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We perform an analysis of triangle- and box-loop contributions to the generalized potential in the
scattering of Goldstone bosons off the J¥ = 0~ and 1~ charmed mesons. Particular emphasis is put on
the use of on-shell mass parameters in such contributions in terms of a renormalization scheme that ensures
the absence of power-counting violating terms. This is achieved with a systematically extended set of
Passarino-Veltman basis functions that leads to manifest power-counting conserving one-loop expressions
and avoids the occurrence of superficial kinematical singularities. Compact expressions to chiral order
three and four are presented that are particularly useful in coding such coupled-channel systems. Our
formal results are generic and prepare analogous computations for other systems, like meson-baryon

scattering from the chiral Lagrangian.
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I. INTRODUCTION

The role of left-hand cut contributions in coupled-channel
systems receives increasing attention in the hadron physics
community as the interplay of modern effective field theory
approaches with lattice QCD simulations requests more and
more quantitative and controlled computations. The open-
charm sector of QCD not only serves as a convenient
laboratory since it is largely driven by the symmetries of
QCD [1-4], but also offers, already, a sizeable data set from
lattice QCD simulations [5—13]. We consider such studies as
a preparation for the more demanding meson-baryon sys-
tems for which the scattering data set from lattice QCD
simulations is significantly more scarce [14-25].

Studies of the quark-mass dependence of the charmed
meson masses are the key for the quantitative understanding
of the coupled-channel interactions of the latter with the
Goldstone bosons of QCD [26,27]. It is useful to acknowl-
edge that simultaneous approaches for hadron masses
together with their scattering properties are significantly more
constrained by QCD as compared to partial studies. Early
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coupled-channel works in the open-charm sector focused
on the s-wave interactions only and ignored the impact from
the quark-mass dependence of the charmed meson masses
[2,28-34]. Coupled-channel studies of p-wave and d-wave
systems are of equal importance since in lattice QCD studies
or experimental cross section results a focus on s-wave terms
only is not always possible. For the latter, the scattering
processes cannot be reliably described by algebraic matrix
equations (see, e.g., [2,26,29]) that may lead to unitarity but
are at odds with the long-range part of the coupled-channel
forces as they arise from #- or u-channel exchange processes at
the tree- or loop-level [35-38]. We note that a suitable
framework for such systems is offered by the generalized
potential approach (GPA) as was developed in [39-42]. It
systematically extends the applicability domain of the chiral
Lagrangian into the resonance region by using an expansion
of the generalized potential in terms of conformal variables,
where the expansion coefficients are well accessible within
chiral perturbation theory.

In our current formal work we focus on one-loop triangle
and box contributions that have not been studied at
sufficient rigor from the chiral Lagrangian. While a first
estimate of such effects was reported on in [43,44] for
s-wave scattering in the open-charm system, results are yet
to exist for either s-wave or p-wave scattering in application
of a GPA. It is a challenge to perform such computations in
a manner such that on-shell hadron masses can be used in
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the loop expressions without violating the chiral Ward
identities of QCD and the expectations of dimensional
counting rules. Previous works (see, e.g., [44,45]) consider
a renormalization of the loop effects using the extended-on-
mass-shell scheme [46,47], in which renormalization-scale
independent results are obtained only if bare hadron masses
are used inside the loop expression. We will further develop
our scheme and provide explicit expressions for triangle-
and box-loop contributions in the open-charm sector of
QCD at chiral order three and four.

II. SCATTERING FROM THE CHIRAL
LAGRANGIAN

We use the chiral Lagrangian as presented in [37] for the
two antitriplets of D mesons with J¥ =0~ and J* = 1~
quantum numbers. The 1~ states are interpolated in terms
of antisymmetric tensor fields. The covariant derivative
involves the chiral connection, and the quark masses enter
via the symmetry breaking fields that are linear in the
masses, m, 4, of the up, down, and strange quarks. The
octet of the Goldstone boson fields is encoded into a 3 x 3
matrix. The parameter f is the chiral limit value of the pion-
decay constant. Finally, the parameters M and M give the
masses of the D and D* mesons at m, = my; = m, = 0,
where in the limit of a very large charm-quark mass a
common mass arises with M /M — 1. The construction of
this chiral Lagrangian and implications for the heavy-quark
mass limit go back to the early works [1,2,26,28,29,48].
All terms relevant in our current work are recalled in
Appendix A.

98(q-q) =

While the leading order terms introduce the kinetic terms
of the mesons with covariant derivatives, the first-order
interaction terms provide the 3-point coupling constants of
the Goldstone bosons to the charmed mesons parametrized
by the low-energy constants (LEC) gp and §p. While the
decay of the charged D* meson implies |gp| = 0.57 + 0.07,
the parameter gp cannot be extracted from empirical data
directly. The size of §p ~ gp can be estimated using the
heavy-quark spin symmetry of QCD [1,48].

Second-order terms of the chiral Lagrangian were first
studied in [28,29,49]. All parameters c¢; and ¢; are expected
to scale linearly in the parameter M. It holds ¢; = c¢; in the
heavy-quark mass limit [29]. A first estimate of the LEC
can be found in [29] based on the leading order large-N,
relations. In the combined heavy-quark and large-N, limit
we are left with four free parameters only, ¢, ¢3, c5, Cg.
Additional terms relevant at chiral order three were con-
sidered in [26,43,44,50,51]. A complete list of such terms is
given in [37], where we note that the LEC with §;, ~ g;
do not contribute to the meson masses at the one-loop
level. Rather, they are instrumental to achieve a more
accurate description of the coupled-channel systems pre-
sented here.

We consider the scattering of the Goldstone bosons off
the charmed meson states with J© = 0~ and J* = 1~. The
corresponding scattering amplitudes are characterized by
their isospin (/) and strangeness (S) quantum numbers. For
simplicity we recall the scattering processes of the J© = 0~
states first. The tree-level scattering amplitudes at leading
and subleading chiral orders take the form

(G-w)(w-q)
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with Clebsch coefficients Cyr, C)), Cly) . €y, 7, €l
and C, detailed already in [2,28,52] and the conventional
Mandelstam variables s, f, u of two-body scattering.
With ¢, and g, we denote the initial and final 4-momenta
of the Goldstone bosons. The Mandelstam variables are
s=w?=(p+q)%u=(p-g)andt=(g—q)*inour
work. The s- and u-channel exchange processes in (1)
involve the J¥ = 1~ charmed mesons, i.e., the sums run

2
_ S—u
+4(q - q)(c2C + ¢3C5) + %(%Cz +¢5C3),

—4(q-q)(s— u)

Cwr + (s —u)? Cwrs (1)

2M3

|
over He {D*,D}} = [17]. The indices b and a specify
the initial and final flavor channels of the chosen
process.

We note that the particularly useful combination of
Clebsch coefficients,

Cymen = ZCE;) = C, —2C5 = Cyr, (2)
H
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was introduced in [28] for applications in which the mass
difference of the D* and D7, or also the difference of the D
and D, masses, can be neglected. Depending on the
context, such Clebsch coefficients are applied also for
processes which involve the scattering of the J” = 1~
charmed states. This is possible since the corresponding

|

T~ s )

interaction vertices have identical flavor structures in the
two sectors.

This can be illustrated at the leading orders for the
scattering processes involving the 1~ charmed mesons. The
scattering amplitudes are characterized by six invariant
amplitudes G,,, most economically in the following choice:

= Go(s. 1. )™ qoqpe;(p. A) pos

70,7 (5, 10) = (P 1[G (5.1, 1) + Gols, 1) + Gl 1)@ (g = 3)F

+ Gyls1,1)(@ = )"q" + Gs(s. 1,u) (@ = 0)* (4 = 3)* | (1. D).

6(1[3(171 A’) = ﬁ (pae/}(p7 ﬂ) - pﬂea(p’ /1))’ (3)

where we use p, and ] for the momentum and polarization of the produced D* meson. The wave function €qp(p.4) of a
vector meson, as interpolated by an antisymmetric tensor field, is written in terms of the more conventional wave function
€.(p,A) of a spin-one particle in the vector-field representation. We identify the leading orders tree-level terms with
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where we use the notation Q" to specify the chiral order n of a given term. While the §, and §s contribute to the
0717 — 0717 processes, the heavy-quark symmetry related g, and g5 contribute to the production processes 070~ — 071".
In the heavy-quark mass limit it holds §, = g,, in particular, f0r n =4, 5.

