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We numerically address the issue of which monopole operators are relevant under renormalization group
flow in three-dimensional parity-invariant noncompact QED with four flavors of massless two-component
Dirac fermion. Using lattice simulation and finite-size scaling analysis of the free energy to introduce
monopole-antimonopole pairs in N ¼ 4 and N ¼ 12 flavor noncompact QED3, we estimate the infrared
scaling dimensions of monopole operators that introduce 2π and 4π fluxes around them. We first show that
the estimates for the monopole scaling dimensions are consistent with the large-N expectations for N ¼ 12

QED3. Applying the same procedure in N ¼ 4 QED3, we estimate the scaling dimension of 4π flux
monopole operator to be 3.7(3), which allows the possibility of the operator being irrelevant. This finding
offers support to the scenario in which higher-flux monopoles are irrelevant deformations to the Dirac spin
liquid phase that could be realized on certain non-bipartite lattices by forbidding 2π-flux monopoles.
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I. INTRODUCTION

The characterization of the quantum numbers of monop-
oles in the continuum and on various lattices and their
impact on the infrared behavior of three-dimensional
quantum electrodynamics coupled to an even number of
flavors (N) of massless two-component Dirac fermions
have been topics of interest in recent times. The presence
and absence of monopoles are expected to change the long-
distance behavior of QED3 radically. QED3 without mono-
pole excitation—noncompact QED3—has been intensely
studied using various methods, for example, using lattice
regularization [1–4], conformal bootstrap [5–10], and
Dyson-Schwinger approaches [11–18]. Ab initio numerical
studies using the lattice regularization with exactly mass-
less fermions and finite-size scaling have shown that
parity-invariant noncompact QED3 exhibits scale-invariant
behavior independent of the number of flavors; some
salient observations toward this conclusion stem from
finite-size scaling of low-lying Dirac eigenvalues [19,20]
and closer resemblance of their eigenvalue distributions
to those from a simple conformal model [21] and the
presence of power-law correlators [20,22]. Despite the term

noncompact, it should be emphasized that the fermions see
a compact version of the gauge field in the lattice
regularization. On the other hand, QED3 with any number
of monopoles—compact QED3—without massless fer-
mion content is well known to be confined [23,24].
Even though monopoles do not arise dynamically in the

noncompact theory after the ultraviolet regulator is
removed, one could subject the noncompact theory to
monopolelike singular boundary conditions at various
space-time points; for a flux Q monopole, the total flux1

on surfaces enclosing the point is 2πQ for integers Q. For
fermions coupled to the U(1) gauge fields, the extended
Dirac string singularity is invisible, and the insertion of the
monopole behaves like the insertion of a composite
operator at the point. Hence, one defines the monopole
operatorMQðxÞ through its action of introducing 2πQ flux
around the point x [25]. At critical points of a U(1) lattice
theory, one can find the scaling dimension of such
monopole operators via the two-point functions,

hM†
QðxÞMQð0Þi ∝ jxj−2ΔQ: ð1Þ

The exponent ΔQ is the scaling dimension of MQ. Since
criticality is approached only in the long-distance or the
infrared limit of QED3, the above power-law scaling will be
seen when the monopole and antimonopole are separated
by large distances. If the infrared dimension ΔQ > 3, then
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1An alternate convention is to count flux as 4πq with
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flux-Q monopoles are irrelevant to the infrared end of the
renormalization group flow.
The nature of compact QED3 coupled to exactly mass-

less fermions is yet unresolved. A lattice study of compact
QED3 is complicated by the inherent singular nature of
monopoles [26] and the presence of near-zero Dirac
operator eigenmodes away from the massless limit even
as one decreases the lattice spacing. It is conceivable that a
naive continuum limit of compact QED3 with massless
fermions in a traditional sense (that is, an approach to
continuum limit at the Gaussian fixed point as the lattice
coupling is taken to zero keeping physical scales fixed) is
not well defined. References [27,28] studied this theory in
the presence of a four-fermi interaction. Another option
might be to UV complete compact QED3 using a SU(2)
theory in the presence of a Higgs field [24]. A quantum
Monte Carlo study [29] instead focused on a U(1) lattice
gauge theory coupled to many flavors of staggered fer-
mions and its strong-to-weak coupling phase diagram. This
fundamental difficulty associated with a direct numerical
study of the UV-IR renormalization group flows in compact
QED3 in the continuum limit provides a strong motivation
to study the scaling dimension of monopole operators in the
noncompact version of the theory. In compact QED3,
monopoles of all 2πQ fluxes dynamically appear. As ΔQ

is typically a monotonically increasing function of Q, if Δ1

of the Q ¼ 1 monopole is greater than 3 in an N flavor
noncompact QED3, then one expects a similar conformal
behavior in the N-flavor compact QED3 and noncompact
QED3. In this way, the Q ¼ 1 monopole is expected to be
relevant only for N < 12 based on large-N and 4 − ϵ
approximations [30,31] and further confirmed by lattice
simulations in previous as well as in the present work. By
the above argument, the compact QED3 is expected to have
a critical number of flavor N ≈ 12.
Given the dominant role of the monopole creating the

