
Separation-of-charge confinement and the Higgs transition
in SU(3) gauge-Higgs theory

Jeff Greensite and Hou Y. Yau
Physics and Astronomy Department, San Francisco State University,

San Francisco, California 94132, USA

(Received 13 October 2023; accepted 10 January 2024; published 1 February 2024)

With SU(3) gauge-Higgs theory as an example, we examine critically the idea that the confinement
property in an SU(N) gauge-Higgs theory, with the Higgs field in the fundamental representation, persists
in an unbroken SU(N-1) subgroup.
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I. INTRODUCTION

It has been argued elsewhere [1] that the transition to the
Higgs phase of an SU(N) gauge-Higgs theory, with the
Higgs field in the fundamental representation of the gauge
group, is characterized by the spontaneous breaking of the
global center subgroup of the gauge group, with an
associated nonlocal order parameter which is closely
analogous to the Edwards-Anderson order parameter for
a spin glass [2]. In the absence of a massless phase, the
transition to the Higgs phase is accompanied by a transition
in confinement type, from “separation-of-charge” (Sc)
confinement in the confinement phase to a weaker “color”
(C) confinement property in the Higgs phase. SU(3) gauge-
Higgs theory is a good testing ground for these assertions,
in particular because of the idea that in this theory the
SU(3) gauge symmetry is broken to SU(2), so that in some
way the confinement property of the SU(3) theory is
retained in a subgroup. The purpose of this article is to
examine this idea critically; the object is to study whether
the concept of separation-of-charge confinement applies to
color charges (static “quark” sources) in color directions
orthogonal to the color orientation of the Higgs field.
In Sec. II we review the order parameter for the

confinement-to-Higgs transition presented in Ref. [1],
define and contrast the Sc and C varieties of confinement,
and expand on the nature of the problem we address.
Section III is devoted to the results of our numerical
simulations of SU(3) gauge-Higgs theory concerning
symmetry breaking and confinement. Section IV contains
our conclusions.

II. CONFINEMENT IN GAUGE-HIGGS THEORIES

In this article the expression “gauge-Higgs theory” will
refer specifically to SU(N) gauge theories with a single
Higgs field in the fundamental representation of the gauge
group. For convenience we impose a unimodular constraint
jϕj ¼ 1 on the Higgs field. Gauge-Higgs theories in the
Higgs phase, and theories with the unimodular constraint in
particular, are probably either trivial in the continuum limit
or at least require extreme fine-tuning [3–5]. This fact will
not concern us here. We are content to regard these models
as effective theories of some kind and simply explore their
properties toward the decoupling limit, where some of the
SU(3) degrees of freedom freeze out and the model reduces
to a pure SU(2) gauge theory. The question is whether
confinement in the separation-of-charge sense exists in the
Higgs phase in an SU(2) subgroup, and if not, how this
property is regained in the decoupling limit.
We will be especially concerned with the spontaneous

breaking of the global Z3 center subgroup of the SU(3)
gauge group. This global symmetry, like the larger
local symmetry, is an invariance of the Lagrangian.
However, unlike the larger symmetry, only the matter
fields ϕðxÞ → zϕðxÞ; z∈Z3 transform under this global
Z3 symmetry; while the lattice gauge fields UkðxÞ →
zUkðxÞz† ¼ UkðxÞ are unchanged,

A. Separation-of-charge confinement

The property of confinement in a gauge theory, with
either no matter fields or with only matter fields of zero
N-ality, can be formulated in this way: Let us consider, in
lattice regularization, physical states of the form

jΨVi≡ ψ̄aðxÞVabðx; y;UÞψbðyÞjΨ0i; ð1Þ

where Ψ0 is the ground state and ψ̄ ;ψ are operators creating
static fermion-antifermion sources, transforming in the funda-
mental representation of the gauge group, at positions x, y.
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Superscripts are color indices. The operator Vabðx; y;UÞ
is a bicovariant functional of the lattice gauge field U,
transforming under a gauge transformation g as follows:

Vabðx; y;UÞ → gacðxÞVcdðx; y;UÞg†dbðyÞ: ð2Þ

If the energy expectation value above the vacuum energy

EVðRÞ ¼ hΨV jHjΨVi − Evac ð3Þ

diverges to infinity as R ¼ jx − yj → ∞, regardless of the
choice of V, then the gauge theory is said to be confining. Of
course, there is oneparticularV, a flux tube state of somekind,
which minimizes the energy of a static quark-antiquark
system, with EVðRÞ ≈ σR at large R.
The proposal in [6] is that the very same condition can be

used as a criterion for confinement in a gauge theory with
matter fields in the fundamental representation of the gauge
group. We call this property separation-of-charge or “Sc”
confinement. We are considering physical states containing
isolated sources whose color charge is not screened by the
matter field, and for this purpose it is understood that the
Vðx; y;UÞ operator is a functional of the gauge field alone,
with no dependence on matter fields. In QCD, qq̄ states of
this kind would contain, in addition to color electric fields
collimated into flux tubes, also detectable Abelian electric
fields emanating from fractional electric charges at points x,
y, rather than emanating from a set of integer charged
particles. The point is that, while physical states containing
color charges unscreened by matter fields may be chal-
lenging to produce in practice and, if produced, would
decay very rapidly into ordinary hadrons, states of this kind
do exist in the physical Hilbert space, and it is reasonable to
consider how their energy varies as the separation between
the color sources increases. Indeed, if we imagine pair
production followed by a very rapid separation of the quark
and antiquark, then we expect that momentarily the
physical state of the separated qq̄ pair would have the
form (1). In the Sc phase the energy of the unscreened state
increases with separation, and this is the mechanism which
underlies the existence of linear Regge trajectories in QCD.
Of course, such states exist only momentarily, until string
breaking sets in. In a phase without the Sc property there
is no reason to expect that the optimal ΨV would be
associated with linear Regge trajectories, so the loss of
linear Regge trajectories is to be expected in a transition
from a Sc phase to a C confinement phase.
The alternative to Sc confinement, for SU(N) gauge