It remains to specify the invariant amplitude G, (s, #, u) in TS b_

(s, t, u). Owing to the heavy-quark symmetry, its form

can be inferred from its spin-zero partner reaction T (s, #, u), at least in the heavy-quark mass limit. Indeed we find for our

tree-level the expression,

_M(mg b= f) - (%2_ 1) (s ;;)2}

P e

He 1] 2 2
_w(’"ﬁ +mp—1) - (%— 1) (s ;;)2}
S]] e Jroe) o

properly truncated at chiral order four. This is so since
contributions from the other amplitudes G, 345 are sup-
pressed by two orders in the chiral expansion. Note the
presence of the small 4-momenta g, or g, in (3). It is
evident that analogous relations hold for the loop expres-
sions, as to be derived in our current work. Therefore, from
now on we focus on the reactions with spin-zero charmed
mesons in the initial and final states.

III. SCATTERING WITH TADPOLE
AND BUBBLE DIAGRAMS

We discuss one-loop contributions to the two-body
scattering amplitudes. At chiral order three and four there
are various types of diagrams to be considered. All one-
loop diagrams that contribute at gp = 0 have been evalu-
ated in our previous work [37]. Such tadpole and bubble
loop contributions are recalled in Fig. 1 at order 3 involving
leading order vertices only. Corresponding diagrams at
order 4 involve subleading order vertices instead. Quite
explicit expressions are documented in [37].

\_._/

N -
RS
v >
~
- ~
-~
\!/ S o -
~
_- ~ o _

- -
- ~ -

FIG. 1.

An additional set of tadpole, bubble, triangle, and box
loop diagrams is proportional to g% and has not
been documented systematically before. In Figs. 2-7 our
target diagrams are shown for the case that initial and final
mesons carry J© = 0~ quantum numbers. Corresponding
diagrams can be drawn for the case in which one or both
external lines signal a charmed meson with J¥ = 1=, From
the form of such diagrams it follows that in the formal limit
of a very large mass of the J” = 1~ mesons such con-
tributions may be viewed as a renormalization of tadpole
and bubble loop contributions. That was the rationale
behind our previous more phenomenological work, despite
the fact that the heavy-quark spin symmetry predicts the
mass degeneracy of the 0~ and 1~ states in the limit of an
infinite charm quark mass. Clearly, it is desirable to have a
closer look into such diagrams.

We use the conventional Mandelstam variables s, ¢, and
u of two-body scattering. The indices a and b specify the
final and initial flavor channels of the chosen process. The
loop functions depend on not only the internal masses, m,
My, My, Mg, but also on external masses,

\‘\/./4/

Dashed lines stand for pion, kaon, or eta mesons and solid lines for charmed mesons with J* = 0. The vertices are from [37].
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\ ,‘

FIG. 2. Dashed lines stand for pion, kaon, or eta mesons and solid and double-solid lines for charmed mesons with JP =0 and
JP =17, respectively. The vertices are from [37].

:q2’ mb:q ’ Mzzpz’ Mizpzv (6)

where we use small m’s for Goldstone boson masses and big M’s for the masses for the 0~ and 1~ charmed mesons. The
pairs of initial and final four momenta are (g,. p,) and (g,. p,), respectively. In turn we may writt w =g+ p =g+ p
with s = w?.

We first consider the tadpole-type diagrams in Fig. 2,

adpole )(
PTG (s.u) = gp Z — MZ <ZCQHIQ+C £z +z) 2)/2>
u(@-q)—(q-(p—9)(P—q) 9) W u 1
+ 4 Z 0 > Conlo + Ci (2 + 2, -2)/2).
Hell] u H 0
2. 1.
|
FAZY = 1) = —120,(m2 + m3) = 8Lsm3 5 @+ 1, + 205,
FAZY = 1) = =24L,(2m% — m2) — 8Lsm? + I,
d 1 d 3 _omy m?
2 Ly=———, 2 Ls=——,  I,=—%log—2, 7
K a2t 25672 # a2 25672 ¢ (4r)? o8 u? ™

with the wave-function factors of the Goldstone bosons as
written in [37] by using the LEC L4 and L5 of Gasser and

Leutwyler [53]. While the Clebsch CS) and C ;';) were given
previously, the C(QS)H and C(Q”}, can easily be expressed in
terms of the latter. To avoid a proliferation of our notations,
Q is used as a placeholder index for a Goldstone boson field
7, K, nin (7) but also in Q" together with the chiral order n
of a given term [see, e.g., (4)]. For the tadpole, TQ, a
conventional MS subtraction scheme is used with the
renormalization scale y of dimensional regularization.
We aim at a decomposition of the scattering amplitude

Top(s,u)= Z (G-q)—(g-w)(w- q)/MHG

2 H.,ab
He[l] s—My
(7-9)—(a-(p-2)(P—q)-q)/M},
i Z u—M%
XGE_ILb—l-Bab(s,u), (8)

into s- and u-channel pole terms with on-shell mass My
and a smooth background term B, (s). By construction the
s-channel pole term contributes to the J” = 1~ partial-
wave amplitude only. The u-channel pole is included such
that the sum of the two pole terms is compatible with
constraints from crossing symmetry. The pole mass My

and the residua Gg?ab and Gg”a »» as well as the background
term B, (s, u), receive corrections from loop effects. Given
our approximation strategy we will use the physical on-
shell mass for My and

Gy =@Cl/f2 G =gyt (9)

from (1). The value gp may be adjusted as to recover the
empirical decay width of the D* — zD meson. While it
would be desirable to refine such a scheme, at this stage
there is insufficient information available to consider flavor

breaking or quark-mass dependence effects in Gg?ab. It

appears impossible to determine corresponding LEC that
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contribute to Gg?a »- Therefore, we will focus on the loop effects in the background term. For the tadpole contribution (7) we

find

s —u)? s u) =
f4Btadpole(S M) —gP Z |: (8M2b) :|{Z(C(Q1)'-I+C<QI>-I)IQ+ (C )fZ( +Zb _ )/2} +O(Q5)
Hell™ a 0
2
=9 Z [ - SM?)}Z(mc&nuc&z)mzw(gsx (10)
0

where we note that the background term is of chiral order four. This is in contrast to its corresponding contribution to Gf,?

and GZ’,‘), which are of chiral order two. In the last line (10) of our rewrite we observed that the tadpoles in the first line
cancel identically with the tadpoles in the wave function terms from (7).
We turn to the bubble-type contributions, where we start with the wave function term

1
ToE(s. ) = 5 (T4 (5.u) + T (. 0)) (28 + 2,7 = 2) + 0(0%).
i) = 1+ 4By ((260 = 1) (m, +2m) + m¢y)
2
- 1‘2;2 {12(7,, 2T [ M. = 22 + rMB)ID). — (4 = PM3)ZL) )
+38 (IK +2m3 T, MB, = 2(m + rM)TE), — (4md — r2M3 )zﬁml)
4
3( +2m2l e My = 2(m3 + rMB)I) — (4m3 — P M} >Z$D1>}
+0(0%),
Zy) =1+ 4Bo((2 = 1) (m, +2m) + myy)
1‘2;2 {16<1K + 2m%(ID*/M -2(m% + rM%)Sﬁg(DD“Z — (4m% — rZM%A_)Z%E)
16 /- _ _
+5 (1,, +2m2 . [ M, = 2(m2 + rMp )1 — (4m] — r2M§):)zf1’;;>) }
+0(0%).
D ol oy (Mp) =D) _ 3
Zgn = Mp=C0o P 1y =Tou(Mh).
d 13 d 5
2 8 e 2, Ry g . — 11
H d,u2 é’O 38471’2f2 9gp d,u2 Cl 128ﬂ2f2 g%’ ( )

from Fig. 3. It involves the first and second order tree-level expressions Tiﬁl) (s,u) and Tffb) (s,u) as recalled in (1) and the
LEC ¢, and ¢, from the chiral Lagrangian. Our result involves a scalar bubble-loop function Iyg(M7), with its

renormalized form given in (14). We find that the wave functions, Zg), of the heavy fields do not depend on the
renormalization scale g, if we use the summed expressions

3 1
By(2m + my) - T — (3m3 + 4mk + m}), Bym — 20 (39mZ + 4m% — 3m2),
1
Bymg — —(=33m2 + 52m3% + 21m3), (12)

80

in (11). This is contrasted by the fact that the wave functions, ZS), of the light fields do depend on yx. We note that an
additional subtraction in (11) may be useful as to arrive at the wave function factors Z(D) and Z( ) to approach one in the

chiral limit.
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FIG. 3. Dashed lines stand for pion, kaon, or eta mesons and
solid and double-solid lines for charmed mesons with J© = 0~
and J¥ = 17, respectively. The vertices are from [37].