smallest 2π flux, a study of higher flux-creating monopoles
might not seem significant. However, the specific motiva-
tion for studying monopoles that create 4π flux in this work
is the following. Recently, there has been interest in a
realization of compact QED3 where the dominant Q ¼ 1
monopole is disallowed due to ultraviolet symmetries
specific to certain lattices [32]. Such a version of N ¼ 4
compact QED3 that is devoid of Q ¼ 1 monopole is
expected to be an effective field theory description of
the antiferromagnetic Heisenberg spin model on Kagomé
and triangular lattices that could host a Dirac spin liquid
(DSL) phase [32–34]. Whereas the stability of DSL on a
triangular lattice is also decided by the requirement of
irrelevance of an allowed four-fermi term that is close to
being marginal, theQ ¼ 2monopole was argued [33] to be
the critical object determining the stability of DSL on
Kagomé lattices. At the present accuracy of the large-N
expansion of QED3, the scaling dimension of the Q ¼ 2
monopole operator is approximately 2.5. Since this value is

quite close to the marginal value of 3, it is possible that the
higher-order perturbative corrections and genuine non-
perturbative corrections to the large-N value at the rela-
tively small N ¼ 4 could shift the actual value of the
monopole scaling dimension to be greater than 3.
Therefore, the possibility of the long-distance correlation
in the DSL phase on the two non-bipartite lattices,
especially on the Kagomé lattice, is then tied to the infrared
conformality of the N ¼ 4 compact QED3 in the absence of
Q ¼ 1 monopoles—in other terms, to the infrared irrel-
evance of the next-allowed Q ¼ 2 monopole operators in
N ¼ 4 noncompact QED3. The nonperturbative determi-
nation of the scaling dimension of the Q ¼ 2 monopoles in
N ¼ 4 noncompact QED3 using direct lattice simulation is
therefore the main aim of this paper.

II. METHOD

A. Lattice regulated noncompact QED3
and monopole insertions therein

The parity-invariant noncompact theory consists of
Abelian gauge fields AμðxÞ coupled to an even number
of flavors, N, of massless two-component Dirac fermions.
The gauge coupling g2 in the theory has a mass dimension
of 1, which makes the theory super-renormalizable, and we
can use appropriate factors of g2 to make all masses and
lengths dimensionless. We study the lattice regulated
version of the theory on a periodic box of dimensionless
physical volume l3 that is discretized using a lattice of size
L3. The continuum limit of the finite volume theory can be
obtained by extrapolating to L → ∞ limit in different fixed
physical extents l.
We take a brief detour to formally define the noncompact

gauge theory that is explicitly a U(1) gauge theory and
define monopole insertions within this U(1) lattice gauge
theory. The Villain formulation [35] of the noncompact
QED3 can be defined via the path integral,

Z ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
detN=2½=C=C†�WgðθÞ; ð2Þ

where =C is a two-component lattice Dirac operator that is
coupled to the lattice gauge fields θμðxÞ ¼ AμðxÞl=L via
the compact variable UμðxÞ ¼ eiθμðxÞ. The theory is regu-
lated in a parity-invariant manner by coupling N=2 flavors
to =C and the other N=2 to =C†. The contribution from the
gauge sector is WgðθÞ given by

WgðθÞ ¼
X
fNμνg

exp

�
−
L
l

X
x

X
μ>ν

ðFμνðxÞ − 2πNμνðxÞÞ2
�

where FμνðxÞ ¼ ΔμθνðxÞ − ΔνθμðxÞ; ð3Þ
with the sum over configurations of integer values NμνðxÞ
associated with the ðμ; νÞ-plaquette at site x. Since both
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WgðθÞ and the Dirac operator =C are invariant under shifts
θμðxÞ → θμðxÞ þ 2πnμðxÞ for integers nμðxÞ, the path-
integral Eq. (2) is that of U(1) gauge theory coupled to
fermions. The magnetic charge QðxÞ of the monopole at a
site x is defined [36] via the divergence of an integer-valued
current dual to NμνðxÞ; that is,

QðxÞ≡ 1

2

X
μ;ν;ρ

ϵμνρΔμNνρðxÞ: ð4Þ

For the sake of brevity, we simply define a monopole at a
point x with a value of net flux as 2πQ as a flux-Q
monopole. Depending on the constraints on the allowed
values of QðxÞ in the path integral, which thereby corre-
sponds to constraints on the allowed configurations fNμνg
in Eq. (3), one can define different versions of QED3. The
noncompact QED3 is the U(1) gauge theory with the
constraint, QðxÞ ¼ 0, at all x in the continuum limit of
the lattice-regulated theory. In this case, by making use of
the invariance of theory under θμ → θμ þ 2πnμ shifts, one
can write down the path integral in the usual form without
any sum over Nμν as

Z0 ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
detN=2½=C=C†�e−L

l

P
x

P
μ>ν

FμνðxÞ2 :

