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We provide the first determination of the mass of the lightest flavor-singlet pseudoscalar and scalar bound
states (mesons) in the Sp(4) Yang-Mills theory coupled to two flavors of fundamental fermions, using lattice
methods. This theory has applications both to compositeHiggs and strongly interacting darkmatter scenarios.
We find the singlets to have masses comparable to those of the light flavored states, which might have
important implications for phenomenologicalmodels.We focus on regions of parameter space corresponding
to a moderately heavy mass regime for the fermions. We compare the spectra we computed to existing and
new results for SU(2) and SU(3) theories, uncovering an intriguing degree of commonality. As a by-product,
in order to perform the aforementioned measurements, we implemented and tested, in the context of
symplectic lattice gauge theories, several strategies for the treatment of disconnected-diagram contributions
to two-point correlation functions. These technical advances set the stage for future studies of the singlet
sector in broader portions of parameter space of this and other lattice theories with a symplectic gauge group.
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I. INTRODUCTION

The possible existence of new strongly interacting
sectors that extend the standard model (SM) of particle
physics has been the subject of a long-standing history of
theoretical studies. In recent years, this idea has been
prominently featured in the context of composite Higgs

models (CHMs) in which the Higgs fields of the SM
originate as pseudo-Nambu-Goldstone bosons (PNGBs) of
the underlying theory [1–3].1 A parallel development has
led to strongly coupled gauge theories being considered as
the dynamical origin of hidden sectors in which dark matter
consists of strongly interacting massive particles (SIMPs)
[64–73]. This scenario can address observational problems,
such as the “core vs cusp” [74] and “too big to fail” [75]
ones, and have implications for gravitational wave experi-
ments [76–93]—see, e.g., Refs. [94–99], as well as
Refs. [100–104]. Both CHMs and SIMPs give rise to
particles, the PNGBs, carrying nontrivial quantum numbers
of non-Abelian global (flavor) symmetries, that suppress
and protect their masses.
In general, strongly coupled theories also yield bound

states that are flavor singlets. Composite models with a
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1The recent literature is vast. See, e.g., the reviews inRefs. [4–6],
the summary tables in Refs. [7–9], and the selection of papers in
Refs. [10–48] and Refs. [49–63].
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strongly coupled origin can in particular give rise to a light
dilaton [105–107], the PNGB associated with (approxi-
mate) scale invariance. The striking phenomenological
implications of this possibility [108] have also been studied
extensively (see, e.g., Refs. [109–120]), and the low energy
effective field theory (EFT) of the dilaton [121,122] and
the other PNGBs can be combined in the dilaton EFT
[123–138]. Numerical evidence supporting this possibility
has emerged in the context of SU(3) lattice gauge theories
with special field content [139–151]. The singlet sector
of a strongly coupled theory contains also pseudoscalar
composite states, the phenomenology of which is the
subject of dedicated studies [9,23,27,152–154]. Their
EFT treatment follows closely that of axionlike particles
(ALPs) [155–157].
The phenomenological consequences of such theories

depend crucially on the mass spectrum of the lightest states
and on the (model dependent) couplings to the standard
model. While an efficient tool in treating the latter is
provided by the EFT methodology, even the construction of
such EFTs requires a good understanding of the lightest
portion of the spectrum. Whatever the original motivation
and application envisioned for such new strongly coupled
physical sectors is, they have a plethora of bound states,
some of which can be either stable or long lived, and
potentially light. It is then desirable to gain a broad
nonperturbative understanding of their spectroscopy, for
all bound states, and in the largest possible portions of the
parameter space. The instrument of choice for this endeavor
is that of (numerical) lattice gauge theories. There has been
a wide variety of investigations into the spectrum of many
such theories, especially those with SUðNÞ group, with
matter in various numbers and representations. Besides the
aforementioned work, and Refs. [143,144,158–162] on
SU(3), see, e.g., Refs. [163–171] for SU(2) theories,
Refs. [172–175] for SU(4) in multiple representations,
and [176] for G2, as well as the reviews in Refs. [177–180].
Gauge theories with a symplectic group play a special

role in all these contexts, because of the peculiar properties
of Spð2NÞ groups and their representations. For example,
the model in Ref. [16] provides the simplest realization of a
CHM that combines it with top partial compositeness [181]
and consists of a Spð2NÞ gauge theory with mixed-
representation fermion content. Likewise, Refs. [64,66]
use it for the construction of a SIMP-“miracle”. A number
of recent lattice studies started to characterize them [182–
198], following the pioneering effort in Ref. [199]. While
much such work has focused on the spectroscopy of bound
states carrying flavor, with this paper, we report on progress
in the singlet sector.
The present study explores the flavor-singlet bound

state sector in the Sp(4) gauge theory coupled to two
fermions in the fundamental representation, a theory that
has gathered substantial interest in the CHM context
and also provides a minimal realization of the SIMP

mechanism [67,69,71,72,200]. This study is complemen-
tary to the available nonsinglet hadron spectrum found in
Refs. [182,184–187,189,190,197]. Within the general aim
of understanding universal features of the low-lying
spectrum across different gauge groups, this is also a
step toward understanding how the approach to the large-
N limit of Spð2NÞ gauge theories differs from that of
SUðNÞ gauge theories, especially with respect to the axial
anomaly and topology. Our results could in the future help
to understand the anomaly-mediated decays of singlets
into SM particles.
We supplement this publication with numerical results

obtained in two other theories. The first is the closely
related SU(2) theory with two fundamental fermions, for
which earlier studies exist [163,201], and for which we
perform additional, new calculations. In the case of the
SU(3) theory coupled to fermions in the fundamental
representation, the pseudoscalar singlet has been studied
in Refs. [202–214]. The determination of the mass (and
width) of the lightest scalar singlet has proven to be
particularly challenging, and a number of studies in SU(3)
with dynamical fermions exists both in the context of real-
world QCD [215–224] and more general field content
[141,143,144,158–161]. We borrow results from this
extensive literature for the purpose of comparing with
our own results.
The paper is organized as follows. The pseudo-real

nature of the fundamental representation of Sp(4)—as
for SU(2)—leads to symmetry enhancement by modifying
the flavor symmetry and symmetry-breaking pattern. The
structure of the low-lying spectrum is hence different from
the more familiar QCD case. We briefly comment on the
most striking such features in Sec. II, as we define the
continuum theory of interest. In Sec. III, we describe
the lattice methods that we use to study the flavor-singlet
states, putting some emphasis on the implications for the
construction of suitable operators, in Sec. III A. The study
of correlations functions involving singlets is affected by
notorious difficulties, poor signal-to-noise ratio featuring
prominently among them. This required the adoption of
advanced techniques to obtain a nonzero signal, as we
explain in Sec. III B, and in more detail in the Appendices.
We present the body of our numerical results in Sec. IV.

Section IVA is devoted to the lightest pseudoscalar singlet
state, in both the Sp(4) and SU(2) theories, for degenerate
masses. We report on the case of nondegenerate flavor
masses for Sp(4) (which realizes a scenario relevant to dark
matter models) in Sec. IV B. The scalar singlet sector, in the
degenerate case for the Sp(4) theory, is the subject of
Sec. IV C, though we anticipate that, because of the bad
signal-to-noise ratio, only a rough estimate with unclear
finite-spacing systematics can be established at this stage.
Finally, we assess our results by a comparison to the SU(3)
case and report the results in Sec. IV D. Our general
conclusion, exposed more critically in Sec. V, is that for
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the available range of fermion masses the singlets are
indeed light enough to affect phenomenology and low-
energy EFT considerations. We add several technical
appendices, covering further details. We note that some
preliminary results are available in Ref. [225].

II. FLAVOR SINGLETS IN SYMPLECTIC
GAUGE THEORIES

We start the presentation by defining explicitly the
(continuum) field theories of interest. We provide both
their microscopic definition, in terms of elementary fields,
and their salient long-distance properties, which can be
explained in EFT terms. In doing so, we emphasize the role
of the symmetries of the theory.

A. Microscopic theory and global symmetries

The Spð2NÞ gauge theories of interest are characterized
by a Lagrangian density, L, which in this section, we write
using a metric with Lorentzian signature ðþ1;−1;−1;−1Þ,
and takes the form:

L¼ −
1

2
Tr½GμνGμν� þ ūðiγμDμ −muÞuþ d̄ðiγμDμ −mdÞd;

ð1Þ

where Gμν ≡P
A G

A
μνtA are the field strength tensors, and

tA are the generators of Spð2NÞ, normalized so that
TrTATB ¼ 1

2
δAB, while u and d are four-component

Dirac spinors, denoting the two flavors of fermion fields
transforming in the fundamental representation of Spð2NÞ.
The Lagrangian is real and Lorentz invariant, as ū≡ u†γ0,
and d̄≡ d†γ0. The covariant derivatives are defined in
terms of the gauge fields Aμ ≡ AA

μ tA as

Dμu≡ ∂μuþ igAμu; Dμd≡ ∂μdþ igAμd; ð2Þ

where g is the gauge coupling. Explicitly, the field-strength
tensor is given by

Gμν ≡ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; ð3Þ

where ½·; ·� denotes the commutator.
The fundamental representation of Spð2NÞ is pseudo-

real. As a result, the global symmetry is enhanced: One can
show explicitly, by rewriting Eq. (1) in terms of two-
component fermions,2 that for each Dirac fermion, the
Uð1ÞL × Uð1ÞR Abelian global symmetry acting on its
chiral projections is enhanced to a non-Abelian U(2) global

symmetry. The fermion kinetic terms hence, written in
terms of covariant derivatives, exhibit an enhanced
(classical) Uð4Þ ¼ Uð1ÞA × SUð4Þ global symmetry; we
will return to the effect of anomalies in the next subsection.
The fermion mass terms break explicitly the global

symmetry. If the masses are degenerate, mu ¼ md, as will
be the case throughout most of this paper, then the global
symmetry is explicitly broken to Sp(4). The bilinear,
nonderivative operator appearing in the Lagrangian density
as a mass term is also expected to condense so that the same
symmetry breaking pattern appears also in spontaneous
symmetry breaking effects. For generic choices of fermion
masses, mu ≠ md, the approximate global symmetry is
further broken to Spð2Þ2 ∼ SUð2Þ2 [197].