theories with matter inD ¼ 2þ 1 and 3þ 1 dimensions, is
color or “C” confinement, meaning that the asymptotic
spectrum consists of color neutral particles. This is a much
weaker condition than Sc confinement, and in fact it holds
true in gauge-Higgs theory in the Higgs regime, where
there are no linear Regge trajectories or metastable flux
tubes whatsoever. There will still exist Vðx; y; UÞ operators

such that EVðRÞ diverges with R. An example is a Wilson
line running between points x, y. However, in the C
confining phase (which we will identify with the Higgs
phase) there also exist Vðx; y; UÞ operators such that EVðRÞ
tends to a finite limit at large R.
It can be shown that a transition from Sc confinement

(the “confining” phase) to C confinement (the “Higgs”
phase) must exist in the SU(N) gauge-Higgs phase
diagram [7]. It is natural to ask whether this transition is
accompanied by the breaking of some symmetry.

B. Charged states and global center gauge symmetry

A state which is charged with respect to some symmetry
of the Hamiltonian is a state which transforms covariantly,
as a nonsinglet, under those symmetry transformations. So
we might naively expect a state which is charged with
respect to the gauge group to transform under gauge
transformations, e.g., a state like ψ̄aðxÞΨ0, where Ψ0 is
the ground state. But states of that type violate the Gauss
law constraint and are hence unphysical. Thus we are
looking for a state of the form ψ̄aðxÞξaðxÞΨ0 which
is invariant under infinitesimal gauge transformations,
thereby satisfying the Gauss law, but still noninvariant
under some subgroup of the gauge group.
Charged states of that type can be constructed; they are

states which are charged with respect to the global center
subgroup of the gauge group, i.e., which transform under
space-invariant gauge transformations gðxÞ ¼ g where g is
a center element. We note again that transformations in this
global subgroup will not transform the gauge field. Our first
example of a charged state is a static electric charge coupled
to the quantized electromagnetic field. The lowest energy
eigenstate of this system is as follows [8]:

jΨchrgi ¼ ψ̄ðxÞρðxÞjΨ0i; ð4Þ

where

ρðx;AÞ ¼ exp

�
−i

e
4π

Z
d3zAiðzÞ

∂

∂zi

1

jx − zj
�
: ð5Þ

The operator ρðx;AÞ is an example of what we have called a
“pseudomatter” field, namely, a nonlocal functional of the
gauge field which transforms like a matter field at point x,
except under transformations in the global center subgroup
(GCS) of the gauge group. It is in fact obvious that such an
operator is invariant under the GCS, because the gauge field
itself is invariant under such transformations. In the Abelian
case, consider a U(1) gauge transformation gðxÞ ¼ eiθðxÞ on
a time slice, with θðxÞ ¼ θ0 þ θ̃ðxÞ, where θ0 is the zero
mode of θðxÞ. The ground state Ψ0 is invariant under this
transformation, and ψ̄ðxÞ → ψ̄e−iθðxÞ, but

ρðx;AÞ → eiθ̃ðxÞρðx; AÞ: ð6Þ
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As a result, jΨchrgi is not entirely gauge invariant, but
transforms as jΨchrgi → e−iθ0 jΨchrgi. In other words, it is
covariant under transformations in the U(1) global center
subgroup of the U(1) gauge group.
If the theory contains a single-charged scalar field, then

we may construct neutral states, invariant under the GCS,
such as

jΨneutrali ¼ ψ̄ðxÞϕðxÞjΨ0i: ð7Þ

Providing the global center symmetry is unbroken, charged
and neutral states are necessarily orthogonal in the confined
and massless phases. But this is no longer true if the U(1)
GCS is spontaneously broken, in which case we lose the
sharp distinction between charged and neutral states.
All of this extends to non-Abelian gauge theories. In the

case of SU(N) gauge-Higgs theories, the GCS is the global
ZN center subgroup of the gauge group.1 Then we may
construct charged states in lattice gauge theory of the form

jΨchrgi ¼ ψ̄aðxÞξaðx;UÞjΨ0i; ð8Þ

where ξaðx;UÞ is a nonlocal functional of the link variables
only. This functional transforms like a field in the funda-
mental representation of the gauge group except under
transformations in the GCS, i.e., it is a pseudomatter field.
Thus, under a gauge transformation gðxÞ ¼ z1; z∈ZN ,

jΨchrgi → z�jΨchrgi: ð9Þ

Examples of non-Abelian pseudomatter fields include the
eigenstates ζanðx;UÞ of the covariant Laplacian operator,
−D2ζn ¼ λnζn, where

2

ð−D2Þabxy ¼
X3
k¼1

�
2δabδxy−Uab

k ðxÞδy;xþk̂−U†ab
k ðx− k̂Þδy;x−k̂

�
:

ð10Þ

As in the Abelian theory, one can also construct neutral
states in which the charge of the fermion is entirely shielded
by the Higgs field: jΨneutrali ¼ ψ̄aðxÞϕaðxÞjΨ0i, and these
are invariant with respect to the GCS. Assuming that the
GCS is not spontaneously broken, then it is obvious that
hjΨneutraljΨchrgi ¼ 0. The phase in which this is no longer
true, and there is no longer a sharp distinction between
charged and neutral states, is the Higgs phase.

