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We collect spectra extracted in the I ¼ l ¼ 1 ππ sector provided by various lattice QCD collaborations
and study the mπ dependence of ρ-meson properties using Hamiltonian effective field theory (HEFT). In
this unified analysis, the coupling constant and cutoff mass, characterizing the ρ − ππ vertex, are both
found to be weakly dependent on mπ , while the mass of the bare ρ, associated with a simple quark-model
state, shows a linear dependence on m2

π . Both the lattice results and experimental data can be described
well. Drawing on HEFT’s ability to describe the pion mass dependence of resonances in a single formalism,
we map the dependence of the phase shift as a function of mπ and expose interesting discrepancies in
contemporary lattice QCD results.
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I. INTRODUCTION

One of the most significant challenges in hadron physics
is to understand the internal composition of diverse
hadrons. However, because of the nonperturbative nature
of the strong interaction in the low energy regime, the
structure of hadrons within quantum chromodynamics
(QCD) has remained unsolvable analytically. In order to
develop insight into hadron structure and guide experi-
mental work, a wide variety of phenomenological models
have been developed. This includes the constituent quark
model [1], the MIT [2] and cloudy bag models [3,4] as well
others based upon Schwinger-Dyson equations [5] and
molecular [6] and hybrid [7] models. As it is often possible
to adjust the parameters in these models in order to
reproduce the limited experimental data, these models
can typically not be distinguished solely on the basis of
how well they describe experiments.
On the other hand, the approximate chiral symmetry

of QCD means that the pion is a pseudo-Goldstone
boson, with a much smaller mass, mπ , than other hadrons.
Because the mass of the pion squared is proportional to the
quark mass over a wide range, it is reasonable to expand
certain physical variables in terms of mπ . For instance,

the mass of a resonance R can be expressed perturbatively
as follows:

mR ¼
X∞
n¼0

αnðfgigÞm2n
π þ ΣRðfgig; mπÞ; ð1Þ

where fgig is the set of free parameters of the model and ΣR
is the self-energy term. The separation described in Eq. (1)
differentiates between the known model-independent coef-
ficients of terms nonanalytic in the quark mass which are
contained within the self-energy terms, and the unknown
coefficients of terms analytic in the quark mass, coefficients
that are constrained by fitting data.
In the real world, mπ takes the fixed value μπ ≈

138.5 MeV (for charged pions), and it is typically feasible
to adjust the free parameters of a model, fgig, to reproduce
the correct experimental value,mRðμπÞ. However, when we
extend the model to unphysical pion masses these models
may predict different values of mR versus mπ . The
dependence of various physical variables on mπ offers a
fresh perspective in exploring the structure of hadrons in
the nonperturbative regime [8]. As a result, it is of great
significance to make measurements on mR at unphysical
mπ values.
Lattice QCD (LQCD) is a well-established nonper-

turbative formulation of QCD, defined on a finite and
discretized volume of four-dimensional Euclidean space-
time. Through simulation of the two-point Green functions
of composite operators, one can obtain the finite volume
spectrum of eigenvalues of the QCD Hamiltonian, with
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specific quantum numbers, as a function of mπ . We stress
that such results are genuine predictions of QCD, even
though the light quark masses do not take their physical
values. Moreover, the phase shift in the infinite volume can
then be obtained through the well-known Lüscher formula
and its extensions [9–14].
LQCD has developed rapidly over the half century since

Wilson’s pioneering work was published in 1974 [15].
With the substantial progress in simulation algorithms and
tremendous advances in computing power, many LQCD
collaborations [16,17] have extracted the finite volume
spectra for various sets of quantum numbers, including the
ρ meson, over a range of values of mπ .
Experimentally, the ρmeson is identified as a broad peak

around
ffiffiffi
s

p ¼ 770 MeV in the invariant mass distribution
of the isovector P-wave of ππ scattering [18]. It is often
identified as a confined qq̄ state, consistent with the
constituent quark model. This picture is supported by
several theoretical arguments, such as the large-Nc limit
of QCD [19–22]. Nevertheless, the sizable decay width,
Γρ→ππ ≈ 140 MeV [18], signifies the ρ meson’s strong
coupling to the ππ channel. In other words, the observed
peak structure results from the interaction between a qq̄
state, referred to as the bare ρ, and the ππ continuum at the
hadronic level. Consequently, a comprehensive study of the
ρ meson necessitates an exploration of the ππ scattering
sector.
In the past decade, multiple LQCD groups have provided

energy levels for the P-wave ππ sector [23–36]. However,
there has been little work collating spectra from various
collaborations [37,38], particularly for Nf ¼ 2þ 1, and
performing a consistent unified analysis. That is the aim of
this paper.
The Lüscher formula is the most practical way to relate

lattice calculations to the elastic scattering phase shifts of
two spinless particles. Therefore, when dealing with a
system containing only one ππ channel, it is sufficient to
utilize the standard Lüscher formula to relate the finite
volume spectrum to the phase shifts. However, in our
present study, we also aim to incorporate the ωπ channel, in
order to assess its impact. While it is not an open channel, it
does generate the leading nonanalytic behavior of the ρ
mass as a function ofmπ . While the Lüscher formalism can
certainly include the additional ωπ channel, we note that
there are other approaches which provide computational
convenience with very little overhead in incorporating
several two-particle channels. As an example, we mention
that the unitarized chiral perturbation theory (χPT) can
calculate the finite volume spectrum through the pole
position of the T matrix defined in the finite volume as
shown in Refs. [39,40].
Alternatively, Hamiltonian effective field theory (HEFT)

also incorporates the Lüscher formalism and establishes a
connection between the scattering process in infinite
volume and the finite volume spectrum of the system

[41]. For multichannel scattering, the advantages and
practicality of HEFT have been demonstrated in studies
of various resonances, including the Roper [42,43], the
Λð1405Þ [44], the N�ð1535Þ [45] and the D�

sð2317=2460Þ
[46]. Because the Hamiltonian operates within the Fock
space, effectively describing interactions among various
different channels, the HEFT approach has two important
features. (1) It provides insight into the composition of the
eigenstates through the strength of various components of
the eigenvectors. (2) It also enables an examination of the
quark-mass dependence of resonance properties in a single
formalism, enabling this unified analysis.
Here, we consistently analyze the spectra provided

by several different LQCD collaborations using the HEFT
framework, drawing on results extracted in the rest frame
[47], moving frame and elongated frames [48]. Motivated
by the physical picture mentioned, the Hamiltonian
employed here is studied within a framework that involves
a bare ρ, as well as ππ and ωπ channels. We obtain the bare
ρ mass in various regularization schemes from the lattice
energy levels and investigate its dependence on mπ . We
observe that the linear slope of the bare ρ mass with respect
to m2

π is minimally affected by scheme dependence.
Furthermore, we investigate the composition of the ρmeson,
using the eigenvector of the eigen-energy state closest to the
physical ρ mass. Finally, we illustrate interesting discrepan-
cies in contemporary lattice QCD calculations.
The paper is organized as follows. In Sec. II we provide

an overview of the HEFT formulation and proceed to
construct the finite volume Hamiltonian for the specific
case under investigation. Section III presents the results of
the numerical analysis and examines the dependence of
various variables on mπ . Finally, in Sec. IV, we draw the
discussion to a close with a concise summary and a
suggestions for further analysis.

II. FORMALISM

A. Hamiltonian model

The Hamiltonian in the center of mass frame of the
interacting system is divided into two parts as follows:

H ¼ H0 þHI; ð2Þ

where H0 is the noninteracting part, and HI is the
interaction part. In this work, we include a bare ρ meson,
which can be identified as a qq̄ state, as well as two coupled
channels, ππ and πω. In the infinite volume, characterized
by SO(3) symmetry, it is most convenient to express the
interaction in the JLS basis defined as [49]

jα; k�; JMlSi ¼ Aα

X
mσσ1σ2

ClSðJM;mσÞCs1s2ðSσ; σ1σ2Þ

×
Z

dk̂�Ylmðk̂�Þjα; k�; σ1σ2i; ð3Þ
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where Cj1j2ðjm;m1m2Þ is the Clebsch-Gordon (CG)
coefficient of the SU(2) group, Ylm are the normalized
spherical harmonics functions and jα; k�; σ1σ2i indicates
the α ¼ ππ or πω channels, with relative momentum k� and
z-components of the spins of two particles, σ1 and σ2,
respectively. (For convenience, the quantities with an
asterisk in this paper are all defined in the center of mass
frame.) In addition, Aα is the normalization factor that
equals 1ffiffi

2
p if α ¼ ππ and otherwise is unity, m and σ are the

z-components of the orbital angular momentum and total
spin, respectively, S1 and S2 are the spins of the particles in
channel α and J, M, l and S are the total angular
momentum, the z-component of the total angular momen-
tum, orbital angular momentum, and total spin, respec-
tively. The jα; k�;Mi is normalized as

hα; k�; JMlSjα0; k�0; JM0lSi ¼ δðk� − k�0Þ
k�2

δαα0δMM0 : ð4Þ

In general, there are interactions between the bare
state and the two-particle channels as well as within and
between the coupled channels. However, in this study,
most of the energy levels and phase shifts are in the
resonance region, so the dominant interaction is that
between the bare state and two-particle channels. In
addition, given the limited data concerning the energy
levels from LQCD as well as experimental observables, we
find that, in practice, the existing data can be described well
without introducing channel-channel interactions. For this
reason, the ππ − ππ, ππ − πω and πω − πω t=u-channel
interactions are neglected.
Because of the definite JP quantum number of the bare ρ

meson, it is sufficient to focus on the Hamiltonian in the
subspace spanned by jα ¼ ππ; k�; J ¼ 1;M;l ¼ 1; S ¼ 0i
and jα ¼ ωπ; k�; J ¼ 1;M;l ¼ 1; S ¼ 1i. For conven-
ience, the JLS indices will be suppressed hereafter.
The free energy part of the Hamiltonian in this subspace,

H0, is given by

H0 ¼
X
M

mB
ρ jρB;MihρB;Mj þ

X
α;M

Z
k�2dk�ðEα1ðk�Þ

þ Eα2ðk�ÞÞjα; k�;Mihα; k�;Mj; ð5Þ
where jρB;Mi indicates the bare ρ state with z-component

of spin, M, EαiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

αi

q
with αi ¼ π or ω, mαi is

for the mass of the particle in the α channel and mB
ρ is the

mass of the bare single-particle basis state.
The interacting part, HI , is given within the model by

HI ¼
X
α;M

Z
k�2dk�fVαðk�ÞjρB;Mihα;k�;MjþH:c:g; ð6Þ

where the interaction term Vα is independent of M, as a
consequence of the Wigner-Eckart theorem, and given by

Vππðk�Þ ¼
gρππ
2π

ffiffiffi
3

p k�ffiffiffiffiffiffiffi
mB

ρ

q
Eπðk�Þ

uππðk�Þ; ð7Þ

Vωπðk�Þ ¼
gωρπ
2π

ffiffiffi
6

p
k�

ffiffiffiffiffiffiffi
mB

ρ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eπðk�ÞEωðk�Þ

p uωπðk�Þ; ð8Þ

where uππ and uωπ are the form factors parametrizing the
internal structure of hadrons and ensuring the convergence
of loop integrals. Here, the usual dipole form factors are
used [50,51],

uππðkÞ ¼
�

Λ2
ρππ

k2 þ Λ2
ρππ

�
2

; ð9Þ

uωπðkÞ ¼
�
Λ2
ωρπ − μ2π

k2 þ Λ2
ωρπ

�
2

; ð10Þ

where μπ ¼ 138.5 MeV is the physical mass of the pion.
The scattering T-matrix, defined by Sfi ¼ δfi −

2πiδ4ðpf − piÞTfi, can be obtained from the partial
wave Lippmann-Schwinger equation [41,50,52],

Tαβðp; q; EÞ ¼ Vαβðp; q; EÞ

þ
X
γ

Z
k2dk

Vαγðp; k; EÞTγβðk; q; EÞ
E − Eγ1ðkÞ − Eγ2ðkÞ þ iε

;

ð11Þ
where Vαβ comes from bare ρ exchange in the s-channel
and is given by

Vαβðp; q; EÞ ¼
V�
αðpÞVβðqÞ
E −mB

ρ
; ð12Þ

with Vα defined in Eqs. (7) and (8). In the present case
Tππ;ππðp; q;EÞ can be obtained analytically

