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We discuss the quantum computation of dynamical chirality production in lattice gauge theory. Although
the chirality of a lattice fermion is complicated in general dimensions, it can be simply formulated on a one-
dimensional lattice. The chiral fermion formalism enables us to extract the physical part of the chirality
production that would be interpreted as the chiral anomaly in the continuous theory. We demonstrate the
computation of the Z2 lattice gauge theory on a classical emulator.
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I. INTRODUCTION

The chirality of a massless Dirac fermion is conserved at
the classical level but varied by quantum effects. This was
originally found in the anomalous decay of a neutral pion to
two photons, and is now known as the chiral anomaly [1,2].
The chiral anomaly switches left-handed and right-handed
fermions and thus changes the total chirality of fermionic
matter or of the vacuum. Such a microscopic quantum
process shows up as macroscopic phenomena due to its
topological nature in accelerator experiments [3], in tab-
letop experiments [4], and in astrophysical systems [5].
A variety of dynamical phenomena are predicted there:
e.g., the chiral magnetic wave [6], the chiral plasma
instability [7], and the temporal chiral spiral [8].
The ab initio study of chiral dynamics requires the

simulation of the time evolution of quantum field theories.
The time evolution cannot be directly simulated by conven-
tional lattice gauge theory since the Monte Carlo sampling
fails [9]. A traditional approach is to solve the inverse
problem, which has been applied to real-time quantities
such as transport coefficients [10–19] and the sphaleron
rate [20–24]. Recently, there has been research on applying
machine learning techniques to the inverse problem in
lattice simulations [25]. Remarkably, quantum computing

will be an alternative approach in the future. While
the quantum simulation of three-dimensional QCD is
a far future dream, the simulation of one-dimensional
gauge theory is possible even on near-term quantum
computers [26]. The special case of one-dimensional gauge
theory is analytically solvable, so it will be useful as a good
benchmark to check the validity of quantum computing.
The general case is analytically unsolvable and numerically
intractable for classical computing. Thus, chiral dynamics
in one-dimensional gauge theory is one of the nearby
targets for quantum computing [27].
In this paper, we discuss the real-time evolution of

chirality in the Hamiltonian lattice gauge theory. When we
study the time evolution of chirality, we must use the lattice
fermion with the exact chiral symmetry, that is, the so-
called chiral fermion; otherwise, the time evolution suffers
from artificial chiral symmetry breaking by lattice discre-
tization. Fortunately, we can avoid this problem without
extra cost in the one-dimensional Hamiltonian lattice gauge
theory. We describe the lattice formulation of chirality in
Sec. II and the time evolution of chirality in Sec. III. The
future goal is to simulate the time evolution on a quantum
computer and to study the role of the chiral anomaly, but
this has not been done yet. For the purpose of demon-
stration, we adopt the Z2 lattice gauge theory as a toy model
and show the emulated results in Sec. IV.

II. ONE-DIMENSIONAL LATTICE FERMION

In continuous theory, a massless Dirac fermion has
definite chirality. In other words, a chiral charge is a
conserved quantity at least in the classical level. On a
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lattice, however, the chiral charge conservation is explicitly
violated by the lattice discretization á la Wilson [28]. This
problem must be cured by changing the formulation of a
lattice fermion. The overlap fermion is a general formulation
available in arbitrary dimensions [29–31], but it is known to
be computationally demanding. In one-dimensional space,
there is a much simpler formulation, which was pointed out
for theWilson fermion [32]. The conserved chiral charge can
be constructed without changing the Hamiltonian. Here we
summarize the chiral charges of one-dimensional lattice
fermions. We use the lattice unit and eliminate the lattice
spacing a throughout this paper.
The Wilson fermion is a two-component spinor

ψ̂ðxÞ ¼ fψ̂1ðxÞ; ψ̂2ðxÞg. The gamma matrices fγ0; γ1; γ5g
are the Pauli matrices. The massless Hamiltonian is
given by

Ĥf¼
X
x

�
rψ̂†ðxÞγ0ψ̂ðxÞ−1

2
ψ̂†ðxÞγ0ðr−γ1ÞÛðxÞψ̂ðxþ1Þ

−
1

2
ψ̂†ðxþ1Þγ0ðrþγ1ÞÛ†ðxÞψ̂ðxÞ

�
; ð1Þ

where ÛðxÞ is the link operator of a U(1) gauge field. We
define three kinds of charge operators: the fermion number
operator