C. Order parameter

It is not hard to construct an order parameter for the
spontaneous breaking of a GCS. Define

e−Hðϕ;UÞ=kT� ¼ hϕ; Uje−H̃=kT jϕ; Ui
¼

X
n

jΨnðϕ; UÞj2e−En=kT ð11Þ

where H̃ is the Hamiltonian operator, the Ψn are energy
eigenstates, T is temperature, and Hðϕ; UÞ is a functional
of the field variables. Let

Z½U� ¼
Z

DϕðxÞ e−HðU;ϕÞ=kT ð12Þ

and introduce

ϕ̄ðx;UÞ ¼ 1

ZðUÞ
Z

DϕϕðxÞe−HðU;ϕÞ=kT: ð13Þ

Then the GCS is spontaneously broken in the background
U field if ϕ̄ðx;UÞ ≠ 0. Since the background U breaks
translation symmetry we can expect that the spatial average
of ϕ̄ðx;UÞ will vanish even in the broken phase. So it is
convenient to introduce

Φ½U� ¼ 1

V

X
x

jϕ̄ðx;UÞj: ð14Þ

Now we take the expectation value Ω ¼ hΦ½U�i. If Ω ≠ 0,
then the global center subgroup of the gauge group is
spontaneously broken in the full theory. So Ω is the desired
order parameter. The central result of [1] is that the
spontaneous breaking of the global center subgroup of
the gauge group, as detected by the order parameter Ω, is
accompanied by a transition from Sc to C confinement.3

Briefly, when ϕ̄ðx;UÞ is nonzero, it may be used to define a
gauge in which ϕ̄ðx;UÞ points everywhere in a given color
direction. Then one can construct a Vðx; y;UÞ operator
from the product of gauge transformations to this gauge,
one transformation at point x, and the conjugate at point y.
It can be shown that, for this V operator, ΨV is no longer
orthogonal to neutral states in which color is screened by
the Higgs field, and EVðRÞ tends to a finite constant as

1In the special case of SU(2) gauge-Higgs theory, there is a
larger global SU(2) symmetry, known as “custodial symmetry,”
which transforms the Higgs but not the gauge field. This
symmetry includes the GCS symmetry.

2Pseudomatter fields of this type can be combined to construct
transformations to gauges which avoid the Gribov ambiguity,
cf. [9].

3Here we have ignored some technicalities. Formally there is
no spontaneous symmetry breaking of a global symmetry in a
finite volume; the rigorous procedure is to introduce a term,
proportional to some parameter h, which explicitly breaks the
global symmetry. We then evaluate Ω first taking the thermody-
namic limit and then the h → 0 limit. The rigorous statement is
that the GCS is broken if Ω is nonzero after the two limits, taken
in this order. We refer the reader to [1] for a detailed discussion of
the breaking term, but for the numerical treatment these formal-
ities will not be necessary.
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R → ∞. Then by definition the broken symmetry phase is
not an Sc confining phase. For details, cf. [1].
Of course, one can still ask whether an order parameter

constructed from the bare fields of the lattice Lagrangian
can have any relevance to the infrared physics of the theory,
but this is not so different from the use of nonrenormalized
Polyakov lines on the lattice to detect the spontaneous
breaking of a 1-form ZN symmetry in pure gauge theories.
That symmetry breaking, associated with the high temper-
ature deconfinement transition, is certainly concerned with
infrared physics. The point here is that, if the expectation
value of some operator, however it is constructed, must
necessarily be zero if a global symmetry of the Lagrangian
is unbroken, and if it turns out that this expectation value is
nonzero in some region of the phase diagram, then that
symmetry must be spontaneously broken in that region.
And the breaking of GCS symmetry is definitely associated
with infrared effects, as stressed in [1] and also here.

1. Analogy to symmetry breaking in a spin glass

The order parameter we have constructed is very closely
analogous to the Edwards-Anderson order parameter [2]
devised to detect spontaneous symmetry breaking in a
spin glass. The model is a lattice of Ising spins with
random (ferro- and antiferromagnetic) couplings, whose
Hamiltonian is

Hspin ¼ −
X
ij

Jijsisj − h
X
i

si; ð15Þ

where si ¼ �1, the sum is (usually) over nearest neighbors,
and the Jij are a set of random couplings with probability
distributions PðJijÞ, e.g., Gaussian distributions, or equal
likelihood for nearest neighbor couplings Jij ¼ �1. The
system appears to be disordered even at low temperatures,
in the sense that the spin variable, averaged over the lattice,
cannot acquire a nonzero expectation value, i.e.,

lim
h→0

lim
V→∞

�
1

V

X
i

si

�
¼ 0; ð16Þ

where V is lattice volume. On the other hand, for h ¼ 0, the
Hamiltonian is invariant under the global transformation
si → −si. Hence the system in this limit has a global Z2

symmetry. This is analogous to the situation in gauge-
Higgs theory, where the action has a GCS symmetry, but
the field variable ϕ which transforms under that symmetry
has a vanishing expectation value, at least in the absence of
gauge fixing. In the case of the spin glass, an order
parameter for the symmetry breaking transition can be
constructed as follows:

