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We present an investigation of pion-nucleon elastic scattering in the IðJPÞ ¼ 3
2
ð3
2
þÞ channel using lattice

QCDwith degenerate up and down, strange and charm quarks with masses tuned to their physical values.We
use an ensemble of twisted mass fermions with box size L ¼ 5.1 fm and lattice spacing a ¼ 0.08 fm and we

consider the πN system in rest and moving frames up to total momentum P⃗2 ¼ 3ð2π=LÞ2 ¼ 0.17 GeV2. We
take into account the finite volume symmetries and S- and P-wave mixing, and use the Lüscher formalism to
simultaneously constrain the J ¼ 1=2;l ¼ 0 and J ¼ 3=2;l ¼ 1 scattering amplitudes. We estimate the Δ
resonance pole in the P-wave channel as well as the S-wave isospin-3=2 scattering length.
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I. INTRODUCTION

The precise treatment of nucleon resonances is still a
formidable task in lattice QCD. While Lüscher’s method
[1–3] is the established theoretical basis for connecting
observed lattice QCD spectra to scattering amplitudes, thus
allowing the investigation of properties of bound states and
resonances from first principles, in practice the study of
meson-baryon, two-hadron states remains challenging.
This is especially so when using simulations with physical
values of the light quark mass, which carry increased
statistical errors.
Nevertheless, the ab initio computation of low-energy

elastic pion-nucleon (πN) scattering from lattice QCD is
essential for the study of nucleon interactions, and any such
treatment necessarily starts with the lowest-lying meson-
baryon resonance, namely the IðJPÞ ¼ 3

2
ð3
2
Þþ Δ P-wave

resonance. TheΔ resonance governs nucleon-pion, nucleon-
photon, and nucleon-neutrino scattering as the dominant
channel. Within the lattice QCD formalism, excited state
contributions from pion-nucleon scattering states dominate

the spectrum in nucleon form factor calculations in a finite
volume for gauge ensembles generatedwith close to physical
pion mass [4,5].
The interaction of nucleon and pion has been studied by

various approaches in lattice QCD in the past, using gauge
ensembles generated with heavier-than-physical pion
masses. Nucleon-pion scattering amplitudes and the Δ in
particular have been the subject of Refs. [6–13] using the
Lüscher method. References [14,15] used an alternative
method based on Refs. [16,17]. There are also studies using
ensembles generated with quark masses at which the Δ is a
stable state [18–23].
With this work, we extend the lattice calculation of the Δ

from heavier-than-physical to physical pion mass, and
explore the application of the Lüscher method to the
πN − Δ channel at the physical point. We estimate the Δ
resonance pole in the P-wave channel as well as the S-wave
isospin-3=2 scattering length, which experimentally enters
the evaluation of the pion-nucleon σ-term using the Roy-
Steiner-equations. For this first physical point calculation,we
use a single ensemble with two degenerate light quarks,
strange, and charm quarks (Nf ¼ 2þ 1þ 1).
The paper is organized as follows: In Sec. II, we describe

our application of the Lüscher method, with further details
on the implementation of the lattice spectroscopy in
Sec. III. Sections IV and V present our analysis of the
lattice data for the πN − Δ spectrum, and subsequent fits to
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the finite-volume quantization condition. In addition, we
use the threshold expansion of the Lüscher quantization
condition to determine the S-wave scattering length. A
discussion of the results and concluding remarks are given
in Sec. VI. In Appendixes A–Cwe include extended figures
and tables of our results, as well as some additional details
of our analysis.

II. LATTICE QCD FORMALISM
FOR PION-NUCLEON SCATTERING

We consider elastic scattering of two particles of non-
equal mass and with spin in a hypercubic box of spatial
extent L. The constraints on infinite-volume scattering
amplitudes from the finite volume lattice spectrum for this
setup are given in Lüscher’s original work [1–3] and a series
of extensions, to moving frames [24,25], to nondegenerate
particles [26] and to particles with spin [27–30]. While the
formalism for multiple coupled two-particle decay channels
is also known [31,32], for the purposes of this work we
perform a single decay channel analysis, since the expected
branching fraction Δ → πN is almost 100% making this
channel a prototype application for lattice QCD.
The finite-volume method for three particles has been

further developed for spinless particles [33–36]. For the
Nππ system a formalism is not yet available, and we thus
only consider the πN interaction here. We will define an
upper limit to the spectrum entering our elastic scattering
amplitude fits, such that the impact of the three-particle
scattering is negligible.
For the pion-nucleon system, even and odd partial waves

mix. Moreover, the spin of the nucleon couples to the orbital
angular momentum, such that in the finite-volume analysis
the most relevant partial wave amplitudes are J ¼ 1=2,
containing S- and P-wave, and J ¼ 3=2, with P- and
D-wave. The J ¼ 3=2 P-wave amplitude corresponds to
the Δ resonance and is expected to dominate, with a sub-
leading contribution from J ¼ 1=2 S-wave, while ampli-
tudes from the corresponding higher l values are suppressed
by angular momentum barrier.
To the extent described above, the Lüscher quantization

conditions have been given in detail in Refs. [30,37] with
the master equation given by

det
�
MP⃗;Λ

Jln;J0l0n0 − δJJ0δll0δnn0 cotðδJlÞ
� ¼ 0; ð1Þ

where MP⃗;Λ denotes the reduced Lüscher finite volume
matrix for a reference frame with total momentum P⃗ of the
πN system, and for irreducible representation (irrep)Λ of the
little group LGðP⃗Þ ⊆ OD

h . Here we use the reduced Lüscher
matrices and quantization conditions fromRefs. [30,37]. The
determinant is taken in the linear space of total angular
momentum J, J0, orbital angular momentum l;l0 and
multiplicity (or occurrence) of the irrep Λ n, n0.

For ensembles with physical value of the pion mass, the
thresholds for elastic nucleon-pion scattering are given by
E2−thr ¼ mN þmπ ≈ 1080 MeV and the three-particle
threshold E3−thr ¼ mN þ 2mπ ≈ 1220 MeV. The corre-
spondingly narrow window in the center-of-mass energy
for elastic πN scattering does not cover the expected
resonance region and puts prohibitive cuts on the usable
finite-volume lattice spectrum. However, based on exper-
imental observations, the πN scattering amplitude in the
I ¼ 3=2 channel is vastly dominated by the elastic two-
particle interaction up to E0

3−thr ¼ mΔ þmπ as a proxy
three-particle threshold, where the Δ and the pion can
propagate on shell [38]. We thus consider lattice energy
levels up to

ffiffiffi
s

p ≲ E0
3−thr ≈ 1360 MeV.

The partial wave amplitudes are parametrized via the
associated phase shifts. In particular, for the considered
leading phase shifts δJl, we employ the analytic Breit-
Wigner form for the resonant Δ channel and the leading-
order effective range expansion with isospin I ¼ 3=2
S-wave scattering length a0,

cot
�
δ1
2
0ðsÞ

� ¼ a0qcmf ; ð2Þ

tan
�
δ3
2
1ðsÞ

� ¼
ffiffiffi
s

p
ΓðΓR;MR; sÞ
M2

R − s
: ð3Þ

The center-of-mass momentum (qcmf) of the πN system is
given by

q2cmfðsÞ ¼
ðs −M2

N −M2
πÞ2 − 4M2

NM
2
π

4s
; ð4Þ

and the resonance decay width has invariant mass depend-
ence parametrized by

ΓðΓR;MR; sÞ ¼ ΓR

�
qcmfðsÞ
qcmfðM2

RÞ
�

3M2
R

s
: ð5Þ

III. CORRELATION MATRIX CONSTRUCTION

A. Interpolating operators

To constrain pion-nucleon scattering amplitudes using
the Lüscher method, we determine the low-lying finite-
volume energy spectrum of the lattice Hamiltonian with
isospin I ¼ 3=2. The operator basis for the correlation
matrices of two-point functions is constructed from single-
and two-hadron time slice interpolating operators. We
consider the case of maximal isospin, i.e. I3 ¼ þ3=2,
meaning we use the Δþþ, and the proton and charged
pion (Nþ and πþ).
The single-hadron, quark model Δ-type interpolating

operator reads
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ðOΔþþÞα;kðP⃗; tÞ ¼
X
x⃗