Q̂ ¼
X
x

fψ̂†ðxÞψ̂ðxÞ − 1g; ð2Þ

the naive chiral charge operator

Q̂5
naive ¼

X
x

ψ̂†ðxÞγ5ψ̂ðxÞ; ð3Þ

and the conserved chiral charge operator

Q̂5¼
X
x

�
1

2
ψ̂†ðxÞγ5ψ̂ðxÞþ1

4
ψ̂†ðxÞγ5ð1−γ1ÞÛðxÞψ̂ðxþ1Þ

þ1

4
ψ̂†ðxþ1Þγ5ð1þγ1ÞÛ†ðxÞψ̂ðxÞ

�
: ð4Þ

Taking the basis γ0 ¼ σ1, γ1 ¼ σ3, γ5 ¼ σ2, and r ¼ 1, we
can simplify these operators as

Ĥf ¼
X
x

�
ψ̂†
1ðxÞψ̂2ðxÞ þ ψ̂†

2ðxÞψ̂1ðxÞ

− ψ̂†
1ðxÞÛðxÞψ̂2ðxþ 1Þ

− ψ̂†
2ðxþ 1ÞÛ†ðxÞψ̂1ðxÞ

�
; ð5Þ

Q̂ ¼
X
x

�
ψ̂†
1ðxÞψ̂1ðxÞ þ ψ̂†

2ðxÞψ̂2ðxÞ − 1
�
; ð6Þ

Q̂5
naive ¼

X
x

i
�
−ψ̂†

1ðxÞψ̂2ðxÞ þ ψ̂†
2ðxÞψ̂1ðxÞ

�
; ð7Þ

Q̂5 ¼
X
x

i
2

�
−ψ̂†

1ðxÞψ̂2ðxÞ þ ψ̂†
2ðxÞψ̂1ðxÞ

− ψ̂†
1ðxÞÛðxÞψ̂2ðxþ 1Þ

þ ψ̂†
2ðxþ 1ÞÛ†ðxÞψ̂1ðxÞ

�
: ð8Þ

This is a convenient choice for quantum computation
because the Hamiltonian is encoded on a one-dimensional
chain of qubits [33]. The fermion number operator com-
mutes with the Hamiltonian,

½Ĥf; Q̂� ¼ 0: ð9Þ

The two chiral charge operators seem almost the same.
They have the same continuum limit because the difference
of these operators is OðaÞ. The commutation property is,
however, distinct. The conserved chiral charge operator
commutes with the Hamiltonian,

½Ĥf; Q̂
5� ¼ 0; ð10Þ

while the naive chiral charge operator does not,

½Ĥf; Q̂
5
naive� ≠ 0: ð11Þ

Note that the Wilson parameter must be r ¼ 1; otherwise,
the commutation relation (10) is not satisfied.
Since the Kogut-Susskind fermion is often employed in

quantum simulation, we here clarify the relation between
the Wilson and Kogut-Susskind fermions. In the Kogut-
Susskind fermion formalism, a two-component spinor is
constructed by one-component fermions on even and odd
sites [34]. The Hamiltonian is

Ĥf ¼ −
i
2

X
n

�
χ̂†ðnÞÛðnÞχ̂ðnþ 1Þ

− χ̂†ðnþ 1ÞÛ†ðnÞχ̂ðnÞ�: ð12Þ

Relabeling the fermions as χð2x−1Þ¼−iψoðxÞ and χð2xÞ¼
Ûð2x−1Þ†ψeðxÞ, we can rewrite the Hamiltonian as

Ĥf ¼
1

2

X
x

�
ψ̂†
oðxÞψ̂eðxÞ þ ψ̂†

eðxÞψ̂oðxÞ

− ψ̂†
oðxþ 1ÞÛ†ð2xÞÛ†ð2x − 1Þψ̂eðxÞ

− ψ̂†
eðxÞÛð2x − 1ÞÛð2xÞψ̂oðxþ 1Þ�: ð13Þ

This is equivalent to Eq. (5) when UðnÞ ¼ 1 for ∀ n.
(The overall factor 1=2 can be understood as the rescaling
of lattice spacing a → 2a.) Although the Wilson fermion
and the Kogut-Susskind fermion are different in general, they
are equivalent in the one-dimensional, massless, and non-
interacting case. The fermion number operator is
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Q̂ ¼
X
x