B. Light meson spectrum for two fundamental fermions

We summarize here the main properties of the bound
states of interest, guided by gauge invariance and symmetry
arguments, starting from the case in which the fundamental
fermions have degenerate mass, mu ¼ md. We observe that
the group structure has an even number of colors; hence
baryons are bosons. Furthermore, because the matter
content consists only of fermions transforming in the
pseudo-real fundamental representation, and as a result,
the global symmetry is enhanced, ordinary baryon number
is a subgroup of the enhanced SU(4) and is unbroken in the
vacuum of the theory, and hence objects that one might be
tempted to classify as having different baryon number (e.g.,
mesons and diquarks) belong to the same Sp(4) multiplet.
We restrict the discussion from here onward to mesons

made of two fundamental fermions. It may be convenient to
think of the mesons in terms of their two-component
fermion field content in order to classify them by their
Sp(4) transformations and attribute their JP quantum
numbers.3 As the two-component fermions transform as
a 4 of Sp(4), the multiplication properties imply that there
exist mesons transforming as a 1, 5, and 10 of Sp(4).
Starting from the spin-0 states, one expects to find in the

spectrum 5 PNGBs, spanning the SUð4Þ=Spð4Þ coset, and
transforming as a 5 of Sp(4), to becomemassless in themu ¼
md → 0 limit.4 These states have parity partners, generaliz-
ing what in QCD literature are usually denoted as a0
particles. Some numerical lattice evidence exists that at high

2This somewhat tedious exercise can be found in all its details
in the literature, for instance, in Refs. [168,185] and references
therein.

3We define the parity P so that flavor eigenstates are also parity
eigenstates. See Refs. [165,185,197] for extended discussions of
the subtleties involving twisting between space and flavor in the
definition of parity.

4These are the states playing a role in CHMs; in their EFT
description in terms of weakly coupled fields, four of them are
identified with the components of the SM Higgs doublet because
the SUð2ÞL × SUð2ÞR approximate symmetry of the electroweak
theory is identified with the SOð4Þ subgroup of Sp(4), and hence
5 ¼ 4 ⊕ 1 [16]. The 1 is an additional state that carries no SM
gauge quantum numbers, but in the EFT description of the strong
coupling sector, it is degenerate with the 4. Likewise, these states
are the dark matter candidates in SIMP models [64,65,197].
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temperature, these two sets of states becomedegenerate—see
Ref. [226] for SU(2) and Ref. [227] for SU(3), both with two
flavors of fundamental fermions—because the Uð1ÞA sym-
metry relating them is restored, but at zero temperature the
scalar 5 is expected to be heavy, the mass of the particles
being of the order of the confinement scale, even in the
mu ¼ md → 0 limit.
Classically, one would expect also two singlet scalars to

be light: the axion and the dilaton. Indeed, the classical
Lagrangian for mu ¼ md ¼ 0 is invariant also under the
action of a Uð1ÞA symmetry and of dilatations, the con-
densates breaking both of them spontaneously, and these
two additional light states can be thought of as the PNGBs
associated with these two Abelian symmetries. Alas,
besides being explicitly broken by the fermion masses,
both these symmetries are also anomalous. The Uð1ÞA and
scale anomalies hence provide masses for the axion-dilaton
system, related to the scale of confinement of the theory.
Mixing effects between these states and other vacuum
excitations (e.g., glueballs with the same JP quantum
numbers) are present as well, given that no symmetry
argument can be invoked rigorously to forbid them. The
precise determination of such masses, hence, is nontrivial,
and to large extent this paper is about setting the stage for its
future large-scale, high-precision calculation. Furthermore,
in confining theories with large numbers of degrees of
freedom, and when approaching the lower edge of the
conformal window, nonperturbative effects might suppress
the mass of the axion and dilaton, respectively; this is a very
active field of research in itself, for a potential phenomeno-
logical role both of this axion and of the dilaton, as we
mentioned in the introduction; the technology we developed
and tested for this paper could play an important future role in
either case.
The spin-1 part of the meson spectrum is more rich. In

analogy with the case of QCD, one expects the lightest of
such states to generalize the ρ mesons; they transform as a
10 of Sp(4) and have JP ¼ 1−, and their properties have
been studied elsewhere [184]. They have the peculiar
property that they can be sourced by two different inter-
polating operators, with the schematic structures ψ̄γμψ and
ψ̄σμνψ , respectively. In addition, the generalizations of the
a1 and b1 from QCD transform as a 5 and a 10 of Sp(4),
respectively; these additional states are heavier than the
aforementioned 10-plet with JP ¼ 1−—see the discussions
in Refs. [168,185]. It is worth noticing that some spin-1
singlet mesons of QCD are actually part of these multiplets
because of the symmetry-enhancement pattern—notice-
ably, the particle that corresponds to ω in QCD.
In the presence of nondegenerate fermion masses,

mu ≠ md, the global symmetry breaks further from
Sp(4) down to Spð2Þ × Spð2Þ ¼ SUð2Þ × SUð2Þ ∼ SOð4Þ.
Consequently, the multiplets decompose with respect to the
smaller flavor symmetry [197]. The 5-plets split into a 4-plet

and a singlet, whereas the 10-plet decomposes into a 6-plet
and a 4-plet. This implies that an additional singlet appears in
states that would have been a 5-plet in the mass-degenerate
theory, such as the PNGBs and the axial vectors. This is the
familiar scenario in QCD: In the presence of a mass differ-
ence between up and down quark, isospin is explicitly
broken, and the flavor-neutral pion π0 becomes a singlet,
with different mass from the charged π� states. The main
difference with QCD is that, as the pseudo-reality of the
representation results in additional flavor neutral states,
which microscopically can be written as di-quark states,
the multiplet is enlarged.
This differs for mesons in the 10-plet representation,

such as the vector meson. The 10 decomposes in a 4-plet
(with the same flavor structure as in the case of the PNGBs)
and a 6-plet. The latter consists of two states sourced by
ordinary meson operators (in the QCD analogy, they are the
ρ0 and the ω particles with JP ¼ 1−) and four other states
that are sourced by diquark operators. A further splitting of
these multiplets is possible, for example, by gauging a U(1)
subgroup of the SO(4) symmetry [197], but we do not
consider it here.

III. LATTICE SETUP

We perform lattice simulations using the standard pla-
quette action and standard Wilson fermions [228]. We use
the HiRep code [229,230] extended for Spð2NÞ gauge
theories [231] to generate configurations and to perform the
measurements. In the case of degenerate fermions,we use the
hybrid Monte Carlo (HMC) [232] algorithm, and for non-
degenerate fermions, we use the rational HMC (RHMC)
[233] algorithm. The latter case does not guarantee positivity
of the fermion determinant. In this case, we have monitored
the lowest eigenvalue of theDirac operator, whichwe always
found to be positive. Thus, we do not see any hints of a sign
problem for the fermionmasses studied in this work. Results
for the nonsinglet spectrum for two fundamental fermions
were first reported in Refs. [185,197]. We give simulation
details of our ensembles in Tables I and II.
We perform simulations on Euclidean lattices of size

T × L3 and define the bare inverse gauge coupling as
β ¼ 8=g2. We implement periodic boundary conditions for
the gauge fields. For the Dirac fields, we impose periodic
boundary conditions in the spatial directions and antiperi-
odic boundary conditions in the temporal direction.

