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The phase diagram and the equation of state of quantum chromodynamics (QCD) is investigated in the
presence of weak background electric fields by means of continuum extrapolated lattice simulations. The
complex action problem at nonzero electric field is circumvented by a novel Taylor expansion, enabling the
determination of the linear response of the thermal QCD medium to constant electric fields—in contrast to
simulations at imaginary electric fields, which, as we demonstrate, involve an infrared singularity. Besides
the electric susceptibility of QCD matter, we determine the dependence of the Polyakov loop on the field
strength to leading order. Our results indicate a plasma-type behavior with a negative susceptibility at all
temperatures, as well as an increase in the transition temperature as the electric field grows.
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I. INTRODUCTION

The phase structure of quantum chromodynamics (QCD)
in the presence of background electromagnetic fields is
an essential attribute of the fundamental theory of quarks
and gluons and, accordingly, a subject of active theore-
tical research. The electromagnetic response of the QCD
medium is relevant for a range of physical situations, e.g.,
the phenomenology of heavy-ion collisions, the description
of neutron star interiors or the evolution of our universe in
its early stages, see the reviews [1,2]. Electric fields have
been discussed both in the context of neutron stars (with
inhomogeneous cores) [3] as well as for the initial stages of
heavy-ion collisions [4,5]. If in these settings the electro-
magnetic fields are sufficiently long-lived compared to
the strong scale (this is a delicate topic for heavy-ion
collisions [6–8]), it is appropriate to consider QCD matter
in a background magnetic or electric field in equilibrium.
Before equilibration, electric fields E induce a dy-

namical response via the electrical conductivity of the
medium [9]. The subsequently emerging equilibrium
necessarily involves—in contrast to the case of magnetic
fields B—an inhomogeneous charge distribution nðxÞ in
the thermal medium while having constant temperature T
everywhere [10]. The distribution is uniquely fixed by the
requirement that pressure gradients and electric forces
cancel each other and thus no currents flow [11]. The
equilibrium system is therefore described by a local
canonical statistical ensemble, where nðxÞ is held fixed.

It differs from the grand canonical ensemble parametrized
by chemical potentials, employed usually at E ¼ 0. This
aspect renders comparisons between equilibrium systems
at E > 0 and E ¼ 0, e.g., by means of lattice simulations,
problematic.
Moreover, the proper definition of the equilibrium state

at E > 0 requires infrared regularization (e.g., a finite
spatial volume V) that prevents charges to be accelerated
to infinity. As we have demonstrated recently within
perturbative QED [12], the E → 0 and V → ∞ limits of
this setup do not commute at nonzero temperature. This
renders approaches based on Schwinger’s exact E > 0
infinite-volume propagator [13] and infrared-regularized
weak-field expansions in the manner of Weldon [14]
inherently different. For a certain physical setting, the
boundary conditions determine which is the appropriate
limit to consider. The generalization of these ideas to the
case of QCD enables one to explore the impact of back-
ground electric fields on strongly interacting matter as well
as the associated phase diagram: our objectives in the
present paper.
The impact of magnetic fields on the QCD cross-

over [15,16] and the corresponding phase diagram is
well understood and has been studied extensively on the
lattice [17–22], aswell as withinmodels and effective theory
approaches (for a recent review, see Ref. [23]). In contrast,
electric fields render the QCD action complex, hindering
standard lattice simulations. Alternative approaches include
Taylor-expansions [24–27], calculations at imaginary elec-
tric fields [28–35] and simulations with electric fields that
couple to the isospin charge of quarks [36]. Still, there are no
existing results for the QCD equation of state nor the
phase diagram. The latter has only been studied within
effective theories like the linear σ model [37], variants of
the Nambu-Jona-Lasinio (NJL) model [38–41] and the
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Euler-Heisenberg effective action [42]. These calculations
are all based on the Schwinger propagator.
In this paper, we determine the QCD equation of state