�
ψ̂eðxÞ†ψ̂eðxÞ þ ψ̂oðxÞ†ψ̂oðxÞ − 1

�
; ð14Þ

the naive chiral charge operator is

Q̂5
naive ¼ i

X
x

�
−ψ̂†

oðxÞψ̂eðxÞ þ ψ̂†
eðxÞψ̂oðxÞ

�
; ð15Þ

and the conserved chiral charge operator is

Q̂5 ¼ i
2

X
x

�
−ψ̂†

oðxÞψ̂eðxÞ þ ψ̂†
eðxÞψ̂oðxÞ

− ψ̂†
oðxþ 1ÞÛ†ð2xÞÛ†ð2x − 1Þψ̂eðxÞ

þ ψ̂†
eðxÞÛð2x − 1ÞÛð2xÞψ̂oðxþ 1Þ�: ð16Þ

The commutation relations are ½Ĥf; Q̂� ¼ ½Ĥf; Q̂
5� ¼ 0 and

½Ĥf; Q̂
5
naive� ≠ 0.

We assumed infinite space or periodic space for the above
equations. In quantum computing, the open boundary is
often chosen because the gauge field can be eliminated by
solving the Gauss law. Unfortunately, the open boundary
violates the conservation of the chiral charges (4) and (16),
and this simplified formulation is not applicable.

III. CHIRALITY PRODUCTION

The time evolution of a quantum system is described by
the evolution equation

jΨðtÞi ¼ exp ð−iĤtÞjΨð0Þi: ð17Þ

When the system contains a gauge field and a fermion, the
total Hamiltonian is

Ĥ ¼ Ĥg þ Ĥf ð18Þ

and the total state vector is

jΨðtÞi ¼
Y
x

jUðxÞi ⊗ jψ1ðxÞi ⊗ jψ2ðxÞi: ð19Þ

When the Hamiltonian does not explicitly depend on time,
the time evolution of the chiral charge is given by

d
dt

hΨðtÞjQ̂5jΨðtÞi ¼ hΨðtÞji½Ĥg; Q̂
5�jΨðtÞi ð20Þ

because of ½Ĥf; Q̂
5� ¼ 0. When the gauge field does not

exist, Ĥg ¼ 0, the chiral charge of a free fermion is
conserved, d

dt hΨðtÞjQ̂5jΨðtÞi ¼ 0. When the gauge field
exists, the link operator ÛðxÞ and its conjugate operator,
i.e., the electric field operator ÊðxÞ, satisfy the equal-time
canonical commutation relation ½ÊðxÞ; ÛðyÞ� ¼ eδxyÛðyÞ.
Since the chiral charge operator contains the link operator

and the gauge field Hamiltonian contains the electric field
operator, they do not commute, ½Ĥg; Q̂

5� ≠ 0. Therefore,
the chiral charge conservation is anomalously violated,
d
dt hΨðtÞjQ̂5jΨðtÞi ≠ 0. This nonconservation would be
interpreted as the chiral anomaly in the continuum limit.
For example, in the U(1) lattice gauge theory,

d
dt

hΨðtÞjQ̂5jΨðtÞi ¼ hΨðtÞj e
π

Z
dxÊðxÞjΨðtÞi ð21Þ

is expected when the excess of the axial vector current is
zero at boundaries [35].

IV. QUANTUM SIMULATION

The time evolution mentioned above will hopefully be
simulated by quantum computers. The simulation of a
continuous gauge group is of physical interest since the
theory has a well-defined continuum limit, but the simu-
lation of a discrete gauge group is better for exercise.
In this paper, we demonstrate the quantum simulation
in the simplest case, i.e., the Z2 lattice gauge theory
with the Wilson fermion. We used a noiseless emulator
although the simulation is feasible on real devices. For the
state-of-the-art simulation of the one-dimensional Z2 lattice
gauge theory on a real device, see Ref. [36].
Wewrite down the Pauli gate representation of operators.