ZspinðJÞ ¼
X
fsg

e−Hspin=kT; ð17Þ

s̄iðJÞ ¼
1

ZspinðJÞ
X
fsg

sie−Hspin=kT; ð18Þ

qðJÞ ¼ 1

V

X
i

s̄2i ðJÞ;

hqi ¼
Z Y

ij

dJijqðJÞPðJÞ: ð19Þ

qðJÞ is called the Edwards-Anderson order parameter [2]
for a spin glass. The Z2 symmetry is spontaneously broken,
and the system is in the spin glass phase, if hqi is non-zero
in the thermodynamic limit, followed by the h → 0 limit.
The obvious correspondence to our construction in gauge-
Higgs theory is

ZspinðJÞ ↔ ZðUÞ; s̄iðJÞ ↔ ϕ̄ðx;UÞ;
qðJÞ ↔ Φ½U�; hqi ↔ Ω: ð20Þ

Again, the problem in the spin glass and gauge-Higgs
theories is the same: there is a global symmetry which
transforms the spins (Higgs field), but their expectation
values vanish in any phase due to interaction with the
random coupling J (gauge field). The Edwards-Anderson
construction circumvents this difficulty.

D. GCS and Sc confinement in SU(3)

This finally brings us to the question we would like to
address. In an SU(N) gauge-Higgs theory, it is stated in the
standard texts, e.g., [10], that theHiggsmechanism “breaks”
the SU(N) gauge symmetry to SU(N-1). More precisely,
what can be seen perturbatively in unitary gauge is that the
Lagrangian in this gauge supplies a mass term for some of
the gauge bosons, leaving the bosons corresponding to the
generators of an SU(N-1) group massless, at least at the
perturbative level. The implication is that, in D ≤ 4 dimen-
sions, confinement does not disappear entirely; it should
remain for the quark components which transform among
themselves via the SU(N-1) group. But what is really meant
by the word “confinement” in this situation? We have
already defined confinement in a gauge theory with matter
fields as Sc confinement, as opposed to the weaker property
of C confinement. Then the question is whether Sc confine-
ment can be seen in someway in the SU(N-1) subgroup. For
example, in an SU(3) gauge theory with a unimodular
constraint ϕ†ϕ ¼ 1, in a unitary gauge which sets

ϕðxÞ ¼

2
64
0

0

1

3
75; ð21Þ

then the fermion components orthogonal to the ϕ color
direction are simply the first two color components of the
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ψaðxÞ field, namely, a ¼ 1 and a ¼ 2. These are the color
components which, in unitary gauge, are said to be “con-
fined” by the unbrokenSU(2) gauge symmetry.Wewill refer
to these components as quarks q. The gauge-invariant
generalization is the fermion field multiplied by a color
projection operator PabðxÞ,

qaðxÞ ¼ �
δab − ϕaðxÞϕ†bðxÞ�ψbðxÞ

¼ PabðxÞψbðxÞ; ð22Þ

and we consider the energy Eq
VðRÞ of physical states of the

form

jΨ0
Vi≡ q̄aðxÞVabðx; y;UÞqbðyÞjΨ0i: ð23Þ

If in the Higgs phaseEq
VðRÞ diverges withR regardless ofV,

then there is Sc confinement of quarks transforming in the
“unbroken” sector. On the contrary, if we can find some V
operators such that Eq

VðRÞ converges to a finite constant at
large R, then it is hard to make sense of the claim that the
quarks are confined, in any sense other than the property of
C confinement which holds for all fermion components and
not just the quarks.

III. NUMERICAL RESULTS

The SU(3) lattice action is

S ¼ −
β

3

X
plaq

ReTr
�
UUU†U†�

− γ
X
x;μ

Re
�
ϕ†ðxÞUμðxÞϕðxþ μ̂

�
; ð24Þ

where we impose, for convenience, the unimodular con-
dition jϕðxÞj ¼ 1. At γ ¼ ∞ and unitary gauge this reduces
to SU(2) gauge theory, since all but the SU(2) degrees of
freedom are frozen. In this limit, the theory is certainly
confining. But are the quark degrees of freedom also
confined at finite γ and, if not, how is confinement regained
as γ → ∞ at fixed β?4

We begin with simulations at β ¼ 6.0 and a variety of γ
values on 164 lattice volumes, followed by simulations
at β ¼ 3.6, which is in the strong-coupling regime of pure
SU(3) lattice gauge theory. A few details about the link
updates, which greatly improve efficiency at large γ, are
provided in the Appendix.

A. Symmetry breaking transition

The first question is at which value of γ the symmetry
breaking transition takes place, according to the order

parameterΩ, and this is determined numerically as follows:
The SU(3) gauge and scalar fields are updated in the usual
way, but each data-taking sweep (separated by 100 update
sweeps) actually consists of a set of nsym sweeps in which
the spacelike links Uiðx; 0Þ are held fixed on the t ¼ 0 time
slice. So data taking is, in a sense, a “Monte Carlo
simulation in a Monte Carlo simulation.” Let ϕðx; t ¼
0; nÞ be the scalar field at site x on the t ¼ 0 time slice at the
nth sweep. Then we compute ϕ̄ðx; UÞ from the average
over nsym sweeps,