ð5Þ
We can define the path-integral ZQ with a flux-Qmonopole
inserted at a point x0 and an antimonopole at a point x0 þ r

by subjecting to the constraint NμνðxÞ ¼ NQQ̄
μν ðx; rÞ with

1

2

X
μ;ν;ρ

ϵμνρΔμN
QQ̄
νρ ðx; rÞ ¼ Qδx;x0 −Qδx;x0þr: ð6Þ

The two-point function of a monopole at x0 and x0 þ r is
simply the ratio, ZQ=Z0.
The universal aspects like the anomalous dimensions at

the infrared fixed point should not be sensitive to the exact
details of the lattice operator so long as the operator
quantum numbers are captured correctly. Therefore, we
can choose the type of background flux to better capture the
effect of monopole operators. Instead of introducing

integer-valued flux NQQ̄
μν in the path integral, we follow

the approach of Refs. [37,38] to introduce a classical

background gauge field AQQ̄
μ ðx; rÞ that minimizes the pure

gauge action

Sg ¼ ½BQQ̄
μν ðx; rÞ − 2πNQQ̄

μν ðx; rÞ�2;
BQQ̄
μν ðx; rÞ ¼ ΔμA

QQ̄
ν ðx; rÞ − ΔνA

QQ̄
μ ðx; rÞ; ð7Þ

on a periodic box. We then define the path integral in the
presence of monopole insertions via

ZQ ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
detN=2½=C=C†�

× e−
L
l

P
x

P
μ>ν

ðFμνðxÞ−QB11̄
μνðx;rÞÞ2 ; ð8Þ

using the fact that BQQ̄
μν ¼ QB11̄

μν. The above procedure has
the advantage that the effect of monopole can be com-
pletely removed from the path integral in the pure-gauge
theory (N ¼ 0) by redefining the dynamical gauge field

θμðxÞ → θμðxÞ −AQQ̄
μ ðx; rÞ. Therefore any nonzero effect

of the monopole at finite nonzero N can arise only due to
the presence of massless fermions. This procedure has been
put to test previously in the free fermion theory [39] and at
the critical point of the 3d XY model [39].

B. Monopole correlator and finite-size scaling

The lattice monopole two-point function is given by

Glatðr;l; LÞ ¼
ZQ

Z0

: ð9Þ

As with correlators of regular composite operators com-
posed of local fields, we assume that the lattice correlator
Glat, which is in units of lattice spacing a ¼ l=L, can be
converted into a correlator in physical units Gphys by a
multiplicative factor; namely,

Gphysðr;l; LÞ ¼ a−2D
ðNÞ
Q Glatðr;l; LÞ; ð10Þ

where DðNÞ
Q is the ultraviolet exponent governing the

monopole correlator at short distances. We will discuss
more on the conversion from the lattice to the physical
correlator when presenting the results from our numerical
calculation. The physical continuum correlator,Gphysðr;lÞ,
after extrapolating to L → ∞ will show scale-invariant
behavior at large separations jrj and l as

Gphysðr;lÞ ¼
1

jrj2ΔðNÞ
Q

G
�jrj
l

�
as jrj → ∞; ð11Þ

for some scaling function G. The exponent ΔðNÞ
Q that

governs the long-distance correlator is the infrared scaling
dimension of the monopole operator that we are seeking.
There could be corrections to the above simple scaling from
higher-order 1=l corrections and due to contamination
from higher-dimensional flux-Q monopole operators that
the background field method could overlap with; we
assume such corrections are much smaller compared to
the numerical accuracy of our data. By keeping the ratio
jrj=l ¼ ρ fixed as l is increased,

Gphysðjrj ¼ ρl;lÞ ∝ 1

l2ΔðNÞ
Q

as l → ∞: ð12Þ
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We will follow this procedure in this work and keep the
monopole-antimonopole separation proportional to box
size, thereby reducing the determination of the infrared
scaling dimension to a finite-size scaling analysis.

C. Implementation of the numerical calculation

We studied noncompact theory with N ¼ 4 and N ¼ 12
flavors on periodic Euclidean boxes at multiple values of
physical extents l ¼ 4, 8, 16, 24, 32, 48, 64, 96, 128, 144,
160, and 200. We discretized them on lattices of volume L3

with L ¼ 12, 16, 20, 24, and 28. We used the Wilson-Dirac
operator =Cw that is coupled to 1-step HYP-smeared gauge
field. We tuned to the massless point by tuning the bare
Wilson fermion mass mw so that the first eigenvalue
Λ2
1ðmwÞ of =Cw

=C†
w is minimized as a function of mw.

More details on the two-component Wilson-Dirac operator
and its mass tuning can be found in our earlier work
in Ref. [19].
We chose the displacement vector r between the flux-Q

monopole and antimonopole to be along one of the axis;
namely, the three-vector r ¼ ð0; 0; tÞ for t ¼ aT and
integers T. We kept ρ ¼ t=l ¼ 1=4, an arbitrary choice
in the work to simplify the analysis to a finite-size scaling
one as explained before. For this choice of on-axis r,
a natural choice for N11̄

μν that satisfies Eq. (6) is

N11̄
12ð0; 0; x3Þ ¼ 1 for x3 ∈ ½1; T�, and all other N11̄

μν are set
to 0. Such a choice can be changed arbitrarily by shifts
N11̄

μν → N11̄
μν þ Δμnν − Δνnμ for integers nμðxÞ that move

and bend the Dirac string (the column of plaquettes with 2π
flux) keeping the location of monopole and antimonopole
fixed; however, such variations are unimportant in the U(1)

theory, and therefore, the simplest choice above for NQQ̄
12

suffices. With this choice of N11̄
μν, we determined the

background field A11̄
μ ðxÞ and the field tensor B11̄

μνðxÞ in
the periodic L3 box by analytically minimizing [26] the
action Eq. (7). From this, the background field for any
value of Q can be obtained as QB11̄

μνðxÞ.