and the phase diagram on the lattice for the first time for
weak background electric fields. The complex action
problem is circumvented via a Taylor-expansion: this
corresponds to the Weldon-type regularization of the
electrically polarized thermal medium and is the proper
description of a finite system, where equilibration takes
place in the presence of a weak electric field. The expansion
is based on the method we developed in Refs. [12,43], and
resembles the analogous approach for background mag-
netic fields [44–46]. Besides the leading coefficient—the
electric susceptibility of QCD matter—we also determine
the leading series of the Polyakov loop. Using this
observable, we construct the phase diagram and demon-
strate that the transition temperature increases as E grows—
contrary to existing model predictions, e.g., [40]. Finally,
we demonstrate that lattice simulations at nonzero imagi-
nary electric fields cannot be used to directly calculate the
electric susceptibility due to the singular change of ensem-
bles between E ¼ 0 and iE ≠ 0. Some of our preliminary
results have already been presented in Ref. [43].

II. LATTICE SETUP AND OBSERVABLES

QCD matter in thermal equilibrium is a medium that can
be polarized by weak background electromagnetic fields.
The associated static linear response is characterized by the
electric and magnetic susceptibilities (we employ the same
notation as in Ref. [12]). These are defined via the matter
free energy density f,

ξb ¼−
d2f

dðeEÞ2
����
E¼0

; χb ¼−
d2f

dðeBÞ2
����
B¼0

: ð1Þ

Here, the subscript b indicates that both susceptibilities
contain ultraviolet divergent terms that must be subtracted
via additive renormalization, see below. The elementary
charge e is included so that we can work with the
renormalization group invariants eE and eB.
The matter free energy density can be rewritten using the

partition function Z of the system. Using the rooted
staggered formalism of lattice QCD, it is given by the
Euclidean path integral over the gluon links U,

Z ¼
Z

DUe−βSg
Y
f

det½=DðqfÞ þmf�1=4; ð2Þ

where β ¼ 6=g2 is the inverse gauge coupling and mf

denotes the quark masses with f ¼ u, d, s running over the
quark flavors. We use a periodic spatial volume V ¼ L3

with linear size L. Note that Z corresponds to the grand
canonical ensemble; its relation to the canonical one atE > 0
is discussed in Sec. II B. In Eq. (2), Sg is the gluon action

(in our discretization, the tree-level improved Symanzik
action) and =Df is the staggered Dirac operator (including
a twofold stout smearing of the links) that contains the quark
charges qu=2 ¼ −qd ¼ −qs ¼ e=3. The quark masses are
set to their physical values as a function of the lattice spacing
a [47]. Further details of the action and of our simulation
algorithm are given in Refs. [18,48].
We choose a gauge for the background electromagnetic

field Aν, where A0ðx1Þ represents the electric field (pointing
in the x1 direction) and A2ðx1Þ the magnetic field (in the
x3 direction). While magnetic fields are identical in
Minkowski and Euclidean space-times, the vector potential
relevant for the electric field undergoes a Wick rotation so
that A4 ¼ iA0. This is similar to the case of a (real) charge
chemical potential μ, corresponding to a homogeneous A0

field. In the path integral (2), Aν enters the Dirac operator in
the form of parallel transporters uν;f ¼ expðiaqfAνÞ multi-
plying the gluon links Uν with 1 ≤ ν ≤ 4. In the case of
imaginary electric fields and imaginary chemical potentials
the parallel transporters again take the form of phases, and
their effect will be separately discussed in Sec. III C.
Finally we mention that in our setup, the electromagnetic
field is not dynamical, i.e. quarks do not interact with each
other via photons but only couple to the background gauge
field. The independent thermodynamic variable is the field
E that enters the Dirac operator, analogously to the
situation for magnetic fields [49].