ϕ̄ðx; UÞ ¼ 1

nsym

Xnsym
n¼1

ϕðx; 0; nÞ; ð25Þ

and ΦnsymðUÞ from (14). Here it is important to indicate the
dependence on nsym. Then the procedure is repeated,
updating links and the scalar field together, followed by
another computation of ΦnsymðUÞ from a simulation with
spatial links at t ¼ 0 held fixed, and so on. Averaging the
ΦnsymðUÞ obtained by these means results in an estimate for
hΦnsymi. Since ΦnsymðUÞ is a sum of moduli, it cannot be
zero. Instead, on general statistical grounds, we expect

hΦnsymi ¼ Ωþ κffiffiffiffiffiffiffiffiffinsym
p ; ð26Þ

where κ is some constant. By computing hΦnsymi in
independent runs at a range of nsym values, and fitting
the results to (26), we obtain an estimate for Ω at any point
in the β, γ plane of lattice couplings.
In principle, in a finite volume, one should include an

explicit GCS symmetry breaking term in the action,
proportional to some parameter h, and then compute Ω
by first taking the thermodynamic and then the h → 0 limit.
For the numerical simulations this procedure is not really
necessary, and we may set the symmetry breaking param-
eter h to zero, providing nsym is not too large. Of course, at
h ¼ 0 and finite volume, hΦi must vanish at nsym → ∞,
since a symmetry cannot break at finite volume.
Nevertheless, for nsym in the range we have used, (26)
turns out to be a good fit to the data, and the extrapolation to
nsym ¼ ∞ should be reliable. Figure 1 shows typical data
for hΦðnsymÞi vs 1= ffiffiffiffiffiffiffiffiffinsym

p at γ ¼ 1.0 and γ ¼ 1.3, with hΦi
determined from the intercept of the straight line fit with the
y axis. The transition point, where hΦi moves away from
zero, appears to be for γ somewhere between γ ¼ 1.1 and
γ ¼ 1.15, as shown in Fig. 2.
It is worth noting that there does not appear to be any

thermodynamic transition at β ¼ 6.0 at any γ, as we see
from a plot of the link susceptibility χL vs γ in Fig. 3, where

L ¼
X
x;μ

Re
�
ϕ†ðxÞUμðxÞϕðxÞ

� ð27Þ
4Note that this is by no means a line of constant physics, since

the theory with some degrees of freedom frozen, at the γ ¼ ∞
limit, is clearly distinct from the theory at moderate values of γ.
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and

χL ¼ 4VðhL2i − hLi2Þ; ð28Þ

where V is the lattice volume. The work of [11–13] tells us
that the confinement and Higgs regions are not entirely
isolated from one another by a line of thermodynamic
transition, so while there could have been such a thermo-
dynamic transition at β ¼ 6 and some γ, this is not required.
Note that ΦðUÞ is a nonlocal functional of the gauge field,
and the expectation value of nonlocal functionals can have
nonanalytic behavior even when the free energy is analytic
in that region.

B. EV across the transition

We first consider the Sc criterion with no projection to
the quark fields. Let

jΨnðRÞi ¼ QnðRÞjΨ0i; ð29Þ

where

Q0ðRÞ ¼
�
ψ̄aðxÞϕaðxÞ� × �

ϕ†bðyÞψbðyÞ�;
QnðRÞ ¼

�
ψ̄aðxÞζanðxÞ

�
×
�
ζ†bn ðyÞψbðyÞ� ðn > 0Þ: ð30Þ

For n > 0, the Qn are of the form ψ̄Vψ with factorizable
Vðx; y;UÞ operators

Vabðx; y;UÞ ¼ ζanðxÞζ†bn ðyÞ; ð31Þ

where ζn is the nth eigenstate of the covariant Laplacian
operator (10). The fermions are static and propagate only in
the time direction. For continuous time, the energy expect-
ation value above the vacuum energy E0 is

En ¼ −lim
t→0

d
dt

log
�hΨnje−ðH−E0ÞtjΨni

�

¼ −lim
t→0

d
dt

log
�hQ†

nðR; tÞQnðR; 0Þi
�
; ð32Þ

where QnðR; tÞ is shown in (30), with operators on the
right-hand side defined on time slice t. The corresponding
expression in discretized time is

En ¼ − log

�hQ†
nðR; 1ÞQnðR; 0Þi

hQ†
nðR; 0ÞQnðR; 0Þi

�
: ð33Þ

After integrating out the heavy quark fields and dropping
an R-independent constant, we have, for n > 0,
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FIG. 2. Order parameter hΦi ¼ Ω at nsym ¼ ∞, computed by
extrapolations of the kind shown in Fig. 1, vs γ at fixed β ¼ 6.0.
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FIG. 1. Computation of the order parameter hΦðnsymÞi vs
1= ffiffiffiffiffiffiffiffiffinsym

p where nsym is number of Monte Carlo sweeps (see
text). Also shown is the extrapolation to nsym ¼ ∞. Data were
taken at β ¼ 6 for γ ¼ 1.0 and γ ¼ 1.3. Extrapolation to hΦi ¼ 0
indicates that the system is in the Sc confined phase, while
extrapolation to hΦi > 0 means that the system is in the Higgs
phase.