The evaluation of the loop functions in Figs. 3-5
[see also (11), (17), and (21)] is straightforward, even if
one insists on the use of on-shell meson masses as is highly
advisable for coupled-channel systems. In previous works
[54-57] we developed a novel scheme in application of the
Passarino-Veltman decomposition scheme [58]. In an initial
|

- -y
1 = Top(s) ——7
ou(s) = Ionu(s) 1622 +

Iy
M3’

. 1 1 my — My,
1 = dy——(14+42 -2
on(s) 16n2{7 2( L

M m2
)ree(522)
My

step the one-loop bubble contributions can be expressed in
terms of scalar loop functions,

/ _/ d?l i/,£4_d / _/ d?l iﬂ4_d
° ) enylr-my ") Qo) -My
dll —ipt 1
I 2) = , 13
on(w’) /(2n)d12—m2Q(l+w)2—M%, (13)

introduced in dimensional regularization. While we keep
the scalar basis functions un-expanded, as to keep their
proper causal structure, the kinematical coefficients are
expanded in application of power-counting rules. So far we
encounter the renormalized tadpole I, and bubble 1, (s)
functions in (11) only, with

M2 —M? M*—M?

y=- log——>—,

M? M?

Pou (| | 5 =2pouv/s 1 | s +2pouy/'s
F U T e )T T e ) S
0 H 0 H

_sz + M2 N (sz - M?%)?

2 s
Pon =74 2 4s

: (14)

where with M and M we denote the chiral limit values of the charmed meson masses with J© =0~ and JX = 1-,
respectively. Additional contributions from scalar tadpole integrals involving the heavy fields are dropped systematically
with I; = Iy = I; — 0, at least if they occur in a power-counting violating context. By construction it holds 7 on(s)~Qas
expected from dimensional counting rules. In a second step we apply the power-counting scheme [37] as introduced in

terms of on-shell hadron masses,

s+t4u=M,+m,
M2

ab

:Mg—l—M%Ns—l—MNQO,

M} —M2,/2 =6, +rM2,/2,

M% —M2,/2 = 6x + rM?, /2,

mQuarthNS—i_u_Mz_MiNMZ_Mi’VéLNéRNQZ’

where we note that L,Re&[17] here. Upon a chiral
expansion the chiral power of any of the 6, g ~m, 4, ~
Q? is confirmed, where we recall that M, and M,, give the
charm meson masses of the final and initial J* = 0~ fields.
The merit of such a scheme is that our expansion can be set
up in a two-step procedure. Initially we do not make any
assumption on the size of the ratio r = (M? — M?)/M?>
in (15). An application of the counting rules (15) generates

2 2 2 2 2 2
my, = Mg + my ~ my ~my ~ Q°,

Ss—u

e e (] « ~ l’
2(M2 + M2)1/2 Goldstone ~ O

(15)

|
expressions that probe rational functions of that r, as is
illustrated in [56,57]. There are at least three relevant
possibilities implied by either r~Q? or r~Q or
r~ Q0. In the first two cases we make contact with the
traditional simultaneous expansion in the small up, down,
and strange quark masses and in the small inverse of a large
charm quark mass. In the third case we may integrate out
the 1~ fields in terms of the formal request M > M. The
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JP =17, respectively. The vertices are from [37].

most economic would be the case with r ~ Q2 since it
would imply M3 p — M?%, ~ Q% Indeed using previous
values from [37] for M and M we obtain the estimate
r~0.16, which may sufficiently support such an assign-

ment parametrically.
Nevertheless, we argue that it is advantageous to keep
the size of the ratio r open at first. This entails us setting up
|

f4TbUbble(s u _QPZ{ L.QH L)QH(S u)"’_C(L)QH (L)QH
L.OH

the expansion in a manner that permits it to integrate out the
1~ fields efficiently. In order to connect to the chiral domain
with m, < M — M, we must assume r~ Q°, at least.
Consistency of our results in that chiral domain will
demand a further set of subtraction terms, as to eliminate
power-counting violating contributions.

We turn to the bubble-type diagrams in Fig. 4 with

(5.0} + > { ot b5 0) + Ctr gl als0) -

OH.R

Tipn(scw) = I on(.5), Ty g(s.u) = Tgp glu.s). (16)
where He[17] and L,R€[0] or L,R €[17]. The loops with L,R€[07] and with L,Re€[17] are
dy i d—d _ ~
(5 _ [ A =it =g+2w) (=) LW
J — ) — 172
Lefo].on(S: 1) /(Zﬂ)d 2= m, U+ wi—mH (W)q,p
dy i d—d
(s) o d’l —iu (l —q+ 2W> : (l - (]) la(l + W)ﬂ aﬂ v R
(s) a4l iﬂ4_d _ 5,/',1 o _ _ uv,aff
Jrepon(s-u) = WW%P AP g A (P + Da(l+3), + L+ @)aw, } S (W)qapp,
(s) dl l:u ~d — QupfD uv,af
Tomrep(s:-u) = Gy P =} 4aPpS " W)gaAwa (1 + q), + (1 4+ @) (1 + p) 3SR (14 p)lapp,
2By oy w/j — ¢Pwrw
M S () = gragh ~ & TN (p). (17)

2 2
w— My

where both types show a pole at s = MZ,. In the derivation of the bubble-loop functions of Fig. 4 we need to separate their
pole contribution first. The background and pole residuum terms can then be expanded according to the power-counting
rules. We write

(G-w)(w-q)

s —M%

(G-q) -

Jon(s.u) = DI G o + B o (5. ), (18)

and find the somewhat surprising expressions

0(Q°).
0(0°%),

S—u,_ - _
f4BLe [0~ ]QH(S’ u) = 7(61 : 61){21Q - (4rM§b + 55— M)IQL(MEJ} +

e (0210 =3 @ a){2To = (4rM 45— ) Tou(M3)} +
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Ky M2 _Mz _ - -
f4B(L>€[1‘],QH(S’ ”) = _bT(q ) CI){IQ - rM?;bIQL(MZ)} + O(Q7),
M2 - M} - -
f4BQHRe[1 ](s,u) = _Tb(q : Q){IQ - rMibIQR(Mzz;)} +0(07),

(19)

where we assumed r ~ Q for simplicity. We return to such an assumption below in the context of the chiral expansion of

triangle and box contributions. While dimensional counting rules suggest a leading contribution to By ~

0?3 the specifics of

such diagrams lead to terms of order Q3 and higher only. Since we include terms up to order Q* only in this work, all such
contributions can be dropped here. We note that the corresponding contributions to Gy ~ Q3 are also excluded here.

The bubble-type diagrams in Fig. 5 are

f4Tbubble (s.u _gPZZ{ Z C o ,u) + Zﬁ C(Ls,_Qn)J(LS,_Qn)(S u

Re[l
+ZC r ZCLuQn LQ (S”)
Re[17] Lel[l]
" 3 s+ 3
Re(l7]

u—n —n s=2
B ) = 1P ws), ISP (su) = I
(

u—n —n -2
T (s.u) = T3 (u, >

s -2 u-2
). TR (sow) = TG (s u) =I5 (s, w),
with
d 4-d
(s=1) _ d‘l - cafuv - _ —lU
B0 = [ G aledST™ (5= Dbt + D
_ dll —ipt
s—1 H af.uv
J(QwR )( ’ u) = / (271:)‘1 2 — sz la(q + Q)ﬁSRﬂﬂ (p - l)lﬂpl/’
d 4—d
(-1) o d‘l - coafuv _ Tl
JL [0} (S’ l/t) - / (2ﬂ,’)d lapﬂSL g (p - l)(l + q)yqy 12 2Qa
_ dll —ipt
1 v
J(é.R)(S’ u) = / (Zﬂ)d lz 2 (l + Q)aQﬁS e ( - l)lﬂp,,,
d —d
(1-2) d - cofuv - ﬂ
J Ju) = laDsS] -D(l+ P B
2000 = [ galebsST =D+ s
_ dll —ipt
2 H U
Tow (s.u) = / @n) Bt + (L+ @)aDpST" (p = Dlup,-
And
s s—u M? _
J(LQU(S u) = - {(rz 2ab—4m2Q>IQL(M )—r1Q+er1L/ML}+(9
o S—u M?
J(Q,Rl)<s u) = : {(rz 2ab 4m2Q> Ior(M )—rIQ—l—erIR/M }+O
(= s—u M? _ - _
J(L[’Q])(s, u) =g { <r2 2“b - 4mé> Ior(M3) —rlg + rmjl, /M7 } +O(0
s—u 2
JgR])(s u) = T {<r2 2“b 4 2Q> Tor(M )—rIQ+erIR/M2}+(’)
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(e M? M;
J(Lthz)(s,u)zT”b{(rZ 2‘”’ 4mQ>IQL(M)—r1Q+er1L/M2}

43 (00— my = (082 = 13/ 2) M2, Tou (M3) ~ T + T, /M3 )+ O(09)

(i M? M2,
Jg.RZ)(s’u>:Tab{<r2 3 4mQ>1QR(M)—rIQ+erIR/M2}
1 - - _
3 (0 =y - (3 = 1) /) { M2, Ton (3) ~ T + mTe/ M3} + O(09). @)

where we keep in (22) heavy tadpole terms proportional to rmg1; /M7 and rmyI /M. Their scale dependence cannot be
discriminated from the corresponding terms proportional to rl,. In our scheme neither the LEC ¢, and ¢; nor g; receive a
finite renormalization from the bubble loop terms in (22).