A. Susceptibility

As we demonstrated in Ref. [12], the susceptibilities of
Eq. (1) are related to derivatives of the electromagnetic
vacuum polarization tensor with respect to spatial
momenta. For our gauge choice, these relations read in
terms the Euclidean polarization tensor Πμν,

ξb ¼−
1

2

∂
2Π44ðkÞ
∂k21

����
k¼0

; χb ¼
1

2

∂
2Π22ðkÞ
∂k21

����
k¼0

; ð3Þ

with a spatial momentum k ¼ ðk1; 0; 0; 0Þ. In other words,
the zero momentum limit is considered at vanishing time-
like frequency, reflecting the static nature of the suscep-
tibilities. The negative sign for ξb in (3) appears due to the
Wick rotation of the electric field. We highlight that the
equilibrium systems at different values of E exhibit differ-
ent charge profiles nðx1Þ, and this implicit E-dependence is
taken into account properly in Eq. (3) for the calculation of
ξb [12]. In fact, without this contribution, ξb would diverge
in the k1 → 0 limit.
The vacuumpolarization tensor is defined as the correlator

ΠμνðkÞ ¼
Z

d4xeikxhjμðxÞjνð0Þi; ð4Þ

of the electromagnetic current jμ ¼
P

f
qf
e ψ̄fγμψf, for

which we use the conserved (one-link) staggered vector
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current. It is convenient to evaluate (3) in coordinate space,
where the bare susceptibilities become [12,43]

ξb ¼ −hGð2Þ
44 i; χb ¼ hGð2Þ

22 i; ð5Þ

containing the secondmoment of a partially zero-momentum
projected two-point function

Gð2Þ
μν ¼

Z
L=2

0

dx1x21Gμνðx1Þ; ð6Þ

Gμνðx1Þ ¼
Z

dx2dx3dx4jμðxÞjνð0Þ: ð7Þ

TheGrassmann integral over quark fields is understood to be
implicitly carried out on the right-hand side of the last
equation.
Both susceptibilities undergo additive renormalization.

This originates from the multiplicative divergence in the
electric charge e [45,50,51]. Being temperature-indepen-
dent, the divergence cancels in

ξ¼ ξbðTÞ− ξbðT ¼ 0Þ; χ ¼ χbðTÞ− χbðT ¼ 0Þ; ð8Þ

which sets ξ ¼ χ ¼ 0 at zero temperature. In fact, at T ¼ 0

Lorentz invariance ensures that hGð2Þ
22 i ¼ hGð2Þ

44 i, implying
that the bare magnetic and electric susceptibilities coincide
up to a minus sign. To renormalize the electric suscep-
tibility, we can therefore employ the existing results for
χbðT ¼ 0Þ from Ref. [45].

B. Polyakov loop and its expansion

Next we consider the bare Polyakov loop operator,

Pb ¼
1

V

Z
d3xReTr

Y
x4

U4ðxÞ: ð9Þ

Its expectation value is related to the free energy of a static,
electrically neutral color charge and is often taken as a
measure of deconfinement. Just as for ξb, the contribution
of the equilibrium charge profile needs to be taken into
account for the E-dependence of the Polyakov loop as well.
As we will show below, the proper second-order expansion
of hPbi is given by the correlator

φn
E ≡ d2hPbin

dðeEÞ2
����
E¼0

¼ V
T

h
−hPbG

ð2Þ
44 i þ hPbihGð2Þ

44 i
i
; ð10Þ

where the superscript n on the left denotes that the
derivative is evaluated along the equilibrium condition
specified by the local charge profiles. Analogously, the
magnetic derivative of hPbi can be obtained by replacing

−Gð2Þ
44 by Gð2Þ

22 in Eq. (10), although in that case nontrivial

charge distributions do not appear. The rest of this sub-
section is devoted to the derivation of Eq. (10).
In the presence of the electric field, the equilibrium

charge density profile nðx1Þ varies in the x1 direction (the
coordinate system is chosen so that −L=2 ≤ x1 ≤ L=2). We
now consider the implications of such an equilibrium using
a homogeneous background field generated by the vector
potential A0ðx1Þ ¼ Ex1, regularized by the finite system
size (assuming open boundary conditions). Moreover, the
field is assumed to be weak so that the system can be
thought of as a collection of subsystems with approxi-
mately constant density. These are characterized by a
canonical ensemble hPbin parameterized by the local
density, instead of the usual grand canonical ensemble
average hPbi parametrized by the charge chemical potential
μ̄ðx1Þ. The two are related by a local Legendre trans-
formation [12],