εabcuaαðx⃗; tÞ½ubðx⃗; tÞ⊤Cγkucðx⃗; tÞ�eiP⃗ x⃗;

k¼ x;y;z: ð6Þ

The two-hadron interpolators are generated by products of
nucleon and pion interpolators given by

ðONþπþÞαðp⃗N; p⃗π; tÞ ¼ Nþ
α ðp⃗N ; tÞπþðp⃗π; tÞ; ð7Þ

with

Nþ
α ðp⃗; tÞ ¼

X
x⃗

εabcuaαðx⃗; tÞ½ubðx⃗; tÞ⊤Cγ5dcðx⃗; tÞ�eip⃗ x⃗; ð8Þ

πþðp⃗; tÞ ¼
X
x⃗

d̄ðx⃗; tÞγ5uðx⃗; tÞeip⃗ x⃗; ð9Þ

where u and d are up- and down-quark spinor fields,
C ¼ γ4γ2 is the charge-conjugation matrix, and α denotes
the spinor index. The total momentum of such interpolating
fields is P⃗ ¼ p⃗N þ p⃗π.
The above operators are projected to irreducible repre-

sentations of the lattice rotation symmetry groups [OD
h for

P⃗ ¼ 0 or little group LGðP⃗Þ] for the rest and moving
frames. The values of the total momenta P⃗ and lattice irreps
used are given in Table I, where we also indicate the
subduced angular momenta.
The projection to irrepΛ, row r for occurrence n, follows

from the group theory master formula, namely for the
single hadron operators OΔ and the πN operators OπN
we use

OΛ;r;n
Δ;α;kðP⃗Þ† ¼

dimðΛÞ
#LGðP⃗Þ

X
G∈LGðP⃗Þ

ΓΛðGÞ�r;r0Uð1ÞðGÞk0;kUð1=2⊕1=2ÞðGÞα0;αΔα0;kðP⃗Þ†;

OΛ;r;n
Nπ;α ðP⃗; p⃗Þ† ¼

dimðΛÞ
#LGðP⃗Þ

X
G∈LGðP⃗Þ

ΓΛðGÞ�r;r0Uð1=2⊕1=2ÞðGÞα0;αN̄α0 ðRp⃗ÞπðP⃗ − Rp⃗Þ†; ð10Þ

where the group element G∈LGðP⃗Þ means either a proper
rotation R or a rotation-inversion IR, such that RP⃗ ¼ −P⃗
and concatenation with spatial inversion I leaves invariant
P⃗. Analogously, UðJÞðGÞ denotes the SUð2Þ spin-J repre-
sentation matrix of the proper rotation or rotation-inversion
group element. The rotation matrix Uð1Þ acting on the
momentum vector p⃗ in Cartesian basis, is denoted as R for
simplicity. Moreover, Δα;k and Nα are Dirac four-spinors
and the rotation matrix for the four-component spinors is
denoted as Uð1=2⊕1=2Þ. The space inversion operation
ðx⃗; tÞ → ð−x⃗; tÞ is represented by πþðx⃗; tÞ → −πþð−x⃗; tÞ
for the pseudoscalar pion field, and by Δα;kðx⃗; tÞ →
ðγ4ÞαβΔβ;kð−x⃗; tÞ for the four-component nucleon and Δ
spinors.

The constructed set of irrep-projected operators

fOΛ;r;n
Δ;α;kðP⃗Þ; OΛ;r;n

Nπ;α ðP⃗; p⃗Þg is still linearly dependent and
we extract a basis set by the Gram-Schmidt procedure. The
orthogonalization is done with respect to the tensor
components α, k and momentum vector p⃗.

B. Equivalent moving frames

The explicit subduction coefficients for the operators,
which are obtained based on the convention in Ref. [39],
pertain to the reference moving frames with total momen-
tum P⃗=ð2π=LÞ ¼ ð0; 0; 1Þ; ð0; 1; 1Þ; ð1; 1; 1Þ. We include
lattice correlation functions also from all other equivalent
moving frames of the same orbit as P⃗ under discrete

TABLE I. Momentum frames (first column), lattice rotation symmetry groups (second column) and irreducible
representations Λ (third, fourth, and fifth columns) with their subduced angular momentum content J, relevant for
the pion (JP ¼ 0−), the nucleon (JP ¼ 1=2þ), and the Δ-baryon (JP ¼ 3=2þ). The naming of irreps follows
Ref. [39].

I

P⃗½2π=L� LGðP⃗Þ 1 1=2 3=2

(0,0,0) OD
h A1uð0−; 4−; � � �Þ G1gð1=2þ; 7=2þ; � � �Þ Hgð3=2þ; 5=2þ; � � �Þ

(0,0,1) CD
4v A1ð0; 1;…Þ G1ð1=2; 3=2; � � �Þ G1ð1=2; 3=2; � � �Þ G2ð3=2; 5=2; � � �Þ

(0,1,1) CD
2v A1ð0; 1;…Þ Gð1=2; 3=2; � � �Þ Gð1=2; 3=2; � � �Þ Gð1=2; 3=2; � � �Þ

(1,1,1) CD
3v A1ð0; 1;…Þ Gð1=2; 3=2; � � �Þ F1ð3=2; 5=2; � � �Þ F2ð3=2; 5=2; � � �Þ
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rotations. Little groups LGðP⃗0Þ and LGðP⃗Þ with P⃗2 ¼ P⃗02

are equivalent for the values considered here, namely
fP⃗2 ≤ 3ð2π=LÞ2g, and we select one group element
RP⃗0 ∈OD

h per case, which relates P⃗0 ¼ RP⃗0P⃗.
These lattice correlators are mapped to the reference

moving frame by the corresponding SUð2Þ J-representa-
tion of the source and sink operators. The specific choices
of group elements for the mapping are given in Table II.
The residual moving frames are related to the reference
frames and those listed in Table II by momentum inversion.
The corresponding operators and lattice correlators are thus
mapped by the parity transformation I.

C. Contractions

Our method to compute correlation functions of single-
and two-particle operators efficiently is based on the
factorization of the quark flow diagrams [7]. We show
the diagrams that contribute to the Nπ − Nπ two-point
function in Fig. 1.
The colors used for the different propagators shown in

Fig. 1 denote the method used to evaluate them. We denote
spinor indices by lower case Greek indices, whereas color
indices are lower case Latin indices.
In particular, point-to-all propagators (S) denoted with

red lines read,

ð11Þ

where xi, β, and b are the coordinates, Dirac index, and
color index of the source, respectively. Sequential propa-
gators (T) are denoted with blue lines and are given by

ð12Þ

constructed from an inversion of the Dirac operator using a
point-to-all propagator as a source vector (also referred to
as the sequential source) with support on time slice tseq and
with a vertex given by Dirac structure Γseq and three-
momentum insertion p⃗seq.
The stochastic sources (η) and propagators (ϕ) are

denoted with green single and double lines respectively,

ð13Þ

where ηrα;aðxÞ are sources with Z2 × iZ2 independent and
identically distributed (iid) noise of zero mean and unit
variance,

E½ηrγ;cðzÞ� ¼ 0;

E½ηrγ;cðzÞηrβ;bðyÞ�� ¼ δγ;βδc;bδz⃗;y⃗δtz;ty : ð14Þ

The expectation value E½·� is taken over the stochastic noise
index r. In practice, we use time slice noise sources, i.e.

sources with support on a single time slice, ηðr;t0Þα;a ðxÞ ¼
ηrα;aðxÞδtx;t0 . The gray, one-end-trick propagators, are

TABLE II. Rotation group elements (R) to map moving frames
P⃗0 to their reference directions. The first set of two columns
correspond to reference moving frame P⃗=ð2π=LÞ ¼ ð0; 0; 1Þ, the
second to (0,1,1), and the third set to (1,1,1). The superscript i
denotes the inverse group element.