IV. SCATTERING WITH TRIANGLE DIAGRAMS
We turn to the triangle diagrams of Fig. 6 with

T2 (g g o) = T (s, t,u) + T (s, t.u) + T (s, 1,0, (23)

where we use the conventional Mandelstam variables s, ¢, and u of two-body scattering. The indices b and a specify the
initial and final flavor channels of the chosen process. The three contributions in (23) correspond to the three rows in Fig. 6
in consecutive order. The first term is characterized by its s-channel, the second by its u-channel and the third by its
t-channel unitarity cuts. For given I and S channels the expressions can conveniently be factorized into universal loop
functions and Clebsch coefficients,

PTG )y =g > {Z Clond S on(s. ) + > Colpd ol als. u)],

QHe0T)tLe[17] Re[l17]

PTG =g X | Y Gl s + zcgz,.RJg,z.R<s,u>],

oHel0]) L ell] Re[l]
FTO(s t,u) = g3 Z C(Q LRJ<Q)LR (s.u) Z HPQJH PQ(S u)
O.Le[l"|,Re[l7] He[O PO
+ 97 Z Cg,)PQJg,)PQ(S»”) + 97 Z CZ,PQJQ,PQ(S’”)
He[07].PQ He[07].PQ
+ 97 Z CI({IK,)PQJ(I;(,)PQ(S’M)’
HE[0],PO
ith  Jgr(s.0) = =Jgp(us),  Tilpg(s.u) = Jipg(u.s)
W oLr(S U oLr(U:8), Hpo(s U 1po (1),
Tipa(s.4) = Tipo(u:5). Tfipg(s.0) = Jiilpo(u.5). (24)

|
where the Clebsch coefficients depend on the isospin and

Ry N Ry N strangeness of the intermediate (L, Q, H, R) and external
= — . (a,b) mesons. While Q, P are placeholder indices for a
,/ T~ -7 S Goldstone boson in (24), the indices L, R, and H refer to

the heavy fields with J® =1~ and J¥ =0~ quantum

FIG. 5. Dashed lines stand for pion, kaon, or eta mesons and ~ numbers. The loop functions depend on not only the
solid lines and double-solid lines for charmed mesons with J* = internal masses, mgy, My and M, Mg, but also on external
0~ and J” = 17, respectively. The vertices are from [37]. masses my, M, and m,, M,, where we use small m’s for
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FIG. 6. Dashed lines stand for pion, kaon, or eta mesons and
solid and double-solid lines for charmed mesons with J© = 0~
and JP = 17, respectively. The vertices are from [37].

Goldstone boson masses and big M’s for the masses of the
0~ and 1~ charmed mesons. In (24) it holds L,R € [17],
exclusively. In the s- and u-channel exchange diagrams it
holds H €[07], in the ¢-channel terms H € [17].

The s-channel Clebsch coefficients are readily expressed

in terms of the tree-level coefficients Cyr and Cg‘) as used

in (1) with

TABLE L. Coupled-channel states with (7, S) as introduced in
[2]. For a channel index a <> QH the meson content
Q€{n K,K,n} and He{D,D,} = [07] is specified.

(3.+2) (0.41) (1.41) (.00 (.0 (0.-1) (1.-1)

1:zD
1:KD 1:zD;
1:KD, 2:yD  1:zD 1:KD 1:KD
2:nDy,  2:KD
3:KD,
(s) _ cl
SConl, =3 X cwl )],
OH “ c<—>QH ac
S Con, =3 L | ol @9)
OH c<—>QH ¢

where we map the channel index onto its meson content
with ¢ <> QH according to Table I. The corresponding
()

u-channel Clebsch C LfQ g and C 8'1)1  follow from a crossing

() (s)

transformation of C; ,y, and Cpy g, like the coefficient

C %‘) follows from C ;‘;) by such a transformation. It is useful

to introduce symmetric and antisymmetric combina-
tions with

ZCLQH LQH(S u +ZCLQH LQH S, u +ZCQHL QHL(S u)

+ ZCQELJQ};L(Sv u),
L

ZCLQH L>QH (s,u +ZCQHL QHL s, u)

s,+ 1 K K s,t 1 s K
C(L,le ) (C(L,>QH + C(Q;J.L>’ J<L.Q2](S’ u) = ) (J(L,>QH(S’ u) & J(Q)H,L(Sv "‘))’
s, &+ s,+ s, £
C(QH)L = C(L QI)-I’ J(QH.)L(sv u) = J<L.QI)-I(S u),
s+ s+ s+
[CEA QI)'I] ab — + [CE QIZI} ba’ [‘]EQIEI (S’ u)] == [‘]2 QIZI(S M)]ba’
because  [Jop r(s.u)],, = [Jrou(s.u)],,. (26)

where we used identical summation indices with R — L in the first line of (24). One would expect that it is justified to
neglect the mass differences from M, or My in the loop functions summed over L or R. This leads to a factorization with the
averaged Clebsch structures being implied by C,_., as recalled already in (2). In particular, we find

1 1
ZCQHR + ZCL o = 8Col _ZC(QH ) 4+ 2c<QH ),

1 1
ZCQHR + ZCL b = 8Co — ZC(QH )y ZC(QH ), (27)

with the Clebsch on the rhs of (27) already used in the Appendix of [37].
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Similarly, the treatment of the 7-channel terms is streamlined upon the introduction of symmetric and antisymmetric
Clebsch and loop combinations,

Chdoliirg = Ciirglhine + Ciirpdtives  Vibola = Vil se (28)
with

[Clindar =5 ([Chibolus = [Chikolua).
irdla =5 (Uhinolas + Vo)

ut s— -
ZCH PO — z EVP)Q + CI(’-I P>Q) C(H,PJQ = SCI(DQ)’

_[\)|>—l

Z(Cgﬁ’){g ~ Clipp) = 16C}g.
H

ZCH Po = 2mBOC()‘) + (m+ mS)BOC%’K), (29)

in terms of the Clebsch listed in Tables III and XXI of [37].

In the following we discuss in depth the computation of the loop functions. It suffices to specify the s- and #-channel loop
functions. The u-channel expressions follow from the s-channel loop by the crossing replacement s <> u as is implied by
4, <> —q,- We find

]

s d - cafuv -\ = _i:u4_d <l+w+p)(l_(’I>
Ji.)QH(s’ u) = /WlaPﬁSLﬂ” (I+p)g,(l+w)

VE—md (I w) - M

’

d i d—d - ~
(s) [ dl =i (I+w+p)-(1-7) afw
‘]QH,R<S’ ’4) = / (2ﬂ)dlz — sz (l+w)2 —M12q Qa(l+w)ﬂSR g (l‘f’P)lqu

ddl lM4 d ap.cT (FT v
‘]<QI?LR<S7M) =/( =3 LabpSTP o (14 P)gecST™ (1 + P)up, (L4 P)3(q + @)y + (g + @)5(1 + p),).

2r)4 2—m
d i4—d
(s) d’l _(q i Q) - (l + q) i (l + q) —lf af,uv
J = l Sy l ,
H.PQ(S l/t) /(Zﬂ)d (l—l—c_])z—m% (l+q> _mQ( +q)a /} ( +p+Q)( +q)/,¢pl/

) _[d1(+q)qtq-(+g  —ipt
]HPQ(S u) _/(Zﬂ)d (I+ ) —m3 (+q) _mQ
9 _ [ 4 -(+3)-q-7 (+q) iut
JH,PQ(SJ/‘)_/(Zﬂ')d (I+3g)*—m} (I+q)*—m},

(14 @)aPpSE"™ (1 + P+ ) (I + q), P,

(14 2)aBpSE" (1 + P+ q) (1 + q) P

0 _ [ a4 ! —iu ap
JH,PQ<S’ I/t) - /(2ﬂ>d (Z+Z]) _mP (l+q> (Z+Q)apﬂs (l+p+q)(l+Q) Pus (30)
where we use w=p+q=p+q with ¢> =m3, p>=M; and g> = m%, p> = M?%. The renormalization scale of
dimensional regularization is . Given the shortage of available letters in any notation scheme we purposely use g in two
distinct mathematical contexts. From the specific form of the 7-channel loop functions in (30) it is evident that they are all
invariant under a simultaneous interchange of P <> Q and (q, p) <> (g, p), as was used in (28).