hPbin ¼
1

L

Z
dx1

�
hPbi − μ

∂hPbi
∂μ

�
μ¼μ̄ðx1Þ

: ð11Þ

The local chemical potential is fixed by the require-
ment that diffusion and electric forces cancel, i.e.,
μ̄ðx1Þ ¼ −eEx1. This choice corresponds to a globally
neutral system, where the volume average of the charge
chemical potential vanishes.
Taking the second total derivative of (11) with respect to

eE, and evaluating it at E ¼ 0 (implying μ̄ ¼ 0), we obtain
for the left-hand side of (10),

φn
E ¼ 1

L

Z
dx1½φE − φμ · x21�; ð12Þ

with

φE ¼ ∂
2hPbi

∂ðeEÞ2
����
E¼0

; φμ ¼
∂
2hPbi
∂μ2

����
μ¼0

: ð13Þ

The Polyakov loop operator Pb does not depend explicitly
on the electric field nor on the chemical potential. The
derivatives of hPbi therefore merely involve the derivative
of the weight in the path integral (2).
Let us first discuss φμ. The chemical potential multiplies

the volume integral of j4 in the Euclidean action (before
integrating out fermions), therefore

φμ ¼
Z

d4yd4z½hPbj4ðyÞj4ðzÞi− hPbihj4ðyÞj4ðzÞi�; ð14Þ

where we used that hj4ðyÞi ¼ 0 due to parity symmetry.
Substituting the integration variable z by u ¼ z − y,
exploiting the translational invariance of the correlators
and using the definition (7) of the projected correlator, we
arrive at
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φμ ¼
V
T

Z
du1½hPbG44ðu1Þi − hPbihG44ðu1Þi�: ð15Þ

Next, we turn to φE. This time, the Euclidean action
contains the four-volume integral of ieA4ðy1Þ · j4ðy1Þ with
A4ðy1Þ ¼ iEy1. The second derivative therefore becomes

φE ¼
Z

d4yd4zy1z1½hPbj4ðyÞj4ðzÞi − hPbihj4ðyÞj4ðzÞi�;

ð16Þ

We proceed by rewriting y1z1 ¼ −ðz1 − y1Þ2=2þ ðy21 þ
z21Þ=2 and use that the second term can be replaced by y21 as
it multiplies a factor that is symmetric under the exchange
of y1 and z1 under the integrals. With the same variable
substitution as above, the use of translational invariance of
the correlators this time gives

φE ¼ −
V
T

Z
du1

u21
2
½hPbG44ðu1Þi − hPbihG44ðu1Þi�

þ 1

L

Z
dy1y21 · φμ: ð17Þ

The second term in (17)—where we recognized φμ from
Eq. (15)—is clearly divergent in the thermodynamic limit.
Coming back to (12), we see that this infrared singular term
exactly cancels in φn

E, rendering the curvature of the
Polyakov loop expectation value finite when evaluated
along the equilibrium condition involving the inhomo-
geneous charge profile. Finally, employing the u1 ↔ −u1
symmetry of the E ¼ 0 system, we end up with Eq. (10),

involving the second moment Gð2Þ
44 defined in Eq. (6).

Up to this point we considered the bare Polyakov loop,
which is subject to multiplicative renormalization [52],

Pða;T;EÞ¼Pbða;T;EÞ ·
�

P⋆

Pbða;T⋆;E¼ 0Þ
�

T⋆=T
; ð18Þ

where the renormalization factor (i.e., the second factor) is
independent of the background field and has been deter-
mined for our lattice spacings in Ref. [53]. In our
renormalization scheme, we fix hPi ¼ 1 at T ¼
162 MeV and E ¼ B ¼ 0. The renormalization point, T ¼
162 MeV approximately coincides with the deconfinement
temperature one infers from the strange quark susceptibility
at E ¼ 0 [54]. We will later use the criterion hPi ¼ 1 to
estimate the transition temperature at E ≠ 0 as well based
on the same notion.