The effect of BQQ̄
μν is exponentially suppressed in Eq. (8),

and therefore, it is hard to compute ZQ as an expectation
value in Q ¼ 0 theory. Instead, we follow the approach in
Ref. [39] and computed the logarithm of the above
correlator, which is nothing but the free energy in lattice
units to introduce a monopole-antimonopole pair, as

Flatðr;l; LÞ≡ − logðGlatðr;l; LÞÞ ¼
Z

Q

0

WðζÞdζ; ð13Þ

where

WðζÞ ¼ −
1

Zζ

∂

∂ζ
Zζ; ð14Þ

and Zζ is the extension of the path integral in Eq. (8) by the
replacement Q → ζ for real values of ζ. We have simply
differentiated Flat with respect to an auxiliary variable ζ and
integrated it back again. The reason behind doing so is that
the quantity WðζÞ is computable as expectation values,
h� � �iζ, in the Monte Carlo simulation of the Zζ path
integral; namely,

WðζÞ ¼ 2L
l

X
μ>ν

X
x

B11̄
μνðx; rÞhFμνðxÞ − ζB11̄

μνðx; rÞiζ: ð15Þ

We used 40 different equally spaced values of ζ∈ ½0; 2�.
At each value of ζ, we performed independent hybrid
Monte Carlo (HMC) simulation of Zζ to compute WðζÞ
numerically. From each thermalized HMC run, we gen-
erated between 15K to 30K measurements of WðζÞ. By
using a jackknife analysis, we took care of autocorrelations
in the collected measurements.

III. RESULTS

A. Determination of free energy

From the Monte Carlo simulation, we collected the data
for WðζÞ from the relation in Eq. (15). In Fig. 1, we show

FIG. 1. Representative data points and their interpolations for the lattice determined derivative of free energy,WðζÞ, with respect to the
auxiliary parameter ζ. The top and bottom panels show results for WðζÞ at different l on L ¼ 24 lattice in N ¼ 4 and 12 noncompact
QED3, respectively. The red data points are the actual Monte Carlo determinations. The black bands are the spline interpolations to
the data.
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the numerically determined WðζÞ (the red circles in the
panels) as a function of ζ at all l on a fixed L ¼ 24 lattice.
We show the data from N ¼ 4 and 12 flavor theories in the
set of top and bottom panels, respectively. The actual
simulation points span ζ∈ ½0; 2�. In order to perform the
needed integration in Eq. (13), we interpolated the data
between 0 and 2 using cubic spline first. The black bands in
the figures overlaid over the data points are such inter-
polations. By choosing the end point of the integration of
the interpolated data to be either 1 or 2, we can get the free
energy to introduce the Q ¼ 1 monopole-antimonopole
pair or the Q ¼ 2 monopole-antimonopole pair, respec-
tively. Thus, without an extra computational cost, we study
both Q ¼ 1 and Q ¼ 2 monopoles in this paper.
The numerical integration of the data results in the lattice

free energy, Flatðl;LÞ. In Fig. 2, we show the l dependence
of Flatðl;LÞ for Q ¼ 1, 2 and N ¼ 4, 12. The different
colored symbols within the panels are the data from
different L. At first sight, the apparent decrease in
Flatðl;LÞ with an increase in l at various fixed L might
strike one to be against expectation. The reason behind
such a behavior of the lattice free energy is because the
lattice spacing l=L at various l at a fixed L also changes
when l is increased. The conversion of the lattice free
energy to physical units should restore a physically mean-
ingful increasing tendency of the free energy with the
monopole-antimonopole separation and also be able to
bring an approximate data collapse of the free energy from
different L.
We converted lattice correlatorGlat to physicalGphys by a

lattice spacing dependent factor a−2D
ðNÞ
Q as explained in

Eq. (10). Equivalently, the conversion between the lattice
and physical free energies is brought about by an additive

2DðNÞ
Q logðaÞ term. For regular composite operators built

out of the field operators ψ and Aμ such as a fermion
bilinear ψ̄ iψ̄, the ultraviolet dimensions follow from the
power-counting arguments; taking the example of fermion

bilinear, they are of ultraviolet dimension of two, and the
lattice bilinear can be converted to physical units by a factor
a−2. However, a monopole operator at x is not expressible
in such a simple form in terms of the fermion and gauge
fields at x, and power counting cannot be performed.
Therefore, we have to rely on the empirical determination

of the UV exponent 2DðNÞ
Q . As the exponent DðNÞ

Q should
govern the short-distance behavior of the monopole-anti-

monopole correlator, we estimated DðNÞ
Q from a leading

logarithmic behavior,

FlatðLÞ ¼ F0 þ 2DðNÞ
Q logðLÞ; ð16Þ

of the lattice free energy at a fixed small lattice spacing a ¼
1=7 corresponding to small box-sizes aL ≤ 4 on L ¼ 12 to
28. This is equivalent to short monopole-antimonopole
separations t ¼ aL=4 ≤ 1 on such boxes where the above
logðLÞ dependence could arise. In Fig. 3, we show such a
logðLÞ dependence of FlatðLÞ at a ¼ 1=7 for Q ¼ 1, 2 and
N ¼ 4, 12. The red data points are from the Monte Carlo
simulations on L ¼ 12, 16, 20, 24, and 28 lattices. For
L∈ ½16; 28�, the data is consistent with a logðLÞ dependence
of the free energy. The L ¼ 12 lattice point is slightly off
from the logarithmic behavior, which suggests the presence
of lattice artifacts at such close t ¼ 3a separation between the
monopole and the antimonopole. The black band is the best

fit of Eq. (16) to the data usingF0 andD
ðNÞ
Q as fit parameters.