P⃗0=ð2π=LÞ R P⃗0=ð2π=LÞ R P⃗0=ð2π=LÞ R

(0, 1, 0) Ci
4x ð1;−1; 0Þ C2c ð1; 1;−1Þ C4y

(1, 0, 0) C4y (1, 0, 1) Ci
4z ð1;−1; 1Þ C4x

ð0; 0;−1Þ C2a ð1; 0;−1Þ C2a ð−1; 1; 1Þ Ci
4y

ð0;−1; 0Þ C4x (1, 1, 0) C4y ð1;−1;−1Þ C2x

ð−1; 0; 0Þ Ci
4y ð0; 1;−1Þ Ci

4x ð−1; 1;−1Þ C2y

ð0;−1; 1Þ C4x ð−1;−1; 1Þ C2z
ð0;−1;−1Þ C2f ð−1;−1;−1Þ C2b

ð−1; 0;−1Þ C2b
ð−1; 0; 1Þ C4z
ð−1;−1; 0Þ C2d
ð−1; 1; 0Þ Ci

4y

FIG. 1. Different types of diagrams showing the contractions of
the cost-intensive πN correlation functions. The dashed line
shows the applied splitting into diagram factors. As explained in
more detail in the text, point-to-all propagators are denoted with
red lines, sequential propagators with blue lines, stochastic
sources (propagators) with single (double) green lines, and
one-end-trick stochastic propagator pairs with gray lines.
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constructed using spin-diluted Z2 × iZ2 stochastic time slice
sources, appropriately multiplied by a momentum phase,

ηðr;t0;μ;p⃗Þα;a ðxÞ ¼ ηrα;aðxÞδtx;t0δα;μeip⃗ x⃗ and solution vectors ϕ

indicated as ϕðr;t0;μ;p⃗Þ
β;b ðyÞ ¼ D−1b;a

β;αðy; xÞηðr;t0;μ;p⃗Þα;a ðxÞ,

ð15Þ

Analogous to Eq. (14), the source components are iid
with Z2 × iZ2 noise and have zero mean and unit variance.
The diagrams in Fig. 1 are further split into products of

building blocks. These cuts are illustrated by the dashed
lines. The quark connected diagrams are split at the source
point by virtue of spin-color dilution, and by the stochastic
decomposition of unity with the stochastic sources and
propagators in Eqs. (13) and (15), schematically ηη† ≈ 1.
The factors are two- and three-fold propagator products,
which are partially reduced in spin-color space and
momentum projected at the pion vertex labeled f2 in
Fig. 1 and the nucleon vertex f1. Each type of the four
diagrams depicted represents several combinations of
contractions, and thus by the factorization multiple con-
tractions benefit from sharing a small number of common
factors.
The Wick contractions for Δ − Δ and Δ − Nπ two-point

functions are not found to significantly benefit from this
factorization and are therefore calculated from point-to-all
and point-to-all plus sequential propagators, respectively.
Both the computation of building blocks and their sub-

sequent recombination to full correlation functions is carried
out on GPUs using the PLEGMA software package [40].

D. Quark field smearing

We apply Gaussian smearing [41] to the source and sink
for all quark propagators. The smearing parameters are
NGauss ¼ 140 steps with weight αGauss ¼ 1. The gauge links
entering theGaussian smearing kernel areAPE-smeared [42]
with NAPE ¼ 50 steps and weight αAPE ¼ 0.4. The param-
eters αGauss and NGauss are tuned in order to approximately
give a smearing radius for the nucleon of 0.5 fm. Δ ground
state energy in the center-of-mass frame, as a function of the
smearing parameters confirmed that these values were
appropriate.

E. Gauge ensemble and statistics

We use a gauge ensemble generated by the Extended
Twisted Mass Collaboration [43] with two degenerate light
quarks with twisted mass parameter tuned to reproduce
the pion mass and the strange and charm quarks
(Nf ¼ 2þ 1þ 1) with masses tuned close to their physical
values by matching the kaon meson mass and the ratio of
renormalized quark massesmc=msjMS;μ¼2 GeV, respectively.

The fermion action is given by twisted mass fermions at
maximal twist with the addition of a Sheihkoleslami-
Wohlert “clover” term. The gluon action is the Iwasaki
gauge action. The parameters of the ensemble, denoted as
“cB211.072.64,” are collected in Table III.
We useNconf ¼ 400well-separated gauge configurations

and on each configuration generate correlation functions
from multiple source positions (Nsrc) to increase statistics.
In general, we use 64 sources per configuration
(Nsrc ¼ 64), except for the specific cases of the nucleon
to nucleon (N − N) two-point correlation function and the
pion-nucleon to pion-nucleon (πN − πN) two-point corre-
lation function with both pion and nucleon at rest, for
which we use increased statistics of Nsrc ¼ 256. More
details of the statistics, including the stochastic sources
used, are provided in Table IV.

IV. SPECTRAL ANALYSIS

A. Correlator matrices, fits and
excited state identification

We build real symmetric correlation matrices CijðtÞ ¼
hOiðtÞOjðt0Þ†i, where OiðtÞ are the correlation functions
after projecting to the lattice symmetry group, Eq. (10). For
extracting the energy levels from the correlationmatrices, we
use four methods, which we detail in what follows.

1. Generalized eigenvalue problem

In what we will refer to as the GEVP method, we solve
the so-called generalized eigenvalue problem (GEVP)
[44,45] for the matrix of correlation functions

CijðtÞvnj ðt0Þ ¼ Cijðt0Þvnj ðt0Þλnðt; t0Þ; ð16Þ

where vnj ðtÞ is the jth component of the nth eigenvector on
time slice t and λnðt; t0Þ, the nth eigenvalue of this GEVP,

TABLE III. Parameters of the ensemble cB211.072.64 used in
this work.

L3 × T a [fm] L [fm] Mπ [MeV] MπL MN [MeV]

643 × 128 0.0801 5.1 139.43(9) 3.6 944(10)

TABLE IV. Statistics used in this work. We indicate the number
of configurations used (Nconf ), and per configuration, the number
of source points (Nsrc) for point-to-all propagators, the number of
stochastic time slice sources (Nstoch), and the number of stochas-
tic one-end-trick sources (Noet).

Nconf Nsrc Nstoch Noet Subset

400 256 12 1 N − N, πN − πN with p⃗π ¼ p⃗N ¼ 0
400 64 12 1 All other correlation functions

and kinematic setups
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referred to as the principal correlator. In order to obtain
energy eigenvalues, we fit the principal correlator to a
single-exponential form

f1ðt; t0Þ ¼ A1e−Eðt−t0Þ; t∈ ½tmin; tmax�: ð17Þ

An example of the analysis using GEVP is shown in

Fig. 2, where we plot the effective massesmi
eff ¼ log CiiðtÞ

Ciiðtþ1Þ
of the diagonal elements of the correlation matrix for the
case of the center-of-mass frame Hg. The five interpolating
operators, that include four momentum combinations of πN
and one Δ, are indicated in the legend.

2. Prony generalized eigenvalue method

We apply the Prony generalized eigenvalue method
[46,47] directly on the principal correlators obtained via
the GEVP method. In PGEVM, we solve the second-level
GEVP for the correlation matrix Cð2Þ defined by λn as

Cð2Þ
ij ðtÞ ¼

�
λnðt; t0Þ λnðtþ 1; t0Þ

λnðtþ 1; t0Þ λnðtþ 2; t0Þ

�
ij

: ð18Þ

While with the GEVP method the stability of the ground
state from λn is tested by a conservative choice of tmin, with
PGEVM a second, consecutive ground-state projection is
applied, which is expected to lead to an earlier onset of
ground state dominance and thus smaller statistical errors.