Tππ;ππðp; q;EÞ ¼ V�
ππðpÞGðEÞVππðqÞ; ð13Þ

where GðEÞ is the full propagator of the ρ meson defined
by

GðEÞ−1 ¼ E −mB
ρ − ΣðEÞ; ð14Þ

with the self-energy,

ΣðEÞ ¼ ΣππðEÞ þ ΣωπðEÞ; ð15Þ

ΣππðEÞ ¼
Z

q2dq
jVππðqÞj2

E − 2EπðqÞ þ iε
; ð16Þ

ΣωπðEÞ ¼
Z

q2dq
jVωπðqÞj2

E − EπðqÞ − EωðqÞ þ iε
: ð17Þ
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The partial-wave phase shift, δðEÞ, for the P-wave
ππ → ππ elastic scattering is then given by

e2iδðEÞ ¼ 1 − i
πp̄E
2

p̄Tππ;ππðp̄; p̄;EÞ; ð18Þ

δðEÞ ¼ arctan

�
IΣππðEÞ

E −mB
ρ −RΣðEÞ

�
ðmod πÞ; ð19Þ

where p̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=4 −m2

π

p
is the on shell momentum. The

pole position of the ρ-resonance is located in the lower half
plane of the unphysical Riemann sheet of the ππ-channel
but the first Riemann sheet of the ωπ-channel and deter-
mined by solving the equation,

0 ¼ E −mB
ρ − ΣðEÞ: ð20Þ

B. The Hamiltonian in finite volume

To obtain the energy levels in finite volume, we need to
construct the finite volume Hamiltonian (FVH). Two major
problems are encountered. Firstly, the correspondence
between the Fock spaces spanned by the states with
continuous and discrete momentum, and secondly, the
symmetry is reduced from the O(3) group to a finite
subgroup, G, for the finite volume. As a result, J and M
are no longer good quantum numbers. In Refs. [47,48], the
standard formalism for the rest, moving and elongated
frames were presented. Here we give a brief introduction to
those aspects relevant to the present work.
To obtain the FVH in terms of the states with discrete

momentum, one needs to make the following substitutions
in Eqs. (5) and (6). First one sets

jρB;Mi → jρB;MiL; ð21Þ

because the bare ρ single-particle state does not change.
However, it is very different for the two-particle state,

jα; k�;Mi →
ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s

jα; en;Mi; ð22Þ

and

Z
d3k� →

ð2πÞ3
V

X
n∈Z3

; ð23Þ

where V ¼ ηL3 is the volume of the box, with elongation
factor η, and en denotes a degenerate shell of the non-
interacting Hamiltonian in the rest frame, because those
states with the same en share the same jk�ðnÞj. For
example, in the rest frame of a cubic box, k� ¼ 2π

L n and
hence en ¼ n2. However, for the general case, k�ðnÞ and
hence en are not that simple. A detailed discussion of en
and k�ðnÞ can be found in Ref. [48] and a summary is given

in Appendix A. The finite volume basis vector, jα; en;Mi,
is given by an expression analogous to Eq. (3),

jα; en;Mi ¼ Aα

X
mσσ1σ2

ClSðJM;mσÞCs1s2ðSσ; σ1σ2Þ

×
X

n∈ fêng
Ylmðk̂�ðnÞÞjk�ðnÞ; σ1σ2i; ð24Þ

with J ¼ 1, l ¼ 1 and S ¼ 0=1 for α ¼ ππ=ωπ, respec-
tively. Here fêng denotes the set of integer vectors with the
same en.
Note that the states defined in Eq. (3) with different

values of JMlS are orthogonal, which is not the case in the
finite volume since O(3) symmetry is broken. Thus, it is
necessary to construct an orthogonal basis jα; en;Γ; ai
furnishing an irreducible representation Γ of G. Such states
take linear combinations of the basis states jα; en;Mi with
reduction coefficients CΓ;G [48,53],

jα; en;Γ; ai ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ZΓðenÞ

s
½CΓ;G�M;ajα; en;Mi; ð25Þ

hα; en;Γ; ajα0; e0n;Γ0; a0i ¼ δαα0δene0nδΓΓ0δaa0 ; ð26Þ

where ZΓðenÞ is the normalization factor. In general there
should be another index denoting the multiplicity of Γ,
but in the present case that additional index is always 1, and
hence it will be suppressed. The reduction coefficients
relevant to the work reported here are shown in Appendix C.
Similarly,

jρB;Γ; ai ¼ ½CΓ;G�M;ajρB;MiL; ð27Þ

satisfying

hρB;Γ; ajρB;Γ0; a0i ¼ δΓΓ0δaa0 : ð28Þ

With these well-defined orthogonal basis states jρB;Γ; ai
and jα; en;Γ; ai, the FVH in the rest frame for a given
irreducible representation, Γ, (note that because of the
Wigner-Eckart theorem, the eigenvalue is independent of
the “a” index, which is therefore suppressed) is given by

Hfin ¼
X
Γ
ðHfin

0;Γ þHfin
I;ΓÞ; ð29Þ

Hfin
0;Γ ¼ mB

ρ jρB;ΓihρB;Γj þ
X
α;en

jα; en;Γihα; en;Γj

× ðEα1ðjk�ðnÞjÞ þ Eα2ðjk�ðnÞjÞÞ; ð30Þ
Hfin

I;Γ ¼
X
α;en

Vfin
α;Γðjk�ðnÞjÞjρB;Γihα; en;Γj þ H:c: ð31Þ

Alternatively, these equations may be expressed in matrix
form,
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Hfin
0Γ þHfin

IΓ ¼
�
mB

ρ vT

v h0

�
ð32Þ

vT ¼ ðVfin
ππ;Γðjk�ðn1ÞjÞ; Vfin

ππ;Γðjk�ðn2ÞjÞ;…;

� � � ; Vfin
ωπ;Γðjk�ðn01ÞjÞ; Vfin

ωπ;Γðjk�ðn02ÞjÞ; � � �Þ ð33Þ

h0 ¼ diagð2Eπðjk�ðn1ÞjÞ; 2Eπðjk�ðn2ÞjÞ; � � � ;
Eπðjk�ðn0

1ÞjÞ þ Eωðjk�ðn0
1ÞjÞ;

Eπðjk�ðn0
2ÞjÞ þ Eωðjk�ðn0

2ÞjÞ; � � �Þ ð34Þ

In principle the FVH is countably infinite-dimensional,
while in practice it is found that the contribution of high-
energy states to the low-lying eigenvalues of interest is
negligible. Therefore, the matrix can be truncated by
excluding the states with momentum higher than a certain
value k�cut to obtain a finite-dimensional matrix.
By comparing Eqs. (3), (6), (24), (25), and (31),

Vfin
α;Γðjk�ðnÞjÞ is written as

Vfin
α;ΓðenÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r
JαðenÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZΓðenÞ

p
Vαðjk�ðnÞjÞ; ð35Þ

where the Jacobian, Jα, just appears for a moving system,
with the expression shown in Eq. (A2).

C. Fitting formulas

In the present work, we fit the eigenvalues of the FVH,
EH, to the lattice spectrum, Elat

cm, with the usual least-χ2

strategy. That is, we minimize the χ2 defined as

χ2 ¼ ðEH − Elat
cmÞTC−1ðEH − Elat

cmÞ; ð36Þ

where C denotes the covariance matrix of the lattice
spectrum. It should be noted that Elat

cm is the spectrum that
has been transformed into the rest frame. If a certain energy
level, Elat

n , is extracted from the composite operator with
P ≠ 0, it needs to be converted to Elat

cm;n through

Elat
cm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðElat

n Þ2 − P2

q
: ð37Þ

In our model, there are five parameters, including the
bare mass, mB

ρ , two coupling constants gρππ and gωρπ,
defined in Eqs. (7) and (8), and two cutoff parameters Λρππ

and Λωρπ, defined in Eqs. (9) and (10), respectively.

D. Formulas for the mπ dependence

To extrapolate the results of the lattice calculations to
the physical region, one needs to investigate the mπ-
dependence of the properties of the ρ meson. This issue
has been previously discussed in some studies [51,54–59],
and in this paper it will be studied within the framework of
HEFT. As discussed in Ref. [55], in the framework of chiral

perturbation theory, the mass of the ρ is a function of mπ of
the form,

mp
ρ ¼ c00þ c01m

2
π þ c02m

3
π þ c03m

4
π ln

�
m2

π

m2
ρ

�
þOðm4

πÞ; ð38Þ

wheremp
ρ is related to the pole mass of the ρ, corresponding

to the real part of the pole of the T-matrix in the complex
plane. In general, mp

ρ is different from the usual Breit-
Winger mass, mBW

ρ , which is defined as the real energy at
which the phase shift is 90° degrees. For the present case,
however, the difference is negligible.
As discussed in Refs. [51,55], the quark mass insertion at

tree level only contributes to the m2
π term in Eq. (38) up to

Oðm4
πÞ, with the other two terms arising from pion-loop self

energies. Them3
π term comes from the ωπ loop, involving a

vector-vector-pseudoscalar (VVP) vertex, while both ππ
and ωπ loops contribute to the log term. Within the present
framework, the pole of the T-matrix is determined by
Eq. (20), which tells us that

mp
ρ ¼ mB

ρ þRΣðmp
ρ − iΓ=2Þ; ð39Þ

where mp
ρ − iΓ=2 is the complex pole position solved from

Eq. (20). Comparing Eqs. (38) and (39), the bare mass mB
ρ

is a quadratic function of mπ at the leading order,

mB
ρ ðmπÞ ¼ c0 þ c1m2

π: ð40Þ

In our analysis, this equation will be used to study the
extracted mB

ρ as function of mπ .
It is important to note that Eq. (40) is derived from the

continuum field theory. In principle, to extrapolate the
results obtained from lattice, the residual lattice artifacts
should be estimated and removed. Since all actions are
OðaÞ-improved, the effect of the finite lattice spacing can
be estimated from Oða2Þ as

mB
ρ ðmπ; aÞ ¼ c0 þ c1m2

π þ ξa2; ð41Þ

where ξ characterizes the rate at which it approaches the
continuum limit and may vary from collaboration to
collaboration as different fermion actions are used.

E. Model (in)dependence in HEFT

Understanding the model-dependent and model-
independent aspects of HEFT is important. As HEFT
incorporates the Lüscher formalism [41,60], there are
aspects of the calculation that share the same level of
model independence as the Lüscher formalism itself.

1. Model independence

In particular, the Lüscher formalism provides a rigorous
relationship between the finite volume energy spectrum and
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the scattering phase shifts and inelasticities of infinite-
volume experiment. In HEFT, this relationship is mediated
by a Hamiltonian. When the parameters of the Hamiltonian
are sufficient to provide a high-quality description of lattice
QCD results, then the associated scattering amplitudes are
of high quality. The key is to have a sufficient number of
tunable parameters to accurately describe the lattice QCD
results.
In the baryon sector, high-quality lattice QCD results are

scarce and HEFT is often fit to experimental data first. The
HEFT formalism then describes the finite-volume depend-
ence of the hadronic spectrum, indicating where future
lattice QCD results will reside.
Fortunately, in the ρ-meson channel relevant to this

analysis, several lattice QCD groups have resolved the
finite-volume spectrum, taking care to assess the subtle
shifts in the spectrum associated with avoided level cross-
ings in the finite volume. This information is central to
the Lüscher formalism and as such, is central to the HEFT
analysis presented here. We will show excellent fits to
the lattice QCD results such that HEFT provides rigorous
predictions of the scattering observables with model
independence at the level of the Lüscher formalism.
Of course, this model independence is restricted to the

case of matched quark masses in finite-volume and infinite-
volume. The Lüscher formalism provides no avenue for
changing the quark mass. In other words, to make contact
with experiment, the quark masses used in the lattice QCD
simulations must be physical.
On the other hand, χPT is renowned for describing the

quark mass dependence of hadron properties in a model-
independent manner, provided one employs the truncated
expansion in the power-counting regime, where higher-
order terms not considered in the expansion are small by
definition. Given that finite-volume HEFT reproduces
finite-volume χPT in the perturbative limit by construction
[60,61], it is reasonable to explore the extent to which this
model independence persists in the full nonperturbative
calculation of HEFT.
This was explored in Ref. [61]. In the one channel case

where a single particle basis state (e.g. a quark-model like
Δ) couples to one two-particle channel (e.g. πN), the
independence of the results on the form of regularisation
is reminiscent of that realized in χPT. Any change in the
regulator is absorbed by the low-energy coefficients such
that the renormalized coefficients are physical, independent
of the renormalization scheme.
However, in the more complicated two-channel case

with a πΔ channel added, the same was not observed. The
form of the Hamiltonian becomes constrained, describing
experimental data accurately for only a limited range of
parameters. The Hamiltonian becomes a model in this case,
with regulator-function scales and shapes governed by the
experimental data. The principles of chiral perturbation
theory no longer apply in this nonperturbative calculation.
However, for fit parameters that describe the data well, the

model independence of the Lüscher formalism remains
intact. The Hamiltonian is only mediary.