A. Interpolating operators and two-point functions

We use fermion bilinear operators for sourcing both
singlet and nonsinglet mesons. From here onward, with
some abuse of notation, we denote as η0 and σ, respectively,
the pseudoscalar and scalar, flavor-singlet states. While the
mesonic sectors are enlarged in Spð2NÞ with fundamental
fermions, every nonsinglet or singlet state can still be
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probed by fermion-antifermion operators, even in the case
of nondegenerate fermions. Furthermore, since fermions
are moderately heavy, we find such operators are sufficient
to study the ground states and for now do not consider
others (such as ππ operators, glueballs, or even tetra-
quarks). We use the operators

OðΓÞ
1 ðnÞ ¼ ūðnÞΓdðnÞ;

OðΓÞ
� ðnÞ ¼ ðūðnÞΓuðnÞ � d̄ðnÞΓdðnÞÞ=

ffiffiffi
2

p
; ð4Þ

where n ¼ ðn⃗; tÞ denote lattice sites. For pseudoscalar
mesons, Γ ¼ γ5, and we omit the superscript when its

TABLE I. List of all ensembles with degenerate fermion masses used in this work. We report the number of configurations nconf , the
number of the stochastic sources used in the approximation of the all-to-all quark propagator nsrc, the intervals for fitting the resulting
meson correlators Imeson, and the average value of the plaquette hPi. In some cases, we were unable to identify a clear plateau in the
effective masses and could not determine the singlet masses. In these cases, we do not report a fit interval. For the singlet mesons, the
interval quoted here was used to fit the correlators after subtracting the excited state contributions in the connected pieces and after
performing a numerical derivative.

Ensemble Group β m0 L T nconf nsrc Iη0 Iπ Iσ Iσconn Iρ hPi
SU2B1L1M8 SU(2) 2.0 −0.947 20 32 1020 300 � � � (10, 16) (5, 8) (7, 10) (10, 16) 0.56734(2)
SU2B1L1M7 SU(2) 2.0 −0.94 14 24 1851 192 (8, 12) (8, 12) � � � � � � (9, 12) 0.56516(3)
SU2B1L1M6 SU(2) 2.0 −0.935 16 32 951 256 (7, 11) (9, 16) � � � � � � (9, 16) 0.563654(28)
SU2B1L1M5 SU(2) 2.0 −0.93 14 24 1481 256 (7, 12) (8, 12) � � � � � � (9, 12) 0.56245(3)
SU2B1L1M4 SU(2) 2.0 −0.925 14 24 1206 192 (6, 10) (8, 12) � � � � � � (9, 12) 0.56119(3)
SU2B1L1M3 SU(2) 2.0 −0.92 12 24 2401 192 (6, 9) (7, 12) � � � (6, 11) (8, 12) 0.559983(29)
SU2B1L1M2 SU(2) 2.0 −0.9 12 24 500 128 (6, 9) (7, 12) � � � � � � (8, 12) 0.55571(6)
SU2B1L1M1 SU(2) 2.0 −0.88 10 20 2582 128 (5, 8) (8, 10) � � � � � � (9, 10) 0.55225(4)
Sp4B3L1M8 Sp(4) 7.2 −0.799 32 40 451 224 � � � (15, 20) (5, 9) (11, 19) (15, 20) 0.590862(5)
Sp4B3L1M7 Sp(4) 7.2 −0.794 28 36 504 288 (7, 12) (10, 18) � � � (11, 16) (11, 18) 0.590452(7)
Sp4B3L1M6 Sp(4) 7.2 −0.79 24 36 500 320 (7, 12) (12, 18) (5, 8) (10, 16) (13, 18) 0.590127(9)
Sp4B3L1M5 Sp(4) 7.2 −0.78 24 36 508 384 (6, 12) (12, 18) � � � (11, 15) (13, 18) 0.589278(8)
Sp4B3L1M4 Sp(4) 7.2 −0.77 24 36 200 384 (6, 11) (11, 18) � � � (10, 15) (12, 18) 0.588460(12)
Sp4B3L1M3 Sp(4) 7.2 −0.76 16 36 200 384 � � � (11, 18) (5, 8) (9, 14) (12, 18) 0.587666(25)
Sp4B1L1M7 Sp(4) 6.9 −0.924 24 32 492 320 � � � (9, 16) (4, 7) (7, 10) (10, 16) 0.56317(2)
Sp4B1L1M6 Sp(4) 6.9 −0.92 24 32 503 484 � � � (7, 16) (4, 9) (8, 12) (8, 16) 0.562075(13)
Sp4B1L2M6 Sp(4) 6.9 −0.92 16 32 176 128 (6, 10) (9, 16) (4, 10) (7, 10) (9, 16) 0.56212(5)
Sp4B1L1M5 Sp(4) 6.9 −0.91 16 32 435 256 (6, 11) (8, 16) � � � (7, 9) (9, 16) 0.55935(3)
Sp4B1L2M5 Sp(4) 6.9 −0.91 14 24 513 256 (5, 10) (8, 12) (4, 7) (9, 12) (9, 12) 0.55941(3)
Sp4B1L1M4 Sp(4) 6.9 −0.9 16 32 547 512 (6, 10) (9, 16) � � � (7, 10) (10, 16) 0.556921(25)
Sp4B1L2M4 Sp(4) 6.9 −0.9 14 24 942 128 (7, 10) (8, 12) (4, 9) (7, 9) (9, 12) 0.556981(26)
Sp4B1L3M4 Sp(4) 6.9 −0.9 12 24 2904 128 (6, 10) (8, 12) (4, 8) (8, 10) (9, 12) 0.557009(18)
Sp4B1L2M3 Sp(4) 6.9 −0.89 14 24 461 128 (7, 10) (8, 12) (5, 9) (8, 11) (9, 12) 0.55468(4)
Sp4B1L3M3 Sp(4) 6.9 −0.89 12 24 1019 320 (6, 10) (8, 12) (3, 6) (7, 11) (9, 12) 0.55467(3)
Sp4B1L2M2 Sp(4) 6.9 −0.87 12 24 1457 128 (7, 11) (8, 12) (5, 8) (8, 10) (9, 12) 0.550497(27)
Sp4B1L2M3 Sp(4) 6.9 −0.87 10 20 976 128 (6, 9) (8, 10) � � � (6, 10) (8, 10) 0.55068(5)

TABLE II. List of all ensembles with nondegenerate fermion masses used in this work. We report the number of configurations nconf ,
the number of the stochastic sources used in the approximation of the all-to-all quark propagator nsrc, the intervals for fitting the resulting
meson correlators Imeson, and the average value of the plaquette hPi. In some cases, we were unable to identify a clear plateau in the
effective masses and could not determine the singlet masses. In these cases, we do not report a fit interval. For the singlet mesons, the
interval quoted here was used to fit the correlators after subtracting the excited state contributions in the connected pieces and after
performing a numerical derivative.

Ensemble β m1
0 m2

0 L T nconf nsrc Iη0 Iπ0 Iπ� Iσ Iσconn Iρ hPi
Sp4B1L2M4ND1 6.9 −0.9 −0.89 14 24 300 64 (7, 10) (7, 10) (8, 14) (4, 8) (8, 14) (8, 14) 0.55583(5)
Sp4B1L2M4ND2 6.9 −0.9 −0.88 14 24 191 128 (7, 10) (7, 10) (8, 14) (4, 8) (8, 14) (8, 14) 0.55474(5)
Sp4B1L2M4ND3 6.9 −0.9 −0.87 14 24 400 128 (7, 10) (7, 10) (8, 14) (5, 8) (8, 14) (8, 14) 0.55361(4)
Sp4B1L2M4ND4 6.9 −0.9 −0.85 14 24 300 64 � � � � � � (8, 14) (5, 8) (8, 14) (8, 14) 0.55163(4)
Sp4B1L2M4ND5 6.9 −0.9 −0.8 14 24 400 128 (7, 10) (7, 10) (8, 14) � � � (8, 14) (8, 14) 0.54735(4)
Sp4B1L2M4ND6 6.9 −0.9 −0.75 12 24 264 64 (7, 10) (7, 10) (8, 12) � � � (8, 12) (8, 12) 0.54395(6)
Sp4B1L2M4ND7 6.9 −0.9 −0.7 12 24 249 128 (7, 10) (7, 10) (8, 12) � � � (8, 12) (8, 12) 0.54104(6)
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value is clear from the context. The pseudoscalar operators
O− and O1 source the pion 5-plet, and the operator Oþ
sources the pseudoscalar singlet, η0. The same pattern
persists for the scalar mesons where Γ ¼ 1, and we use
the notation:

Oη0 ðnÞ≡ ðūðnÞγ5uðnÞ þ d̄ðnÞγ5dðnÞÞ=
ffiffiffi
2

p
;

OσðnÞ≡ ðūðnÞuðnÞ þ d̄ðnÞdðnÞÞ=
ffiffiffi
2

p
: ð5Þ

For vector mesons, Γ ¼ γi, and all operators O1 and O�
source states in thevector 10-plet [185]. In the nondegenerate
case, the flavored multiplet is always probed by O1. For the
vector mesons, both O− and Oþ probe the same unflavored
multiplet. In the case of the pseudoscalars and scalars, theO−
and Oþ probe distinct singlets. We note that the ensembles
studied in this work have moderately heavy fermions—in all
cases, the vector meson is lighter than twice the pNGBmass.
After performing the requiredWick contractions,we arrive at
the following two-point correlation functions:

ð6Þ

It can be seen that the singlet mesons only differ from the
nonsinglets by the additional disconnected diagrams. In the
degenerate limit, they cancel exactly for theO− operators. In
order to determine the mesonic spectrum, we need to
determine both the connected and disconnected pieces and
then fit the zero momentum correlator,

CðtÞ≡X
n⃗

hOðn⃗; tÞŌð0⃗; 0Þi; ð7Þ

on a Euclidean time interval ðtmin; tmaxÞ, where the ground
state dominates, and its energy—and thus the mass—can be
extracted. The different components of CðtÞ drop off
exponentially with their energy ∝ exp ð−EntÞ, and thus at
sufficiently large t, only the ground state remains, as all other
states are exponentially suppressed. However, we note that
an additional constant term can arise, which is the case for
both the η0 and the σ meson. In the former case, this can arise
due to an insufficient topological sampling of the path
integral, and this constant vanishes in the continuum limit
[234,235]. For the scalar singlet, σ, this constant arises due to
the vacuum contributions, e.g., the fermion condensate, and
persists in the continuum limit for vanishing momenta. At
large times, the correlator CðtÞ is then given by

lim
t→∞

CðtÞ ¼ aðe−mt þ e−mðT−tÞÞ þ h0jOj0i2; ð8Þ

where the second exponential term is due to the lattice
periodicity. While in the case of the η0, this constant is small
compared to the signal and only affects the correlator at large
t, this is not the case for the σ meson. In the scalar case, this
constant is several orders of magnitudes larger than the
signal, and its removal is a significant challenge.