3. Athens model-independent analysis scheme

In the Athens model-independent analysis scheme
(AMIAS) method [48] we perform multistate fits directly
to the correlation matrix. Namely, the spectral decompo-
sition of the correlation functions CijðtÞ ¼

Pnmax
n¼1 A

ðijÞ
n e−Ent

is used to construct the χ2 function

χ2 ¼
X
j;k

Xtmax

t¼tmin

ðCjkðtÞ −
Pnmax

n¼1 A
ðjkÞ
n e−EntÞ2

σ2jk
; ð19Þ

where the amplitudes, AðjkÞ
n and the energies, En, are fit

parameters and nmax is used to truncate the spectral
expansion. The probability distribution function (PDF)

for the complete set of parameters is pðA;EÞ ¼ 1
Z e

−χ2

2 ,

where the normalization factor Z ¼ R Qnmax
n¼1 dAndEne−χ

2=2.
The estimates for the values of the fit parameters and their
uncertainties are then obtained as the expectation values
and the standard deviations of the corresponding PDF,

Ēk ¼
Z Ynmax

n¼1

dAndEnEkpðE; AÞ; ð20Þ

σ2ðEkÞ ¼
Z Ynmax

n¼1

dAndEnðE2
k − Ē2

kÞpðE; AÞ: ð21Þ

These integrals are computed using standard Monte Carlo
methods. In AMIAS, one investigates the behavior of the
distributions of the fit parameters of the lower states of
interest as the truncation parameter nmax is increased.
As demonstrated in previous applications of this method

[48–50], at large values of nmax, the additional parameters
added, to which χ2 is insensitive, become irrelevant in the
integrals of Eq. (21) and thus the distributions of the energies
of interest converge, without loss of accuracy. In this way
larger fit intervals ½tmin; tmax� (i.e. smaller tmin) can be probed.
An example application of AMIAS is shown in Fig. 3,

where the distributions of the energy levels for the case of
the G1 irrep are plotted. As can be seen, using nmax ¼ 5 all
five energy levels are clearly distinguishable. A similar

analysis is carried out for the amplitudes AðijÞ
n and for all

irreps considered, to obtain the mean values and errors of

FIG. 2. The effective mass from each diagonal correlator in the
center-of-mass frameHg correlation matrix, using a 5 × 5 basis of
interpolating operators listed in the legend. The gray bands show
the energy levels obtained by the GEVP analysis.

FIG. 3. Results on the energy spectrum for the G1 irrep using
the AMIAS method. We show the distributions for the energies
when tmin=a ¼ 11 (blue curves), 12 (red curves), and 13 (green
curves). The correlation matrix is the same as in the 5 × 5
problem used in Fig. 2.
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these parameters via Eq. (21). All results in this work
quoted as using the AMIAS method used up to nmax ¼ 4.

4. Ratio method

Following Ref. [51] we take the principal correlator from
the GEVP analysis, and fit the energy shift with respect to a
given noninteracting energy level. In practice this is done
by taking the ratio of the principal correlator λnðt; t0Þ from
Eq. (16) to the product of single hadron correlation
functions with the appropriate momenta, given by

CR
p⃗N;p⃗π

ðtÞ ¼ λP⃗;Λ;nðt; t0Þ
CNðt; p⃗NÞ · Cπðt; p⃗πÞ

;

P⃗ ¼ p⃗N þ p⃗π: ð22Þ

We will refer to this approach as the ratio method. The
leading energy dependence of the ratio in Eq. (22) follows as

CR
p⃗N;p⃗π

ðtÞ ∝
large t e−E

P⃗;Λ;nt

e−E
p⃗N ;ΛN;0te−E

p⃗π ;Λπ ;0t
¼ e−ðEP⃗;Λ;n−Ep⃗N ;ΛN ;0−Ep⃗N ;Λπ ;0Þt

¼ e−ΔE
P⃗;Λ;nðp⃗N;p⃗πÞt; ð23Þ

whereEp⃗N;ΛN;0 andEp⃗π ;Λπ ;0 are the ground-state energy of the
nucleon and pion two-point function in the relevant irreps,
respectively. Taking the ratio reduces substantially the
excited state contribution in a given principal correlator,

and especially for small energy shifts ΔEP⃗;Λ;nðp⃗N; p⃗πÞ
allows to determine the latter with significantly increased
statistical precision. For large t the logarithm of CRðtÞ will
converge to a linear function, with the slope corresponding to

the energy shift ΔEP⃗;Λ;nðp⃗N; p⃗πÞ relative to the noninteract-
ing πN energy,

log
�
CR
p⃗N;p⃗π

ðtÞ� ∝
large t

const − ΔEP⃗;Λ;nðp⃗N; p⃗πÞ · t: ð24Þ

An example of such an analysis is shown in Fig. 4, for the
case of theHg irrep,which corresponds to the center-of-mass
frame with total momentum zero (see Table I). The ratio is
applied to the πN case for three different relative momenta
p⃗N; p⃗π between the nucleon and pion. From the energy shift
obtained by the slope, we reconstruct the interacting two-
hadron energy level by shifting back the energies using the
continuum dispersion relation,

EP⃗;Λ;n ¼ ΔEP⃗;Λ;nðp⃗N; p⃗πÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2
N

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2
π

q
:

ð25Þ

Equation (25) has the added advantage, that high-precision
estimates for the nucleon and pion mass can be employed.
Using different single-hadron momenta for pion and

nucleon with same total momentum to determine the same

energy shift and interacting energy level is part of our
systematic error analysis.

5. Correlation matrix basis selection

For our analysis, we progressively add interpolating
fields to the correlation matrix used, selecting the most
appropriate basis by checking the stability of the spectrum.
In particular, the steps we follow are
(1) We include all the relevant single-nucleon and pion

momentum combinations and occurrences and per-
form a GEVP analysis.

(2) Based on the eigenvectors obtained from the full
GEVP analysis, we restrict the GEVP to using the
interpolating operators that dominate the first few
energy levels.

(3) Starting from the smaller GEVP of the previous step,
we gradually extend the basis. The interpolating
operators to be added are chosen by observing the
effective mass of their diagonal correlators, and
whether they yield higher-energy states than already
seen in the smaller GEVP. As we add these inter-
polating operators, we check that the statistical
errors of the lower-lying energy spectrum do not
deteriorate.

In Fig. 5, we illustrate the basis selection process using
an example taken from the GEVP method and the center-
of-mass frame irrep Hg. What is plotted are the five
components of each eigenvectors obtained via the
GEVP, which is solved on each time slice. These corre-
spond to the overlaps of each interpolating field used with
the lowest-lying energy state. For a certain choice of
eigenvector vn obtained via the GEVP, and interpolating
operator number α, the overlap is defined as

FIG. 4. The correlation function CR for the ground state in the
Hg irrep, center-of-mass frame with zero total momentum and
with each hadron carrying 1 (red circles), 2 (blue circles), or 3
(black circles) units of back-to-back momentum. The solid lines
show linear fits with the values of the energy gap ΔEjp⃗N j¼1 ¼
−0.0113ð9Þ;ΔEjp⃗N j¼2 ¼−0.0612ð9Þ;ΔEjp⃗N j¼3 ¼−0.103ð9Þ and
χ2 per degrees of freedom χ2jp⃗N j¼1

¼0.53; χ2jp⃗N j¼2
¼0.52; χ2jp⃗N j¼3

¼
0.4, respectively.
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jψ j2 ¼ jvnαj2 ¼ jhnjO†
αj0ij2: ð26Þ

The eigenvectors are normalized to unity,
P

α jvnαj2 ¼ 1 for
all n. From Fig. 5, we see that the first two eigenvectors of
the GEVP are largely dominated by the amplitudes from

two interpolators, O
Hg

Δ and O
Hg

Nπðp⃗;−p⃗Þ with p⃗2 ¼ 1.
We note that this same basis was used for Fig. 2

discussed earlier, where we see that the pion-nucleon
interpolating field decreases the ground-state energy in
the particular channel we consider here. We use this basis to
extract energy levels for the analysis that follows.