2. Quark mass variation

The consideration of variation of the quark masses away
from the physical point provides further constraints on the
Hamiltonian. In particular, lattice QCD results away from
the physical point provide new constraints on the form of
the Hamiltonian. In the two-channel case, the Hamiltonian
becomes tightly constrained when considering experimen-
tal scattering data and lattice QCD results together.
With the Hamiltonian determined by one set of lattice

results, one can then make predictions of the finite-volume
spectrum considered by other lattice groups at different
volumes and different quark masses. For the cases consid-
ered in the baryon spectrum the predictions of HEFT are in
agreement with lattice QCD spectrum predictions. For
example, in the Δ-channel HEFT successfully predicts
the finite-volume spectrum of the CLS consortium [61,62].
In the Nð1

2
þÞ channel, HEFT reproduces the lattice QCD

results from Lang et al. [43,63]. In the Nð1
2
−Þ channel,

HEFT successfully predicts spectra from the CLS consor-
tium [64,65], the HSC [64,66,67] and Lang and Verducci
[64,68]. Thus one concludes that the systematic errors of
the HEFTapproach to quark-mass variation are small on the
scale of contemporary lattice QCD uncertainties. As the
Hamiltonian is constrained bymodel-independent scattering
data and lattice QCD results, we expect this success to be
realised in the ρ-meson channel.
Variation in the quark mass is conducted in the same

spirit as for χPT. The couplings are held constant and the
hadron masses participating in the theory take values as
determined in lattice QCD. The single-particle bare basis
state acquires a quark mass dependence, and this is done in
the usual fashion by drawing on terms analytic in the quark
mass. In most cases, lattice QCD results are only able to
constrain a term linear in m2

π , but on occasion, the data can
demand a small m4

π contribution.
In the present analysis, we will see that the accuracy of

contemporary lattice QCD results for the ρ-meson spectrum
is sufficient to consider only a term linear in m2

π . Even then
we show that there are incompatibilities between the lattice
QCD results. Contrary to the baryon sector, we show how a
Hamiltonian constrained by the results of one group is
incompatible with the results of other groups. Referring
back to the model-independence of the Lüscher relation
embedded within HEFT, the spectra of one group leads to
scattering observables that are incompatible with the
predictions of other groups.
The model independence associated with the movement

of quark masses away from the physical point is largely
governed by the distance one chooses to move from the
physical quark-mass point. The HEFT approach is system-
atically improvable, reliant on high-quality lattice QCD
results to constrain the higher-order terms that one can
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introduce. In addition to the aforementioned analytic m4
π

term, one could also include higher-order interaction terms
from the chiral Lagrangian. However, this increased level
of precision is not yet demanded by contemporary lattice
QCD results.

3. Model dependence

Now that the Hamiltonian has become a tightly con-
strained model, the eigenvectors describing the manner in
which the noninteracting basis states come together to
compose the eigenstates of the spectrum are model depen-
dent. At the same time, there is little freedom in the model
parameters of the Hamiltonian such that the predictions of
the Hamiltonian are well defined.
With regard to the bare mass, there is interplay between

the multiparticle channels included in the calculation, the
regularization scales considered and the associated bare
mass. For example, as will be seen, upon introducing the
additional ωπ channel, one observes an increase in the bare
mass as some of this contribution is carried by the ωπ
contribution. Thus the bare mass is defined only when the
number of channels and their regularization scales are fixed
within the model. With the channels selected and preferred
regularisation scales set, the bare mass becomes well-
defined within the model.
While the bare mass is model dependent, we will show

that the slope of the bare mass as a function of quark mass is
insensitive to the number of two-particle channels consid-
ered. As such, this observation may be of assistance to
those developing quark models.
Returning to the eigenvectors of the Hamiltonian, we

emphasize that the parameters of the Hamiltonian model
are well constrained, such that the predictions of the model
are well defined.
The information contained in the Hamiltonian eigenvec-

tors describing the basis-state composition of finite-
volume energy eigenstates is analogous to the information
contained within the eigenvectors of lattice QCD cor-
relation matrices describing the linear combination of
interpolating fields isolating energy eigenstates on the
lattice. These too are model dependent, governed by
the nature of the interpolating fields used to construct
the correlation matrix.
What is remarkable is that with a suitable renormaliza-

tion scheme on the lattice (e.g. interpolators are normalized
to set diagonal correlators equal to 1 at one slice after the
source), the composition of the states drawn from the
lattice correlation matrix is very similar to the description
provided by HEFT [43,64]. While both eigenvector sets
are model dependent, their similarity does indeed provide
some relevant insight into hadron structure. And because
regularization in the Hamiltonian is tightly constrained,
one can begin to separate out the contributions of bare
versus two-particle channels, something that is impossible
in χPT.

4. Summary

In summary, there is a direct model-independent link
between the finite-volume spectrum calculated at physical
quark masses and the scattering observables of experiment.
This model independence is founded on the Lüscher
formalism embedded with HEFT. Similarly, variation of
the quark masses away from the physical quark mass has
systematic uncertainties that are small relative to contem-
porary lattice QCD spectral uncertainties. Finally, the
Hamiltonian eigenvectors describing the basis-state com-
position of finite-volume energy eigenstates are model
dependent. They are analogous to the interpolator depen-
dent eigenvectors of lattice QCD correlation matrices
describing the linear combination of interpolating fields
isolating energy eigenstates on the lattice. The similarity
displayed by these two different sets of eigenvectors
suggests that they do indeed provide insight into hadron
structure.

III. NUMERICAL RESULTS AND DISCUSSION

A. The LQCD data

The finite volume spectra for the I ¼ l ¼ 1 ππ sector
with dynamical fermions at various pion masses have been
provided by several LQCD collaborations over the past
decade, including PACS-CS (2011,Nf ¼ 2þ 1) [24], HSC
(2013, Nf ¼ 2þ 1) [27], HSC (2015, Nf ¼ 2þ 1) [26],
Guo et al. (2016, Nf ¼ 2) [32], MILC (2016, Nf ¼ 2þ 1)
[33], Alexandrou et al. (2017, Nf ¼ 2þ 1) [29], Bulava
et al. (2019, Nf ¼ 2þ 1) [34], and ETMC (2020,
Nf ¼ 2þ 1ðþ1Þ) [28]. Further details and energy levels
are shown in Table I and the panels in Fig. 1, as well as
Figs. 9–16 in Appendix D, where HEFT is fit to the various
lattice datasets.

B. Three fitting schemes

In this work, our aim is to study the properties of the ρ
meson by investigating the pion mass dependence of
various relevant variables. In the HEFT framework, we
have five free parameters which may be used to fit the
lattice data with different pion masses. However, for each
specific pion mass, there are only a few energy levels. In
addition, the ωπ contribution is considerably weaker than
that of the ππ channel, since the threshold of ωπ is higher
than the ρ mass. Consequently, we first adopt scheme A,
wherein the interaction Vωπ is turned off, i.e., gωρπ ≡ 0,
while mB

ρ , gρππ , and Λρππ are treated as free fitting
parameters. The finite volume spectra provided by various
collaborations involving different π masses are each fit
independently. Using scheme A, it is found that both gρππ
and Λωρπ show a very weak dependence onmπ , whilemB

ρ is
strongly dependent on mπ , as anticipated earlier.
Building upon the results found using scheme A, in

scheme B both gρππ and Λρππ are fixed to be independent of
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mπ , in accord with standard practice in chiral effective field
theory. mB

ρ is allowed to vary. As a result, this approach
effectively combines spectra from various pion masses
provided by different LQCD groups together in a unified

analysis to constrain the variation of the bare mass, mB
ρ ,

with mπ .
Finally, the contribution of the ωπ channel is examined

in scheme C. In this case Vωπ is switched on; however, the

TABLE I. Details of the spectra by different collaborations. Columns, from left to right, show collaboration and year of spectra, pion
mass (mπ), number of flavor (Nf), lattice size (L) and spacing (a) in fm, employed gauge and fermion actions, number of energy levels
(Nlvl), and energy level extraction method. Besides, the spectra provided by Guo et al. are extracted in a elongated box with factor
η ¼ 1; 7

6
; 4
3
for mπ ¼ 226 MeV, and η ¼ 1, 1.25, 2 for mπ ¼ 315 MeV.

Collaboration (year) mπðMeVÞ Nf LðfmÞ aðfmÞ Action Nlvl Method

Bulava (2018) 200 2þ 1 4.1 0.06 Improved Lüscher-Weisz gauge improved Wilson fermion 17 GEVP
220 4.1 0.09 21
280 3.1 0.06 15

HSC (2013) 391 2þ 1 1.9 0.12 Symanzik-improved gauge anisotropic Clover fermion 7 GEVP
2.4 0.12 10
2.9 0.12 14

HSC (2015) 236 3.8 0.12 23
HSC (2023) 330 2.8 0.12 17

MILC (2016) 176 2þ 1 5.4 0.09 Improved Lüscher-Weiss gauge staggered fermion 9 GEVP
247 3.4 0.09 9
248 3.4 0.09 9
301 2.7 0.09 9
346 2.4 0.09 7
276 3.7 0.12 9

ETMC (2020) 322 2þ 1þ 1 2.8 0.09 Iwasaki gauge twisted-mass Wilson fermion 18 GEVP
386 2.1 0.09 16
262 2.6 0.08 13
302 3.9 0.08 23
376 2.6 0.08 14

Alexandru (2017) 316 2þ 1 3.6 0.11 Symanzik-improved gauge clover Wilson fermion 15 GEVP

PACS-CS (2011) 411 2þ 1 2.9 0.09 Iwasaki gauge improved Wilson fermion 6 Exp Fit

Guo (2016) 226 2 2.9 0.12 Lüscher-Weiss gauge nHYP-smeared Clover fermion 8 GEVP
315 20

(0,T1) (1,A1) (1,E) (2,A1) (2,B1)

60 62 64 66

(2,B2)

60 62 64 66

(3,A1)

60 62 64 66

(3,E)

60 62 64 66

(4,A1)

60 62 64 66 68

(4,E)

FIG. 1. Spectra with mπ ¼ 200 MeV provided by Bulava et al. [34] along with that calculated by HEFT using the fitting results for
schemes A, B and C. The x-axis represents the spatial extent L in units of lattice spacing a, while the y-axis indicates the energy level.
Tick marks on the y-axis are omitted for clarity. Text within the yellow box ðn2;ΓÞ signifies spectrum extraction using operators in
representation Γ and with total momentum P2 ¼ ð2πL Þ2n2. Red points indicate the lattice spectrum provided by collaborations. Blue,
orange dot-dashed and black dotted lines indicate the spectrum as the function of L calculated by HEFT using the fitting results of
schemes A, B and C, respectively. The dashed gray lines indicate the noninteracting energy levels 2Eπðk�Þ andmB

ρ (withmB
ρ taken from

scheme A’s fitting result for illustration). The turning points in the noninteracting energy levels are associated with energy crossings
where the noninteracting two-particle energy becomes lower than the bare ρ-meson mass as L increases.
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two coupling constants, gρππ and gωρπ, as well as two
cutoffs, Λρππ and Λωρπ, are taken to be independent of mπ ,
while onlymB

ρ is permitted to vary in the fitting. These three
schemes are summarized in Table II.

C. Fitting results

1. Results for scheme A

Recall that in scheme A, the ρ − ωπ interaction is turned
off and the lattice spectra are fit using three free parameters
mB

ρ , gρππ , and Λρππ . The fitted spectra as a function of

spatial extent, L, are shown by the blue curves in Fig. 1 for
mπ ¼ 200 MeV as an illustration. All other fits are pre-
sented by Figs. 9–16 in Appendix D. The corresponding
fitted parameter values are outlined in the columns dedi-
cated to scheme A in Table III. In addition, the pion mass
dependence of the three parameters, gρππ , Λρππ, and mB

ρ are
shown in Fig. 2 and in the top panel of Fig. 3, respectively.
From Fig. 2, it is found that the cutoff parameter Λρππ

and the dimensionless coupling constant, gρππ , both show
a weak dependence on mπ . In contrast, it is worth noting
that for each mπ , Λρππ exhibits a large uncertainty.
Indeed, in some cases the upper uncertainty does not
display in MINUIT2, which means that even for very large
values of the cutoff, we can still find a reasonable fit for
the energy levels. This observation suggests that the
eigenvalue of the FVH around the region of the ρ mass is
insensitive to Λρππ . This is consistent with the findings
reported in Ref. [61], where the Λ-dependence of the
eigenvalue and eigenvector are investigated in detail.