The proper evaluation of the triangle-loop functions in (30) is not quite so straightforward, in particular, if one insists on
the use of on-shell meson masses. Following previous works [54-57], in an initial step, our one-loop triangle contributions
in (30) are expressed in terms of three scalar loop functions,

R
¢ (27)? 2 = m2’
dy _; 4—d
ey [
)P —m2 (14 k)* —m3’
dll 1 it 1
Ut P —m P (T PP =

Lne (P2 P p.p?) = / : (1)
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as introduced in dimensional regularization. The scalar integrals in (31) arise in the evaluation of (30) with the indices a, b, ¢
replaced by any of the indices Q, H, L, R. For instance, we will encounter the tadpole integrals, I, I, I, and I 5, where for
L, H, R the mass parameter M, My, Mg are to-be-used in (31). In case of the index Q the mass parameter m,, is
encountered.

In the reduction of the triangle loops the following scalar bubble and triangle-loop expressions occur, in addition,

I g =11x(1), Iy = 1y(3%), Irn = Iru(q?),
Lo =1ou(s).  Tor =1IoL(P?).  Ior =1Igr(P?).
I on = Iou(P*. p-w.w?), Iour = Iuor(W*.w- p, p?), Iorr = Iror(P*. P - p. P?). (32)

where we specify the kinematical points at which such integrals are needed.

There are a few well-known technical issues to be considered. A straightforward evaluation of the set of diagrams leads to
results that suffer from terms that are at odds with their expected chiral power. There are terms, not only of too low, but also
of too high orders, both of which need to be eliminated as to arrive at consistent results. For instance, according to
dimensional counting rules one expects for properly renormalized scalar loop functions

Iop—1g~Q° oy = Ion ~ 0", lonr = lonr~Q°, (33)

where we use a bar for renormalized quantities. As was already pointed out in [59] loop functions that are ultraviolet
convergent do not give rise to power-counting violating contributions. Indeed, the expected chiral power of the scalar
triangle loop can be confirmed by an explicit computation.

Yet, there is another technical complication that needs to be resolved. Any application of the original Passarino-Veltman
decomposition scheme [58] requires the knowledge of specific correlations of the scalar basis functions at particular
kinematic conditions [60-67]. If such relations are ignored, then results will suffer from kinematical singularities, a
potentially pernicious situation. Therefore, it is useful to extend the set of scalar basis integrals, such that a decomposition
arises void of superficial singularities. This was advocated already in [56,57] in studies of axial form factors of the baryons.
Two examples relevant for scattering at the one-loop level are discussed in detail below. Consider two candidates for such
extra basis functions with

1w (0o ron = Ium +Ton) = (p - W) (VoulLon = Iun + o)

IE’)QHZZ =22 - P ,
pw = (p-w)
I(QII)L]R = lwz(véRlQHvR —Iug + IQzH)z_ (w- P)(2 orlonr = Iur + IQR)’
C2 wip? = (w- p)
voL = PP = Mi+mp,  vhp=pP—Mi+my,  vpy =w =My +mp, (34)

where we assure that both functions I(LIV)Q g and [ <Q11)1  are regular at the problematic threshold conditions s = (w - p)*/p?

and s = (p - w)?/p*. The verification of our claim is tedious and asks for a more powerful viewpoint. We will generalize

(n)

that extra basis functions with /; ,,,; and / (in)-l r» Where with the case n = 0, we recover the original scalar triangles. We
introduce the set of basis functions

}’l

() 1 lx 0
_ d )
LQ 1671' 0 XA FLQny> Q

n

1 1- x
dx/ ~Q0,
QHR 16 0 0 FQHR X, y)
Fpon(x,y) = mg — xvp, —yvpy + X*p* + y*w? + 2xy(p - w),
FQH.R(xs))) = mQ _x”QR _)’UQH + X7 + yPw? +2xy(w- p), (35)

in terms of a Feynman parameter ansatz. We complement our choice of basis functions with
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1 ld lx
167:2A x/o

Q,ZR
1 1 I- x
2/ dx/
67~ Jo 0
1 | -
HPQ = 1622 7[2A dxA
1 1 -
P — dx
Q 1671'2A A
Forr(x,y) = mQ XUQL _}’”QR +x2p* 4+ y*p
FH,PQ(X y) = _XUHP

where our sets of basis functions in (36) transform into each
other under exchange of p < p if combined with L <> R
or P <> Q. Corresponding pairs of basis loop functions are
instrumental since the loop functions (30) and (C4) have
specific properties under such transformations.

By construction such functions (35) and (36) are void of
kinematical constraints. The definitions (35) are compatible
with (34) for n =1 and (31) and (32) for n = 0. For

© _,0

example, it holds I(L )QH =1I; on and IQLR_ QLR_IQ LR

We note that also for / (Q)L r and 11('-1,)PQ or n > 1 expressions

analogous to (34) can be derived, however, they turn more
and more tedious as n increases, involving higher degrees
of superficial pole structures. The explicit expression for
n =2 is given in (B12) of Appendix B.

We note that while the integral representations (35) and
(36) are numerically stable for spacelike 4-momenta only,
the hierarchy of functions with n = 0, 1, 2, ... has identical
analytic branch points and cuts as they arise for timelike
4-momenta. The crucial question arises whether a decom-
position of the loop functions into our choice of basis loops
can be defined in an unambiguous manner. This is indeed
the case, a proof of which is provided in Appendix B.

|

Iy Ip

~ 0,
FQLR X, }’)

~Q°,
FQLR X, y)

NQ_19
FHPQ X, )’)

-1
’

FHPQ X, )’)
>+ 2xy(p - p),

Yo + X2+ ¥ p* +2xy(p - p),

Vig = P —mg + My, (36)

We now assume that a given triangle loop is decomposed
into our extended set of scalar loop functions. Such
expressions are prohibitively involved and therefore not
shown here. A useful representation can be obtained,
nevertheless, upon a chiral expansion thereof. This goes
in two steps. First we need to expand the coefficients in
front of our basis functions in chiral powers. Here we apply
the power-counting scheme [37] introduced in terms of on-
shell hadron masses, as recalled in (15).

In order to specify the chiral order of a given contribution
we need to assign a chiral power to the basis loop functions
also. A subtraction scheme for the basis functions such that
power-counting respecting renormalized basis loop func-
tions arise is constructed. Such a procedure is symmetry
conserving [56,59,68,69] as long as there is an unambigu-
ous prescription for how to represent such one-loop
contributions in terms of the set of basis functions. In this
case we do not expect any violation of the chiral Ward
identities of QCD.

Following our previous works [54-57] we introduce
renormalized scalar bubble-loop functions that are inde-
pendent of the renormalization scale. Here it is instrumental
to carefully discriminate the light from the heavy particles,

I

Ipo = Ipp(t) + —5 + —, Iip=1p(t) + =5 +—,

po = Ipo(1) +2m%2 +2m% Lk = I1r(2) +2M,2_ +2M123

- IL IH - IH IR

Iip =1y(s) + =5 +=—5. Iyr = Igg(s) + =5 + ——,

LH LH( ) ZM% 2M%{ HR HR( ) 2M%{ ZM%
/S et YRR SR b AP/ 3

oL — 1oL — 167 162 MZ ’ OR — 1OR ™ 167 162 MZ ’

- 1—y" Iy r M? — M?
I :I - -5 - - 1 ) — )
on =lon = e Tape YT TROETIL TE T,
TLR — O, 7LH - 0, THR - O, HE[O_] = O, yHE[l_] =Y, (37)

where we use P, Q as placeholders for the light fields (Goldstone bosons) but H, L, R as placeholders for the heavy fields
(charmed mesons). An explicit expression for I oy = I oy (s) was already recalled in (14). In turn it is left to renormalize the

tadpole contributions with
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2 2
- mQ mQ

T, =—2 jogC
0 (4n)? Ogﬂz

(38)

in terms of the renormalization scale y of dimensional regularization as implied by MS subtraction scheme. For the heavy
fields their tadpole contributions are dropped with I; y r — 0 if associated with power-counting violating structures, but
kept otherwise.