Our best empirical estimates of the ultraviolet dimensions are

Dð4Þ
1 ¼ 1.85ð11Þ, Dð12Þ

1 ¼ 5.50ð25Þ, Dð4Þ
2 ¼ 4.67ð16Þ, and

Dð12Þ
2 ¼ 14.01ð36Þ, respectively.
Using the determined Flatðl;LÞ and the best fit values of

DðNÞ
Q in the previous analysis, we obtained Fphysðl;LÞ as

Fphysðl;LÞ ¼ Flatðl;LÞ þ 2DðNÞ
Q log

�
l
L

�
: ð17Þ

FIG. 2. The free energy, Flatðl; LÞ, in lattice units is shown as a function of physical box size, l. The values of ðQ;NÞ in the panels
from left to right correspond to (1, 4), (1, 12), (2, 4), (2, 12), respectively. In each panel, the data at L ¼ 12, 16, 20, 24, and 28 are shown.
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We propagated the statistical errors in Flatðl;LÞ and the

estimated DðNÞ
Q into the determination of Fphys by adding

the errors in quadrature. In Fig. 4, we show Fphysðl;LÞ as a
function of logðlÞ for Q ¼ 1, 2 in N ¼ 4 and 12 flavor
theories. In each panel, we show the results of Fphysðl;LÞ
from L ¼ 12, 16, 20, 24, and 28 together. First, we notice
that FphysðlÞ increases monotonically as we expected.
Second, the lattice-to-physical units’ “renormalization

factor” a−2D
ðNÞ
Q has caused a near data collapse of the

Fphysðl;LÞ from multiple L. The residual L dependencies
at fixed l need to be removed by extrapolating to L → ∞ as
we discuss below.
In Fig. 5, we show the residual 1=L dependence of

Fphysðl;LÞ for Q ¼ 1 and 2 monopoles in N ¼ 4 and 12
theories. The data points differentiated by their colors
have a fixed value of l, and they have to be extrapolated

to L → ∞ to estimate the continuum limit FphysðlÞ in
that physical box size. We perform the extrapolation
using a simple ansatz, Fphysðl;LÞ ¼ FphysðlÞ þ kðlÞ=L
with FphysðlÞ and kðlÞ fit parameters, to describe the L
dependence of Fphysðl;LÞ for L∈ ½16; 28�. Such a fit was
capable of describing the L dependence well with
χ2=d.o.f. < 1 in most cases. For l ¼ 112, 128, 144 in
N ¼ 12 theory, we accidentally did not produce the L ¼
28 lattice data. Therefore, we performed the extrapolation
only using L ¼ 16, 20, and 24 datasets in those specific
cases resulting in a comparatively larger statistical error
in their extrapolated values. The various colored bands in
Fig. 5 show the 1=L extrapolations at various fixed l. We
will use the extrapolated FphysðlÞ in the discussion of
infrared dimensions of monopole operators in the next
subsection.

FIG. 4. The free energy Fphysðl; LÞ converted to physical units is shown as a function of l. The data points at fixed L are shown using
the different colored symbols. The values of ðQ;NÞ in the panels from left to right correspond to (1, 4), (1, 12), (2, 4), (2, 12),
respectively.

FIG. 3. Estimation of UV scaling dimension DðNÞ
Q of the flux-Q monopoles from the scaling of the lattice free energy FlatðLÞ in

N-flavor theory with box size L at fixed small lattice spacing l=L ¼ 1=7. The panels show FlatðLÞ as a function of L. The values of
ðQ;NÞ in the panels from left to right correspond to (1, 4), (1, 12), (2, 4), (2, 12), respectively. The data points are the lattice-determined
values of Flat. The black bands are the logðLÞ fits to the data.
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B. Estimation of infrared scaling dimensions

First, we discuss the scaling dimensions in N ¼ 12
theory. Due to the relatively large value of N, this serves
as a test case to see if the values obtained for the scaling
dimension agree approximately with the large-N expect-
ations. In Fig. 6, we show the dependence of FphysðlÞ as a
function of logðlÞ for the N ¼ 12 case. In the left and right
panels, we show the Q ¼ 1 and Q ¼ 2 monopole free
energies, respectively. The black points in the panels are
our estimates for the continuum limits of FphysðlÞ, as
obtained in Fig. 5. For comparison, we also show the data
points for FphysðlÞ from L ¼ 24 lattice before performing
any continuum extrapolation. One expects a simple logðlÞ
dependence only in the large-box limit, corresponding
to large separations between the monopole and the

antimonopole. Within the statistical errors, we see such a
logðlÞ dependence for l ≥ 32. We fitted

FphysðlÞ ¼ f0 þ 2ΔðNÞ
Q logðlÞ; ð18Þ

using a constant f0, and the infrared scaling dimension

ΔðNÞ
Q as fit parameters over two ranges l∈ ½32; 200� and

l∈ ½48; 200� to check for systematic dependence on fit
range. The underlying lattice data for Flat are statistically
independent at different l, but Eq. (17) introduces corre-
lations between different l due to the commonality of the
second term in Eq. (17). We found the covariance matrix of
the data for Fphys at different l close to being singular
making the minimization of correlated χ2 to be not

FIG. 5. The continuum estimates of the FphysðlÞ through 1=L extrapolations of Fphysðl;LÞ at different fixed physical box sizes l
noted beside the data points. The 1=L fits were made over the range L∈ ½16; 28�. The bands show the extrapolations resulting from the
fits. The values of ðQ;NÞ for the panels from left to right correspond to (1, 12), (2, 12), (1, 4), (2, 4), respectively.