TABLE III. Fitting results of schemes A, B, and C provided by the MINUIT2 program [69]. In the columns for scheme A, we show
asymmetric uncertainties, since in this scheme the upper and lower uncertainties are quite different. The question mark, “?”, means that
some upper uncertainties are not provided by MINUIT2 since even for a very large Λρππ the energy levels can still be fit well. For scheme
B, gρππ , and Λρππ are fixed at 7.07 (6.85) and 890 (950) MeV for Nf ¼ 2þ 1ð2Þ, respectively. For scheme C, gωρπ and Λωρπ are fixed at
18=GeV and 900 MeV, while gρππ and Λρππ are fixed at 7.07 (6.85) and 900 (980) MeV for Nf ¼ 2þ 1ð2Þ, respectively. χ̂2 represents
the reduced chi-square, i.e., χ2=d:o:f: with d:o:f: ¼ Nlvl − 3 for scheme A and Nlvl − 1 for schemes B and C.

Scheme A Scheme B Scheme C

Collaboration (year) mπ (MeV) mB
ρ (MeV) gρππ Λρππ (MeV) χ̂2 mB

ρ (MeV) χ̂2 mB
ρ (MeV) χ̂2

Bulava (2018) 200 787.3þ23.6
−14.8 7.58þ0.45

−0.43 645.6þ149.8
−93.0 0.44 819.6 (4.1) 0.53 867.7 (4.5) 0.53

220 795.0þ18.6
−11.5 7.80þ0.55

−0.51 662.0þ149.4
−93.0 0.41 818.4 (3.6) 0.49 866.3 (4.0) 0.50

280 825.1þ29.4
−14.7 7.00þ0.19

−0.17 895.7þ244.1
−141.7 1.07 826.2 (2.4) 0.93 870.8 (2.6) 0.97

HSC (2013) 391 909.0þ36.4
−15.5 6.66þ0.33

−0.24 1050.3þ370.1
−207.8 0.98 898.9 (1.2) 0.97 936.2 (1.3) 1.21

HSC (2015) 236 829.1þ29.4
−14.7 7.94þ0.32

−0.31 756.4þ46.4
−39.3 1.00 840.3 (1.0) 1.38 888.6 (1.1) 1.62

HSC (2023) 330 856.1þ13.1
−8.2 6.89þ0.41

−0.36 838.6þ165.9
−112.3 0.71 862.6 (2.2) 0.78 904.1 (2.4) 0.86

MILC (2016) 176 806.4þ36.3
−8.5 7.88þ0.96

−0.88 596.2þ352.5
−139.1 0.63 831.7 (8.2) 0.61 882.9 (9.1) 1.30

247 878.2þ84.1
−21.2 6.93þ0.58

−0.49 876.0þ633.0
−213.5 0.73 881.3 (3.9) 0.57 928.7 (4.3) 0.53

248 855.8þ28.6
−12.4 7.27þ0.55

−0.44 711.7þ266.1
−144.3 0.37 874.3 (4.1) 0.35 921.5 (4.5) 0.32

275 861.5þ29.1
−12.5 7.45þ0.54

−0.39 630.2þ264.7
−136.7 0.36 886.0 (5.5) 0.43 932.4 (6.0) 0.41

301 916.6þ47.2
−13.8 7.79þ1.15

−0.86 735.8þ455.7
−186.0 0.26 928.5 (5.8) 0.29 972.4 (6.4) 0.28

346 999.8þ?
−51.9 6.86þ0.31

−0.30 1321.0þ?
−595.8 0.26 958.9 (6.4) 0.23 998.6 (6.9) 0.28

ETMC (2020) 322 927.4þ14.4
−10.6 8.15þ0.30

−0.28 807.2þ115.0
−91.6 1.20 924.4 (2.6) 2.16 967.6 (2.8) 2.06

386 999.6þ59.5
−21.8 6.30þ0.28

−0.23 1267.3þ557.2
−271.1 1.32 974.1 (2.2) 1.54 1012.1 (2.4) 2.00

262 1156.2þ68.7
−208.0 7.26þ1.10

−1.13 2421.0þ?
−1283.4 0.58 920.2 (8.6) 0.67 967.3 (9.5) 0.72

302 928.7þ157.1
−23.7 9.46þ1.42

−1.25 765.6þ862.6
−182.3 0.56 919.1 (5.8) 1.00 964.8 (6.3) 0.99

376 1034.6þ170.3
−51.8 7.16þ0.81

−0.23 1571.4þ?
−403.8 0.98 952.6 (1.8) 1.57 993.4 (1.9) 1.52

Alexrandru (2017) 316 840.6þ25.8
−12.7 6.96þ0.45

−0.40 847.4þ263.9
−147.1 0.10 846.6 (2.3) 0.10 890.1 (2.5) 0.10

PACS-CS (2011) 411 913.0þ185.0
−10.2 6.97þ2.70

−1.21 609.0þ?
−246.8 0.83 934.3 (5.2) 0.82 973.3 (5.6) 0.88

Guo (2016) 226 834.4þ43.7
−21.3 6.79þ0.23

−0.19 1163.1þ323.4
−179.6 1.69 854.3 (1.4) 1.88 806.4 (1.3) 1.78

315 824.1þ11.6
−7.0 6.75þ0.35

−0.30 709.5þ148.2
−97.1 0.20 892.4 (1.4) 1.50 848.0 (1.3) 1.84

TABLE II. Outline of the fitting schemes.

mB
ρ gρππ;Λρππ gωρπ;Λωρπ

A Free Free Off
B Free Fixed Off
C Free Fixed Fixed
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A more common [27] dressed coupling constant, gBWρππ , is
defined by

gBWρππ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πðmBW

ρ Þ2
p̄

ΓBW
ρ→ππ

s
; ð42Þ

where p̄ is defined by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2 þm2

π

p
¼ mBW

ρ and ΓBW
ρ→ππ is the

partial width of the resonance in the Breit Wigner para-
metrizations. In ourmodel, gBWρππ depends on both the value of
gρππ and the form factoruππ, which is determined byΛρππ. As
a result, the slight mπ-dependence seen in gρππ and Λρππ

clearly implies that the value of gBWρππ , approximated to be
around 6.0, remains independent of mπ . This conclusion is
consistentwith thediscussions presented in priorworks, such
as Refs. [29,31,33].
In contrast, the mπ-dependence of mB

ρ suffers a large
fluctuation, as illustrated in the top section of Fig. 3. This
behavior stems from the limited number of energy levels
available for each pion mass, coupled with the considerable
uncertainties associated with gρππ and Λρππ . In order to
reduce the uncertainty associated with the bare mass, one
needs to find an appropriate method to combine the
analysis of the various energy levels. Inspired by the weak
dependence on mπ , as well as the sizable uncertainties of
gρππ and Λρππ , we choose these two parameters to be

constant for all pion masses and re-fit each spectrum using
only one single parameter, mB

ρ .

2. Results for scheme B

The first task is to determine the constant values of gρππ
and Λρππ which will be used in the analysis of the data
for all values of mπ . To do that, we investigate mπ ¼ 236,
280, 322, 376, 386, 391 MeV cases, which have the
highest values of the chi-squared per degree of freedom,
χ̂2ð¼ χ2=d:o:f:Þ, in scheme A. We present the distribution
of the sum of the these χ̂2 with respect to some fixed gρππ
and Λρππ in Fig. 4. It is straightforward to find the preferred
values of the coupling and cutoff from this distribution. It
leads us to choose the values at the black point, where
gρππ ¼ 7.07 and Λρππ ¼ 890 MeV for Nf ¼ 2þ 1. On the
other hand, it is found that for Nf ¼ 2, we should use

FIG. 2. mπ-dependence of gρππ and Λρππ in scheme A. The
dashed gray vertical line indicates the physical mπ . The dashed
red horizontal lines indicate the value that will be fixed for
Nf ¼ 2þ 1 in scheme B.

FIG. 3. mπ-dependence of mB
ρ in schemes A, B and C from top

to bottom. The dashed gray vertical line indicates the physical
mπ value.
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slightly different values, namely gρππ ¼ 6.75 and Λρππ ¼
950 MeV [37,38]. These values ensure the χ̂2 satisfies the
condition χ̂2 ≲ 2 for all of these values of mπ, as illustrated
in Table III, in the column of χ̂2 for scheme B.
For scheme B, the curves denoting the spectra as a

function of the spatial extent, L, are shown as orange dot-
dashed lines in the Figs. 9–16 in Appendix D. The fittedmB

ρ

values are presented in Fig. 3, and the columns for scheme
B in Table III. Comparing Fig. 3(a) with 3(b), one finds
that the uncertainties in mB

ρ are significantly reduced, albeit
with slight shifts in the central values. The mπ-dependence
of mB

ρ remains unclear. In particular, the values of mB
ρ at

mπ ¼ 301, 302, 315, 316 and 322 MeV extracted from
MILC, ETMC, Guo et al., Alexandru et al., and ETMC
respectively, significantly fluctuate between 840 and
920MeV. It is apparent that there are substantial differences
in the results from different LQCD groups. To address this
issue, we examine the contribution of the coupling to the
ωπ [51,55] channel, which is the closest two-particle
channel in the present work and which, significantly, yields
the leading nonanalytic contribution to the ρ self-energy.

3. Results for scheme C

Once Vωπ is turned on, two additional parameters, gωρπ
and Λωρπ, are involved. In addition, mω also depends on
mπ . The mω is not provided by most of the lattice QCD
collaborations considered here. However, HSC reported
a value of mω at mπ ¼ 391 MeV [27]. It provides an
excellent opportunity to quantify the importance of quark-
mass changes. They find a ρ-meson resonance position of
atmR ¼ 0.15085ð18Þð3Þ in the Briet-Wigner parametriza-
tion to be compared with their stable omega mass of

atmω ¼ 0.15678ð41Þ. The difference/average is only 3.9%
even at this very large pion mass. Since modern lattice
QCD results are at lower quark masses, in our calculation
for other collaborations, we just use the approxima-
tion mω ¼ mBW

ρ .
Since the threshold of ωπ is higher than the spectrum

extracted, it is expected that the ωπ loop will shift the value
of mB

ρ but have a negligible influence on the resulting χ2.
Instead of allowing gωρπ and Λωρπ to be two additional

free parameters, we impose appropriate constraints to fix
them. Two constraints are identified at the physical pion
mass μπ: the decay width, Γω→3π , is primarily determined
by the ω → ρπ → 3π mechanism (which is estimated to
yield around 90% [70] of the width) and the P-wave phase
shifts of ππ → ππ in the energy region around the ρ mass.
For simplification, we take the two cutoff, Λρππ and

Λωρπ, to share the same value. Consequently, there are four
undetermined parameters left, namely two coupling con-
stants, one cutoff and one bare mass. Once gρππ and Λρππ

are fixed, the other parameters at μπ can also be determined
from the decay width of ω → 3π and the P-wave phase
shifts of ππ → ππ at the physical pion mass μπ.
The detailed procedure for parameter determination is

presented in Appendix B. Here, we simply summarize the
preferred values: gρππ ¼ 7.07ð6.75Þ and Λωρπ ¼ Λρππ ¼
900ð980Þ MeV for Nf ¼ 2þ 1 (Nf ¼ 2) and gωρπ ¼
18=GeV for either Nf. It is worth mentioning that our
value of gωρπ is similar to that used in Ref. [51], 16=GeV.
Additionally, gρππ andΛωρπ are slightly shifted compared to
those found using scheme B, because of the introduction of
the ωπ channel. We then proceed to minimize the total χ2

by fitting the value of mB
ρ for each pion mass.