It is noteworthy that the scalar triangle loops are finite and do not show a renormalization scale dependence, i.e.,

) ) ¥n 0 3 ) In 0
IL.om LOH ~ Je2pm2 ™ o Tonr=1Tomg = 1622M2 "~ o
_ 1 14+r _ 1+r r 1+7
yoz;log(1+r)+log P =3 +§log(r)— 3,2 log(1 +r),
i} 2—r—r*+2r 147
nETT 02 5 log(r) + 5.2 log(1 + r),
7)) Tn 0
IQ.LR_IQ,LR_WNQ’
o 1+r _1 rlo 1+r _1 r+r210 1+r
Yo = log . 7’1—2 ) g P 72—6 373 g P
1 r+r2 r3]0 1+r ith M? — M?
=T~ o o T i 5 w r= )
BT T8 4T %, M2
igl.)PQ = IJ(L?,)PQ- (39)

All power-counting violating terms are eliminated by our renormalization conditions in which the unbar basis loop
functions are replaced by their bar versions. The expectations of dimensional counting rules come true. In particular, it holds
1 oH ~ Q'. Moreover, owing to the additional subtraction terms y we also implemented the expectation of counting rules in
the chiral domain with m, < M — M. Here it holds

2 2
Top ~ @ 2 im Mo ~ 0
0 M? — M2 ’ O.LR MZ(MZ _ MZ) ’
O mo | 7(n) 1 0
IL.QHNIQH,R~m~Q , IH,QPNmNQ , (40)

where we use s = M? and ¢ = 0 together with H € [17] for simplicity.

We emphasize that here the introduction of the extended basis functions in (35) plays a crucial role. We substantiate the
findings of [59] that power-counting violating terms stem from divergent structures. Convergent structures are expected not
to cause complications, however, this is so only if contributions are cast in an unambiguous manner into our extended basis
functions. Here we rely heavily on the results of Appendix B, in which the usefulness of our basis functions is proven. By
this we can exclude possible cancellations amongst superficially power-counting violating terms. Indeed all our explicit
results confirm the power-counting expectation.

After some algebra we arrive at the amazingly compact Q3 terms in the triangle diagrams of Fig. 6. For the s- and
u-channel diagrams it holds

(s s—u—rM> (1
Tt s ) = == (5 = ) = 8mEM2, )T ()

(s = u) | (5= u+ 2, ) Ton a(s) + 2T or(M3) = 2lon(s)] } + O,

(s —u — rM> -
T (s, ) = == 2EE (s = w)? = 8m2M2, )T (5)

32
(s =) [ (5 =+ 2, )T on(s) + 2Tou (M2) = 2Ton(s)] | + O,
Toma(s.0) = Tona(s). Tiou(s.u) = Tion(w.s), (41)
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where we make the kinematical dependencies explicit
again. The chiral counting rules (15) together with r ~ Q
are used. Given our renormalization scheme no power-
counting violating terms arise. At this order there is no
renormalization scale dependence from any of the tadpole
contributions. As a consequence, we do not encounter a
renormalization of the third order LEC ¢, from such loop
contributions. The order Q* terms are a bit more tedious
and therefore are delegated to Appendix C. Here tadpole
and bubble loop contributions are involved.

|

We note that the results (41) have the expected leading
scaling behavior in the chiral domain with J ', (s, u) ~
0* and jéfg}{(s,u) ~ Q* This is a consequence of the
scaling behavior of our basis functions (40) in that domain
around s ~ M2, /2.

We continue with the expansion of our z-channel loop
functions in chiral powers according to (15) with » ~ Q,
where we drop terms only that are of order Q* or higher.
With this we find the compact expressions

- s—u - 1 - -
J(Qt).LR(sJ"): 4 {_1Q+2m2Q[IL/Mi+IR/M%e}

r - . r .
+5M, [IQL (M3) + g (M%)} +2 <m§2 - §M§b> Mﬁle,LR(t)} +0(0%),

2

]EL,_}DQ(S,M) =6

- <4m§,Q +2m2, — 61—

M - - - _ -
ab {r[IQ +1p— m%’QIH/M%{} +2(mp — mp) [IPH(MZ) - IQH(M%)]

%M3b> Tou(M2) + To(M3)]

~ (mhp + m2, —31) [rTPQ(t) o) (2m) = o) (2m) + /M,

2

+ 2<m%Q —t- %M§b> 7H.PQ(f)] } +0(0Y).

5 s—u (5 - - 1 _
JST;)Q(S’ u) = {6 (o +1p) - 6 (Sm%’Q — )l /Mp + (3m%Q —1)

8

1
14472

1 3 - - - -
% <4m12DQ =5t - 572M§b> [IPQ<t) —1Ip/(2m}) = Io/(2m) + IH/M%-I}

_l(m% _ng)zTPQ(t) —1py(0)
6

Fap 2 r 2
+§Mab<mPQ_t_ZMab

L Mma=mp

8

2 r 2\ [7
(o)

2

r - _
—§M3b {IQH(M%) + IPH(Mg)}

Jiuralo)}

M?zb{jPH(Mg) —Iou(M3) + r(mp — mg)

7PQ(f) - 7PQ(O)
2t

H.PQ(Z) - ig,)PQ(t)} } + O(Q4)’

T gls,u) = {r[iPQm = Tp/(2m}) = To/ (2miy) + T/ M3y | = 2Ty (M2)

2

4

—2Iou(M3) + 2<m§,Q —t— LM§b> 7H,pQ(t)} +0(0%),

1- 1 - t-
5T po (s u) + 5 Tiino(s.u) = 3T po (5. 1),

- 1- -

Trpols.0) = 3 T3lpo (s u) = 3 Tiy pg (5. ),

F{— TS 1 7 Flu

Tirpo(s.u) = Tippo(s.u) + 5 (T po (s.0) + Tii po s, 1)), (42)
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where, again, the order Q* terms are shown in the
Appendix. In (42) we detail the particular combinations

7&2@(& u) rather than the original Jg?pQ(S,M) and

Jg,)PQ(s, u) functions. This is convenient since the former
have more transparent properties under a crossing trans-
formation. The relevant contributions to the reaction
amplitudes follow by a simple rewrite.

Given our renormalization scheme no power-counting
violating terms arise if we insist on r ~ Q or r ~ Q. At this
order there is a renormalization scale dependence in the

t-channel loop jg},Q(s, u) only, as is implied here by the

Ip, 1, or I;/M3 tadpoles. Such terms request a scale

dependence of the third order LEC g, and ¢g,. The

scale invariance of the loop functions ]S}Q(s, u) and

jg,)PQ(s, u) is a consequence of the condition that the
LEC ¢, and ¢; remain untouched by our renormalized loop
effects. The derivation of these results is not straightfor-
ward as it depends on the difficult-to-control heavy tadpole

terms. This can be exemplified by the J g) 1r(s.u) loop, for

which its coefficient in front of the I; and Iy depends
critically on terms of formally higher order. Via power-
counting violating effects such higher order terms do
influence the third-order heavy tadpole terms as can be
easily verified by explicit computations. Its proper and

unambiguous value can be determined only by the request
that the third order amplitudes do not depend on the
renormalization scale. Any other choice would be at odds
with this requirement.

The following Clebsch identities are useful in deriving
the renormalization scale invariance of the sum of all third-
order terms,

ZCQ LRMY = ZC mp.

OLR
Z(Cg?PQ_CE-LIlPQ ZC mp,
ZC mo.

H.PQ
Z (CE-?PQ - C§1>PQ) (mp + mQ
= Clilpg) = 3Cur, (43)

H.,PQ
> (Citro

H.PQ

with the Clebsch CS) and Cyr specifying the g; and ¢,
terms in the third-order tree-level contributions (1). The
form of C (QO), C <Ql>, and C 8) in Table II confirms the
necessity of the particular manner of how the heavy tadpole
terms I, I, and I; contribute in ]g?LR(t) and ]}II)JQ(S, u).
Altogether it holds

TABLE IL.  The coefficients Cy, Cy)), and C})) from (43).
) (1) ©)
Co o Co
(1,S) p K n p K n p 7 K n
(2, +2) 0 1 L 0 —4 0 0 -6 0
(0,+1) 0 L -1 0 8 0 6 6 0
0 0 e 0 V3 2V3 33 3v3 33
0 0 0 0 0 0 0 0 0
(1.+1) 0 0 0 0 0 0 0 0 0
0 0 L 2 2 0 3 3 3
-1 L 0 0 0 0 -2 2 0
(4.0) ! 0 -1 8 0 0 8 4 0
0 0 0 0 0 0 0 0 0
0 0 L 0
WEo Ve e N Wi N
0 0 0 0 0 0 0 0 0
1
0 0 “3e 0 V6 V6 -3\3 -3/3 -1/
0 1 -1 0 4 0 0 6 0
(3.0) -1 0 L —4 0 0 —4 -2 0
(0,~1) 3 -1 —1L 0 4 0 6 0 0
(1,-1) L -1 L 0 —4 0 -2 —4 0
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red - frd  1-g
M 427! 51272 M 4> 512
d
d—#293.4,5 =0. (44)

We note that in the chiral domain we expect
further suppressed results with J(QI?LR(s,u)~Q5 and

72},8 (s,u) ~ Q* Here we encounter superficial power-

counting violating terms, which one may or may not
eliminate, in part, by a subtraction scheme similar to the
one developed already in [56,57]. Let us discuss J (é) LS. 1)
in more detail. Here we note that the tadpole term 1 o does
not depend on either M; nor M. In turn, it is more
reasonable to keep such superficially power-counting
violating (in the chiral domain only) terms, in particular,
since their effect cannot be absorbed into existing counter
terms. An analogous phenomenon occurs in the bubble-
type contributions. In fact, the sum of both tadpole and
bubble terms confirms the expected scaling behavior in that
domain. The remaining terms proportional to the scalar
triangle show their expected scaling unambiguously in the
chiral domain, so there is no need for any additional
subtraction in any case. However, it is useful to observe
that without the subtraction terms in 7o, (M32).1or(M3),
and I, (1) there would be a contribution at small quark
|

FIG. 7. Dashed lines stand for pion, kaon, or eta mesons and
solid and double-solid lines for charmed mesons with J© = 0~
and JP = 17, respectively. The vertices are from [37].

masses proportional to (s — u) log(r/(1 + r))Cyz/f? that
acts as an unwanted renormalization of the Tomozawa-
Weinberg term in (1).