III. RESULTS

We will now report on the measured observables,
including some details on the G44 correlator, which plays
a central role in our method. We also discuss the immediate
conclusions one can draw from the behavior of the

observables. We start with the susceptibility, then discuss
the Polyakov loop and the deconfinement temperature, and
finally we comment on simulations carried out in imaginary
electric fields.

A. Susceptibility

We have measured the zero-momentum projected den-
sity-density correlator hG44i, defined in (7), for a broad
range of temperatures on Nt ¼ 6, 8, 10 and 12 lattice
ensembles. Each ensemble consists of 100-300 gauge
configurations, separated by five hybrid Monte-Carlo
trajectories to reduce autocorrelation. We use Oð1000Þ
random sources located on three-dimensional x1-slices of
our lattices for the calculation. We take into account both
connected and disconnected contributions in the two-point
function. More details regarding the implementation can be
found in [44], where the analogous hG22i current-current
correlator is evaluated for the magnetic susceptibility.
In Fig. 1 we show the zero-momentum projected hG44i

as a function of the coordinate at T ≈ 176 MeV. For
comparison, the current-current correlator hG22i, relevant
for the magnetic response, is also included. A substantial
difference is visible, reflecting the absence of Lorentz
symmetry at this high temperature. It is interesting to note
the systematic oscillation of hG44ðx1Þi between even and
odd distances—related to the use of staggered fermions—
which is however absent for hG22ðx1Þi.
To assess finite volume effects, we consider the con-

volution (6) and truncate it at a distance xmax
1 . The so

obtained truncated susceptibility approaches the full sus-
ceptibility at xmax

1 ¼ L=2 and is plotted in Fig. 2 for two
different volumes. On the 243 × 6 lattice, the plot shows
that contributions coming from the middle of the lattice
volume are exponentially small, as expected. Moreover, at
xmax
1 ¼ L=2, the results obtained on the two volumes agree
with each other within errors. The dominant systematic

FIG. 1. Current-current hG22i (blue) and density-density hG44i
(red) correlators at T ≈ 176 MeV on our 243 × 6 lattices. The
former has been multiplied by 10 for better visibility. Filled
(open) points indicate positive (negative) values.
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error for the determination of our final result is found
to come from the continuum extrapolation, which is
discussed below on the level of the susceptibility ξ itself.
We note that the same two-point function, hG44i is
required, at zero temperature, for the calculation of the
hadronic contribution to the muon anomalous magnetic
moment, see e.g. Ref. [55].
Once the correlator hG44i is evaluated, it is convolved

with the quadratic kernel according to Eq. (6) to find the
bare electric susceptibility ξb, and its renormalization (8) is
carried out by subtracting the zero-temperature contribu-
tion. The negative of the so obtained ξ is plotted in the
upper panel of Fig. 3. A continuum extrapolation is
performed via a multi-spline fit of all data points, taking
into accountOða2Þ lattice artefacts. The systematic error of
the fit is estimated by varying the spline node points and
including Oða4Þ discretization errors in the fit at low
temperatures.
For all temperatures we observe ξ < 0, translating to an

electric permittivity below unity—a characteristic feature
of plasmas [56]. At high T, our results may be compared to
the high-temperature limit calculated for noninteracting
quarks of mass m [12] (see also Refs. [57,58]),

ξfree⟶
T→∞−

X
f

ðqf=eÞ2
Nc

12π2
·
�
log

T2π2

m2
− 2γE− 1

�
; ð19Þ

where Nc ¼ 3 is the number of colors.1 In full QCD, the
quark mass is replaced by a QED renormalization scale
μQED that can be determined at T ¼ 0 and is found to be

μQED ¼ 115ð6Þ MeV [45], close to the mass of the lightest
charged hadron, i.e., the pion. Moreover, QCD corrections
are included by taking into account OðαsÞ effects in the
prefactor, the QED β-function [45,62]. The associated
thermal scale is varied between πT and 4πT for error
estimation. The so obtained curve lies very close to our
results at high temperature, as visible in the lower panel of
Fig. 3, where we also show the corresponding results for χ
from Ref. [45].