FIG. 6. The physical free energy FphysðlÞ in N ¼ 12 QED3 is shown as a function of logðlÞ for Q ¼ 1monopole in the left panel and
Q ¼ 2 monopole in the right panel. The black points are the continuum estimates, and the red points are from a fixed L ¼ 24. The blue
and magenta bands are the logðlÞ fit over l∈ ½32; 200� and [48, 200], respectively.
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practical, and we resorted to uncorrelated χ2 fits; this is an
approximation made in this study. We determined the
statistical errors in fit parameters using the jackknife
method. For the N ¼ 12 theory under consideration, we

determined Δð12Þ
1 and Δð12Þ

2 in this way. We show the
resultant fits over l∈ ½32; 200� and [48, 200] as the blue
and magenta error bands, respectively, in the two panels of
Fig. 6. The slopes of the logðlÞ behavior from the fits over
l∈ ½48; 200� give

Δð12Þ
1 ¼ 2.81ð66Þ and Δð12Þ

2 ¼ 8.2ð1.0Þ; ð19Þ

for Q ¼ 1 and Q ¼ 2 monopoles, respectively. The
χ2=d.o.f. for the two fits are 1.1=6 and 3.2=6, respectively,
which are smaller than the typical value of around 1 due to
the uncorrelated nature of the fit. By using a wider range

of l starting from a smaller l ¼ 32, we found Δð12Þ
1 ¼

2.91ð41Þ and Δð12Þ
2 ¼ 8.91ð54Þ showing only a mild

dependence on the fit range. The large-N expectations

[30,40] for these two scaling dimensions are Δð12Þ
1 ¼

3.1417 and Δð12Þ
2 ¼ 7.882. We see that the estimates from

the fit performed over l∈ ½48; 200� to be quite consistent
with the large-N expectation well within 1-σ error.

The more precise estimate of Δð12Þ
2 from the fit over

l∈ ½32; 200� is slightly higher than the large-N value at
the level of 2-σ and is more probable to be a systematic
effect from using the smaller l ¼ 32 in the fit rather than
arise due to genuine higher 1=N corrections. It is reassuring

that our numerical method obtains values for Δð12Þ
Q that are

consistent with the large-N expectations, which will add

credence to the results from the method at smaller N to be
discussed next. As a minor note, by comparing to the slope
of the red points, we see that continuum extrapolation at all
l was essential, without which we would have overesti-

mated the values of Δð12Þ
Q by instead fitting the l depend-

ence at a fixed L.
First, we consider the Q ¼ 1 monopole in the N ¼ 4

theory. We looked at this case in our earlier work [41]; the
variation in the present study is the usage of higher
statistics, differences in the sampled values of ζ to cover
up to ζ ¼ 2, and the incorporation of dedicated continuum
limits at each fixed l instead of using a simpler one-
parameter characterization of 1=L effects at all l used in the
earlier work. In the left panel of Fig. 7, we show the logðlÞ
dependence of the free energy for Q ¼ 1 monopole in the
N ¼ 4 theory. The black points are the continuum expect-
ations, whereas the red ones are the data from the largest
L ¼ 28 lattice. Again, we see a simple logðlÞ behavior is
consistent with the data from boxes with l∈ ½32; 200�. The
fit to the functional form Eq. (18) over a range l∈ ½48; 200�
gives a slope of

Δð4Þ
1 ¼ 1.28ð26Þ; ð20Þ

with a χ2=d.o.f. ¼ 1.2=6. We show the resulting fit as the
magenta error band in Fig. 7. This is consistent with the

estimate Δð4Þ
1 ¼ 1.25ð9Þ from our earlier work. When we

include the smaller l ¼ 32 in the fit (shown as a blue band),

we find Δð4Þ
1 ¼ 1.27ð13Þ pointing to a very mild depend-

ence on fit range. Clearly, Δð4Þ
1 is smaller than the marginal

value Δc ¼ 3, which makes the Q ¼ 1 monopole operator

FIG. 7. Left panel: the free energy Fphys is shown as a function of logðlÞ for Q ¼ 1 monopole in N ¼ 4 theory. The black points are
the continuum estimates, and the red points are from fixed L ¼ 28 lattice. The blue and magenta bands are the logðlÞ fit over

l∈ ½32; 200� and [48, 200], respectively. The slopes of the fits give the scaling dimension Δð4Þ
1 . Right panel: the difference from the