We choose to perform a numerical derivative as proposed
in Ref. [236]. The resulting correlator is then antisymmetric
with respect to the midpoint T=2,

C̃ðtÞ≡ 1

2
ðCðt − 1Þ − Cðtþ 1ÞÞ⟶t→∞

a sinhðmÞ
× ðe−mt − e−mðT−tÞÞÞ: ð9Þ

In order to determine the Euclidean time interval for fitting,
we use an effective mass meffðtÞ defined by

C̃ðt − 1Þ
C̃ðtÞ ¼ e−meffðtÞ·ðT−tþ1Þ � e−meffðtÞ·ðt−1Þ

e−meffðtÞ·ðT−tÞ � e−meffðtÞ·t ; ð10Þ

where the þ is used for periodic correlators, and the − sign
in case of antiperiodic correlators with respect to the lattice
midpoint T=2. We determine ðtmin; tmaxÞ by visually
inspecting the effective mass and identifying a plateau at
large times t. We restrict ourselves to ensembles where the
plateau persists over four or more time slices. We then
perform a fit of a single exponential term to the correlator
C̃ðtÞ for the mesons. In Appendix A, we compare this
method to computing the additional constant h0jOj0i2
directly, without the use of a numerical derivative.
For the pseudoscalar sector in the nondegenerate Nf ¼

1þ 1 theory, both the π0 andη0 are pseudoscalar singlets, and
the η0 is not a ground state. Thus, we need to perform a
variational analysis by computing the correlation matrix of
the operatorsOπ0 andOη0 and solve the resulting generalized
eigenvalue problem (GEVP). In the minimal operator basis
of (4) and (5), the cross-correlator are diagrammatically
given by
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ð11Þ

In the mass-degenerate limit, the cross-correlator vanishes,
and the η0 becomes the ground state of the pseudoscalar
singlet sector, whereas the π0 becomes part of the pNGB
multiplet. Note the presence of connected diagrams in the
cross-correlator. This implies that even in the limit of large
fermion masses—which suppresses the disconnected pieces
—the cross-correlator remains large for large mass
differences, i.e., a system with heavy-light properties.
Thus, sizeable mixing effects are expected to occur.
For a heavy-light system, amore diagonal basis is obtained

by using the operators OPS
A ¼ ūγu and OPS

B ¼ d̄γd. The
corresponding cross-correlator vanishes as the heavier fer-
mion mass approaches infinity and is given by

ð12Þ

B. Variance reduction techniques

In order to obtain the full singlet two-point functions, we
need to measure both the connected and disconnected
pieces in Eq. (6). The disconnected diagrams in particular
are very noisy, and the signal is already lost at small to
intermediate twhere contaminations from excited states are
non-negligible. A direct determination of the ground state
mass at large t is thus not possible. We can circumvent this
problem by removing the contributions of excited states in
the singlet correlators manually. This is straightforward for
the connected pieces. There, the signal for the connected
pseudoscalar and vector mesons persists for all time slices
t, and in the case of the connected piece of the scalar
meson, we still have a signal up to large t. We fit the
connected piece at large times (see Tables I and II for our
choice of fit intervals) to a single exponential

C1 exp
conn ðtÞ ¼ A0ðe−mconnt þ e−mconnðT−tÞÞ; ð13Þ

and replace the full connected piece by the ground state
correlator [237], where A0 and mconn are the fit parameters,
such that

C1 exp
η0 ðtÞ ¼ C1 exp

π;connðtÞ þ Cη0;discðtÞ; ð14Þ

C1 exp
σ ðtÞ ¼ C1 exp

σ;connðtÞ þ Cσ;discðtÞ: ð15Þ

We find that the excited state contributions in the connected
pieces are the dominant ones, and removing them shows a
much earlier onset of a plateau in the effective masses. The

underlying assumption for these correlators is that the
excited state contributions of full and connected pieces are
indistinguishable within data quality as was noted in [209].
This is not guaranteed a priori. However, we find that the
excited state contributions in the connected pieces are
indeed the dominant ones. In Appendix B, we show that
our results obtained by subtracting the connected excited
state contributions through a fit at larger times produces the
same results as using smeared operators for the connected
pieces with more overlap with the ground state.
Note that this technique is not applicable to the non-

degenerate case, as the η0 is no longer a ground state and
some relevant information is actually encoded in the
excited states. Thus, we will not apply this technique there.
The evaluation of disconnected pieces requires all-to-all

propagators. We use Z2 × Z2 noisy sources with spin and
even-odd dilution [238]. We typically use Oð100Þ distinct
noise vectors. The connected pieces are evaluated using
stochastic wall sources. Uncertainties are estimated using
the jackknife method.

IV. RESULTS

Here we report the main results of our numerical
investigations on the mass spectrum of flavor-singlet
pseudoscalar and scalar mesons, obtained using the tech-
niques discussed in the previous section. We focus on the
Sp(4) theory coupled to two fundamental dynamical
fermions, but for degenerate fermions, we supplement it
with the SU(2) theory with the same matter content. In the
case of the pseudoscalar singlet, we further compare to the
existing literature on lattice results for the SU(3) theory.

A. Pseudoscalar singlet in SU(2) and Sp(4) with Nf = 2

Our results for the mesons with degenerate fermions are
tabulated in Table III. All the ensembles satisfy the
condition mπL > 6, suggested by the observations in
Ref. [184] for Sp(4), and in Ref. [166] for SU(2), that
the size of finite volume corrections to the low-lying
spectrum for flavored mesons is of the order of 1–2% at
mπL ≃ 6 and becomes much smaller for the larger volumes,
as it is exponentially suppressed with the volume. This
observation is also confirmed by our measurements of mπ

and mρ at different volumes in the Sp(4) theory with β ¼
6.9 by varying the bare fermion mass, m0. Finite volume
corrections to mη0 are compatible with the statistical
uncertainties and expected to be less than 2%, which we
estimated from the most precise results available, for
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m0 ¼ −0.9, if mπL≳ 6. We therefore safely neglect finite
volume corrections to mη0 in the following.
In Fig. 1, we present our measurements of the ratios

between the mass of the η0 meson and that of the
pseudoscalar nonsinglet π, as a function of mπ=mρ. For
reference, we indicate the mass of the vector meson ρ by a
solid line. In the Sp(4) theory, we find that the pseudoscalar
singlet is consistently heavier than the nonsinglet, over the
range of 0.7≲mπ=mρ ≲ 0.9, but lighter than the vector
mesons. While in the lightest and finest ensembles, the
hierarchy between the pseudoscalar singlet and vector
mesons is not yet clearly resolved, the emerging trend is
that mη0=mπ slowly increases as mπ decreases in this mass
regime and approaches mρ=mπ for mπ=mρ ≲ 0.75. We do
not observe an appreciable difference in the mass ratios
obtained with the two different values of β, within the
quoted one-sigma error bars. We find a similar trend in the
SU(2) theory, as shown in the right panel of Fig. 1. Since in
this case only one fairly coarse lattice is considered, we
cannot comment on the size of finite lattice spacing effects.
The smallness of lattice artifacts in the ratios of meson

masses is somewhat surprising, as the lattice spacing for
β ¼ 7.2 is approximately 40% smaller than for β ¼ 6.9
[184]. To assess this point, we present the meson masses in

units of the gradient flow scale w0, which defines a
common scale in the continuum theory, and which we
use also to compute the topological charge Q—see
Appendix A. We borrow the definition and measurements
of the gradient flow scale w0 from Ref. [184] and refer the
reader to that publication for details. The left panel of Fig. 2
shows that both the mass of the pseudoscalar singlet and the
vector mesons receive significant corrections from the finite
lattice spacing. By comparing with Fig. 1, we see that such
corrections to mπw0 and mη0w0 happen to have the same
sign and similar sizes, which cancel out in the mass ratios.
We observe the same pattern for the mass ratio of mρ and
mη0 , as depicted in the right panel of Fig. 2.