JEFF GREENSITE and HOU Y. YAU PHYS. REV. D 109, 034502 (2024)

034502-6



	
Q†

nðR; 1ÞQnðR; 0Þ

 ¼ D�

ζ†nðx; 0ÞU0ðx; 0Þζnðx; 1Þ
��
ζ†nðy; 1ÞU†

0ðy; 0Þζnðy; 0Þ
�E

;

	
Q†

nðR; 0ÞQnðR; 0Þ

 ¼ D�

ζ†nðx; 0Þζnðx; 0Þ
��
ζ†nðy; 0Þζnðy; 0Þ

�E
: ð34Þ

The expressions are the same for n ¼ 0, with ζn replaced by
the Higgs field ϕ.
In Fig. 4 we see E0ðRÞ and E1ðRÞ just below (γ ¼ 1.1)

and just above (γ ¼ 1.2) the symmetry breaking transition.
E0ðRÞ is the energy of a pair of separated color neutral
objects, and of course we do not expect any significant
dependence on R, as we see in the figure. In the symmetric
phase, the claim is that any EVðRÞ diverges with R, and this
is certainly true for E1ðRÞ, as seen in Fig. 4(a). The data for
E1ðRÞ are fit to the form

EfitðRÞ ¼ aþ bR −
π

12R
; ð35Þ

and the coefficient of the linearly rising term is b ≈ 0.039.
This can be compared to the asymptotic string tension of
the pure (γ ¼ 0) SU(3) gauge theory at β ¼ 6.0, which is
σ ¼ 0.048 [14]. It should be understood that at any finite γ
the asymptotic string tension, as extracted from, e.g.,
Wilson loops or Polyakov line correlators, is zero, due
to string breaking. This was the motivation to construct the
Sc criterion. In the broken phase there is no prediction;
EVðRÞ might diverge, or it might converge to a constant,
depending on V. The claim is only that there must exist
some V such that EVðRÞ becomes flat at large R. In fact
E1ðRÞ has this convergence property only a little past the
transition, as seen in Fig. 4(b). If we were ignorant of the
order parameter hΦi, the behavior of E1ðRÞ at γ ≥ 1.2
would be sufficient to establish that the system is in the
Higgs phase in that region.

It is instructive to look at EnðVÞ for other n, below
and above the symmetry breaking transition, and the
results are seen in Fig. 5. As predicted, all En>0ðRÞ rise
with R in the symmetric region [Fig. 5(a)] at γ ¼ 1.1.
In the Higgs region at γ ¼ 1.2, E1ðRÞ flattens out, while the
other En>0 continue to rise linearly [Fig. 5(b)]. At still
higher γ, we find that more of the EnðRÞ become flat
[Fig. 5(c)].

C. Quark EV across the transition

The intent of using ψ̄Vψ operators to create physical
states is to exclude “broken string” states, in which the
color of the fermion is neutralized by the scalar. In the
confinement phase the corresponding EVðRÞ diverges with
R, and a few examples were presented in the previous
section. The question of interest is whether the Higgs phase
could still be a confinement phase for the quark operators q,
whose color orientation is, by definition, orthogonal to that
of the scalar field. Therefore we consider just replacing the
ψ̄ψ operators by q̄q operators and computing the energy
expectation values Eq

nðRÞ of states

jΨq
nðRÞi ¼ q̄ðxÞVnðx; yÞqðyÞjΨ0i

¼ Qq
nðRÞjΨ0i; ð36Þ

where this time

Qq
nðRÞ ¼

�
q̄aðxÞζanðxÞ

�
×
�
ζ†bn ðyÞqbðyÞ� ð37Þ
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FIG. 4. Energy expectation values E0ðRÞ and E1ðRÞ for unprojected fermion states (a) just below and (b) just above the confinement-
to-Higgs transition. E0 corresponds to a state where the fermionic color charges are neutralized by the Higgs field, while all EnðRÞ with
n > 0 are derived from operators Vðx; y;UÞ built from eigenstates of the lattice Laplacian operator. The fact that E1ðRÞ diverges with R
is required in the confinement phase, while the fact that E1ðRÞ converges to a constant, while not required, implies that the system is in
the Higgs phase. The term “unprojected”means that the fermions are not projected to the quark states, with color orthogonal to the Higgs
field.
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and Qq
0 ¼ 0 by definition. The superscript q indicates that

there is a color projection to the quark operators. Then we
have

Eq
nðRÞ ¼ − log

�hQq†
nðR; 1ÞQq

nðR; 0Þi
hQq†

nðR; 0ÞQq
nðR; 0Þi

�
ð38Þ

as before, but this time, after integrating out the heavy
quark fields,

hQq†
nðR;1ÞQq

nðR;0Þi
¼
D�

ζ†an ðx;0ÞPabðx;0ÞUbc
0 ðx;0ÞPcdðx;1Þζdnðx;1Þ

�

×
�
ζ†en ðy;1ÞPefðy;1ÞU†fg

0 ðy;0ÞPghðy;0Þζhnðy;0Þ
�E

; ð39Þ

and

hQq†
nðR; 0ÞQq

nðR; 0Þi ¼
D�

ζ†an ðx; 0ÞPabðx; 0Þζbnðx; 0Þ
�

×
�
ζ†en ðy; 0ÞPefðy; 0Þζfnðy; 0Þ

�E
;

ð40Þ

where Pab is the color projection operator defined in (22).
Then the question is whether the energies Eq

nðRÞ of the q̄q
states satisfy the Sc criterion in the Higgs phase. If so, this
would supply a gauge-invariant meaning to the claim that
confinement somehow exists, in the Higgs phase, in an
unbroken SU(2) subgroup.
At β ¼ 6.0 there is no evidence for this claim. Figure 6

shows the results of a calculation ofE0ðRÞ (as defined above)
along with Eq

1ðRÞ using quark sources, both in the confine-
ment (γ ¼ 1.1) and Higgs (γ ¼ 1.2) phases. As in Fig. 4,
Eq
1ðRÞ rises linearly in the confined phase, with a string

tension [extracted from a fit to (35)] of σ ≈ 0.04. But in the
Higgs phase Eq

1ðRÞ is flat, with no discernable linear
component, as found in Fig. 4 for the unprojected fermion
field. This implies the absence of Sc confinement for quarks