B. Polyakov loop and the phase diagram

Next we turn to the Polyakov loop. As mentioned above,
it is related to the negative exponential of the free energy of
an infinitely heavy electrically neutral test quark, expected
to be nonzero in the deconfined and suppressed in the
confined phase. While it is only a true order parameter of
deconfinement in pure gauge theory, it still acts as an
approximate order parameter in full QCD and clearly
signals its finite temperature crossover transition. For the

FIG. 2. Bare electric susceptibility obtained via a truncation of
Eq. (6) for two different volumes, 243 × 6 (red) and 163 × 6
(blue). The inset zooms into the region near xmax

1 ¼ Nsa=2.

FIG. 3. Upper panel: the negative of the renormalized electric
susceptibility as a function of the temperature for four lattice
spacings (colored symbols) and a continuum extrapolation
(orange band). Lower panel: continuum extrapolated magnetic
(green) and electric (orange) susceptibilities (solid) compared to
leading-order perturbation theory (dashed).

1This formula (as well as our lattice results) correspond to the
Weldon-type approach, i.e., a weak E-expansion in the infrared
regularized system. Employing Schwinger’s exact E > 0 infinite-
volme propagator instead gives a perturbative result that differs
from (19) by terms of OððT=mÞ0Þ [12,59–61].
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smooth crossover many definitions of the transition temper-
ature can be constructed, based on fermionic or gluonic
observables, see, e.g., Ref. [63]. For the present study,
fermionic definitions would require the measurement of
three-point functions and are numerically very expensive.
Therefore, here we will study the temperature and electric
field dependence of the Polyakov loop and identify
transition temperatures based on that.
The leading expansion of hPi with respect to the electric

field is given by Eq. (10), containing the correlator of the

bare observable with −Gð2Þ
44 . This quantity is plotted in the

upper panel of Fig. 4 for our Nt ¼ 6 lattices, revealing
negative values for the complete range of temperatures, i.e.,
a reduction of the Polyakov loop by the electric field. Finite
volume effects are found to be small, although the results at
low temperature have large statistical uncertainties. Using
the results for the Polyakov loop at E ¼ 0 [53] and the
multiplicative renormalization factor from Eq. (18), we
construct the E-dependence of hPi, see the lower panel of
Fig. 4. The Polyakov loop is known to exhibit a smooth
temperature-dependence, so that a precise determination of
its inflection point is cumbersome already at E ¼ 0. As an
alternative, we associate the transition temperature Tc with
the point where hPi ¼ 1 holds. Defined in this manner, the
lower panel of Fig. 4 clearly shows that Tc is increased by
E. Other definitions—especially ones based on fermionic
observables—will give slightly different values for the
transition temperature, as expected in the case of a cross-
over transition. Nevertheless, as one can see from the lower

panel of Fig. 4, all reasonable definitions based on the
Polyakov loop will lead to an increase of the transition
temperature.
Specifically, we use a piecewise linear interpolation of

the E > 0 results for the Polyakov loop to determine the
crossing point hPi ¼ 1. The statistical error is obtained via
a jackknife procedure, while the systematic error is esti-
mated by considering a cubic spline for the interpolation
instead. Using the same definition for all four lattice
spacings, we can construct a continuum extrapolated phase
diagram based on the deconfinement temperature. We
perform the continuum extrapolation by a quadratic fit
of TcðEÞ taking into account Oða2Þ lattice artefacts. To
estimate the systematic error, we vary the fit range and also
allow a quartic term in the fit. The fits are found to be stable
for the region E≲ 0.3 GeV2. To estimate the validity of our
expansion, we also calculated the second derivative of hPi
with respect to a background magnetic field. Comparing
this leading series to existing B > 0 results [53], we find
agreement within errors up to similar typical field strength
values, eB≲ 0.3 GeV2. Our results are shown in Fig. 5,
confirming the significant enhancement of Tc as the electric
field grows.
The curvature of the transition line is found to be

κE ≡ ∂
2TcðEÞ
∂ðeEÞ2

����
E¼0

¼ 0.37ð9Þ GeV−3: ð20Þ

Furthermore, we find the transition to get stronger as E
grows, revealed by an enhancement of the slope of the
Polyakov loop as a function of T, see Fig. 4. However, due
to the large uncertainties at low temperatures, we cannot
make a quantitative statement about this aspect.