B. Pseudoscalar singlets in Sp(4) with Nf = 1 + 1

For nondegenerate fermions, the theory contains two
flavor-singlet pseudoscalar mesons, the η0 as well as the
flavor-diagonal PNGB, π0. To understand the effects of
(explicit) flavor-symmetry breaking on the low-lying spec-
trum, we first choose the ensemble for degenerate fermions
with β ¼ 6.9 and m0 ¼ −0.9 and vary the bare mass of one

of the Dirac fermion, mð2Þ
0 ≥ m0, for which we effectively

increase its mass, while keeping that of the other fixed,

TABLE III. The light spectrum of SU(2) and Sp(4) with degenerate fermions: the lightest flavored pseudoscalar, π, and vector, ρ, and
flavor-singlet pseudoscalar, η0, and scalar, σ, mesons, measured in different ensembles. All dimensionful quantities are given in lattice
units and the omission of the lattice spacing a ¼ 1 is understood. The missing entries formη0 and/ormσ are due to the measurements not
fulfilling the fitting criteria discussed in the main text.

β m0 L T mπL mπ=mρ mπ mρ mη0 mσ

SU(2) 2.0 −0.947 20 32 7.47(3) 0.690(7) 0.3735(13) 0.540(5) � � � 0.53(4)
SU(2) 2.0 −0.94 14 24 6.40(2) 0.746(6) 0.4576(14) 0.612(4) 0.67(6) � � �
SU(2) 2.0 −0.935 16 32 7.91(2) 0.767(5) 0.4946(14) 0.644(4) 0.60(3) � � �
SU(2) 2.0 −0.93 14 24 7.491(19) 0.787(4) 0.5350(14) 0.679(3) 0.65(3) � � �
SU(2) 2.0 −0.925 14 24 7.999(19) 0.806(4) 0.5713(14) 0.708(3) 0.634(16) � � �
SU(2) 2.0 −0.92 12 24 7.323(10) 0.8210(19) 0.6102(8) 0.7432(14) 0.665(9) � � �
SU(2) 2.0 −0.9 12 24 8.620(17) 0.862(3) 0.7183(14) 0.832(2) 0.770(16) � � �
SU(2) 2.0 −0.88 10 20 8.120(11) 0.885(2) 0.8120(11) 0.9169(19) 0.842(5) � � �
Sp(4) 7.2 −0.799 32 40 8.087(16) 0.668(4) 0.2527(5) 0.377(2) � � � 0.36(5)
Sp(4) 7.2 −0.794 28 36 8.072(11) 0.710(2) 0.2882(4) 0.4055(11) 0.397(16) � � �
Sp(4) 7.2 −0.79 24 36 7.505(19) 0.742(6) 0.3127(8) 0.421(3) 0.387(13) 0.56(6)
Sp(4) 7.2 −0.78 24 36 8.882(17) 0.793(4) 0.3700(7) 0.466(2) 0.418(7) � � �
Sp(4) 7.2 −0.77 24 36 10.16(2) 0.829(5) 0.4236(10) 0.510(3) 0.456(8) � � �
Sp(4) 7.2 −0.76 16 36 7.544(17) 0.850(4) 0.4715(10) 0.554(2) � � � 0.64(12)
Sp(4) 6.9 −0.924 24 32 8.208(12) 0.663(2) 0.3420(5) 0.5157(17) � � � 0.46(3)
Sp(4) 6.9 −0.92 24 32 9.356(12) 0.7036(17) 0.3898(5) 0.5540(12) � � � 0.42(2)
Sp(4) 6.9 −0.92 16 32 6.22(2) 0.696(7) 0.3889(14) 0.558(5) 0.49(3) 0.45(6)
Sp(4) 6.9 −0.91 16 32 7.817(19) 0.769(5) 0.4885(12) 0.634(4) 0.560(14) � � �
Sp(4) 6.9 −0.91 14 24 6.86(2) 0.766(6) 0.4902(16) 0.639(5) 0.541(9) 0.41(3)
Sp(4) 6.9 −0.9 16 32 9.006(13) 0.815(3) 0.5629(8) 0.690(2) 0.611(9) � � �
Sp(4) 6.9 −0.9 14 24 7.897(14) 0.812(3) 0.5641(10) 0.694(2) 0.619(16) 0.57(4)
Sp(4) 6.9 −0.9 12 24 6.796(9) 0.809(2) 0.5663(8) 0.6994(18) 0.610(6) 0.55(2)
Sp(4) 6.9 −0.89 14 24 8.813(19) 0.843(4) 0.6295(13) 0.746(3) 0.69(2) 0.57(9)
Sp(4) 6.9 −0.89 12 24 7.581(15) 0.841(3) 0.6318(12) 0.751(3) 0.661(9) 0.62(7)
Sp(4) 6.9 −0.87 12 24 8.925(10) 0.878(2) 0.7437(9) 0.8468(17) 0.782(13) 0.80(15)
Sp(4) 6.9 −0.87 10 20 7.470(16) 0.871(3) 0.7470(16) 0.857(3) 0.764(9) � � �

ED BENNETT et al. PHYS. REV. D 109, 034504 (2024)

034504-8



mð1Þ
0 ¼ m0. We summarize the numerical results in

Table IV. In the table, we also present the mass of the
flavor-singlet PNGB obtained by computing only the
connected diagrams after dropping the last three terms in
Eq. (6), which we denote by mπ0c

. Within the generally
larger uncertainties, we find no statistically appreciable
difference between mπ0 and mπ0c

, which supports the
connected-only approximation considered in Ref. [197].
In the left panel of Fig. 3, we show the mesonmasses, as a

function of the flavoured pNGBs mass mπ� . In the mass-
degenerate limit, we recover themass hierarchy of Sec. IVA,
as expected. As we increase one of the fermion masses, we
observe a clear separation between flavored mesons and the

unflavored π0 as well as the unflavored vector mesons ρ0,
with the former being heavier than the latter. At the same
time, the pseudoscalar singlet η0, becomes heavier. This
effect leads to an inversion of themass hierarchy between the
vector mesons ρ�, ρ0, and the η0 meson, and the η0 becomes
heavier than any other meson considered here.5

A couple of cautionary remarks should be added. First of
all, we are in a moderately heavy mass regime, with

FIG. 1. Left panel: Mass ratios mmeson=mπ for pseudoscalar and vector mesons, including the flavor-singlet pseudoscalar η0, in the
Sp(4) gauge theory with Nf ¼ 2 Dirac flavors of fermions in the fundamental representation measured at the two values of the inverse
coupling β ¼ 6.9 and 7.2. Right panel: The same plot but in the SU(2) gauge theory at β ¼ 2.0. The green solid linesmρ=mπ ¼ 1=x are
displayed for reference.

FIG. 2. Left panel: Same data as in the left panel of Fig. 1, but now masses are given in units of the gradient flow scale w0. The blue
solid line w0mπ ¼ x is displayed for reference. Right panel: Mass ratio between of the vector mesons ρ and the scalar singlet η0.

5This is qualitatively different from the preliminary results in
[225], where the mixing between the pseudoscalar singlets was
neglected, and the excited state subtraction of Sec. III B was
incorrectly applied to the nondegenerate theory.
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mπ0=mρ0 ∼ 0.85. Secondly, some meson masses for heavy
ensembles sit close to the lattice cutoff and thus could be
affected by significant lattice artifacts.
For the heaviest fermion masses, the mass difference

between the η0 and the π0 is approximately twice the mass
difference between the π0 and the π�’s. This indicates that
the mass differences are driven by the valence fermion
masses.
In this regime, the singlet π0 and the nonsinglet ρ0

approach an approximate one-flavor theory—see, e.g.,
Ref. [170] for lattice results on the low-lying spectrum
in the SU(2) gauge theory with one Dirac fermion.
In the right panel of Fig. 3, we plot the meson masses as a

function of the quark mass ratio, defined through the
partially conserved axial current (PCAC) relation. We

identify the average quark mass in the flavored pion π�
through the relation

mPCAC
avg ¼ lim

t→∞

1

2

∂tCγ0γ5;γ5ðtÞ
Cγ5ðtÞ

¼ lim
t→∞

1

2

∂t

R
d3x⃗hðūðx⃗; tÞγ0γ5dðx⃗; tÞÞ†ūð0Þγ5dð0ÞiR
d3x⃗hðūðx⃗; tÞγ5dðx⃗; tÞÞ†ūð0Þγ5dð0Þi

:

ð16Þ

The unrenormalized PCAC quark mass ratio md=mu for
nondegenerate fermions is extracted by performing an
additional measurement of the PCAC average mass at
degeneracy. For a detailed discussion of the PCAC relation
and different ways to calculate it, we refer to Ref. [239].

TABLE IV. Results for the light spectrum with nondegenerate fermions: the flavored pseudoscalar π� and vector ρ�, and the flavor-
singlet pseudoscalar η0, π0, vector ρ0 and scalar σ mesons. All dimensionful quantities are given in lattice units (a ¼ 1). Missing entries
formη0 ormσ denote measurements that do not fulfill the fitting criteria discussed in the main text. We furthermore report the mass of the
flavor-singlet pseudo-Goldstone mπ0c in the connected-only approximation.