The fitted spectra as functions of the spatial extent, L, for
scheme C are shown as black dotted lines in the Figs. 9–16
in Appendix D, which illustrates only minor discrepancies
from the orange dot-dashed lines found using scheme B, as
expected. The fitted values ofmB

ρ are presented in the lower
portion of Fig. 3 and are tabulated in the columns for
scheme C in Table III. The preferred values ofmB

ρ are about
50 MeV higher than found in scheme B because of the
additional self-energy term, Σωπ, as defined in Eq. (17).
Even after including the effect of the ωπ coupled

channel, the mπ-dependence of mB
ρ shown in Fig. 3 is still

scattered. It becomes apparent that the bare masses
extracted from different lattice groups do not permit a
consistent interpretation, which indicates the presence of
intrinsic systematic differences between the lattice spectra
provided by different collaborations. Such discrepancies
lead us to consider the following issues that may influence
the lattice results presented. These include

(i) Different residual lattice artefacts due to the different
gauge and fermion actions considered.

(ii) Varied scale-setting schemes employed by different
collaborations.

FIG. 4. Distribution of
P

mπ ∈ S χ̂
2ðmπÞ for scheme B using

fixed values of (gρππ and Λρππ), where S ¼ f301, 302, 315, 316,
322g. Using the black point marked in the green region ensures
that χ̂2ðmπÞ≲ 2 is satisfied for each value of mπ ∈ S.
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(iii) Different methods used to extract the finite volume
spectra.

In the absence of systematic errors, the results provided by
different collaborations should be consistent with each
other after finite volume and lattice spacing artefacts are
taken into account. Our HEFT approach enables one to
account for the finite volume of the lattice, several values of
the pion mass, as well as lattice spacing artifacts, all within
a single formalism. As such, this is the first examination of
the self consistency of world lattice QCD results for ππ
scattering in ρ meson channel.

D. Extrapolation in mπ

In the last section, we present the outcomes of our fitting
approach applied to the finite volume spectra provided by
various collaborations for a wide range of values of mπ .
With these results, we now investigate the mπ-dependence
of the properties of the ρ meson and extrapolate them into
the physical region. In scheme A, our investigations reveal
that both gρππ and Λρππ display little variation as mπ varies.
In the spirit of chiral effective field theory, the couplings
and regulator parameters are held fixed. Thus, we could
concentrate on the mπ-dependence of the bare ρ mass, mB

ρ ,
using Eq. (40). It is possible to extrapolate the fitting results
ofmB

ρ in schemes B and C, but not in scheme A, since there
the values of mB

ρ are correlated with gρππ and Λρππ .
In principle, it is natural to consider putting all the values

ofmB
ρ ðmπÞ together and performing a global fit to make full

use of the lattice data. However, from the two lower figures
in Fig. 3, it is hard to extract useful information, since the
data show large inconsistent variations. The possible
reasons have been discussed in the previous section.
For example, with reference to the discussion about the

lattice spacing effect in Eq. (41), the coefficient ξ are
different for each LQCD group in principle. To confirm
this, we applied Eq. (41) with a single value of ξ and found
a large χ2.
Also, there is a huge difference between the values of

observables calculated using the parameters extrapolated to
physical mπ and those measured in experiments. This
suggests that we should make the extrapolation of the data
to the physical point collaboration by collaboration.
Because for each group, there are only a limited number

of values of mπ and the lattice spacing does not change a
lot, the lattice spacing term can be absorbed, and we just
use Eq. (40) to perform the extrapolations. Furthermore, we
have two free parameters in Eq. (40), thus only the data of
collaborations having no less than two mπ points are
analyzed. The fitting and extrapolation results are shown
in Fig. 5 and Table IV.
As shown in Fig. 5, there are five collaborations having

no less than two differentmπ points. For each collaboration,
the points show a good linear relation between mB

ρ and m2
π ,
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FIG. 5. mπ-dependence and extrapolation of mB
ρ for each

collaboration. Red and blue points indicate the fitting results
ofmB

ρ in schemes B and C, respectively. Gray bands represent the
quadratic function mB

ρ ¼ c0 þ c1m2
π with uncertainty, where c0

and c1 for both schemes are given in Table IV. For convenience
the lower bound of the m2

π-axis is set as the physical
value μ2π .
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whether the ωπ loop is included or not. The only notable
exception is one point with a large uncertainty from ETMC.
With c0 and c1 determined, we can obtain the bare mass of
the ρ at the physical pion mass. Subsequently, we can get
mp

ρ by solving Eq. (20). The results are listed in the last
column of Table IV.
For MILC, HSC and Bulava et al., even though their

values of c0 and c1 are quite different, the extrapolated mp
ρ

all agree with the experimental value. However, for ETMC
and Guo et al., they are about 30 MeV higher and 50 MeV
lower compared to the experimental value, respectively.
The relatively high mp

ρ obtained by ETMC is not so
surprising, since in their previous work [31] a higher value
of mρ compared to the others was also reported. The lower
mp

ρ extracted from Guo et al. also agrees with their own
result, presented in Ref. [32], which possibly results from
using Nf ¼ 2. Clearly, the physical ρ masses obtained here
all indicate the consistency between our method and
previous work, while in addition we provide detailed
information on the mπ-dependence of mB

ρ .

E. Discussion and exploration

In this section, we make some remarks concerning the
numerical results. In scheme A, we first found that the
coupling constants gρππ and cutoff Λρππ are both weakly
dependent on mπ. This conclusion supports our previous
study of the baryon resonances, Λð1405Þ, N�ð1535Þ and
N�ð1440Þ (Roper), where we only considered the mπ

dependence of the masses of various hadrons but not the
couplings and cutoff. Furthermore, the large uncertainty
found for the cut-off is also acceptable, because in principle
the physical observables should not be so sensitive to it.

In Eq. (38), there are many nonlinear terms inm2
π, arising

from the self-energy part. In the right column of Fig. 6, we
show the value of the ReΣππ at the pole position as a
function ofm2

π . GivenmB
ρ , ReΣππ is calculated bym

p
ρ −mB

ρ

as in Eq. (39), where mp
ρ is obtained from Eq. (20). Scalars

in the figure are calculated by using the values of mB
ρ

from the fitting results of scheme B presented in Table III,
while the lines with error bands use mB

ρ ¼ c0 þ c1m2
π , with

c0 and c1 being the coefficients for scheme B presented in
Table IV.

TABLE IV. Extrapolation results are summarized for schemes
B and C. For each collaboration, the results of B and C are given
in the first and second row, respectively. The second and third
column present the coefficient c0 and c1 defined in Eq. (40). The
fourth column presents the extrapolated mB

ρ at the physical pion
mass. The fifth column presents the pole mass, defined by
Eq. (20).

Collaboration c0ð MeVÞ c1ðGeV−1Þ mB
ρ ðμπÞ mp

ρðμπÞ
Bulava 809.8(7.0) 0.21(0.11) 814.0(5.0) 765.0(6.0)

862.3(7.6) 0.11(0.12) 864.0(6.0) 765.0(6.0)

MILC 788.0(7.3) 1.45(0.10) 816.0(6.0) 768.0(6.0)
843.3(7.95) 1.32(0.11) 869.0(6.0) 769.0(6.0)

HSC 806.7(1.71) 0.60(0.02) 818.2(1.4) 770.6(1.7)
861.3(1.9) 0.49(0.02) 870.7(1.6) 771.3(1.7)

ETMC 838.9(7.7) 0.85(0.06) 855.0(7.0) 814.0(8.0)
892.5(8.3) 0.75(0.06) 907.0(7.0) 809.0(7.0)

Guo 762.2(2.9) 0.86(0.04) 778.8(2.3) 719.3(2.6)
813.8(3.2) 0.79(0.04) 829.0(2.5) 719.0(2.6)

FIG. 6. mπ-dependence ofm
p
ρ and the real part of the self-energy

Σππ . Left column: mp
ρ defined by Eq. (20) using parameters for

schemes B and C, and mρ obtained from the Breit-Wigner
parametrization of the phase shift provided in each paper. Right
column: real part of the self-energy Σππ. Blue lines with gray
bands represent the ReΣππ ¼ mp

ρðmB
ρ Þ −mB

ρ as in Eq. (39) using
mB

ρ ¼ c0 þ c1m2
π with c0 and c1 being the extrapolation coef-

ficients for scheme B presented in Table IV. Red points also
represent ReΣππ but using mB

ρ from fitting results of scheme B
presented in Table III.
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Clearly both these scalars and lines in Fig. 6 exhibit a
nonlinear behavior. However, the difference of ReΣππ at
different mπ are just around 10 MeV when mπ varies over
the range 140 to 400 MeV. Therefore, there will also be an
approximately linear relation betweenmp

ρ andm2
π , as shown

in the left column of Fig. 6, where the Breit-Wigner masses
provided by the three collaborations are also shown. This is
the reason why the Breit-Wigner ρmass could be described
well by a linear function of m2

π in Ref. [33].
Things are similar even when the ωπ channel is

introduced. From Table IV one can see that mp
ρ is nearly

unchanged while mB
ρ changes a lot when Vωπ turns on.

Nonetheless, mB
ρ still exhibits a linear relation to m2

π as
shown in Fig. 5, where the two lines are almost parallel for
each LQCD group. Also, it is apparent that the contribution
from the ωπ loop only makes a significant change in the
value of c0, but just slightly modifies the slope, c1. These
facts suggest that ReΣωπ is also weakly dependent on mπ

and its effect can be effectively absorbed into c0.
In summary, the slow variation of the contributions from

ππ and ωπ loops significantly affects c0, while only slightly
influencing the slope, c1. Therefore, it makes little sense to
talk about mB

ρ solely based on experimental results, as the
fitted mB

ρ strongly depends on how the hadronic loops are
estimated. It is the slope c1 that contains more useful, less
model dependent, physical information concerning the
structure of the ρ meson, which can only be extracted
from the LQCD data at unphysical mπ . Furthermore, in
principle, on the theoretical side the slope c1 can be
calculated at the quark-level in various models. Thus, with
the help of c1 the relevant models could be distinguished.
This is quite a good example of the idea that the data
extracted at unphysical values of mπ are able to provide us
with additional information concerning the structure of
hadrons.
The linear relation betweenmB

ρ andm2
π is consistent with

the assumption that jρBi is a pure qq̄ state. Additionally, the
contribution from hadron loops to mp

ρ accounts for only
approximately 20% of the total mass for the optimal value
of the regulator parameter. Consequently, we can also
conclude that the bare ρ plays the most important role in
the structure of the observed ρ meson. To confirm this, we
pick out several eigenstates whose energy is close to the
physical ρ mass and look at their composition, a feature
which is characteristic of HEFT. The eigenstates of the
FVH are the counterpart in the finite volume of continuous
scattering states in the infinite volume [43]. Therefore,
obviously, it is expected that the eigenstate whose energy is
closest to the resonance region is the counterpart of the ρ.
For illustration, we pick five eigenstates from the spectrum
generated by HSC(2015) with mπ ¼ 236 MeV and calcu-
late the probabilities of the bare state, ππ and ωπ compo-
nents. The results are presented in Table V. It is found that
the component ρB has a probability around 75%. That is, it
is definitely dominant.

With the parameters listed in Table III, we can predict the
ππ → ππP-wave phase shift at unphysical masses. Here we
focus on the three collaborations whose values of mp

ρ at the
physical mπ agree with the experimental value. In Fig. 7,
we show the phase shifts calculated for four different values
ofmπ . In the first row, at the physical point, the phase shifts
of the three collaborations are nearly the same. This is
expected since their values of mB

ρ at physical mπ are
consistent. They are in good agreement with the exper-
imental data, except for the region away from resonance,
where the ππ − ππt=u-channel interaction may not be
negligible.
In other rows we predict the phase shifts of the three

collaborations at three unphysical values of mπ . Since the
values of c0 and c1 obtained by analysis of the data from
these three collaborations are very different, their phase
shifts are not consistent. Especially, for mπ ¼ 400 MeV,
we predict that the typical line shape would disappear in the
phase shifts of ππ scattering for Bulava et al., since it would
be a bound state of ππ.
The most serious problem found in this work is that the

two coefficients, c0 and c1, differ a lot for different LQCD
groups. This unexpected variation arises from differences
in the lattice QCD simulations, the interpolating fields
considered in constructing correlation matrices, the analy-
sis methods applied to the correlation matrices and finally
the scale-setting schemes.
The use of different OðaÞ-improved actions gives rise to

different Oða2Þ errors such that the coefficient of a2 differs
for each set of lattice QCD results. It will be important to
have two or more different lattice spacings available in
high-quality sets to enable a determination and elimination
of this lattice artifact.
State isolation is key to measuring the subtle shifts of the

finite-volume energies from their noninteracting energies,
vital to measuring a phase shift. In obtaining consistency
across lattice collaborations, modern projected correlator

TABLE V. Composition of eigenstates jψi of some energy
levels from HSC (2015). In the first column, jψi is labeled by
ðn2;ΓÞ, as it is the eigenstate that has the largest ρB component
among those whose energies are extracted by the operators in
representation Γ and with total momentum P2 ¼ ð2πL Þ2n2, as
shown in Fig. 14. In the subsequent column we present the
composition of jψi, i.e., jhϕjψij2 with jϕi ¼ jρBi; jππi for Vωπ ¼
0 and also jωπi for Vωπ ≠ 0.