B. Lattice spectrum and stability test

The four methods detailed above are complementary in
the way the excited state contamination is treated. Thus, by
comparing the results obtained among them, we can check
the robustness of our observed energy levels. The com-
parison is carried out for all irreps considered, observing
the stability of the results as we increase the initial fit range
(tmin). An example is shown in Fig. 6, where the four
methods are compared for the specific case of the Hg irrep.
As can be seen in this plot, the PGEVM and ratio methods
provide stable results at smaller tmin compared to the
standard GEVP. Furthermore, the statistical errors carried
by the ratio method confirm our expectation that the
correlations between numerator and denominator in
Eq. (22) help in reducing the statistical fluctuations in
the energy shift from the noninteracting energy. This same
analysis is carried out for all irreps, with the corresponding
plots given in Appendix A. By observing the stability of the
fitted masses as tmin is increased, as well as the χ2=d:o:f. of
the fit, we indicate our selected values for each level and for

each method with the bands and in Appendix B collect the
results for GEVP, PGEVM, and AMIAS in Table VIII and
for the ratio method in Table IX, where we also include
results for two larger tmin values that we use in a model
averaging for our final result in Sec. VA.
In Fig. 7, we collect all the energy levels extracted from

all irreps considered, using all four methods. The πN
threshold (E2−thr) and ππN (E3−thr) are shown for com-
parison at 1080 MeV and 1220 MeV respectively.
Furthermore, for each irrep we indicate the permitted
noninteracting energy levels that correspond to the lattice
volume of the ensemble used. For GEVP and PGEVM, the
band, indicating the uncertainty of the energy levels,
contains both statistical and a systematic error from the
fit-range variation. For AMIAS the systematic error from
varying the fit range is negligible. For the ratio method we
include only statistical errors here. A dedicated discussion
of how we obtain the systematic errors of the ratio method
is given in Sec. VA.
As can be seen, the GEVP, PGEVM, and AMIAS

methods yield comparable statistical errors, while the ratio
method yields smaller statistical errors, as expected given
the previous discussion of Fig. 6. In general, we can
identify several energy levels that are incompatible with
noninteracting energy levels, however the statistical errors
carried by our results, combined with the proximity of the
ππN threshold and the first noninteracting energy, make
clearly identifying theΔ resonance rather challenging, even
with the large statistics of Oð104Þ used in this work. Our
analysis, when compared to the analogous mesonic system
of the ρ resonance [52], highlights the increased require-
ments for extracting resonance parameters of systems that
include baryons and when using physical point ensembles.
All data plotted in Fig. 7 are included in Tables VIII

and IX of Appendix B.

FIG. 5. The components of the first five eigenvectors obtained
from a GEVP in the centre-of-mass frame irrep Hg. The number
in the title of each figure corresponds to n in Eq. (26), while the
different symbols denote the interpolating operator [Oα in
Eq. (26)] as indicated in the legend.

FIG. 6. Energy levels for the case of the Hg irrep. The set of
points, from left to right, correspond to results from the GEVP
method, the PGEVM method, AMIAS, and the ratio method.
Dashed lines indicate noninteracting levels for comparison. The
red bands correspond to values listed in Table VIII for GEVP,
PGEVM, and AMIAS, and to the values with the smallest tmin
listed in Table IX for the ratio method.
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V. SCATTERING PARAMETERS

The scattering amplitude near the resonance is well
described by a Breit-Wigner type resonance. We thus
parametrize the Δ-resonance phase shift, which via the
Lüscher quantization condition then predicts the finite-
volume energy spectrum. The lattice spectrum we have
determined is then fitted to the prediction, and from the
minimization of χ2 we extract the optimal parameters of the
resonance given our spectrum results. In practice, we
determine the roots of the quantization condition of
Eq. (1) for the given set of resonance parameters and
construct a correlated, nonlinear χ2, given by

χ2 ¼
X

i∈ ðΓ;nÞ

X
j∈ ðΓ;nÞ

ξiw−1
ij ξj;

ξi ¼ aEi;lat
cms − aEi

cmsðL;MR;ΓR; a0Þ; ð27Þ

where wij is the covariance matrix between the lattice data

for aEi;lat
cms and aE

j;lat
cms estimated using jackknife resampling.

To determine the errors of the fit parameters via the
jackknife procedure, we perform the minimization of χ2

in each jackknife sample. In Table V, we collect the results
obtained for the scattering parameters when using the
energy levels determined via the GEVP, PGEVM, or
AMIAS methods. For the ratio method, which we will
use to quote our final values, we carry out a more thorough
analysis of the errors that we describe later in this manu-
script. For the results in Table V, we either restrict to using
only P-wave dominated irreps, with partial wave J ¼ 3=2
and l ¼ 1, which involves including five levels in the χ2

minimization, or we use S- and P-wave dominated irreps,
with two partial waves ðJ;lÞ ¼ ð3=2; 1Þ or (1=2, 0), thus
including in total 14 energy levels. For the latter case, we
estimate the scattering length from the combined S- and P-
wave fits via Eqs. (2) and (3). In this work we restrict to
providing the scattering length only for this channel,
leaving the isospin-1=2 case for a future publication.
As can be seen from Table V, results when using the

three methods are overall compatible and within statistical
errors are consistent with the experimental determinations
of the Δ mass and width. However, the statistical errors for
the resonance width are large and do not permit a

FIG. 7. The πN interacting two-hadron energy levels obtained by our analysis. For each irrep and total angular momentum J, indicated
on the x-axis, we include results using the four methods employed, namely, from left to right, the GEVP method, the PGEVM method,
AMIAS, and the ratio method, with the band height indicating our estimated uncertainties as explained in the text. On the left y-axis we
indicate the energy levels in physical units, while on the right y-axis in lattice units. The gray dashed and dotted lines spanning the entire
x-axis correspond to the πN and ππN thresholds, namely 1080 MeV and 1220 MeV, respectively. The green, thicker dashed lines
correspond to the noninteracting πN energy levels permitted for each irrep and for the volume used in this work.

TABLE V. Results for the scattering parameters, namely the
resonance mass, MR, resonance width, ΓR, and scattering length,
Mπa0, using the Lüscher quantization condition and energy levels
determined via the GEVP, PGEVM, and AMIAS methods. First
three rows when using P-wave only and last three rows when
using S − P wave dominant irreps.

Breit-Wigner parameters

Method MR [MeV] ΓR [MeV] Mπa0 χ2=d.o.f.

Fit to ðJ;lÞ ¼ ð3=2; 1Þ; No. of ffiffiffi
s

p
points ¼ 5

GEVP 1249(42) 180(240) � � � 0.61
PGEVM 1274(63) 160(260) � � � 0.55
AMIAS 1271(40) 160(260) � � � 0.47

Fit to ðJ;lÞ ¼ ð1=2; 0Þ and ð3=2; 1Þ; No. of ffiffiffi
s

p
points ¼ 14

GEVP 1262(36) 190(135) −0.20ð7Þ 0.82
PGEVM 1270(36) 142(207) −0.04ð24Þ 0.29
AMIAS 1274(11) 180(180) −0.20ð14Þ 1.28
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significant comparison with experiment. We, therefore, opt
to using the ratio method, presented below, to quote our
final results for the resonance parameters. We note that for
the results in Table V, an interpolation method was used to
accelerate the minimization of χ2 in each jackknife bin,
described in detail in Appendix C.

A. Results using the ratio method

Themost accurately determined energy levels are obtained
using the ratio method and are employed to obtain our final
values of the resonance parameters. Given these smaller
errors, a thorough analysis of the sources of systematic errors
is merited, and we, therefore, consider the following in our
fits when using the ratio method:
(1) We consider two different ranges of center-of-mass

energies, namely (a) including only energy levels
below Nππ threshold (E3−thr), which leads to in-
cluding 12 energy levels, and (b) energy levels up to
Δπ (E0

3−thr), which leads to including 14 levels. The
latter is defined by the onset of the rise of the
inelasticity in the J ¼ 3=2; l ¼ 1 pion nucleon
scattering channel [38].

(2) We explore the partial wave dependence, i.e. we
consider fits with energy levels coming only from
P-wave dominant irreps, which leads to including
five levels, and energy levels having also an S-wave
contribution, which leads to the combinations men-
tioned in the previous item. We attempted to include
higher partial waves but this led to prohibitively
large statistical errors on the parameters.

(3) The S-wave contribution is entirely parametrized by
the scattering length, which can be obtained directly
from the ratio of correlators used in the ratio method,
as presented in more detail in Sec. V B below. We
either perform fits using this direct determination of
the scattering length or leaving the scattering length
free as an additional fit parameter.