β mð1Þ
0 mð2Þ

0 L T mπ0 mπ0c
mπ� mρ0 mρ� mη0 mσ

6.9 −0.9 −0.89 14 24 0.60(2) 0.597(2) 0.596(2) 0.723(3) 0.719(4) 0.65(4) 0.45(6)
6.9 −0.9 −0.88 14 24 0.63(3) 0.6261(18) 0.628(2) 0.749(2) 0.745(3) 0.69(4) 0.51(8)
6.9 −0.9 −0.87 14 24 0.664(17) 0.6510(14) 0.6606(17) 0.7731(19) 0.775(2) 0.77(3) 0.69(14)
6.9 −0.9 −0.85 14 24 � � � 0.6889(19) 0.709(2) 0.813(3) 0.813(4) � � � 0.51(12)
6.9 −0.9 −0.8 14 24 0.75(2) 0.7563(16) 0.8277(18) 0.879(2) 0.922(3) 0.93(2) � � �
6.9 −0.9 −0.75 12 24 0.79(3) 0.803(4) 0.921(4) 0.927(6) 1.005(5) 1.04(3) � � �
6.9 −0.9 −0.7 12 24 0.83(3) 0.833(4) 0.996(3) 0.954(5) 1.073(5) 1.15(3) � � �

FIG. 3. Masses of the lightest nonsinglet mesons as well as the pseudoscalar singlet meson in the Sp(4) theory with nondegenerate
Dirac fermions. We fix the lattice coupling and one of the bare fermion masses to β ¼ 6.9 and mð1Þ

0 ¼ −0.9, respectively, while varying
the other bare fermion mass. In the left panel, we display our results as a function of the flavoured pion mass, while in the right panel, we
show them as a function of ratio of the PCAC fermion masses in units of the π0 mass.
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C. Scalar singlet in Sp(4) with Nf = 2

In the case of the scalar singlet, σ, the signal is
consistently worse than for the other states discussed so
far. Furthermore, we see signs of finite spacing effects,
shown in Fig. 4. For Sp(4) on the coarse β ¼ 6.9 lattices,
we observe a light σ state, of mass comparable to the mass
of the π. This pattern persists over the entire mass range
considered. On finer lattices, for β ¼ 7.2, the mass of the σ
increases and is heavier than the PNGBs and comparable to
the vector meson, though with much larger statistical errors
and still below the ππ threshold.
These results suggest the existence of larger finite-

spacing effects that affect the mass of the scalar singlet.
Yet, some caution should be used because, due to the large
noise in our signal, the mass is extracted from much shorter
times on the finer lattices and may therefore also be more
severely affected by excited-state contamination and pos-
sibly other systematics. Nevertheless, even for the finer
lattice, the σ state is lighter than its nonsinglet counterpart,
suggesting that further studies are still needed. The scalar
singlet might be a stable light meson at moderately heavy
fermion masses and thus phenomenologically relevant.

D. Comparison to SU(3) with Nf = 2

In Fig. 5, we show a compilation of the available data
published on the pseudoscalar singlet for the SU(3) theory
with Nf ¼ 2 (upper panels) as well a comparison of our
results for Sp(4) and SU(2) to the available data for SU(3)
(lower panels). In some cases, the measurement has been
performed using different methods in the analysis, or

different operators have been used to study the same
mesons (e.g., the mass of the η0 has been obtained from
pure gluonic operators as well as the usual fermionic
operators, or in the case of twisted mass fermions, the
nonsinglet mesons include isospin breaking effects) and
sets of results are available. In such cases, we have chosen
the results that are closest to the standard determination of
directly fitting the correlator of a pure fermionic operator.
When this was not possible, we quote the largest and
smallest values of mi � Δmi of all measurements i and
symmetrize the uncertainties. The data depicted in
Fig. 5 has been taken from the UKQCD collaborations
(denoted by UKQCD1 [202,203] and UKQCD2 [207]); the
SESAM=TχL collaboration [204,205]; the CP-PACS col-
laboration [206]; the RBC collaboration using domain-wall
fermions [210]; the CLQCD collaboration using Wilson
clover fermions on anisotropic lattices [211]; the ETMC
collaboration (denoted by ETMC1 [208,209] and ETMC2
[212,213]); and from the analysis of η0-glueball mixing
(denoted by Beijing [214]).
In all but the very lightest ensemble (and one obvious

outlier at heavy fermion mass), the vector meson, ρ, is
found to be heavier than the pseudoscalar singlet, η0. The
authors of Ref. [213] point out that in the lightest ensemble,
the ρ particle might be unusually light due to the small
number of energy levels below the inelastic threshold in the
determination of the ππ phase shift. It is lighter than their
extrapolation to the physical point at which mρ ¼ 786ð20Þ
and even lighter than their extrapolation to the chiral limit.
The mass dependence of the η0 meson was found to be flat,
and an extrapolation in Ref. [212] to the physical point gave
mη0 ¼ 772ð18Þ MeV. This is in contrast to SM QCD where
the η0 is significantly heavier—the current PDG listsmPDG

η0 ¼
957.78ð6Þ MeV [240], which is in agreement with recent
SU(3),Nf ¼ 2þ 1 lattice results ofmη0 ¼ 929.9ð47.5

21.0Þ [241].
This suggests it is the contribution of the s quark that leads to
the heavier mass. This can be understood in a quarkmodel of
the pseudoscalar singlet mesons based on approximate
SUð3ÞF flavor symmetry [242–244], which was applied to
early lattice results in [203].
The bottom line of this brief survey is that in the regime

of moderately large fermion masses, the pattern of ground
state masses observed so far in SU(3) is quite similar, both
qualitatively and quantitatively, to our findings in the Sp(4)
case as can be seen in the lower panels of Fig. 5. The gauge
group and modified chiral structure do not seem to have a
very strong impact on mass of the η0.

E. Possible phenomenological implications

Our results provide evidence that the singlet sector,
computed for moderately large fermion masses in the Sp(4)
theory, is not dissimilar from what is observed in the SU(2)
and SU(3) theories coupled to two fundamental fermions.
In particular, both pseudoscalar and scalar singlets are light

FIG. 4. Mass of the σ meson with degenerate fermions in the
Sp(4) theory. We find signs of finite spacing effects even when
considering ratios of hadron masses. On the coarser lattice, the
scalar singlet appears to be quite light, in some cases, even lighter
than the π. For the finer lattice, this changes drastically, and the
scalar singlet σ is usually heavier than the vector meson ρ, though
still below the two-π threshold. The green solid line mρ=mπ ¼
1=x is displayed for reference.
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enough to be stable against decay into Goldstone bosons,
over a fermion-mass range within which also the flavored
vector mesons would not decay. We now present a few
examples of potential implications for phenomenological
models for which these theories can be invoked to yield a
short-distance completion.
Firstly, because the flavor singlets are not much heavier

than the flavored mesons, if a model of this type were used
as part of a hidden valley scenario, or a new dark sector,
these states would then only decay via a mediator mecha-
nism into standard model particle, but not strongly, and
would be long lived. Their lifetime and branching fractions
would be determined by the detailed structure of the
coupling to the standard-model fields. They are unlikely
to be long lived enough to play a significant role in a model
explaining current dark matter density, yet they can easily
appear as long-lived particles in experiments [245–248],
and hence the existence of a new dark sector containing this
theory is experimentally testable.
Other possible observable effects in this context

could arise because the singlets can enhance interaction

cross-sections, as virtual particles, affecting processes even
below production threshold. They can therefore play a
relevant role for dark matter self-interactions [249]. Their
effect could even affect form factors relevant to direct
detection experiments [250]. Depending on details, they
could also offer a possibility to create indirect detection
signatures in cases of high darkmatter densities. Finally, both
singlets can serve, together or individually, as a Higgs portal,
removing the need for an independent messenger.
In the alternative context of composite Higgs scenarios,

in which the PNGBs provide the longitudinal components
of the W bosons and Z boson, as well giving rise to the
experimentally observed Higgs boson, the pseudoscalar
singlet can become a surprisingly strong limiting factor
[251]. As its signature is possibly similar to that of the
pseudoscalar Higgs in the minimal supersymmetric stan-
dard model, or in classes of two-Higgs doublet models,
strong exclusion limits already exist, both for a pseudo-
scalar Higgs heavier and lighter than the standard model
Higgs. To avoid these bounds requires one to open up
substantially the mass gap between the scalar and

FIG. 5. Comparison to the available lattice data in SU(3) with two fundamental fermions. The upper panels depict all available lattice
results in SU(3). In the upper left panel, the green markers denote the vector meson ρ and the orange ones the pseudoscalar singlet η0. The
different marker shapes denote the different collaborations. We see that the η0 is lighter than the vector mesons almost everywhere. In the
upper right panel, we directly plot the ratio mη0=mρ. In the lower panels, we compare the SU(3) results to our Sp(4) and SU(2) data. In
the lower left panel, we show the ratio mη0=mπ as a function of mπ=mρ for values of mπ=mρ ≈ 0.7 and larger. In the lower right plot, we
compare the different results of the ratio mη0=mρ.
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pseudoscalar singlets, but in our measurements, we always
observe the opposite hierarchy.