ðn2;ΓÞ
Vωπ ¼ 0 Vωπ ≠ 0

ρB ππ ρB ππ ωπ

ð1; A1Þ 0.7365 0.2635 0.6966 0.2664 0.0370
ð2; A1Þ 0.7963 0.2037 0.7537 0.2028 0.0434
ð3; A1Þ 0.7701 0.2299 0.7295 0.2241 0.0464
ð4.A1Þ 0.7432 0.2568 0.7093 0.2503 0.0404
ð3; EÞ 0.6514 0.3486 0.6171 0.3394 0.0434
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methods should be adopted to reduce excited state con-
tamination in the extracted energy eigenvalues. Moreover,
all nonlocal two particle momentum-projected interpolat-
ing fields participating in the resonance region need to be
considered and mixed with the single particle operators to

ensure multiple eigenstates are not participating in the state-
projected correlation functions of the correlation matrix. In
the present case, single particle ρ interpolations are to be
mixed, not only with ππ correlations, but also with πω
correlators. Indeed, Fig. 1 and the figures in Appendix. D,
illustrating the fits of HEFT to contemporary lattice QCD
results, raise concerns about multistate contamination in the
analysis.
Finally, the choice of scale setting scheme is of vital

importance when attempting to describe QCD properties
away from the physical point. While all schemes are
designed to extrapolate to the physical point, the manner
in which they move away from the physical point is
different. The Sommer scale is designed to be physical.
Maintaining physics at the scale relevant to the charmo-
nium spectrum, it naturally includes changes in the
renormalization of the strong coupling constant due to
changes in the sea quark masses. However, other schemes
where the quark mass has no effect on the coupling
constant are possible, provided the only goal is to get to
the physical point. In light of the plethora of scale setting
schemes currently proposed, we encourage the consider-
ation of how well a proposed scheme is suited to learning
the properties of QCD in a universe with different quark
masses.

IV. SUMMARY AND OUTLOOK

In this work, we collected finite volume spectra for the
I ¼ l ¼ 1 ππ sector provided by LQCD collaborations
over the past decade. These spectra were fit in a consistent
manner within the framework of Hamiltonian effective
field theory. The basic states included in the Hamiltonian
were a bare ρ state and the ππ and ωπ coupled channels. In
this framework, we successfully fit the finite volume
spectra in the rest frame, moving frame and the elongated
box, and complemented this with experimental data for the
ππ → ππP-wave phase shifts.
We employed three schemes to fit the energy levels

obtained at various pion masses. Through scheme A, we
found that gρππ and Λρππ exhibit a weak dependence onmπ .
In the following scheme B, we set these two parameters as
constant in order to obtain themπ-dependence of the bare ρ
basis state, mB

ρ ðmπÞ. In scheme C, where the ωρπ vertex
was included with additional constraints from experimental
data, we again extracted mB

ρ ðmπÞ. Finally, we used the
linear relation betweenmB

ρ andm2
π , as shown in Eq. (38), to

perform an extrapolation. Because the relationship between
mB

ρ and m2
π was highly dependent on the LQCD group

whose data we used, we were unable to fit all mB
ρ

simultaneously and resorted to extrapolating collaboration
by collaboration.
Based upon the extrapolations of data from the five

LQCD groups, it was found that for each collaboration,
mB

ρ ðmπÞ could be described well by Eq. (40). This supports
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FIG. 7. Phase shift calculated by Eq. (19) using the parameters
gωρπ ¼ 0, gρππ ¼ 7.07, Λρππ ¼ 890 MeV and mρ ¼ c0 þ c1m2

π

with c0 and c1 being the extrapolation coefficients for scheme B
given in Table IV. The points in the first figure are experimental
values from Refs. [71–73]. The line for Bulava atmπ ¼ 400 MeV
denotes a ππ bound state.
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the hypothesis that the single-particle bare ρ meson plays
an important role in forming a physical peak in the P-wave
ππ scattering. The pole mass mp

ρ defined by Eq. (39) are
also calculated. When extrapolated to physical pion mass
μπ , the m

p
ρ for MILC, Bulava et al. and HSC agree with the

experimental measurements. We can also predict the
observables such as the phase shift for each collaboration
at some certain unphysical mπ . For each group, the pole
massmp

ρ and the coefficients c1 in Eq. (40) were stable with
and without the ωπ loop contribution, while the bare mass
had a shift of around 50 MeV. Unfortunately, from the
current LQCD data, the extracted value of c1 is dependent
on the lattice collaboration whose data are used. This
indicates the important discrepancies in the results of
today’s lattice QCD calculation among different collabo-
rations due to the possible reasons discussed previously.
In the future it would obviously be ideal to have lattice
data for the ρ meson at different pion masses with all
systematic effects carefully controlled in order to resolve
the mπ-dependence of the ρ meson.
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APPENDIX A: THE FORMULAS
FOR n ↔ k�ðnÞ AND en

Here, we will list all cases involved in our present
calculation, since the transformation n ↔ k�ðnÞ and en

differ from how the momentum is quantized. A summary is
given here.
(1) If quantized in a cubic box with total momentum

P ¼ 0 and length L, then k�ðnÞ ¼ 2π
L n, and en ¼ n2.

(2) If quantized in a elongated box with total momentum
P ¼ 0, then k�ðnÞ ¼ 2π

L ðn⊥ þ 1
η nkÞ where η > 1

denotes the elongation strength, ⊥ and k denotes
the vertical and parallel component to the elongated
direction named d, respectively. Then en need two
values, n2 and jn · dj.

(3) If quantized in a cubic box with total momentum
P≡ 2πd=L ≠ 0, then k�ðnÞ ¼ k�ðkðnÞÞ and kðnÞ ¼
2π
L nwhere k�ðkÞ is the “Lorentz-like transformation”
for channel α defined as

k�ðkÞ ¼ k⊥ þ γ

�
kk −

Eα1ðkÞ
Eα1ðkÞ þ Eα2ðP − kÞP

�
;

γ ¼ Eα1ðkÞ þ Eα2ðP − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEα1ðkÞ þ Eα2ðP − kÞÞ2 − P2

q ; ðA1Þ

where kk ¼ ðk · PÞP=P2 and k⊥ ¼ k − kk. Corre-
spondingly the Jacobian is

JðkÞ ¼ Eα1ðkÞ þ Eα2ðP − kÞ
Eα1ðkÞEα2ðP − kÞ =

Eα1ðk�Þ þ Eα2ðk�Þ
Eα1ðk�ÞEα2ðk�Þ

:

ðA2Þ
And the en also needs two values, n2 and n · d.
Furthermore, please note that for the ππ case, the
two values are unordered.

(4) If quantized in a elongated box with total momentum
P ≠ 0 and P is parallel to the elongated direction d, it
is same as the third case above except that kðnÞ ¼
2π
L ðn⊥ þ 1

η nkÞ and the en are also the same as that in
the third case.

APPENDIX B: DETERMINATION OF FIXED
PARAMETERS IN SCHEME C

In this appendix the determination of gωρπ and Λωρπ are
discussed. As mentioned in the main text, besides lattice
spectrum the parameters should also be constrained by the
decay width Γω→3π as well as phase shift δl¼1

ππ→ππ on the
experimental side.
The decay channel ω → 3π is believed to be dyna-

mically dominated by the ω → ρπ → 3π mechanism.
Therefore, the calculation of the decay width would
concern Vππ and Vωπ defined in Eqs. (7) and (8).
States in this appendix are normalized as hpjki ¼
ð2πÞ32Epδ

3ðk − pÞ unless specified other. Let jpþ
1 p

−
2p

0
3i

and TλðE;p1; p2; p3Þ denote jπþðp1Þπ−ðp2Þπ0ðp3Þi and
T-matrix element hpþ

1 p
−
2p

0
3jTðEÞjω; λi with λ being the

polarization of the ω, respectively. Then,
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TλðE;p1; p2; p3Þ ¼
Z

d3q
ð2πÞ62EρðqÞ2EπðqÞ

×
X
σ

TI¼0
σ ðE;p1p2p3; qÞ

×
1

E − EρðqÞ − EπðqÞ
Vλσ
ω→ρπðqÞ; ðB1Þ

where σ denotes the polarization of ρ and

TI¼0
σ ðE;p1p2p3; qÞ≡ hpþ

1 p
−
2p

0
3jTI¼0ðEÞjρð−qÞπðqÞ; σi

ðB2Þ
Vλσ
ω→ρπðqÞ≡ hρð−qÞπðqÞ; σjVI¼0jω; λi: ðB3Þ

With straightforward calculation it can be shown that

TλðE;p1; p2; p3Þ ¼ Aλ
12ðEÞ þ Aλ

23ðEÞ þ Aλ
31ðEÞ;

where Aλ
ijðEÞ is short for AλðE;pi; pjÞ given by

AλðE;p; kÞ ¼
ffiffiffi
1

6

r X
σ

1

ð2πÞ32EρðkÞ
Vσ
ρ→ππðp�Þ

×
WðE; kÞ −mB

ρ

WðE; kÞ −mB
ρ − ΣðWðE; kÞÞ

×
1

E − EρðkÞ − EπðkÞ
Vλσ
ω→ρπðkÞ; ðB4Þ

where
ffiffi
1
6

q
is the isospin factor, Σ ¼ Σππ þ Σωπ defined in

Eqs. (16) and (17), p� is the momentum p boosted in ρ rest
frame since we have boosted the T-matrix element into ρ

rest frame andWðE; kÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − EπðkÞÞ2 − k2

p
. Therefore,

the spin-averaged decay width is given by

Γ̄ ¼ ð2πÞ4
ð2πÞ62mω

1

3

X
λ

Z
dΦ3jTλðmω;p1; p2; p3Þj2 ðB5Þ

¼ ð2πÞ4
ð2πÞ62mω

Z
dΦ3

X
λ

fjAλ
23ðmωÞj2

þ 2ReðAλ
23ðmωÞAλ�

31ðmωÞÞg; ðB6Þ
where dΦ3 is the Lorentz-invariant three-body phase space
element defined in [18]. It is convenient to take dΦ3 ∝
dm12dΩ3dΩ�

1 and ∝ dm2
12dm

2
23dΩEuler for the integration of

jAj2 term and interference term, respectively. Vσ
ρ→ππ and

Vλσ
ω→ρπ can be written as two forms. The manifestly

Lorentz-invariant one is convenient for the integration of
the interference term and the other for the jAj2 term,

Vσ
ρ→ππðkÞ ¼ −ð2πÞ3

ffiffiffi
2

p
gρππϵμð0; σÞðk�1 − k�2Þμuππ ðB7Þ

¼ ð2πÞ92ð
ffiffiffiffiffiffiffiffiffiffiffiffi
2Eπðk

p
ÞÞ2

ffiffiffiffiffiffiffiffiffi
2mB

ρ

q
Y1σðk̂ÞVππðkÞ ðB8Þ

Vλσ
ω→ρπðkÞ ¼ ð2πÞ3

ffiffiffi
3

p
gωρπϵμναβPμϵνð0; λÞP0

αϵ
�
βð−k; σÞ

ðB9Þ
¼−

ffiffiffiffiffiffi
8π

p
ð2πÞ3mωgωρπC11ð1λ;λ− σσÞY1

λ−σðk̂Þjkj;
ðB10Þ

where ϵ is the polarization vector, uππ and Vππ are the
form factor and potential defined in Eqs. (9) and (7),
respectively. p�

1=2 are the four-vectors of π, P and P0 are the
four-vectors of ω and ρ, respectively. We do not introduce a
form factor for Vω→ρπ since there is no loop integral related
to it. Following that in Ref. [70], the interference term is
given by