(4) We use three different fit ranges for the energy levels,
i.e. three values of tmin, that indicatively span between
tmin ≃ 0.3 fm and 1 fm. The smallest tmin is deter-
mined from the onset of the plateau in the ratiomethod
and is that corresponding to the band inFigs. 6, 11–18.
The largest tmin is determined from the onset of the
plateau in the single exponential fit to the principal
correlator from theGEVP.An intermediate tmin is also
used between these two values.

(5) We vary the noninteracting energy level, i.e. that of
the denominator in Eqs. (22) and (23) in the ratio
method. We found in our fits, that the energy levels
most sensitive to this variation are the ones for the
Hg irrep. We, therefore, perform a separate analysis
for the Hg energy levels using the ratio method with
pion-nucleon states with three values of back-to-
back momenta, namely p⃗2

N ¼ p⃗2
π ¼ ð2πL Þ2 · f1; 2; 3g,

as in Fig. 4.

Considering these variations, our analysis yields 45
results, over which we quantify our systematic uncertainty.
The results are tabulated in Table X of Appendix D.
The results of the different fits are model averaged

according to Ref. [53] to derive a combined statistical and
systematic error. As an example, in Fig. 8, we show our
result for the P-wave phase shift for one of the 45 fits that
has a significant contribution to the model average.
The cumulative distribution function (CDF) for the

resonance parameters obtained from the 45 different fits
is shown in Fig. 9. Our final result for the resonance mass
and width obtained through model averaging are

MR ¼ 1269ð39ÞStatð45ÞTotal MeV;

ΓR ¼ 144ð169ÞStatð181ÞTotal MeV;

respectively, where the first error is the statistical error and
the second is the total, combining statistical and systematic
errors. For the individual contributions of the different
sources of systematic error, we refer to Table VI. The
systematic error for each source of uncertainty (a) is
estimated via

σasys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNa

i¼1

Oi
2pi −

�XNa

i¼1

Oipi

�2

vuut ; ð28Þ

where Oi and pi are averaged over all other systematics
other than a and Na is the number of variations for the
given systematic error.
For the I ¼ 3=2 S-wave scattering length, we obtain

from the combined S- and P-wave fit of the lattice spectrum

Mπa0 ¼ −0.16ð11Þ:

FIG. 8. The P-wave phase-shift as a function of the invariant
mass Ecms ¼

ffiffiffi
s

p
. The error band is determined using jackknife

resampling. The points with horizontal error bars show each fitted
energy level included its jackknife error bar.
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For further illustration, in Fig. 9, we show separately the
systematics that originate from varying the fit ranges, from
using different noninteracting levels in the ratio method and
considering the two center-of-mass energy ranges. The fact
that these curves collapse onto the curve that corresponds to
the total statistical plus systematic error indicates that our
dominant source of error is statistical.

B. Direct extraction of the scattering length

The scattering amplitude in the S-wave around the πN
threshold can be well-described by the leading-order
effective range expansion using a single parameter, the

scattering length. As an alternative to the analysis of the
previous section, by which the scattering length is extracted
from the phase shift, we can extract this quantity from the
energy shift ΔE obtained directly from the ratio method. In
particular, correlation functions computed with increased
statistics, indicated in the first row of Table IV, allow for a
high-statistics calculation of the levels in the G1u irrep.
Using the first level of this irrep and the effective range
expansion, we determine the scattering length from [1]

ΔE · L ¼ −
2π

μπNL
a0
L

�
1þ c1

a0
L

þ c2

�
a0
L

�
2
�
þOðL−5Þ:

ð29Þ

This extraction of ΔE from the ratio method benefits from
the smaller statistical errors associated with the energy
shifts. The data obtained for the ratio and the resulting fit
are shown in Fig. 10.
For the scattering length we obtain

Mπa0 ¼ −0.13ð4Þ: ð30Þ

A comparison of our result to other work in the literature is
provided in Table VII. In particular, we compare our results
to a recent lattice calculation using Nf ¼ 2þ 1 clover
improved fermions at the heavier-than-physical pion mass
of 200 MeV. We also compare to three other

FIG. 9. The cumulative probability distribution function for the
model averaging carried out to obtain the resonance mass MR
(top) and the resonance width ΓR (bottom). We distinguish
between systematics arising from the energy-level fit range
choice (blue triangles), considering energy levels also slightly
above Nππ threshold (brown squares) and including all five
sources of systematic errors as explained in the text (red small
circles). For the resonance mass all three curves fall on top of
each other, while for the width the yellow squares are on top of
the red circles. Each dark magenta point corresponds to the
central value and statistical error of one particular fit with y-axis
corresponding to the numerically determined CDF. The vertical
band shows the range ofMR (top) and ΓR (bottom) between 16%
and 84% which we take as our total error.

TABLE VI. Individual contributions to the total systematic
uncertainty, obtained as explained in the text. Enumeration of the
source of systematic uncertainty (a) follows that of Sec. VA.

Criterion (a) Na ΔMR [MeV] ΔΓR [MeV]

Inclusion of energies
above Nππ (1)

2 35 63

P- or P- and S-wave (2) 2 1 1
Fit or fixed scattering
length (3)

2 26 10

Fit range (4) 3 2 7
Momenta in Hg (5) 3 4 6

FIG. 10. The ratio method as applied to the first level of the G1u
irrep. With red band we indicate our fit in the range t

a ∈ ½3; 17�.
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determinations, namely from pionic atoms [54–57] using
the values of the scattering lengths updated in Ref. [58],
from unitarized chiral perturbation theory [59], and from a
global fit to low-energy pion-nucleon cross-section data
[60]. Within our quoted statistical uncertainty, our result is
consistent with the latter three results.

VI. CONCLUSIONS

Using an ensemble of twisted mass fermions simulated
with two degenerate light quarks, and strange and charm
quarks with masses tuned to their physical values, we
determine the Breit-Wigner resonance parameters of the
lowest lying resonance in the πN IðJPÞ ¼ 3

2
ð3
2
þÞ channel.

To our knowledge, this is the first such lattice study using
physical point simulations. We use a large number of
measurements in order to tackle the expected increase of
the statistical uncertainties in the meson-baryon correlation
functions. To determine the energy levels, we form corre-
lation matrices of one and two-particle correlation func-
tions after an appropriate group-theoretic projection to the
relevant lattice irreducible representations. We employ four
methods to extract the energy levels from the correlation
functions, including the standard GEVP method and
variants thereof. While the four methods yield consistent
results, the ratio method, where we determine the energy
gap between interacting and noninteracting energy levels
via appropriate ratios of two-hadron to single-hadron
correlation functions, yields considerably smaller statistical
errors.
Restricting our analysis to energy levels obtained via the

ratio method, we solve the Lüscher quantization condition
to extract the resonance mass and width, varying our fits to
probe systematic uncertainties. For the scattering length,
we use a direct approach, forming a ratio between corre-
lation functions with increased statistics to obtain the
energy shift between noninteracting and interacting states
explicitly. For the resonance parameters we find the values,

Mπa0 ¼ −0.13ð4Þ;
MR ¼ 1269ð45Þ MeV; and

ΓR ¼ 144ð181Þ MeV; ð31Þ

for the scattering length in the 3=2 isospin channel, the
resonance mass, and the resonance width, respectively. Our
result for the scattering length compares well with phe-
nomenological determinations [61] and determinations
from chiral perturbation theory (ChPT) [5,58–60]. A recent
lattice study using simulations with 200 MeV pions [6]
yields a value between 1.4 and 2.7 times larger than our
value when taking into account our statistical uncertainties,
a factor which is compatible with the ratio of pion masses
used. Our result for the resonance mass is compatible with
the expected 1230–1234 MeV values quoted by the PDG
[62], while our value for the resonance width has large
uncertainties, requiring more lattice input to be determined
with significance. As a first application of the Lüscher
method to the πN − Δ channel at the physical point, this
calculation was restricted to a single ensemble, which does
not allow for a complete assessment of lattice systematic
errors, such as cutoff effects. The current study, and in
particular the level of precision obtained given the statistics
used, paves the way for future calculations with multiple
physical point ensembles allowing for controlled con-
tinuum and infinite volume extrapolations.
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APPENDIX A: PLOTS COMPARING GEVP,
PGEVM, AMIAS, AND THE RATIO METHOD

In Figs. 11–18 we plot the extracted energy levels in all
irreps for all four methods as a function of the lower fit
range. The figures follow the conventions of Fig. 6 in the
main text.