V. SUMMARY

We have presented the results of the first dedicated lattice
study of flavor singlet meson states in the Sp(4) theory
coupled to two (Wilson-Dirac) fundamental dynamical
fermions. We have computed the masses of the lightest
pseudoscalar and scalar singlets in a portion of parameter
space in which the fundamental fermion are moderately
heavy. We have considered both the case of degenerate and
of nondegenerate masses for the fermions. The continuum
limit of this theory, in the range of parameters explored, is
of interest because it provides the ultraviolet completion of
several proposals for new physics extensions of the
standard model, in the contexts of composite Higgs models
and strongly interacting dark matter. In order to perform
this study, we implemented in our analysis state-of-the-art
techniques to account for the contribution of disconnected
diagrams to correlation functions involving flavor singlets.
We observe that the qualitative (and to large extent even

the quantitative) features of the mass spectrum we find in
this Sp(4) theory are similar to those of SU(2) and SU(3)
theories with the same field content, in comparable ranges
of parameter space. More specifically, the mass range of the
singlet states, in particular of the lightest pseudoscalar, is
comparable to the masses of the lightest flavored mesons, at
least for our choices of fermion masses. This remains true
also in the mass-nondegenerate case.
Our findings suggest that the singlet sector cannot be

neglected in phenomenological studies of models that have
their dynamical, short-distance origin in this theory.
However, notwithstanding the technical implementation
of several techniques to enhance the signal-to-noise ratio
in our measurements, and the comparatively large statistics
provided by our numerical ensembles, we have also found
that the observables are affected by large lattice artifacts,
especially in the case of the scalar singlet. While we have
noticed that taking certain ratios of masses reduces dras-
tically the size of such effects, if phenomenological con-
siderations require precision measurements for the mass
spectrum, then this would provide strong incentive to
further improve this study, in particular in order to better
understand the approach to the continuum limit.
On more general and abstract theoretical ground, the

similarity of our main results with the SUðNÞ cases strongly
suggests that the altered chiral structure and gauge group
has limited impact on the underlying dynamics. On the one
hand, this might be expected in a gauge theory with small
number of moderately heavy fermions. On the other hand,
though, by extending this kind of analysis to different N
and/or further gauge groups, we envision to be able to gain
quantitative understanding the relevance of gauge dynam-
ics for hadron dynamics beyond group-theoretical, and thus
nondynamical, aspects.

The data generated for this manuscript can be down-
loaded from Ref. [252], and the software used to analyze
and present it is similarly available from Ref. [253].
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APPENDIX A: CONSTANT CONTRIBUTIONS
TO THE CORRELATORS

In Sec. III A, we noted the occurrence of constant terms in
the propagators of both the pseudoscalar singlet η0 meson
and the scalar singlet σ meson. This makes it difficult to
determinewhen the excited states in themeson correlator are
sufficiently suppressed and a fit can be performed.As shown
in Eqs. (6) and (8), we can circumvent this issue either by
direct calculation of h0jOj0i or by performing a numerical
derivative. Oncewe determine the interval ½ti; tf�where only
the ground state contributes, we can also fit the correlator to
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an exponentially decaying term plus a constant. In Fig. 6, we
give an example of the correlator for the flavor singlet, η0,
and the flavored mesons, π. The flavor-singlet correlator
shows a constant term at large Euclidean times, while such a
contribution is absent for the π meson. This is expected to
occur for the disconnected pieces in a finite volume and at
finite statistics if the topological sampling is insufficient
[212,234]. Then, the constant takes the form

const∝
1

V

�
Q2

V
−χt−

c4
2χtV

�
þOðV−3ÞþOðe−mπ jxjÞ; ðA1Þ

where V denotes the spatial volume of the lattice, χt is the
topological susceptibility, and c4 is a coefficient from a
saddle-point expansion. Algorithms that provide an ergodic
exploration of topological sectors inYang-Mills theories and
are compatible with our prescription for the boundary
conditions have recently been introduced (see, e.g., [256–
258]). However, they are generally computationally costly,
and their adaptation to our model is outside the scope of this
work. Hence, in our study, we explore other strategies, based
on analyses that account for topological freezing. Therefore,
we tried to test the relation in Eq. (A1) by taking our
ensemble with the largest statistics (corresponding to the
bare parametersm0 ¼ −0.90, β ¼ 6.9 on a 24 × 123 lattice),
measuring the topological charge Q using the same
approach as in Ref. [184], and smoothening the gauge
fields using the gradient flow. We then partition our full
statistics into sets of configurations with equal topological
charge6 and compute the correlator for the pseudoscalar

singlet, η0, at fixedQ. We depict examples of the correlators
for some values of Q with sufficient statistics in Fig. 6. The
constant term arising is never statistically different for any
pair ofQ’s present in this ensemble.However,we see a slight
trend toward a larger constant for larger jQj as expected
from Eq. (A1).
In order to test the robustness of our subtraction choice,

we report here the mass of the pseudoscalar singlet η0 for
various techniques. We remind the reader that the results
reported in Sec. IV are based on correlators where the
connected part is modeled by a single sum of exponentials
as in Eq. (8), taking lattice periodicity into account and
removing the constant by a numerical derivative. In
Table V, we compare this to four alternative methods7:
(i) direct calculation and subtraction of h0jOη0 j0i, (ii) ignor-
ing the constant and restricting the fit to early time slices,
(iii) performing a three-parameter fit of the decaying
exponential plus a term modeling the constant,8 (iv) remov-
ing the constant using a numerical derivative but without
any modeling of the connected part.
Whenever we obtain a signal without an explicit model-

ing of the connected pieces, our results agree within errors.
The removal of excited state contamination [as used in
methods (i), (ii), and (iii)] leads to masses that are generally
slightly lighter. The same pattern has been observed in
SU(3) [212]. We note that the removal of excited state

FIG. 6. Left: Correlator of the pseudoscalar nonsinglet π and the pseudoscalar singlet η0. For visual clarity, we multiplied the π
correlator by a constant factor of 2. At large times, the singlet correlator shows a constant term, while this is absent for the nonsinglet
case. Right: Correlators of the pseudoscalar singlet for fixed values of the topological charge Q. The constant term shows signs of a
dependence on Q. While the constant is not significantly different for any two examples shown here, the constant appears to be
increasing with jQj.

6In practice, the topological charge is not strictly an integer on
a finite lattice in the employed approach as described, for
instance, in [184] and references therein. We thus round Q to
the closest integer.

7We also applied an entirely different method designed for
situations with large statistical noise [259]. Also, this approach
gave results consistent with those shown in the main part of
the paper for both singlets.

8This procedure gives the numerical value of the constant as a
by-product. We subtract the constant from the correlator and
a posteriori check that the resulting effective mass shows a
plateau.
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contaminations should not be confused with the removal
of the constant contribution to the correlator, as discussed
earlier. The explicit calculation of the constant h0jOη0 j0i in
Eq. (8) does not quantitatively capture the constant in the
correlator. The results are almost indistinguishable from
not taking the constant into account. For some ensembles
(e.g., Sp(4) with β ¼ 7.2), these methods appear to
underestimate the meson mass. This is a result of
combining the modeling of the connected piece with an
insufficient subtraction of the constant. Due to the absence
of connected excited states in the correlator, the effective
mass is increasing at small t, while for large t, the constant
leads to a decrease of the effective masses. This can lead to
the formation of an apparent plateau in the effective mass
and thus to a possible underestimation of the meson mass.
Overall, we conclude that methods (ii) and (iii) do not
appear sufficiently reliable. Modeling the constant as an
additional fit parameter did not lead to any significant
improvements. In most cases, we cannot extract a reliable
signal. In the few cases where this is possible, the constant
term is quantitatively small, and this method agrees with
the others while providing no improvement at the cost of
an additional fit parameter.

We conclude that the method used throughout the main
part of this work has proven to be the most reliable
approach among the options considered here. Its results
are always consistent with forgoing the explicit removal of
subtracted states, and the removal of the additional constant
through taking the derivative avoids any further estimations
of the topological constant terms at the expense of a shorter
plateau in the effective masses and thus, a smaller interval
for fitting the correlator.
We find a different behavior for the scalar singlet. The

constant term is not related to an insufficient sampling of all
topological sectors but arises due to the vacuum quantum
numbers of the scalar singlet. In addition, the modeling of
the connected pieces is less important since the nonsinglet
state appears generally heavier than the singlet states and
the connected pieces show a stronger exponential decay. In
this case, the direct estimation of the constant term h0jOσj0i
in Eq. (8) appears to be quantitatively reliable. Still, in some
cases, the modeling of the connected pieces can extend the
plateau in the effective mass to lower time slices t. Since
the constant is several orders of magnitude larger than the
actual signal of the σ state, a direct modeling of it as a fit
parameter is infeasible, and the constant can also not be

TABLE V. Determination of the masses of the pseudoscalar singlets using different techniques for removing the constant term in the
correlator. We compare the method used in the main part of this work to: (i) Direct calculation and subtraction of h0jOη0 j0i; (ii) Ignoring
the constant and restricting the fit to early time-slices; (iii) Performing a three-parameter fit of the decaying exponential plus a term
modeling the constant; and (iv) Removing the constant using a numerical derivative but without any modeling of the connected part.