FIG. 4. Upper panel: the leading expansion coefficient of the
bare Polyakov loop as a function of the temperature as obtained
on two different volumes. Lower panel: renormalized Polyakov
loop at nonzero electric fields, constructed from the leading
Taylor series. The crossing point with the dashed yellow line is
identified with Tc.

FIG. 5. Transition temperature as a function of the electric field
for different lattice spacings (colored symbols) and a continuum
extrapolation (yellow band). Higher-order effects in eE become
non-negligible for eE ≳ 0.3 GeV2, indicated by the dashed
section of the fits.
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C. Imaginary electric fields

Finally, we consider lattice simulations at constant
imaginary electric fields iE ¼ Ê. Below we will also
include imaginary charge chemical potentials iμ ¼ μ̂ in
the discussion. In a finite periodic volume at nonzero
temperature, the allowed electric field values are quantized
in terms of the smallest quark charge qd as qdÊ ¼ 2πT=L ·
Ne with the ‘flux’ quantum Ne ∈Z [64]. For the down
quark for example, the corresponding lattice gauge links
from Sec. II read

u1;dðxÞ¼
�
exp½−iaqdÊLx4� if x1 ¼L−a;

1 otherwise;

u2;dðxÞ¼ u3;dðxÞ¼ 1;

u4;dðxÞ¼ exp½iaqdÊx1�: ð21Þ

This setup does not correspond to the analytic continu-
ation of the local canonical ensemble as described in the
introduction. Nevertheless, it involves a global constraint:
the total electric charge in the periodic volume vanishes. As
a consequence, this setup is independent of the global
imaginary chemical potential. Indeed, including any μ̂ ≠ 0
can be canceled in the gauge field by a mere coordinate
translation x01 ¼ x1 þ μ̂=Ê. Under this change, the lattice
field (21) transforms as

u4;dðxÞ ¼ exp½iaqdðÊx1 þ μ̂Þ� ¼ exp½iaqdÊx01�; ð22Þ

which is an invariance of the system with the quantized
electric field. This is in stark contrast to the situation at
Ê ¼ 0, where a dependence on μ̂ is naturally present. (From
this discussion it is also clear that the quantized electric
field forces the independence on the chemical potential that
couples to the same quantum numbers, i.e., the charge
chemical potential.)
To demonstrate this point, we neglect gluonic inter-

actions in the following. In this simplified setting, we can
calculate the free energy density directly via exact diag-
onalization of the Dirac operator.2 In the right side of Fig. 6
we show the results for Δf ¼ f − fðÊ ¼ μ̂ ¼ 0Þ obtained
on a 2003 × 20 lattice with quark mass m=T ¼ 0.08. As
expected, f is found to be independent of the imaginary
chemical potential in the whole range 0 ≤ μ̂ ≤ πT at any
Ê ≠ 0 (the points corresponding to different μ̂ lie on top of
each other in the figure). The comparison to a larger volume
3003 × 20 shows that the smallest allowed electric field
value approaches zero in the thermodynamic limit, but
limÊ→0 fðÊÞ ≠ fðÊ ¼ 0Þ. Instead, the data points rather
accumulate toward the average of f over all possible
imaginary chemical potential values—i.e., a canonical

setup where the total charge is constrained to zero.
Altogether, we conclude that the dependence of f on Ê
is singular at Ê ¼ 0 in the thermodynamic limit, rendering
simulations with homogeneous imaginary electric fields
unsuited for the evaluation of ξ.
In addition, the left side of Fig. 6 showsΔf for oscillatory