TABLE VII. Scattering length in the isospin-3=2 pion-nucleon
channel. We compare our result, obtained via Eq. (29), to a lattice
calculation using 200 MeV pion mass [6], a calculation using
pionic atom data [58], a calculation using unitarized ChPT [59],
and a phenomenological determination via global fits to pion-
nucleon cross-section data [60]. The error in our determination is
only statistical.

Mπ (MeV) Mπa
3=2
0

This work 139 −0.13ð4Þ
Bulava et al. [6] 200 −0.2735ð81Þ
Pionic atoms [58] 140 −0.0865ð18Þ
Unitarized ChPT [59] 140 −0.0894ð17Þ
Phenomenology [60] 140 −0.0867ð35Þ
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FIG. 12. Same as in Fig. 11 but for irrep Hg.

FIG. 13. Same as in Fig. 11 but for irrep G1.

FIG. 14. Same as in Fig. 11 but for irrep G2.

FIG. 15. Same as in Fig. 11 but for irrep 2G.

FIG. 16. Same as in Fig. 11 but for irrep 3G.

FIG. 17. Same as in Fig. 11 but for irrep F1.

FIG. 18. Same as in Fig. 11 but for irrep F2.

FIG. 11. Nπ energy level fits using the GEVP, PGEVM,
AMIAS, and Ratio methods for the irrep G1u. The colored bands
correspond to our final selection that is used in Fig. 7.
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APPENDIX B: SPECTRUM FIT RESULTS

We list the energy levels obtained using the GEVP
method, the PGEVM method, and AMIAS in Table VIII.
The fit range given is the optimal one, along with the
associated reduced χ2. For GEVP and PGEVM, the quoted
uncertainty of the energy levels contains both statistical and
a systematic error from the fit range variation. For AMIAS

the systematic error from varying the fit range is negligible.
For the ratio method, the error is purely statistical.
The ratio method energy levels that were included in

Fig. 7 are listed in Table IX. The quoted uncertainty is
statistical only and the closest noninteracting levels were
used to obtain the energy shift. See Sec. VA and
Appendix D for details on how the systematic error is

TABLE VIII. Energy levels from theΔ; Nπ correlation matrix for the three methods GEVP, PGEVM and AMIAS.
We use P⃗ ¼ d⃗ · 2π=L. Shown are the cases d⃗2 ¼ 0 with group OD

h , d⃗
2 ¼ 1 with group CD

4v, d⃗
2 ¼ 2 with group CD

2v,

and d⃗2 ¼ 3 with CD
3v. For each irrep Λ and the lowest states labeled by n we give for each method the optimal fit

range (trange ¼ ½tmin; tmax�) the associated reduced χ2 for the fit and the energy in the center-of-mass frame in lattice
units.

GEVP PGEVM AMIAS

n trange [a] χ2

d.o.f. a
ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
trange [a] χ2

d.o.f. a
ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
a

ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q

d⃗2 ¼ 0; Λ ¼ G1u
1 [16,23] 1.77 0.4375(55) [10,23] 1.15 0.4388(42) 0.4381(29)
2 [15,20] 0.26 0.5164(73) [10,20] 0.87 0.5137(61) 0.5107(36)
3 [11,17] 0.46 0.5726(43) [7,17] 0.76 0.5732(48) 0.5904(100)

d⃗2 ¼ 0; Λ ¼ Hg

1 [14,23] 1.02 0.4914(50) [9,23] 0.77 0.4982(52) 0.4954(24)
2 [13,20] 0.62 0.5298(68) [9,20] 1.07 0.5359(70) 0.5302(53)
3 [13,21] 1.52 0.5536(43) [9,21] 1.57 0.5593(44) 0.5572(43)

d⃗2 ¼ 1; Λ ¼ G1

1 [15,24] 2.47 0.4392(38) [9,24] 1.85 0.4409(30) 0.4443(19)
2 [14,22] 2.50 0.4808(33) [8,22] 2.15 0.4832(29) 0.4860(22)
3 [13,22] 1.08 0.5071(38) [8,22] 0.79 0.5072(31) 0.5080(20)
4 [13,23] 0.66 0.5155(31) [8,23] 0.57 0.5176(27) 0.5194(22)

d⃗2 ¼ 1; Λ ¼ G2

1 [14,24] 1.19 0.4861(55) [9,24] 1.30 0.4932(58) 0.4940(32)
2 [13,26] 1.57 0.5092(31) [9,26] 1.71 0.5095(34) 0.5136(32)
3 [12,25] 0.99 0.5271(34) [9,25] 0.79 0.5218(52) 0.5211(33)

d⃗2 ¼ 2; Λ ¼ G
1 [16,28] 1.91 0.4385(51) [9,28] 1.34 0.4432(33) 0.4461(28)
2 [13,19] 1.85 0.4874(28) [9,18] 1.60 0.4851(38) 0.4925(22)
3 [13,26] 2.48 0.4866(26) [9,25] 1.99 0.4892(39) 0.4966(24)
4 [13,25] 2.08 0.5025(33) [6,25] 1.78 0.5042(29) 0.5088(33)

d⃗2 ¼ 3; Λ ¼ G
1 [15,24] 2.13 0.4426(50) [9,24] 1.27 0.4448(39) 0.4476(29)
2 [13,21] 0.79 0.4899(32) [9,21] 0.62 0.4860(49) 0.4924(22)
3 [13,22] 1.93 0.4940(30) [9,22] 1.41 0.4945(35) 0.4966(24)
4 [13,23] 2.86 0.4983(58) [6,23] 2.34 0.5153(27) 0.5088(33)

d⃗2 ¼ 3; Λ ¼ F1

1 [14,19] 0.91 0.4849(44) [9,19] 0.67 0.4857(50) 0.4878(25)
2 [12,19] 1.00 0.5195(32) [8,18] 1.32 0.5148(34) 0.5157(24)
3 [11,19] 1.07 0.5366(63) [6,19] 1.11 0.5394(43) 0.5210(43)

d⃗2 ¼ 3; Λ ¼ F3

1 [14,22] 1.60 0.4844(42) [8,22] 1.37 0.4874(35) 0.4871(21)
2 [12,18] 1.98 0.5172(40) [8,18] 1.21 0.5170(41) 0.5096(26)
3 [11,19] 0.53 0.5403(52) [6,19] 0.45 0.5435(42) 0.5235(22)
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TABLE IX. Energy levels in lattice units from the Δ; Nπ correlation matrix obtained using the ratio method for all
kinematic frames and for multiple fit ranges (using the same tmax). The first tmin corresponds to the one shown in
Fig. 7, the last one equals the optimal fit range for the corresponding GEVP correlator and the middle one is halfway
between the previous two. We used the closest noninteracting level in the ratio denominator Eq. (22). Errors are
statistical only.