β m0 L T mη0 mðiÞ
η0 mðiiÞ

η0 mðiiiÞ
η0 mðivÞ

η0

SU(2) 2.0 −0.947 20 32 � � � � � � � � � � � � � � �
SU(2) 2.0 −0.94 14 24 0.67(6) 0.699(14) 0.572(14) � � � 0.67(6)
SU(2) 2.0 −0.935 16 32 0.60(3) 0.67(3) 0.61(5) 0.60(3) � � �
SU(2) 2.0 −0.93 14 24 0.65(3) � � � � � � � � � 0.68(5)
SU(2) 2.0 −0.925 14 24 0.634(16) � � � � � � � � � 0.63(8)
SU(2) 2.0 −0.92 12 24 0.665(9) � � � � � � � � � 0.66(3)
SU(2) 2.0 −0.9 12 24 0.770(16) � � � � � � � � � 0.79(8)
SU(2) 2.0 −0.88 10 20 0.842(5) 0.855(14) 0.855(14) � � � � � �
Sp(4) 7.2 −0.799 32 40 � � � 0.37(2) 0.37(2) � � � 0.57(6)
Sp(4) 7.2 −0.794 28 36 0.397(16) 0.368(12) 0.368(12) � � � 0.47(7)
Sp(4) 7.2 −0.79 24 36 0.387(13) � � � � � � � � � 0.36(6)
Sp(4) 7.2 −0.78 24 36 0.418(7) 0.43(2) 0.45(2) � � � 0.43(5)
Sp(4) 7.2 −0.77 24 36 0.456(8) 0.450(6) 0.450(6) 0.459(7) � � �
Sp(4) 7.2 −0.76 16 36 � � � 0.511(13) 0.512(13) � � � 0.59(3)
Sp(4) 6.9 −0.924 24 32 � � � � � � � � � � � � 0.60(8)
Sp(4) 6.9 −0.92 24 32 � � � 0.51(4) 0.52(4) 0.486(16) 0.40(6)
Sp(4) 6.9 −0.92 16 32 0.49(3) 0.46(2) 0.46(2) 0.50(2) 0.45(13)
Sp(4) 6.9 −0.91 16 32 0.560(14) 0.59(4) 0.59(4) 0.560(13) 0.59(4)
Sp(4) 6.9 −0.91 14 24 0.541(9) 0.58(3) 0.58(3) � � � � � �
Sp(4) 6.9 −0.9 16 32 0.611(9) � � � � � � � � � 0.63(3)
Sp(4) 6.9 −0.9 14 24 0.619(16) 0.614(12) 0.615(12) 0.620(9) 0.63(3)
Sp(4) 6.9 −0.9 12 24 0.610(6) 0.620(15) 0.620(15) 0.612(5) � � �
Sp(4) 6.9 −0.89 14 24 0.69(2) 0.680(16) 0.681(16) 0.69(2) 0.72(4)
Sp(4) 6.9 −0.89 12 24 0.661(9) 0.660(5) 0.660(5) 0.660(10) � � �
Sp(4) 6.9 −0.87 12 24 0.782(13) 0.80(4) 0.80(4) � � � 0.80(2)
Sp(4) 6.9 −0.87 10 20 0.764(9) 0.763(6) 0.763(6) � � � � � �
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ignored in the analysis. In Table VI, we compare the
approach used in the main part of this paper to (i) both a
numerical derivative and a direct calculation and sub-
sequent subtraction of the vacuum term h0jOσj0i, (ii) only
direct subtraction of the vacuum terms as in [215], (iii) a
numerical derivative without an explicit subtraction of
excited states in the connected pieces and without a direct
subtraction of h0jOσj0i.

APPENDIX B: COMPARISON BETWEEN
EXCITED STATE SUBTRACTION AND
SMEARED CONNECTED DIAGRAMS

In Sec. III B, we noted that the signal of the singlet
mesons can be extended to smaller time separations, t, if we
replace its connected contribution by approximating it with
a single exponential term having the energy of the non-
singlet meson. This removes all the excited state contam-
inations of the connected piece.
A similar effect can be obtained by using smearing

techniques on the connected piece. This can increase the
overlap of the source operator with the ground state of the
nonsinglet and reduce the contribution of excited states.
Recently, this approach has been implemented, tested, and
shown to work in Sp(4) gauge theories [194]. These

developments allow us to compare our excited-state sub-
traction technique.9

In order to compare the two techniques, we need to apply
smearing to only the connected piece. However, the use of
smearing techniques leads to an overall change of nor-
malization. Applying Wuppertal smearing [260] with N1

steps at the source and N2 steps at the sink leads to an
asymptotic correlator of the form

CN1;N2
ðt → ∞Þ ¼ αN1

αN2
e−mconnt; ðB1Þ

where the normalization of unsmeared point sources is
recovered for the choice of the parameters αN1

¼ αN2
¼ α0.

We consider two sets of correlators with the smearing steps
ðN1; N2Þ ¼ ðN; 0Þ and ðN1; N2Þ ¼ ðN;NÞ, to restore the
normalization as the point source. We define a new
correlator

Csmeared
conn ðtÞ≡ CN;0ðtÞ2

CN;NðtÞ
; ðB2Þ

TABLE VI. Results for the masses of the scalar singlet σ using our standard approach of a numerical derivative as well as (i) both a
numerical derivative and a direct calculation of the vacuum term h0jOσ j0i, (ii) only direct calculation of the vacuum term, and (iii) a
numerical derivative without an explicit subtraction of excited states in the connected piece when possible.

β m0 L T mσ mðiÞ
σ mðiiÞ

σ mðiiiÞ
σ

SU(2) 2.0 −0.947 20 32 0.53(4) 0.53(3) 0.58(5) 0.54(4)
SU(2) 2.0 −0.94 14 24 � � � 0.64(5) 0.61(4) 0.64(5)
SU(2) 2.0 −0.935 16 32 � � � 0.47(10) 0.55(8) 0.47(10)
SU(2) 2.0 −0.93 14 24 � � � � � � 0.62(9) � � �
SU(2) 2.0 −0.925 14 24 � � � � � � � � � � � �
SU(2) 2.0 −0.92 12 24 � � � 0.71(7) 0.75(13) 0.72(7)
SU(2) 2.0 −0.9 12 24 � � � � � � � � � � � �
SU(2) 2.0 −0.88 10 20 � � � � � � � � � � � �
Sp(4) 7.2 −0.799 32 40 0.36(5) 0.35(8) 0.41(4) 0.38(8)
Sp(4) 7.2 −0.794 28 36 � � � 0.55(8) � � � 0.55(8)
Sp(4) 7.2 −0.79 24 36 0.56(6) 0.56(6) 0.48(7) 0.65(12)
Sp(4) 7.2 −0.78 24 36 � � � � � � 0.55(6) � � �
Sp(4) 7.2 −0.77 24 36 � � � � � � � � � � � �
Sp(4) 7.2 −0.76 16 36 0.64(12) 0.64(7) � � � � � �
Sp(4) 6.9 −0.924 24 32 0.46(3) 0.46(3) 0.45(3) 0.48(7)
Sp(4) 6.9 −0.92 24 32 0.42(2) 0.43(3) 0.45(3) � � �
Sp(4) 6.9 −0.92 16 32 0.45(6) 0.40(8) 0.42(7) 0.37(11)
Sp(4) 6.9 −0.91 16 32 � � � � � � � � � 0.71(8)
Sp(4) 6.9 −0.91 14 24 0.41(3) 0.41(3) � � � � � �
Sp(4) 6.9 −0.9 16 32 � � � � � � � � � � � �
Sp(4) 6.9 −0.9 14 24 0.57(4) 0.56(4) 0.48(5) 0.51(10)
Sp(4) 6.9 −0.9 12 24 0.55(2) 0.56(4) � � � 0.57(3)
Sp(4) 6.9 −0.89 14 24 0.57(9) 0.56(9) 0.61(9) 0.59(9)
Sp(4) 6.9 −0.89 12 24 0.62(7) � � � 0.64(4) � � �
Sp(4) 6.9 −0.87 12 24 0.80(15) 0.76(11) � � � 0.72(7)
Sp(4) 6.9 −0.87 10 20 � � � 0.70(6) � � � � � �

9We thank the authors of [194,254] for performing smeared
measurements on a set of our configurations for comparison prior
to publication.
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by squaring the connected correlator with N steps of
source smearing and no sink smearing and divide that by
the connected correlator with an equal amount of smear-
ing steps at both the source and the sink. This correlator
has the same large-t behavior and the same normalization
as a nonsmeared one. From this, we then construct the full
correlator of the singlet meson. In Fig. 7, we compare the

full singlet correlator obtained from Eq. (B2) using
Wuppertal smearing with N ¼ 60 smearing steps, to
the correlator obtained using the single-exponential
modeling and subtraction of the connected piece. We
see that the subtracted correlator and the smeared corre-
lator agree remarkably well in the interesting plateau
region.
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