 1
(4, 1, 0) (0) (4, 1, 0) 1
(4, 1, 1) (0) (4, 1, 1) 1
(4, 0, 0) (1) (4, 1, 1) 1
(4, 0, 1) (1) (4, 1, 0) −1
(4, 1, 0) (1) (4, 0, 1) −1
(4, 1, 1) (1) (4, 0, 0) 1
(4, 0, 0) (2) (4, 1, 1) 1
(4, 0, 1) (2) (4, 1, 0) 1
(4, 1, 0) (2) (4, 0, 1) 1
(4, 1, 1) (2) (4, 0, 0) 1
(4, 0, 0) (3) (4, 0, 0) 1
(4, 0, 1) (3) (4, 0, 1) −1
(4, 1, 0) (3) (4, 1, 0) −1
(4, 1, 1) (3) (4, 1, 1) 1

4A perfect group is a group G for which the commutator sub-
group coincides with the group itself, i.e. ½G;G� ¼ fghg−1h−1
jg; h∈Gg ¼ G.
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subgroup generated by these is everywhere dense in G.
Since SUðNÞ is perfect and connected, it satisfies the
assumptions of Theorems 6–8 in Ref. [53]. We are only left
to prove that drawing any two random elements R1 and R2,
they are finite generators of the whole group with prob-
ability 1. A sketch of the proof for this is inspired by the
proof of Theorem 6 in Ref. [53], which proceeds through an
explicit construction of generators of the Lie algebra L .
Let us consider a basis fhigli¼1 for the Cartan subalgebra
H ⊂ L , and elements eα⃗ associated to root vectors α⃗ such
that fhig ∪ feα⃗g is a basis for L (see the pedagogical
Ref. [45] for an introduction to Cartan subalgebras and root
vectors). Therefore, one can build two Lie algebra gen-
erators a≡Pα⃗ eα⃗ and h≡Pi λihi whose dynamical
algebra built from successive commutators

s1 ¼ ½h; a� ¼
X
α⃗

ðα⃗ · λ⃗Þeα⃗;

s2 ¼ ½h; ½h; a�� ¼
X
α⃗

ðα⃗ · λ⃗Þ2eα⃗;

..

.

sk ¼ ½h;…; ½h|fflfflfflfflffl{zfflfflfflfflffl}
k times

; a�…� ¼
X
α⃗

ðα⃗ · λ⃗Þkeα⃗; ðB1Þ

generates the whole Lie algebra (see Ref. [53] for details),
provided the values λi are chosen such that ðα⃗ − β⃗Þ · λ⃗ ≠ 0

for every root α⃗ and β⃗. If the values λi are drawn randomly
and independently, this requirement is satisfied with
probability 1 and we are done. Let us consider the two
random special unitaries R1 and R2. Since R1 is normal, it
can be diagonalized by some unitary T, as Z̃≡ T†R1T,
which is generated by some element h of the Cartan
subalgebra H . Performing the same transformation on
the other generator X̃ ≡ T†R2T yields a nondiagonal
operator with probability 1; this is generated by a sum
of some element of the Cartan subalgebra h̃, in irrational
relation with h with probability 1, and with a linear
combination of all root elements, again with probability
1. A free product between R1 and R2 is then equivalent to a
free product of Z̃ and X̃ followed by a conjugation by T.
Since Z̃ and X̃ satisfy the requirements of the Theorems
above, and the group is perfect, also R1 and R2 can be used
as free group generators of the whole group. ▪

APPENDIX C: OVERVIEW OF GAUSSIAN
KERNEL DISTRIBUTION ESTIMATION

Let us consider a dataset D ¼ fxigNi¼1 of independent
variables extracted with a probability distribution pðeÞðxÞ,
and let us consider a Gaussian kernel

Gσðx; yÞ≡ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−yÞ2
2σ2 : ðC1Þ

We define the kernel estimate at a point y as follows:

pσðy;DÞ ¼ 1

N

XN
i¼1

Gσðy; xiÞ: ðC2Þ

As for standard histograms with fixed bin size, the function
in Eq. (C2) can be considered as a σ-coarse-grained
estimator for the exact probability distribution, using a
Gaussian kernel, i.e.:

pðeÞ
σ ðyÞ≡ hpσðy;DÞiD ðC3Þ

¼ 1

N

XN
i¼1

Z
dxipðeÞðxÞGσðy; xÞ !

N→∞
σ→0þ

pðeÞðyÞ; ðC4Þ

where hfðfxigÞiD ¼ R Qi½dxipðeÞðxiÞ�fðfxigÞ is the ex-
pectation value with respect to all datasets D (with fixed
number of elements N implied). In particular, for Gaussian

kernels, the smeared distribution pðeÞ
σ ðyÞ is connected to the

exact probability distribution as series in powers of σ2

through a saddle point expansion [54]:

hpσðy;DÞiD ¼
X∞
r¼0

	
σ2

4
∂
2
y



r

pðeÞðyÞ !
σ→0þ

pðeÞðyÞ: ðC5Þ

In order to compute the associated error we can compute
the variance of the kernel estimate:

σ2pσðy;DÞ ¼
�	

1

N

XN
i¼1

Gσðy; xiÞ

2�

D
− ðpðeÞ

σ ðyÞÞ2 ðC6Þ

¼ 1

N

�pðeÞ
σ=
ffiffi
2

p
;D
ðyÞ

2
ffiffiffi
π

p
σ

− ðpðeÞ
σ ðyÞÞ2

�
: ðC7Þ

Therefore, for independent data, the (unbiased) error to be
associated with each bin bar j:

Δpσðy;DÞ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N −1

�
pσ=

ffiffi
2

p ðy;DÞ
2
ffiffiffi
π

p
σ

− ðpσðy;DÞÞ2
�s
: ðC8Þ

However, when some autocorrelation time is present in the
data, in practice one it is useful to perform a blocked
partition of the dataset D, followed by a certain number K
of resamples Ds (i.e., jackknife or bootstrap) such that the
statistical error is estimated as
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½Δpσðy;DÞ�resamp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
s¼1

½ps
σðy;DsÞ − pσðy;DsÞ�2

vuut :

ðC9Þ

In general, the smoothing parameter σ (also called band-
width in statistics literature) should be chosen to satisfy
an optimality criterion, such as the minimization of the
expected mean integrated squared error (MISE)

MISEðσÞ ¼
�Z

dy½pσðy;DÞ − pðeÞðyÞ�2
�

D
: ðC10Þ

A σ too large results in higher bias from the exact
distribution pðeÞðyÞ (undersampling), while a σ too small

is also not recommended, since it results in higher variance
among results from different datasets (oversampling).
Several techniques can be used to estimate and minimize
this quantity from a dataset D (see Refs. [55,56]), yielding
a general bound for σ with finite statistics N of the type
σ ≳ CN−1

5, for some coefficient C which has to be
estimated from data. However, for the purposes of this
paper (data from QMS energy measurements is con-
strained to lie on the QPE grid points), it is sufficient to
ensure that the bandwidth is of the order of the grid
spacing. In our case, we set the smoothing parameter to be
always of the order of the grid spacing for each number of
qubit qe for the energy register, therefore scaling expo-
nentially as σKDE ¼ ΔEðgridÞ

2qe−1 , while our statistics is sufficient
to satisfy the bound.
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