n trange ðftmin; g; tmaxÞ½a� χ2

d.o.f. ðftmin; gÞ; a
ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
ðftmin; gÞ

d⃗2 ¼ 0; Λ ¼ G1u
1 [7,10,14;22] 0.34 0.4416(13) 0.39 0.4416(16) 0.55 0.4424(27)
2 [4,8,13;17] 0.63 0.5180(12) 0.33 0.5169(15) 0.58 0.5158(42)
3 [3,7,12;15] 3.61 0.5752(13) 0.30 0.5707(19) 0.32 0.5702(64)

d⃗2 ¼ 0; Λ ¼ Hg

1 [5,9,14;23] 0.52 0.4990(13) 0.43 0.4978(20) 0.60 0.4957(60)
2 [4,9,13;18] 0.48 0.5292(12) 0.52 0.5304(24) 0.54 0.5302(74)
3 [3,8,13;17] 1.69 0.5576(11) 0.52 0.5550(15) 0.58 0.5498(47)
4 [3,7,12;17] 0.62 0.5696(12) 0.79 0.5695(17) 0.30 0.5698(59)
5 [4,7,11;14] 0.91 0.6013(19) 0.79 0.5695(17) 0.30 0.5689(59)

d⃗2 ¼ 1; Λ ¼ G1

1 [4,10,15;23] 0.10 0.4431(12) 0.11 0.4432(17) 0.13 0.4434(41)
2 [4,10,14;23] 1.67 0.4873(12) 0.58 0.4854(16) 0.85 0.4856(31)
3 [4,10,13;20] 0.44 0.5098(13) 0.55 0.5091(23) 0.76 0.5100(46)
4 [4,10,13;20] 0.35 0.5178(12) 0.43 0.5179(18) 0.56 0.5172(32)
5 [5,8,13;20] 0.41 0.5265(13) 0.47 0.5270(18) 0.63 0.5285(57)

d⃗2 ¼ 1; Λ ¼ G2

1 [4,8,14;23] 1.06 0.5022(13) 0.42 0.4993(19) 0.41 0.4920(76)
2 [4,8,13;23] 0.31 0.5140(12) 0.33 0.5135(15) 0.46 0.5126(32)
3 [3,7,12;18] 0.35 0.5283(12) 0.41 0.5279(15) 0.37 0.5246(38)
4 [3,7,11;21] 1.07 0.5398(11) 0.46 0.5385(13) 0.58 0.5379(19)
5 [3,7,11;18] 0.30 0.5479(12) 0.31 0.5475(16) 0.39 0.5488(30)

d⃗2 ¼ 2; Λ ¼ G
1 [3,10,16;24] 0.81 0.4442(12) 0.16 0.4458(19) 0.22 0.4466(62)
2 [3,7,13;21] 2.02 0.4904(12) 0.39 0.4885(13) 0.56 0.4894(29)
3 [3,7,13;22] 3.44 0.4928(12) 0.26 0.4905(13) 0.37 0.4899(23)
4 [3,6,12;17] 1.53 0.5040(12) 0.58 0.5052(15) 0.49 0.5007(44)
5 [3,6,11;17] 1.52 0.5154(12) 0.66 0.5157(14) 0.41 0.5127(28)

d⃗2 ¼ 3; Λ ¼ G
1 [4,10,15;21] 0.61 0.4460(12) 0.17 0.4480(20) 0.25 0.4481(58)
2 [4,10,15;21] 1.10 0.4941(13) 0.24 0.4923(20) 0.14 0.4867(76)
3 [4,8,13;23] 0.24 0.4965(12) 0.28 0.4968(15) 0.34 0.4963(32)
4 [3,8,13;18] 3.75 0.5113(13) 0.30 0.5131(22) 0.34 0.5069(74)
5 [3,8,13;18] 0.12 0.5213(12) 0.13 0.5213(15) 0.05 0.5192(30)

d⃗2 ¼ 3; Λ ¼ F1

1 [3,10,14;20] 0.65 0.4905(12) 0.27 0.4892(20) 0.40 0.4886(52)
2 [5,9,12;18] 1.54 0.5231(14) 0.49 0.5198(18) 0.54 0.5169(37)
3 [3,7,11;17] 2.06 0.5238(13) 0.55 0.5288(23) 0.80 0.5288(69)

d⃗2 ¼ 3; Λ ¼ F2

1 [3,10,14;19] 0.72 0.4902(12) 0.34 0.4890(21) 0.60 0.4878(52)
2 [5,8,12;19] 0.46 0.5184(14) 0.27 0.5167(20) 0.30 0.5140(49)
3 [3,7,11;17] 1.68 0.5315(14) 0.11 0.5356(22) 0.17 0.5354(69)
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computed for the ratio method, which we quote in our final
results.

APPENDIX C: OPTIMIZATION OF
QUANTIZATION CONDITION SOLUTION

As explained in the text, the statistical errors quoted for
the resonance parameters are obtained via jackknife resam-
pling. To determine these, we perform the minimization of
χ2 in each jackknife sample, which in turn requires
evaluating the so-called zeta function and finding the roots
of the quantization condition in every iteration of the χ2

minimization algorithm for every jackknife sample. While
this is carried out explicitly for our final results that use the
ratio method, for the fits to the spectrum results using the
GEVP, PGEVM, and AMIAS methods shown in Table V,
we accelerate this process by employing a multidimen-
sional spline interpolation in the parameters being fitted
and evaluate the quantization condition at the grid points of
this interpolation. The spline interpolation function is
uniquely defined by the values of each finite volume
energy level at each grid point EP⃗;ΛðMR;l;ΛR;m; a0;nÞ with
l ¼ 0;…; L − 1; m ¼ 0;…;M − 1, and n ¼ 0;…; N − 1.
We determine our grid by first carrying out trial fits of our
data, obtaining the errors of the fit parameters via their
covariance matrix. From these initial fits, we found that the
following grid contains the parameters.

MR;i ∈ ½1100; 1500� MeV;

ΓR;j ∈ ½50; 300� MeV;

a0;k ∈ ½−0.0025;−0.0001� MeV−1: ðC1Þ

The number of points in each dimension is taken as
L ¼ 50, M ¼ 50, and N ¼ 8, which we ascertain is fine

enough to reproduce all our trial fit results. The definition
of our spline interpolation function can be written as

SðMR;ΓR; a0Þ ¼
X3
i¼0

X3
j¼0

X3
k¼0

Ci;j;k
l;m;nt

i
lu

j
mrkn; ðC2Þ

where ðMR;ΓR;a0Þ∈ ½MR;l;MR;lþ1�× ½ΓR;n;ΓR;nþ1�× ½a0;l;
a0;lþ1�, and t, u, r are the following dimensionless
coefficients:

tl ¼
MR −MR;l

ΔMR;l
;

um ¼ ΓR − ΓR;m

ΔΓR;m
;

rn ¼
a0 − a0;n
Δa0;n

; ðC3Þ

with the corresponding widths

ΔMR;l ¼ MR;lþ1 −MR;l;

ΔΓR;m ¼ ΓR;mþ1 − ΓR;m;

Δa0;n ¼ a0;nþ1 − a0;n: ðC4Þ

The spline coefficients C in Eq. (C2) are determined using
the algorithm detailed in Ref. [65].

APPENDIX D: SYSTEMATIC UNCERTAINTIES
IN THE RATIO METHOD

For our final results for the resonance mass and reno-
sonance width, we use the results from the ratio method and
obtain a systematic by varying the fit to the Lüscher
quantization as described in Sec. VA. This yields 45 fits,
the results of which are collected in Table X.

TABLE X. Results for the scattering parameters, namely the resonance mass, MR, resonance width, ΓR, and
scattering length, Mπa0, using the Lüscher quantization condition and energy levels determined from the ratio
method. We delineate two of the five fit variations listed in Sec. VAvia the table sub-headings, namely the variation
arising from (1) varying the number of energy levels included and (2) whether considering only P- or P- and S-
wave. For (3), we give the value of the scattering length a0 when this is left as a free parameter and omit it when it is
fixed via the direct evaluation. The first column labels the remaining two variations, namely (4) that obtained by
varying the fit range in three ways (first index) and (5) by varying the back-to-back momenta of the noninteracting
pion-nucleon operator used in the denominator of the ratio method (second index).

Breit-Wigner parameters

Fit type MR [MeV] ΓR [MeV] Mπa0 χ2=d.o.f.

ðJ;lÞ ¼ ð1=2; 0Þ and (3=2, 1); No. of
ffiffiffi
s

p
points ¼ 14

1,1 1287(7) 98(19) −0.12ð5Þ 1.34
1,2 1289(17) 169(72) −0.16ð7Þ 0.37
1,3 1291(20) 241(4) −0.17ð17Þ 0.21
2,1 1279(5) 83(15) −0.12ð5Þ 1.74
2,2 1280(14) 140(54) −0.16ð7Þ 0.47
2,3 1282(52) 193(250) −0.17ð17Þ 0.22

(Table continued)
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