V. SCATTERING WITH BOX DIAGRAMS

We consider now the box diagrams of Fig. 7. The four
contributions in (45) correspond to the two rows in Fig. 7 in
consecutive order. The first term is characterized by its
s- and t-channel, the second by its u- and #-channel
unitarity cuts. The expressions can conveniently be factor-
ized into universal loop functions and Clebsch coefficients,

X 0 ~ 1 s
fAT (s, 1,u) = gp Z [9%3 Z J<Q;I,LR(S’I)+9% Z J(Ql)-[.LR(S’Z):|C(Q;1.LR

LRe[1-]L QHe[0]

Q.Hell"]

0 ~ 1 u
+ 9p Z [9%) Z ‘]<QI)-1,LR(M7Z)+9%’ Z J(QI)-I,LR(u’t):|C(1)-I,LR’

LRe([17] Q.He[07]
> Clhaal, = X ] e,
oH c<>QH

Q.He[l"]

(45)

where the Clebsch coefficients depend on the isospin and strangeness of the intermediate (Q, H, L, R) and external (a, b)

mesons. The loop functions are expressed in terms of the internal masses, m,, My and M, Mg and external masses mi =

q*, M3 = p? and m2 = g*>, M2 = p°. In (45) it holds L, R € [1~] always, but H € [07] in J(QO;I’LR and H€[17] in JS,){’LR.

We discuss the computation of the loop functions. It suffices to specify the two s-channel loop functions. The u-channel
expressions follow from the s-channel loop by the crossing replacement s <> u as is already implied in (45). We find

dll it -

0 H - cafp v - — v,

J(QI)J.,LR(S’ 1) = /_(2”)d 2 _m2 (laPBSL/ A P)w A+ DgeSu(L+w)(w + 1) ,q,5% ﬁ(l + P)lapﬁ)*
(9]

1
T k(s 1)

1 ddl i/«l4_d _ a[fﬁp -\ | =z - -7 G 6,06 T
=16 (2”)dm (lap/}'SL (I+p) [q (I +P)o€azas — €anszd (I + W){s} S (L +w) [eaﬁm(l +r)q
0

- (l + W)(Sq‘rear/w} Sllgj’aﬂ(l + p)lap[i) P
1

Syl+w) = ——
u(l+w) (I +w)? - M3

(46)
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Our list of scalar integrals (31), (35), and (36) needs an obvious extension with a scalar box integral,

d?l —l/t4_d ~
Lowrr(s. 1) = (2ﬂ)deH(l+W)SL(l+P)SR(1+P)' (47)

Like in the case of the diagrams of Fig. 6 the proper evaluation of diagrams in Fig. 7 asks for an extension of the Passarino-
Veltman functions. In Appendix D it is proven that the following set:

(n,m) 1—x —x— y x"y
I d d b
or1r(:1) = 1672 x/ y/ FQH.LR(X,Z,)’)]Z

Fourr(x,2,y) = V”ZQ _X(P -M3; + mQ) —z(w?* — M3 + mé) —y(p* - M} + sz)
+x2p? + 22w + y*p? + 2xy(p - p) + 2xz(p - w) + 2yz(w - p), (48)

implies an unambiguous decomposition of the loop diagrams of Fig. 7 void of superficial singularities. By construction it
holds / g’;?}L r(8.1) = Iop 1r(s, 1). Like for the bubble and triangle basis functions we implement a finite subtraction as to be
consistent with power-counting expectations in the chiral domain my, < M — M. Altogether we find

IganI)AR _I(QHZR 162%;/[4NQ2

y&e[o-]zlozili;rr)’ yﬁ)e[O‘]:yglle[O‘]:_loégr %(Zr—r 2= ) log(1 4+ 1),

yﬁe[o_] :rl(;gsr 634( 6r +3r2 =21 + 4r* + (6 — 47 )log(1+r)),

el = JHEl0T 0 BT i r:w,

o e e e =g e

s =§1112:—élogljr, rao | =rep =2y, (49)

The two box-loop functions, as properly expressed in the particular set of basis functions, are

70 ua5.) = oo (5 = 02 = 200 = m2, 002, ) 100 (43) + Ton(03)] — B = 70,0
O (s m 002, ) [Fornan(s) + Trgns)] -+ 52 (5 = w0 = 40022, ) [T (5) + T4 0]
g (25 = w0 4 MM, (1= m2,) = M2, (s = )t = m2, + (s = )/2) ) Tg 1)
gy (=) + M2 (s = w2 (2md = (1= m2y) = 3r(s ~ ) /2)
M2 M2 (83 (1 = m2y) = 31°(s = w)/4) ) Ton 1 (s.1)
I (s =t M) (5 = ) 4 20 = 202, )M, [T (5. 1) + Tgif (s 1)
gz (1200 = T = [l = 0 = 42 1) (G5 = w4 200 202, )08

(1,1
- 4t2M3bM121b> I<QH,)LR<S’ )

(s —u)? — 4m>, M> (2,0 0.2
- o (s = )P+ 40— 2 )M2,) | TG0 s 0) + Tt (5.
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m2 —m?
TbMib((s - M)Z + 4(t—

S—
64
+(s—u+ rMib)[T

+

u
+

(m2 — mb)Mﬁb{ﬂQ IR
(1,0)
QH.LR

and

t

2
J mgy —

16

(1)
OH.LR

(s,1) =

- 1
2 _ EEAY)
M2 T on(s) =155 (s =)

M2 2 _
128 (r uh( )

S—Uu
128

916 ((s— u 4+ (s—u)(t—m

1 4 2 2( 42
+@ ((s —u)* + My, (s —u)*(4mg +

my,) —ri(s - ”)2/2))7QH,LR(S» 1)

+ MﬁbMﬁb((msz =2r(s—u))(t—

(s —u)?
128

({(s —u)* - 4m§bM§b} [(s —u
(1.1)

L1
192
+ 4[# —3(m2 — m3) }MﬁbMib)I
4 (s —u)® — 4mg, M7,
384
mi —m3
—_a b
96

s—u
128
+2(s —

((s —u)? 4+ 4(

().
oL

2
_mb

(3 = m3 )2, {415 (1)

where we observe that there is no renormalization scale-
dependence generated at this order. Corresponding expres-
sions at chiral order four can be found in Appendix E. The
merit of our results rests on their compatibility with the
expectation of power-counting rules, while keeping the on-
shell meson masses throughout. Since the scalar basis
functions are not further expanded, our approximated
renormalized expressions enjoy the correct analytic struc-
ture as it is requested in local quantum field theories from the
microcausality condition. Since we started with unrenor-
malized expressions that suffer from large power-counting
violating contributions, it is absolutely crucial to eliminate
the latter in a manner that is sufficiently effective so that a
chiral expansion has convincing convergence properties.
While some readers may be worried about the complex-
ity of our expressions, in particular, the fourth-order results
in Appendix E, we note that a direct decomposition of (46)
leads to more than a thousand terms that cannot be properly

034032-

m2, M2, ) [1
(1) — 2I

@O—Qmﬂxﬂ}+0@ﬂ

_ 2(l _
(s —u)®>+4rM?, M2, (1 —
(w—m2+@—mﬁwMz)F”

—r(s—u)/2)M?, —2rM>*,M>

(s = w2 +2(r=2m2, )3, ) [T,

OH.LR

t—

2, (5= + 4= m )2, |7
7

”)[ QHLR( 1) - QHLR(S t)} } +0(0Y),

(2.0)
QH.LR

0.2
1 (QH.)LR

(1)
OH.R

(5.0)]
(5

(s,1) =

() =20 gy (s) + 21

mﬁb)M§b> [7QL(M§) + iQR(Mi)}
mih)) [7QH,R(S) + iL.QH(S)}
onr(S) +7(Ll,)QH(S):|

p(t=m

(t—m2) —r(s—u)/2) +4r* (g

))iQ.LR(t)

q)(MZ,)*

1,0)
OH.LR

7(0.1)

(s.8) + lop'Lr

(s.1)]
P+ 2t = 202, )2,
(5.1

m2)M2,) |15
Tona(s:1) =

OH.LR

=(1
_3(I(L,)QH(S) -

(0.2)
OH.LR

(s,

1)+ 1,

(s.1)

7(0.2)
OH.LR

F(1
Ton

1

(s.1)

(1)) &(5))

O.LR

(51)

|
expanded into chiral moments. Only with our novel scheme
such contributions are cast into useful input for coupled-
channel computations, the main target of our developments.