X
λ

ReðAλ
23ðmωÞAλ�

31ðmωÞÞ

¼ ð2πÞ6g2ρππg2ωρπ
4Eρðp3ÞEρðp1Þ

ðm12 −mB
ρ Þðm23 −mB

ρ Þ
ðmω − Eρðp3Þ − Eπðp3ÞÞðmω − Eρðp1Þ − Eπðp1ÞÞ

uππðp1�Þuππðp1Þ

× Re

�
1

m12 −mB
ρ − Σðm12Þ

�
1

m23 −mB
ρ − Σðm23Þ

����������
P2 P · ðp2 þ p3Þ P · ðp3 − p2Þ

P · ðp1 þ p2Þ ðp1 þ p2Þ · ðp2 þ p3Þ ðp1 þ p2Þ · ðp3 − p2Þ
P · ðp2 − p1Þ ðp2 − p1Þ · ðp2 þ p3Þ ðp2 − p1Þ · ðp3 − p2Þ

�������:
ðB11Þ

jp1j; jp3j and the elements in the determinant can be easily expressed in terms of m2
12 and m

2
23. On the other hand, the jAλj2

term is given by

Z
dΩ3dΩ�

1

X
λ

jAλ
23ðmωÞj2 ¼

m2
ω

2

�
1

ð2πÞ32Eρðp3Þ
�

2
�

1

mω − Eρðp3Þ − Eπðp3Þ
�

2
���� Wðmω; p3Þ −mB

ρ

Wðmω; p3Þ −mB
ρ − ΣðWðmω; p3ÞÞ

����2
× ðð2πÞ32

ffiffiffi
2

p
gρππjp1�juππðjp1�jÞÞ2ðð2πÞ3

ffiffiffiffiffiffi
8π

p
mωgωρπjp3jÞ2: ðB12Þ
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With these ingredients Γω→ρπ→3π can then be calculated.
In Sec. III C we found that when Vωπ ¼ 0, gρππ and Λρππ

can be fixed at 7.07 and 890 MeV, respectively. It is
expected that the introduction of the ωρπ vertex would
slightly shift these parameters, we try to take gρππ and Λρππ

at 7.40 and 900 MeV, respectively. Besides, we assume that
Λωρπ ¼ Λρππ . The remaining two parameters mB

ρ and gωρπ
are constrained by Γω→3π and δl¼1

ππ→ππ . If we adopt
gωρπ ¼ 18=GeV, which is close to that in Ref. [51], and
mB

ρ ¼ 870 MeV, it is found that

Γω→ρπ→3π ¼ 7.12 MeV; ðB13Þ

while the experimental value of the partial decay width
Γex
ω→3π ¼ 7.74ð13Þ MeV. The 10% discrepancy is

accounted for by the neglected direct interaction between
the jωi and the j3πi channel [70]. Furthermore, the phase
shift defined by Eq. (19) can also be obtained and shown
in Fig. 8. The approximate consistence between the

theoretical and experimental results justify the values
adopted. Furthermore, it is interesting that the extrapo-
lated mB

ρ of HSC, MILC and Bulava et al. in scheme C
are nearly the same as that adopted here.

APPENDIX C: TABLE OF CΓ;G

In this appendix the values of CΓ;G are given. As in the
main context, CΓ;G is the reduction coefficient. To be
more specific, the nonzero space spanned by jα; en;Mi
furnish a representation labeled by Γ∞ which is irreduc-
ible for G∞ but generally reducible for subgroup G, i.e.,
a restricted representation for G. Therefore, with CΓ;G, the
Γ∞ can be decompose into the direct sum of the
irreducible representation of G. Furthermore, thanks to
the Wigner-Eckart theorem, it is sufficient to take a ¼ 1
without loss of generality. The nonvanishing ½CΓ;G�M;a¼1

relevant to the present work is given in the Table VI.
For more general result one can refer to, for example,
Refs. [47,48].

FIG. 8. Phase shift calculation by Eq. (19) using parameters
gωρπ ¼ 18=GeV, Λωρπ ¼ Λρππ ¼ 900 MeV, gρππ ¼ 7.40 and
mB

ρ ¼ 870 MeV at the physical pion mass μπ . The points in
the figure are experimental values from Refs. [71–73].

TABLE VI. Values of ½CΓ;G�M;a¼1 relevant to the present work.
jMi is short for the state jα; en;Mi defined in Eq. (24) with J ¼ 1.

ðΓ; GÞ P
M
½CΓ;G�M;a¼1jMi

ðT1;OhÞ 1ffiffi
2

p j1i − 1ffiffi
2

p j − 1i
ðA1;C4vÞ j0i
ðE;C4vÞ j − 1i
ðA1;C3vÞ j0i
ðE;C3vÞ j − 1i
ðA1;C2vÞ j0i
ðB1;C2vÞ 1ffiffi

2
p j − 1i þ 1ffiffi

2
p j1i

ðB2;C2vÞ 1ffiffi
2

p j − 1i − 1ffiffi
2

p j1i
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APPENDIX D: HEFT FITS TO LATTICE QCD SPECTRA

Here, we show all the other fit results for the various lattice QCD data sets collected besides that given in Fig. 1.

FIG. 9. Same as in Fig. 1 but for the MILC Collaboration [33].

STUDY OF THE PION-MASS DEPENDENCE OF ρ-MESON … PHYS. REV. D 109, 034505 (2024)

034505-19



FIG. 10. Same as in Fig. 1 but for other mπ by Bulava et al. [34].

FIG. 11. Same as in Fig. 1 but for Alexrandru et al. [29].
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FIG. 12. Same as in Fig. 1 but for the ETMC Collaboration [28].
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FIG. 13. Same as in Fig. 1 but for the ETMC Collaboration [28]. The turning point of the black dotted line for mπ ¼ 322 MeV is due
to an avoided level crossing when the ωπ channel is included.
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FIG. 14. Same as in Fig. 1 but for the HSC Collaboration [26,27,36].
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FIG. 15. Same as in Fig. 1 but for the PACS-CS Collaboration [74].

FIG. 16. Same as in Fig. 1 but for Guo et al. [32]. Note that there is an additional quantity η denoting the elongation factor in the yellow
box compared to the others.

YU, LI, WU, LEINWEBER, and THOMAS PHYS. REV. D 109, 034505 (2024)

034505-24



[1] S. Capstick and W. Roberts, Quark models of baryon
masses and decays, Prog. Part. Nucl. Phys. 45, S241
(2000).

[2] T. A. DeGrand, R. L. Jaffe, K. Johnson, and J. E. Kiskis,
Masses and other parameters of the light hadrons, Phys.
Rev. D 12, 2060 (1975).

[3] S. Theberge, A.W. Thomas, and G. A. Miller, The cloudy
bag model. 1. The (3,3) resonance, Phys. Rev. D 22, 2838
(1980); Phys. Rev. D 23, 2106(E) (1981).

[4] A.W. Thomas, S. Theberge, and G. A. Miller, The
cloudy bag model of the nucleon, Phys. Rev. D 24, 216
(1981).

[5] C. D. Roberts and A. G. Williams, Dyson-Schwinger equa-
tions and their application to hadronic physics, Prog. Part.
Nucl. Phys. 33, 477 (1994).

[6] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao,
and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90,
015004 (2018); Rev. Mod. Phys. 94, 029901(E) (2022).

[7] C. A. Meyer and E. S. Swanson, Hybrid mesons, Prog. Part.
Nucl. Phys. 82, 21 (2015).

[8] A.W. Thomas, Chiral extrapolation of hadronic observ-
ables, Nucl. Phys. B, Proc. Suppl. 119, 50 (2003).

[9] M. Luscher, Two particle states on a torus and their relation
to the scattering matrix, Nucl. Phys. B354, 531 (1991).

[10] C. h. Kim, C. T. Sachrajda, and S. R. Sharpe, Finite-volume
effects for two-hadron states in moving frames, Nucl. Phys.
B727, 218 (2005).

[11] M. T. Hansen and S. R. Sharpe, Multiple-channel generali-
zation of Lellouch-Luscher formula, Phys. Rev. D 86,
016007 (2012).

[12] S. He, X. Feng, and C. Liu, Two particle states and the S-
matrix elements in multi-channel scattering, J. High Energy
Phys. 07 (2005) 011.

[13] K. Rummukainen and S. A. Gottlieb, Resonance scattering
phase shifts on a nonrest frame lattice, Nucl. Phys. B450,
397 (1995).

[14] M. Gockeler, R. Horsley, M. Lage, U. G. Meissner, P. E. L.
Rakow, A. Rusetsky, G. Schierholz, and J. M. Zanotti,
Scattering phases for meson and baryon resonances on
general moving-frame lattices, Phys. Rev. D 86, 094513
(2012).

[15] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[16] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)),
FLAG review 2021, Eur. Phys. J. C 82, 869 (2022).

[17] R. A. Briceno, J. J. Dudek, and R. D. Young, Scattering
processes and resonances from lattice QCD, Rev. Mod.
Phys. 90, 025001 (2018).

[18] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[19] F. Aceti and E. Oset, Wave functions of composite
hadron states and relationship to couplings of scattering
amplitudes for general partial waves, Phys. Rev. D 86,
014012 (2012).

[20] R. L. Jaffe, Ordinary and extraordinary hadrons, AIP Conf.
Proc. 964, 1 (2007).

[21] J. R. Pelaez, On the nature of light scalar mesons from
their large Nc behavior, Phys. Rev. Lett. 92, 102001 (2004).

[22] J. R. Pelaez and G. Rios, Nature of the f0ð600Þ from its Nc

dependence at two loops in unitarized chiral perturbation
theory, Phys. Rev. Lett. 97, 242002 (2006).

[23] C. B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar,
Coupled channel analysis of the rho meson decay in lattice
QCD, Phys. Rev. D 84, 054503 (2011); Phys. Rev. D 89,
059903(E) (2014).

[24] S. Aoki et al. (CS Collaboration), ρ meson decay in 2þ 1

flavor lattice QCD, Phys. Rev. D 84, 094505 (2011).
[25] G. S. Bali, S. Collins, A. Cox, G. Donald, M. Göckeler,

C. B. Lang, and A. Schäfer (RQCD Collaboration), ρ and
K� resonances on the lattice at nearly physical quark masses
and Nf ¼ 2, Phys. Rev. D 93, 054509 (2016).

[26] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and
C. E. Thomas, Coupled ππ; KK̄ scattering in P-wave and
the ρ resonance from lattice QCD, Phys. Rev. D 92, 094502
(2015).

[27] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron
Spectrum Collaboration), Energy dependence of the ρ
resonance in ππ elastic scattering from lattice QCD, Phys.
Rev. D 87, 034505 (2013); Phys. Rev. D 90, 099902(E)
(2014).

[28] M. Werner et al. (Extended Twisted Mass Collaboration),
Hadron-hadron interactions from Nf ¼ 2þ 1þ 1 lattice
QCD: The ρ-resonance, Eur. Phys. J. A 56, 61 (2020).

[29] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul,
M. Petschlies, A. Pochinsky, G. Rendon, and S. Syritsyn,
P-wave ππ scattering and the ρ resonance from lattice QCD,
Phys. Rev. D 96, 034525 (2017).

[30] C. Pelissier and A. Alexandru, Resonance parameters of the
rho-meson from asymmetrical lattices, Phys. Rev. D 87,
014503 (2013).

[31] X. Feng, K. Jansen, and D. B. Renner, Resonance param-
eters of the ρ meson from lattice QCD, Phys. Rev. D 83,
094505 (2011).

[32] D. Guo, A. Alexandru, R. Molina, and M. Döring, Rho
resonance parameters from lattice QCD, Phys. Rev. D 94,
034501 (2016).

[33] Z. Fu and L. Wang, Studying the ρ resonance para-
meters with staggered fermions, Phys. Rev. D 94, 034505
(2016).

[34] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, The
I ¼ 1 pion-pion scattering amplitude and timelike pion form
factor from Nf ¼ 2þ 1 lattice QCD, Nucl. Phys. B939, 145
(2019).

[35] M. Fischer, B. Kostrzewa, M. Mai, M. Petschlies, F. Pittler,
M. Ueding, C. Urbach, and M. Werner (Extended Twisted
Mass (ETM) Collaboration), The ρ-resonance from Nf ¼ 2

lattice QCD including the physical pion mass, Phys. Lett. B
819, 136449 (2021).

[36] A. Rodas, J. J. Dudek, and R. G. Edwards, The quark mass
dependence of ππ scattering in isospin 0, 1 and 2 from
lattice QCD, Phys. Rev. D 108, 034513 (2023).