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8

E
n(

R
)

R

E1
E2
E3
E4
E5

Unprojected, �=6.0, �=1.1

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8

E
n(

R
)

R

E1
E2
E3
E4
E5

Unprojected, �=6.0, �=1.2

(b)

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8

E
n(

R
)

R

E0
E1
E2
E3
E4
E5

Unprojected, �=6.0, �=1.8

(c)

FIG. 5. Same as Fig. 4 for En with n ¼ 1–5 at (a) γ ¼ 1.1, in the confined phase; and (b) γ ¼ 1.2, (c) γ ¼ 1.8 both in the Higgs phase.
Note that while only E1 goes “flat” at γ ¼ 1.2, also E2 and E3 are flat at the higher γ ¼ 1.8 coupling, where E0 is also displayed for
comparison.
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FIG. 6. Same as Fig. 4, this time for fermions projected to quark components orthogonal to the color direction of the Higgs field. The
important point here is that in contrast to (a) in the confined phase, E1ðRÞ goes flat in the Higgs phase (b), meaning that the quarks which
transform into themselves under an SU(2) subgroup do not have the Sc confinement property.
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in the Higgs phase. For completeness we show, in Fig. 7, the
results for Eq

nðRÞ in a range of n ≥ 1, at γ ¼ 1.1, 1.2, 1.8.
However, the interpretation of these results is not entirely

clear, due to the fact that a pure SU(2) gauge theory on a 164

lattice, at β ¼ 6.0, would be deep in the deconfined phase of
the theory. Suppose we go to unitary gauge and assume that,
in the Higgs phase, the gauge bosons of the SU(2) subgroup
are approximately decoupled from the other gauge bosons of
the SU(3) theory. Denote by Ũμ the 2 × 2 submatrix of
componentsUab

μ with indices a, b in the range 1,2. Then the
part of the Lagrangian involving only the degrees of freedom
of the SU(2) subgroup is

Seff ≈ −
β

3

X
plaq

ReTr½UUU†U†� ¼ −
βeff
2

X
plaq

Tr½Ũ Ũ Ũ†Ũ†�;

ð41Þ

with an effective SU(2) coupling

βeff ¼
2

3
β ð42Þ

which, at β ¼ 6, corresponds to βeff ¼ 4. But at this effective
SU(2) coupling, on a 164 lattice, the pure SU(2) theory is in
the deconfined phase. Hence the lack of Sc confinement
might be attributable to finite size effects. To eliminate the
source of ambiguity, we repeat our calculation for β ¼ 3.6,
which is in the strong-coupling regime of pure SU(3) gauge
theory, but which corresponds to βeff ¼ 2.4. On a 164

volume, at this effective coupling, pure SU(2) gauge theory
is in the confined phase, and the test of Sc confinement is less
susceptible to finite size effects.

D. Numerical results at β= 3.6

At γ ¼ ∞ we expect that the SU(3) gauge-Higgs theory
reduces exactly to a pure SU(2) gauge theory, with an
effective SU(2) Wilson coupling βeff of (42), and this
theory must have the property of Sc confinement for the
quark degrees of freedom. The question is whether this

property exists at finite γ in the Higgs phase and, if not, how
the Sc property is approached in the continuum limit.
For this purpose it is sufficient to compute the EnðRÞ at
β ¼ 3.6; βeff ¼ 2.4 and at γ values which are deep within
the Higgs regime.
The data shown in Fig. 8 for E1ðRÞ at various γ, without

projection to the quark states, show that there is there is no
evidence for Sc confinement, even at very large γ values. In
fact, these energies are not only R independent, but drop to
zero as γ increases. This is unsurprising, since there is no
projection here to the unbroken SU(2) subgroup.
The quark projection data are more interesting. From the

data it is fairly clear that, as at β ¼ 6.0, there is also no Sc
confinement of quarks in the Higgs phase at β ¼ 3.6, as we
see from plots of E1ðRÞ in Fig. 9. At any of the γ values
shown in the figure, up to a very large value of γ ¼ 200, the
Sc quark confinement criterion is violated for Eq

VðRÞ by the
V operator built from the lowest Laplacian eigenmode

Vðx; y; UÞ ¼ ζ1ðxÞζ†1ðyÞ: ð43Þ
But this raises the question of how the γ → ∞ limit
recovers Sc confinement. The first observation is that,
while the energy Eq

1ðRÞ is seen to plateau at fairly small
separations R, the value of Eq

1ðRÞ at the plateau appears to
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FIG. 7. Same as Fig. 5 but for fermions projected to quarks as described in the text. (a) γ ¼ 1.1, in the confined phase; and (b) γ ¼ 1.2,
(c) γ ¼ 1.8 both in the Higgs phase.
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increase with γ. It is reasonable to conclude that the plateau
rises to infinity at γ → ∞. But this is not sufficient; one
would certainly expect there to be V operators, e.g., flux
tube states of some kind, such that Eq