expectation of the marginally relevant scaling with Δc ¼ 3 is explored. The data points and the fitted bands in the left panel at larger l
are replotted as the difference, FphysðlÞ − 2Δc logðlÞ. The horizontal dashed line is shown to compare the residual slope in the data.
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relevant along the renormalization group flows of N ¼ 4
QED3. We can see the relevance of Q ¼ 1 monopole
operator without any fits by plotting the difference
FphysðlÞ − 2Δc logðlÞ. If the operator is relevant, we
should see a negative slope in the above difference.
Through a simple replotting of the data and fits in the left
panel, we show the logðlÞ dependence of the difference,
FphysðlÞ − 2Δc logðlÞ, in the right panel. We see a clear
negative slope in the data and reach the same conclusion
about the relevance of Q ¼ 1 monopole in N ¼ 4 QED3.
This brings us to the main motivation for the present
work: Is the Q ¼ 2 monopole operator also relevant in
N ¼ 4 QED3?
In the left panel of Fig. 8, we show the logðlÞ

dependence of FphysðlÞ for Q ¼ 2 monopole in N ¼ 4

QED3. As in the previous cases we discussed, given the
statistical errors, the finite-size dependence of FphysðlÞ for
l ≥ 32 is consistent with a simple logðlÞ behavior. The
magenta band shows the fit using such a logðlÞ fit in
Eq. (18) to the data with l ≥ 48. The value of the slope
again gives the scaling dimension. From the best fit values,
we estimate the scaling dimension of Q ¼ 2 monopole in
N ¼ 4 QED3 to be

Δð4Þ
2 ¼ 3.73ð34Þ; ð21Þ

with χ2=d.o.f. ¼ 1.4=6. Thus, Δð4Þ
2 > 3 with a weak stat-

istical significance of about 2-σ. If we start the fit from a

smaller l ¼ 32, we find a similar value Δð4Þ
2 ¼ 3.65ð21Þ

with a smaller error. At Oð1=NÞ in the large-N expansion,

Δð4Þ
2 ¼ 2.498. Our data allows the possibility that either by

the importance of higher 1=N orders in the large-N
expansion or by a breakdown of such an expansion for

N ¼ 4, the value of Δð4Þ
2 could be larger than 3 and make it

irrelevant in the infrared. As we explained in the previous
case ofQ ¼ 1monopole, to argue that the data is consistent

with Δð4Þ
2 > 3 without performing any fits, we replot the

data as a difference FphysðlÞ − 2Δc logðlÞ, where the
second term corresponds to the expected slope at a
marginal dimension Δc ¼ 3. In the right panel of Fig. 8,
we show this difference over a range of larger l. In this plot,
if the Q ¼ 2 monopole was relevant, one should see a
logðlÞ dependence with a negative slope. The trend in the
data indicates a positive slope, which again points to the
consistency of our data with the Q ¼ 2 monopole being
irrelevant. As a final remark, we note that the behavior of

FphysðlÞ with Δð4Þ
2 > 3 is not strongly dependent on the

continuum extrapolation procedure. The red points in the
two panels of Fig. 8 are the free energies at different l on
the largest L ¼ 28 lattice. From the slope of the red points,
we see that we would have reached an even stronger

conclusion that Δð4Þ
2 > 3 from that data alone. Therefore,

the effect of L → ∞ extrapolation has been to make that
conclusion weaker.
We collect the results of ΔðNÞ

Q in Fig. 9. We plot ΔðNÞ
2 as a

function of ΔðNÞ
1 , making the dependence on N implicit.

The solid red points in Fig. 9 are the values determined in
this paper using fits over data from l∈ ½48; 200�. To show
the systematic artifacts in the estimate, we also show the
estimates from fits over data from l∈ ½32; 200� as the open
circles. In the previous work [41], we determined only the

value of Δð2Þ
1 in N ¼ 2 QED3. Therefore, we show a red

FIG. 8. Left panel: the free energy Fphys is shown as a function of logðlÞ for Q ¼ 2 monopole in N ¼ 4 theory. The black points are
the continuum estimates, and the red points are from fixed L ¼ 28 lattice. The blue and magenta bands are the logðlÞ fit over

l∈ ½32; 200� and [48, 200], respectively. The slopes of the fits give the scaling dimension Δð4Þ
2 . Right panel: the difference from the

expectation of the marginally relevant scaling with Δc ¼ 3 is explored. The data points and the fitted bands in the left panel at larger l
are replotted as the difference, FphysðlÞ − 2Δc logðlÞ. The horizontal dashed line is shown to compare the residual slope in the data.

SCALING DIMENSION OF THE 4π-FLUX MONOPOLE … PHYS. REV. D 109, 034507 (2024)

034507-9



band in Fig. 9 to indicate a lack of data for Δð2Þ
2 . We show

the large-N expectation for ΔðNÞ
2 versus ΔðNÞ

1 as the black
crosses. As we discussed before, the top-right red point
from N ¼ 12 QED3 is consistent with the large-N expect-
ation. The vertical and horizontal dashed lines in the figure
indicate the marginal values of Δ1 ¼ 3 and Δ2 ¼ 3,
respectively. The data point from N ¼ 12 lies at the edge
of Δ1 ¼ 3, which indicates that N ¼ 12 QED3 is close to
being the critical flavor below which Q ¼ 1 monopole
becomes irrelevant. As pointed out in [30], one could
conjecture that the critical flavor that separates the mass-
gapped and conformal infrared phases of N-flavor compact
QED3, where all flux-Q monopoles can freely arise, is
around N ≈ 12. The important finding in this paper is that
the N ¼ 4 data point in Fig. 9 lies above the critical