The gauge field Hamiltonian is

Ĥg ¼ −λ
X
x

XgðxÞ ð22Þ

with a real parameter λ, and the link operator is

ÛðxÞ ¼ ZgðxÞ: ð23Þ
By the Jordan-Wigner transformation, the fermionic oper-
ators (5)–(8) are written as

Ĥf ¼
X
x

1

2
fX1ðxÞX2ðxÞ þ Y1ðxÞY2ðxÞ

− ZgðxÞX1ðxÞX2ðxþ 1Þ
− ZgðxÞY1ðxÞY2ðxþ 1Þg; ð24Þ

Q̂ ¼
X
x

1

2
fZ1ðxÞ þ Z2ðxÞg; ð25Þ

Q̂5
naive ¼

X
x

1

2
fY1ðxÞX2ðxÞ − X1ðxÞY2ðxÞg; ð26Þ

Q̂5 ¼
X
x

1

4
fY1ðxÞX2ðxÞ − X1ðxÞY2ðxÞ

þ ZgðxÞY1ðxÞX2ðxþ 1Þ
− ZgðxÞX1ðxÞY2ðxþ 1Þg: ð27Þ
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The subscripts g, 1, and 2 stand for the gates acting on
jUðxÞi, jψ1ðxÞi, and jψ2ðxÞi, respectively. The quantum
circuit for the evolution equation (17) is the standard one.
The evolution operator is decomposed into exponential
operators by the Suzuki-Trotter formula with the step size
δt ¼ 0.1. Since each exponential operator acts on up to
three qubits, the circuit can easily be constructed.
For a validity check of the simulation, we first study the

noninteracting Wilson fermion. Figure 1 shows lattice
geometry and the result. The number of lattice sites is
three and the boundary condition is periodic. The state
vector can be stored in six qubits. The initial condition is
chosen as an eigenstate of γ5, s.t., ψ̂†ðxÞγ5ψ̂ðxÞjψ1ðxÞi ⊗
jψ2ðxÞi ¼ −jψ1ðxÞi ⊗ jψ2ðxÞi for ∀ x, although there is
no special reason for this choice. When there is no gauge
interaction, there are three conserved quantities: the fer-
mion number, the chiral charge, and the energy. The naive
chiral charge is not conserved due to the lattice discretiza-
tion artifact, i.e., Eq. (11). These expected behaviors are
confirmed in Fig. 1.

The interacting case is shown in Fig. 2. The Z2 gauge
fields exist on three links, so the state vector can be stored in
nine qubits. The initial condition of the gauge field is a trivial
state, s.t., ÛðxÞjUðxÞi ¼ jUðxÞi for ∀ x. Other simulation
setups are the same as in the non-interacting case. The chiral
charge is not conserved but generated by the gauge inter-
action. (Even though the naive chiral charge shows a similar
tendency to the conserved chiral charge, it is a distinguish-
able mixture of the physical time evolution and the lattice
discretization artifact.) The further interpretation of this
chirality generation is nontrivial in the Z2 lattice gauge
theory. The Z2 lattice gauge theory does not have a
continuum limit. The chiral anomaly originates from ultra-
violet divergence, so it appears only in a continuum limit. It
is correct to say that this chirality generation is due to the
gauge interaction but subtle to say that the generation is due
to the chiral anomaly. Another subtlety is that the generation
is not controlled by the external electric field. In continuous
gauge theories, the electric field is a continuous variable. A
positive external electric field increases the chiral charge,

FIG. 1. Time evolution of the free Wilson fermion. The fermion number hQi, the conserved chiral charge hQ5i, the naive chiral charge
hQ5

naivei, and the energy hHi are shown. The simulation was done by a noiseless emulator and the error bar is a statistical error.

FIG. 2. Time evolution of the Wilson fermion with the Z2 gauge field. The fermion number hQi, the conserved chiral charge hQ5i, the
naive chiral charge hQ5

naivei, and the energy hHi are shown. The simulation was done by a noiseless emulator and the error bar is a
statistical error. The gauge parameter is fixed at λ ¼ 1.
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and a negative external electric field decreases the chiral
charge. In the Z2 lattice gauge theory, there are only two
eigenstates of the electric field: 0 and πðmod 2πÞ. There is
no distinction between positive and negative electric fields.
Whether the chiral charge is increased or decreased, i.e., the
sign of d

dt hQ̂5i, is determined by the initial condition, not by
the external electric field.
The above analysis is applicable to the continuous gauge

group if sufficient resources are given. For example, Uð1Þ
is approximated by ZN with large N. The basic strategy is
the same although the quantum circuit will be complicated

and lengthy. The simulation will reproduce the chirality
generation by the chiral anomaly. The chiral anomaly in
one dimension is a simple but interesting subject for near-
term quantum computation of lattice gauge theory.
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