[37] B. Hu, R. Molina, M. Döring, M. Mai, and A. Alexandru,
Chiral extrapolations of the ρð770Þ meson in Nf ¼ 2þ 1
lattice QCD simulations, Phys. Rev. D 96, 034520 (2017).

[38] B. Hu, R. Molina, M. Döring, and A. Alexandru, Two-flavor
simulations of the ρð770Þ and the role of the KK̄ channel,
Phys. Rev. Lett. 117, 122001 (2016).

STUDY OF THE PION-MASS DEPENDENCE OF ρ-MESON … PHYS. REV. D 109, 034505 (2024)

034505-25

https://doi.org/10.1016/S0146-6410(00)00109-5
https://doi.org/10.1016/S0146-6410(00)00109-5
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.22.2838
https://doi.org/10.1103/PhysRevD.22.2838
https://doi.org/10.1103/PhysRevD.23.2106.2
https://doi.org/10.1103/PhysRevD.24.216
https://doi.org/10.1103/PhysRevD.24.216
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.94.029901
https://doi.org/10.1016/j.ppnp.2015.03.001
https://doi.org/10.1016/j.ppnp.2015.03.001
https://doi.org/10.1016/S0920-5632(03)01492-0
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.86.014012
https://doi.org/10.1103/PhysRevD.86.014012
https://doi.org/10.1063/1.2823850
https://doi.org/10.1063/1.2823850
https://doi.org/10.1103/PhysRevLett.92.102001
https://doi.org/10.1103/PhysRevLett.97.242002
https://doi.org/10.1103/PhysRevD.84.054503
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevB.84.094505
https://doi.org/10.1103/PhysRevD.93.054509
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.90.099902
https://doi.org/10.1103/PhysRevD.90.099902
https://doi.org/10.1140/epja/s10050-020-00057-4
https://doi.org/10.1103/PhysRevD.96.034525
https://doi.org/10.1103/PhysRevD.87.014503
https://doi.org/10.1103/PhysRevD.87.014503
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.94.034501
https://doi.org/10.1103/PhysRevD.94.034501
https://doi.org/10.1103/PhysRevD.94.034505
https://doi.org/10.1103/PhysRevD.94.034505
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1016/j.physletb.2021.136449
https://doi.org/10.1016/j.physletb.2021.136449
https://doi.org/10.1103/PhysRevD.108.034513
https://doi.org/10.1103/PhysRevD.96.034520
https://doi.org/10.1103/PhysRevLett.117.122001


[39] M. Doring, J. Haidenbauer, U.-G. Meissner, and A.
Rusetsky, Dynamical coupled-channel approaches on a
momentum lattice, Eur. Phys. J. A 47, 163 (2011).

[40] M. Doring, U. G. Meissner, E. Oset, and A. Rusetsky, Scalar
mesons moving in a finite volume and the role of partial
wave mixing, Eur. Phys. J. A 48, 114 (2012).

[41] J.-J. Wu, T. S. H. Lee, A.W. Thomas, and R. D. Young,
Finite-volume Hamiltonian method for coupled-channels
interactions in lattice QCD, Phys. Rev. C 90, 055206
(2014).

[42] Z.-W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes,
A.W. Thomas, and J.-J. Wu, Hamiltonian effective field
theory study of the N�ð1440Þ resonance in lattice QCD,
Phys. Rev. D 95, 034034 (2017).

[43] J.-j. Wu, D. B. Leinweber, Z.-w. Liu, and A.W. Thomas,
Structure of the Roper resonance from lattice QCD con-
straints, Phys. Rev. D 97, 094509 (2018).

[44] Z.-W. Liu, J. M. M. Hall, D. B. Leinweber, A. W. Thomas,
and J.-J. Wu, Structure of the Λð1405Þ from Hamiltonian
effective field theory, Phys. Rev. D 95, 014506 (2017).

[45] Z.-W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes,
A.W. Thomas, and J.-J. Wu, Hamiltonian effective field
theory study of the N�ð1535Þ resonance in lattice QCD,
Phys. Rev. Lett. 116, 082004 (2016).

[46] Z. Yang, G.-J. Wang, J.-J. Wu, M. Oka, and S.-L. Zhu,
Novel coupled channel framework connecting the quark
model and lattice QCD for the near-threshold Ds states,
Phys. Rev. Lett. 128, 112001 (2022).

[47] Y. Li, J.-J. Wu, C. D. Abell, D. B. Leinweber, and A.W.
Thomas, Partial wave mixing in Hamiltonian effective field
theory, Phys. Rev. D 101, 114501 (2020).

[48] Y. Li, J.-j. Wu, D. B. Leinweber, and A.W. Thomas,
Hamiltonian effective field theory in elongated or moving
finite volume, Phys. Rev. D 103, 094518 (2021).

[49] S. Weinberg, The Quantum Theory of Fields. Vol. 1:
Foundations (Cambridge University Press, Cambridge,
England, 2005), 10.1017/CBO9781139644167.

[50] A. Matsuyama, T. Sato, and T. S. H. Lee, Dynamical
coupled-channel model of meson production reactions
in the nucleon resonance region, Phys. Rep. 439, 193
(2007).

[51] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V.
Wright, Chiral behavior of the ρ meson in lattice QCD,
Phys. Rev. D 64, 094502 (2001).

[52] J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances
with hidden charm in coupled-channel models, Phys. Rev. C
85, 044002 (2012).

[53] V. Bernard, M. Lage, U.-G. Meissner, and A. Rusetsky,
Resonance properties from the finite-volume energy spec-
trum, J. High Energy Phys. 08 (2008) 024.

[54] C. R. Allton, W. Armour, D. B. Leinweber, A.W. Thomas,
and R. D. Young, Chiral and continuum extrapolation of
partially-quenched lattice results, Phys. Lett. B 628, 125
(2005).

[55] P. C. Bruns and U.-G. Meissner, Infrared regularization for
spin-1 fields, Eur. Phys. J. C 40, 97 (2005).

[56] W. Armour, C. R. Allton, D. B. Leinweber, A. W.
Thomas, and R. D. Young, Unified chiral analysis of the
vector meson spectrum from lattice QCD, J. Phys. G 32, 971
(2006).

[57] H.-X. Chen and E. Oset, ππ interaction in the ρ channel in
finite volume, Phys. Rev. D 87, 016014 (2013).

[58] R. Molina and J. Ruiz de Elvira, Light- and strange-quark
mass dependence of the ρð770Þ meson revisited, J. High
Energy Phys. 11 (2020) 017.

[59] M. Niehus, M. Hoferichter, B. Kubis, and J. Ruiz de Elvira,
Two-loop analysis of the pion mass dependence of the ρ
meson, Phys. Rev. Lett. 126, 102002 (2021).

[60] J. M. M. Hall, A. C. P. Hsu, D. B. Leinweber, A. W.
Thomas, and R. D. Young, Finite-volume matrix Hamilto-
nian model for a Δ → Nπ system, Phys. Rev. D 87, 094510
(2013).

[61] C. D. Abell, D. B. Leinweber, A. W. Thomas, and J.-J. Wu,
Regularization in nonperturbative extensions of effective
field theory, Phys. Rev. D 106, 034506 (2022).

[62] C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D.
Mohler, A. Nicholson, S. Skinner, and A. Walker-Loud,
Progress on meson-baryon scattering, Proc. Sci. LAT-
TICE2021 (2022) 170 [arXiv:2111.07755].

[63] C. B. Lang, L. Leskovec, M. Padmanath, and S. Prelovsek,
Pion-nucleon scattering in the Roper channel from lattice
QCD, Phys. Rev. D 95, 014510 (2017).

[64] C. D. Abell, D. B. Leinweber, Z.-W. Liu, A.W. Thomas,
and J.-J. Wu, Low-lying odd-parity nucleon resonances as
quark-model-like states, Phys. Rev. D 108, 094519 (2023).

[65] J. Bulava, A. D. Hanlon, B. Hörz, C. Morningstar, A.
Nicholson, F. Romero-López, S. Skinner, P. Vranas, and
A. Walker-Loud, Elastic nucleon-pion scattering at mπ ¼
200 MeV from lattice QCD, Nucl. Phys. B987, 116105
(2023).

[66] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.
Wallace, Excited state baryon spectroscopy from lattice
QCD, Phys. Rev. D 84, 074508 (2011).

[67] R. G. Edwards, N. Mathur, D. G. Richards, and S. J. Wallace
(Hadron Spectrum Collaboration), Flavor structure of the
excited baryon spectra from lattice QCD, Phys. Rev. D 87,
054506 (2013).

[68] C. B. Lang and V. Verduci, Scattering in the πN negative
parity channel in lattice QCD, Phys. Rev. D 87, 054502
(2013).

[69] F. James and M. Roos, MINUIT: A system for function
minimization and analysis of the parameter errors and
correlations, Comput. Phys. Commun. 10, 343 (1975).

[70] F. Kleefeld, E. van Beveren, and G. Rupp, The pionic width
of the ωð782Þmeson within a well-defined, unitary quantum
field theory of (anti-)particles and (anti-)holes, Nucl. Phys.
A694, 470 (2001).

[71] S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-
Galtieri, S. M. Flatte, J. H. Friedman, T. A. Lasinski,
G. R. Lynch, M. S. Rabin, and F. T. Solmitz, ππ partial
wave analysis from reactions πþp → πþπ−Δþþ and πþp →
KþK−Δþþ at 7.1-GeV=c, Phys. Rev. D 7, 1279 (1973).

[72] P. Estabrooks and A. D. Martin, ππ phase shift analysis
below the KK̄ threshold, Nucl. Phys. B79, 301 (1974).

[73] B. Hyams et al., ππ phase shift analysis from 600-MeV to
1900-MeV, Nucl. Phys. B64, 134 (1973).

[74] S. Aoki and T. Doi, Lattice QCD and baryon-baryon
interactions: HAL QCD method, Front. Phys. 8, 307
(2020).

YU, LI, WU, LEINWEBER, and THOMAS PHYS. REV. D 109, 034505 (2024)

034505-26

https://doi.org/10.1140/epja/i2011-11163-7
https://doi.org/10.1140/epja/i2012-12114-6
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevC.90.055206
https://doi.org/10.1103/PhysRevD.95.034034
https://doi.org/10.1103/PhysRevD.97.094509
https://doi.org/10.1103/PhysRevD.95.014506
https://doi.org/10.1103/PhysRevLett.116.082004
https://doi.org/10.1103/PhysRevLett.128.112001
https://doi.org/10.1103/PhysRevD.101.114501
https://doi.org/10.1103/PhysRevD.103.094518
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1103/PhysRevD.64.094502
https://doi.org/10.1103/PhysRevC.85.044002
https://doi.org/10.1103/PhysRevC.85.044002
https://doi.org/10.1088/1126-6708/2008/08/024
https://doi.org/10.1016/j.physletb.2005.09.020
https://doi.org/10.1016/j.physletb.2005.09.020
https://doi.org/10.1140/epjc/s2005-02118-0
https://doi.org/10.1088/0954-3899/32/7/007
https://doi.org/10.1088/0954-3899/32/7/007
https://doi.org/10.1103/PhysRevD.87.016014
https://doi.org/10.1007/JHEP11(2020)017
https://doi.org/10.1007/JHEP11(2020)017
https://doi.org/10.1103/PhysRevLett.126.102002
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevD.87.094510
https://doi.org/10.1103/PhysRevD.106.034506
https://doi.org/10.22323/1.396.0170
https://doi.org/10.22323/1.396.0170
https://arXiv.org/abs/2111.07755
https://doi.org/10.1103/PhysRevD.95.014510
https://doi.org/10.1103/PhysRevD.108.094519
https://doi.org/10.1016/j.nuclphysb.2023.116105
https://doi.org/10.1016/j.nuclphysb.2023.116105
https://doi.org/10.1103/PhysRevD.84.074508
https://doi.org/10.1103/PhysRevD.87.054506
https://doi.org/10.1103/PhysRevD.87.054506
https://doi.org/10.1103/PhysRevD.87.054502
https://doi.org/10.1103/PhysRevD.87.054502
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1016/S0375-9474(01)01084-3
https://doi.org/10.1016/S0375-9474(01)01084-3
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1016/0550-3213(74)90488-X
https://doi.org/10.1016/0550-3213(73)90618-4
https://doi.org/10.3389/fphy.2020.00307
https://doi.org/10.3389/fphy.2020.00307