VðRÞ rises linearly, at
some slope compatible with the SU(2) string tension of
the effective SU(2) theory, as γ → ∞. And we indeed see
evidence of this happening in Fig. 10, where some of the
Eq
nðRÞ at larger n values appear to have exactly this

behavior. Of course, these are not minimal energy flux
tube states, so the string tensions of the EnðRÞ must
be greater than the string tension of the minimal energy
flux tube state, which is σ ¼ 0.071 in the γ ¼ ∞ limit
at βeff ¼ 2.4.
It is interesting to compare Fig. 10 with the same results

at γ ¼ ∞. In unitary gauge, this simply amounts to

initializing link variables to a 3 × 3 unit matrix and then
only updating the upper left 2 × 2 matrix (the first step
of link updates described in the Appendix). The results at
β ¼ 3.6 ⇒ βeff ¼ 2.4 are shown in Fig. 11. The most
striking difference is in the behavior of E1ðRÞ in the two
figures. The distinction between the γ ¼ 100 and γ ¼ ∞
data is not so dramatic for n ¼ 19, 33, but is still noticeable.
The comparison suggests that, although the γ → ∞ limit
recovers confinement for the quarks, as expected, this limit
is still not quite the same as γ ¼ ∞.

IV. CONCLUSIONS

Confinement is a word that must be carefully defined in
an SU(N) gauge theory with matter in the fundamental
representation of the gauge group. Here and elsewhere [1,6]
we have argued that it is important to distinguish between
color (C) confinement, which means that there is a color
neutral particle spectrum, and the much stronger condition
of separation-of-charge (Sc) confinement. The latter con-
dition means that the energy of physical states with
separated color charges unscreened by matter fields
increases without limit as the color charge separation
increases. The transition from the confining to the Higgs
phase of an SU(N) gauge theory corresponds to a transition
from Sc to C confinement.
The question we have addressed in this article is

whether, in an SU(N) gauge-Higgs theory, the separation-
of-charge property persists in an SU(N-1) subgroup or,
more precisely, for quark sources with color ortho-
gonal to that of the scalar field, transforming among
themselves, in a unitary gauge, via an SU(N-1) subgroup.
The answer which we find numerically for SU(3) gauge-
Higgs theory is that Sc confinement is lost in the Higgs
phase also for the quarks transforming among themselves
in the SU(2) subgroup. Since it is certain that Sc confine-
ment must reappear in a certain limit [γ → ∞ for the
action in (24)], it is of interest to see how Sc confinement
is regained in that limit. To investigate this, we have
constructed quark-antiquark states with unscreened color,
made gauge invariant by the use of eigenmodes of the
covariant Laplacian operator. In the Higgs phase there are
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site to the unprojected case, in that the value at which E1ðRÞ
flattens out tends to increase with γ.

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7  8

E
n(

R
)

R

E0
E1

E19
E33

Projected, �=3.6, �=100

FIG. 10. Eq
n at selected values of n at β ¼ 3.6 and a large

γ ¼ 100. We observe that, while E1ðRÞ rises abruptly and flattens
out at E1 ¼ 8, E19ðRÞ rises linearly in the range shown, with
string tension σ19 ¼ 1.19ð4Þ, while E33ðRÞ also rises linearly in
this range, with string tension σ33 ¼ 0.172ð1Þ. For comparison, in
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always quark-antiquark states which violate the Sc con-
dition, i.e., the energy of such states rises to a value which
is constant with charge separation. This constant value,
however, rises with γ. There are other gauge-invariant
states whose energy increases with charge separation, but
which, for some range of quark separation, is less than that
constant value. Thus the evidence suggests that, while
there is strictly speaking no Sc confinement at all in the
Higgs phase, including for quark-antiquark states, the
energy of states which violate the Sc condition goes to
infinity as γ → ∞, leaving only states which satisfy the Sc
condition.
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APPENDIX: LINK UPDATE PROCEDURE

This is a brief note about a slightly modified procedure
for link updates which are useful at large γ. We first fix to
unitary gauge

ϕðxÞ ¼

2
64
0

0

1

3
75 ðA1Þ

and update link variables as follows: From three stochas-
tically generated SU(2) matrices with components
rij; sij; tij we construct three SU(3) matrices R, S, T
where

R ¼

2
64
r11 r12 0

r21 r22 0

0 0 1

3
75;

S ¼

2
64
s11 0 s12
0 1 0

s21 0 s22

3
75;

T ¼

2
64
1 0 0

0 t11 t12
0 t21 t22

3
75; ðA2Þ

and from those obtain an updated link in two steps. The
average deviation of R, S, T from the unit matrix is
controlled by a parameter z. In the first step, we generate
a trial link ¼ RU using a parameter z ¼ z1 for the Rmatrix,
and accept or reject according to the usual Metropolis
algorithm. In the second step the trial link is RSTUð1Þ,
whereUð1Þ is the link obtained at the first step, and this time
the deviation of the R, S, T matrices from the unit matrix is
controlled by a parameter z ¼ z2. Parameters z1, z2 are
chosen to give a 50% acceptance at each of the two steps.
The reason for the two parameters is that, in unitary gauge, at
large γ, the matrix components Uij with i, j ¼ 1, 2 may
deviate significantly from a 2 × 2 unit matrix, while
U33 ≈ 1, and the remaining components are close to zero.
The first step only affects the Uij with i, j ¼ 1, 2 compo-
nents, and therefore R in the first step is allowed to deviate
significantly from a unit matrix. In the second step, which
affects the remaining components, RST must be close to the
unit matrix in order to have a reasonable acceptance rate.
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