horizontal line, albeit with a weaker statistical significance
of about 2-σ (or 3-σ if one bases the conclusion on the red
open point). We also see that the estimated location of the
N ¼ 4 data point in the plot is quite robust with respect to
change to the fitted range of l. Thus, our data cannot rule
out the scenario where Q ¼ 2 monopole remains irrelevant
along the renormalization group flow even for the N ¼ 4
theory. For comparison, we also show the boundary of the
allowed region in the Δ1 − Δ2 plane for CFTs that have
the symmetries of N ¼ 4 QED3 as determined using the
conformal bootstrap approach. The blue dot-dashed line
is the boundary computed in Refs. [5,6], and the region
below the line is allowed. The magenta dashed line is the
boundary computed in Ref. [9] with the allowed region
enclosed by the curve. In both cases, we obtained the data
from the plots as shown in the two papers, and the region
covered in the Δ1 − Δ2 plane is only representative of the
region shown in the two studies and not a hard cutoff.2 In
both the bootstrap studies, there exists an allowed region
where Δ2 > 3. The data point for the N ¼ 4 case from our
lattice study is quite consistent with this allowed region
within errors, and the central value conspicuously sits right
at the allowed upper boundary line in the two studies. It
would be interesting to fold in this finding as an input for
future conformal bootstrap studies.

IV. CONCLUSIONS

Along with the composite operators such as fermion
bilinears and four-Fermi operators, monopole operators
that introduce 2πQ fluxes around their insertion point
constitute nontrivial insertions in QED3. The motivation
for this study was the question of infrared relevance of the
Q ¼ 2 monopole operators in QED3 coupled to massless
N ¼ 4 Dirac fermion flavors. We used numerical lattice
simulations of noncompact QED3 coupled to N ¼ 4 and
N ¼ 12 flavors of Wilson-Dirac fermions fine-tuned to the
massless point. We estimated the infrared scaling dimen-
sions of Q ¼ 1 and Q ¼ 2 monopoles in the N ¼ 4 and 12
theories from the finite-size scaling analysis of free energy
required to introduce theQ ¼ 1 and 2 monopole-antimono-
pole pairs in the two theories. We validated the method in
N ¼ 12 theory first where the values of the Q ¼ 1 and 2
scaling dimensions would be expected to lie closer to the
values obtained from the first-order large-N expansion.
Then, by applying to the N ¼ 4 theory, we found our best

FIG. 9. The scaling dimension ofQ ¼ 2monopole is plotted as
a function of Q ¼ 1 monopole using their estimates for N ¼ 2, 4
and 12 QED3. The black crosses are the large-N expectations.
The filled red circles are the estimates in this paper obtained from
finite-size scaling analysis of the data over l∈ ½48; 200�. The
open red circles are obtained by fitting the data over l∈ ½32; 200�.
The red vertical band is using the estimate of Δð2Þ

1 from our earlier
work. The two solid black lines indicate the critical value of
Δc ¼ 3 for the two scaling dimensions. The blue dot-dashed line
(taken from [5,6] labeled Bootstrap-1) and the magenta dashed
line (taken from [9] labeled Bootstrap-2) near theN ¼ 4 result are
the boundaries separating the allowed and disallowed regions
using conformal bootstrap methods for CFTs with infrared
symmetry of N ¼ 4 QED3. The region below the blue dot-
dashed line and the region enclosed by the magenta line are the
allowed regions according to the two studies, respectively, each
imposing certain choices of constraints on dimensions of oper-
ators occurring in the conformal expansion of monopole four-
point correlators. The end points of the boundaries are simply the
range shown in the two studies and not a hard cutoff.

2Furthermore, the allowed region is dependent on constraints
imposed on dimensions of operators that occur in the conformal
expansion of four-point functions used in the conformal boot-
strap; we refer the reader to Refs. [5,6] and Ref. [9] for details of
various constraints imposed in the two studies. The blue line in
Fig. 9 corresponds to the case with Δ2 ≥ 2 for R ¼ T, l ¼ 0
operator shown in the upper panel of Figure 7 of [6]. The purple
line in Fig. 9 corresponds to the ΔAA ≥ 2.4 shown in Figure 10
of [9]. The meaning of the constraints and the nomenclature are
discussed in the cited papers.
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estimate for Q ¼ 2 scaling dimension to 3.73(34), which is
consistent with being greater than the marginal value of 3.
Thus, our result favors, and certainly cannot rule out, the
possibility ofQ ¼ 2monopole operators being irrelevant at
the infrared fixed point of N ¼ 4 QED3. We summarized
our results for the scaling dimensions in Fig. 9 that shows
the dimension of Q ¼ 2 monopole as a function of the
dimension of Q ¼ 1 monopole, and we compared it to
determinations from conformal bootstrap.
As argued in Refs. [32,33], the irrelevance of Q ¼ 2

monopole operators at the infrared fixed point of N ¼ 4
noncompact QED3 could imply the possibility of hosting a
stable U(1) Dirac spin liquid phase in non-bipartite lattices,
such as on the triangular and Kagomé lattice. On such
lattices, it has been argued [32,32] that the Q ¼ 1 monop-
oles are disallowed due to symmetry reasons, and the most
important destabilizing perturbation could be that of the
next allowed higher-flux monopole, which is the Q ¼ 2

monopole on the Kagomé lattice. The findings from our
numerical study mildly support the exciting possibility that
the higher-flux monopoles might not destabilize the Dirac
spin liquid on such non-bipartite lattices.
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