imaginary electric fields with the profile Êðx1Þ ¼
Ê

ffiffiffi
2

p
cosð2πnx1=LÞ. In this case, only the u4;fðxÞ lattice

links are nontrivial. The role of the infrared regulator is
played by the wave number n and not by the volume.
Moreover, here Ê is a continuous variable but n∈Z is
discrete. This setup does not fix the overall charge and,
therefore, maintains the dependence of f on μ̂. Indeed, the
results reveal a continuous behavior as a function of Ê and μ̂.
However, as visible in the plot, the results again approach a
singular behavior as the infrared regulator is removed: the
curves collapse to a set of node-points, independent of μ̂,
approaching the Ê ¼ 0 axis. In particular, by looking at the
behavior of the μ̂ ¼ 0 curves near Ê ¼ 0, one sees that the
curvature of f with respect to Ê diverges for n → 0. Thus,
the homogeneous limit of the setup with oscillatory imagi-
nary fields reproduces what we have already seen for the
homogeneous case.
In the interacting case, the dependence of the Polyakov

loop on Ê reinforces this picture. In lattice simulations with
constant imaginary electric fields at nonzero temperature,
the Polyakov loop was observed to develop a local phase
proportional to the local vector potential argPbðx1Þ ∝
eÊx1=T [33] (see also the analogous study [65]). This
results from the preference of local Polyakov loops toward
different center sectors for different x1. Together with the
quantization condition for the imaginary electric flux, this
corresponds to a topological behavior of the Polyakov loop
anglewinding around the lattice. Thus, thevolume-averaged

FIG. 6. Free energy density as a function of homogeneous (right
side) and oscillatory (left side) imaginary electric fields. The
results for different imaginary chemical potentials correspond to
the set of curves in the left (μ̂ grows from0 to πT from the bottom to
the top), while they lie on top of each other on the right.

2Some of the results in Fig. 6 we discussed previously in
Ref. [12].
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Pb vanishes in these simulations, showing the singular
change of relevant ensembles as the electric field is switched
on (grand canonical at Ê ¼ 0 but canonical at Ê > 0).
Again, we conclude that simulations with homogeneous
imaginary electric fields cannot be used for a direct
comparison to the Ê ¼ 0 system.

IV. DISCUSSION

In this paper we studied the thermodynamics of QCD at
nonzero background electric fields E via lattice simulations
with physical quark masses. To avoid the complex action
problem at E > 0, we employed a leading-order Taylor-
expansion. This approach is more complicated than the
analogous expansion in a chemical potential, because the
impact of E on the equilibrium charge distribution needs to
be taken into account [12]. Our results, measured on four
different lattice spacings and extrapolated to the continuum
limit, demonstrate two main effects. First, that QCD matter
is described by a negative electric susceptibility at all
temperatures. Second, that the QCD transition, as defined
in terms of the Polyakov loop, is shifted to higher temper-
atures as the electric field grows, leading to the phase
diagram in Fig. 5. Furthermore, we showed that lattice
simulations employing imaginary electric fields cannot be
used to directly assess these aspects due to a singular
behavior around E ¼ 0.

We mention that the susceptibility and the phase diagram
are both encoded by the thermal contributions to the real
part of the free energy density. These are therefore not
impacted by Schwinger pair creation, which is related to the
imaginary part of f and is known to be independent of the
temperature [59,60]. In other words, the equilibrium charge
profile and the polarization of the medium are related to the
distribution of thermal charges and not of those created
from the vacuum via the Schwinger effect.
Finally we point out that calculations within the PNJL

model [40], employing the Schwinger propagator, predict
the opposite picture for the phase diagram as compared to
our findings. Whether the same tendency holds for the
Weldon-type regularization within this model, is an open
question calling for further study. Besides this aspect, the
PNJL model is known to miss important gluonic effects in
the presence of electromagnetic fields and fails to correctly
describe the phase diagram at B > 0 [23]. It would be
interesting to see whether improvements that were found to
correct these shortcomings of the model in the magnetic
setting [66] also work in the E > 0 case.
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