VI. SUMMARY AND OUTLOOK

In this work we studied triangle- and box-type contribu-
tions to two-body scattering in the context of the chiral
Lagrangian with a heavy field. The formal developments are
detailed at the hand of the open-charm system of QCD, for
which we considered third- and fourth-order contributions
formulated in terms of on-shell hadron masses. The challenge
has been to explore a novel technique that allows such
computations in compliance with chiral-power-counting
rules. While such a framework was suggested in application
of the Passarino-Veltman reduction scheme, the consideration
of triangle and box diagrams leads to additional technical
complications that asked for a major extension.
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The problem is well known in the community: the
decomposition of a given loop function into the set of scalar
basis functions of Passarino and Veltman, avoids superficial
singularities only if correlations amongst the basis functions
at specific kinematical conditions are kept exactly. How does
this go together with the request to apply a chiral expansion to
the loop functions? The simple idea behind such a decom-
position of the loop functions is the possibility to apply a
chiral expansion to the coefficient functions, without touching
the basis functions themselves. The latter have more com-
plicated properties dictated by the microcausality condition of
local quantum field theories, so that it is advantageous to keep
their original form. The crucial observation pointed out long
ago by one of the authors is that power-counting violating
terms arise in the relevant basis functions, only, that are
ultraviolet divergent. Therefore, a suitable subtraction scheme
in the Passarino-Veltman functions suffices to restore count-
ing rules upon renormalization.

In the current work we overcome the above-described
challenge by using an extended basis set, constructed
such that kinematical constraints are avoided altogether
and at the same time consistency with power-counting
expectations is observed. We provided a proof that our
decomposition is unique and exemplified our novel scheme

|

with explicit expressions at chiral order three and four in
the open-charm meson sector of chiral QCD.

In the next step we will use our results for an improved
description of s- and p-wave scattering of Goldstone bosons
off charmed meson states. This will be important for on-
going lattice QCD computations on Coordinated Lattice
Simulations (CLS) [70] ensembles, where owing to their
large variety of f values a better control of discretization
effects is expected. Here, a quantitative success in the
p-wave phase shifts may require the consideration of the
left-hand cut contributions in the generalized potential as
predicted by the chiral Lagrangian in terms of triangle and
box contributions. Moreover, with our developments the
path for an improved generalized potential approach to
meson-baryon scattering based on the chiral Lagrangian is
paved. In particular, the left-hand cut contributions can be
extracted systematically from expressions as implied by our
novel method.

APPENDIX A: TERMS IN THE
CHIRAL LAGRANGIAN

The relevant terms in the chiral Lagrangian as used
in [37]

£0) =26, { D, UA(¥ D) ~ D)V D0} = pe (D, U(9'Dyy) + (D) U,y )
L = —(4cy —2¢,)DDtry, —2¢,Dy D — (8¢, + 4¢3)DDtrU, U¥ + 4¢;DU,, U*D
— (4cq + 2¢5)(0,D)(0,D)tr[U*, U], /M? + 2¢5(0,D)[U*, U*] . (9,D)/ M?
—icee"(DU,,U,|_D,, — D,,|U,,U,]_D)
+ (289 — &)D* D, try . + & D"y, D,
+ (425 + 283) DD ytr U, U* — 263D U, U D,
+ (284 + 25)(9,D)(9,Dp)tr[U*, U] , / *
— &5(9, D) (U, D
L6 =49, Dly_,U,]_ (3 D)/M 492D[ ([awU]
—4g3D[U,,[0,, U,|_]_[o,[&*,&").] . D/M*
— 2i04€,0 (0 D)[U¥, ([0°, U] + [0, U“])].D" /M
— 2i5€,0 (0 D) [U*, ([0, U*]_ + [0¥, U]_)] . D" /M
= 201Dy lx-. U,| (D) /M +25,D,,[U°. ([0,. U, +
+253Dap[U,, [0,, U,))_[0", [0, &), ] D /P
=204 (D Ve (105, Uy + 4 Ugl )] (0,5%)

- Daﬁ[Uw ([aﬁ’ UM]— + [a/u Uﬂ]—)]Jr(aaDW) /M

U*),(0,D )/ M1* + 486 D"“[U,,, U] _D, o,
+[0".U,]).(¢D)/M

[05. U, )] (D*) /1

2 (D"‘ﬁtr[Ua, (105, U, +

— D*u(U,. ([05,U,]_ + [0,, Ug]_)] . (0,D") ) /M + H.c.,

[0, Ugl )14 (0,D%)

(A1)
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where [A,B], = AB + BA and

1 . ) ) 1 _. . | ;
U,= 3 —iz; (a,,ﬁ) e_’%, r,= Ee_'%aﬂeﬂ% + > eﬂ%aﬂeﬂ%,
1 . . 4 .
Xt =5 ("’ﬂ%% 0e ™Y £ e_’%)(oe_l%)’ Xo = 2Bydiag(m,, my, my),
0,p=0,D+T,D,  9,D=09,D—DI,. (A2)

APPENDIX B: SCALAR TRIANGLE LOOPS

We begin with an over-complete basis of scalar triangle-loop terms of the generic form

/ o (p- D u=(1- Q)4 () (1 p)’
(

J@ —
22) (1= p)* = ML) (P —=mg)((1 - p)* — M%)’

fki

(B1)

into which each of the introduced diagram expressions (30) and (C3) can be decomposed upon performing the contraction
of the Lorentz indices. Without loss of generality we may assume f = k = i = 0 in the following. All other cases can be
related to the particular choice study, where we assume Q, = g, + g, Such a reduction generates additional bubble- and

tadpole-type integrals only, which do not cause any complications related to the introduction of our basis integrals (35)
and (36).
The target function is analyzed in terms of a conventional Feynman parameter ansatz,

a/2

i =Y 3 (Q-p)"(Q)(Q p)"Chmly(m.n) with n>0 and m >0,

b=0 m+n+2b=a
F(x,y) = m§ —x(p* = M} +m}) — (p2 — M% + m%) + x*p* + y*p* + 2xy(p - p).

I,(m,n) = / ddl/ /” il )y)) ph, (B2)

with F(x,y) = Fgrr(x,y) of (36) and some suitable real-valued coefficients,

c® <m+n+2b><m+n) ] 1 3
mn — Xps Xg = 1, X ) X) = 75—~ >
2b m )" 0 T 27 dd+2)

15 105 2b+ 1
XNR=—, X, = s X = —X,
3T d(d+2)(d+4) YT d(d+2)(d+4)(d+6) P T d ot

(2b —1)!! d—4 AR
= 1- 1-) - +0(d-4)?)). B3

The summation over the integers b, m, n start at zero. We split the integral into a convergent and scale-dependent piece with

oo = 73 / /” ( ))+L(xy){D+lg (: )}>+O(d—4),

a/2

No(x.y)=>" 3" (@ p)™(Q p)"x"y"Cil Q*F(x.)]".

b=0 m+n+2b=a

L b+ b+ b(d—4
L) =Y 3 (@)@ praeny o F(eyp E t A=),
b=1 m+n+2b=a (X, y)
2
D = g_4a " TE” 1 —log(4x), (B4)

034032-22



TRIANGLE AND BOX DIAGRAMS IN COUPLED-CHANNEL ... PHYS. REV. D 109, 034032 (2024)

where we expand around d = 4. A further step,

. (a 1 ! I-x Na(x’y) 7 F('X1 )
lJ(()O%):W/O dx(A dy —I—La(x,l—x){D—l-logﬂ—

F(x,y)
~L(x, O){D + log F(;QO)D +O®d-4),
No(x,y) = No(x,y) = Lo(x, )0, F(x, ), 0yLy(x,y) = Ly(x, ), (B3)

shows that all scalar-triangle-type contributions take the form Iy(m, n) with m 4+ n < a always. This is so since in the
vicinity of d ~ 4 it holds

1 X n
To(m,n) / / all y 5Ol =4). (B6)
167[

The remaining terms can be expressed in terms of bubble—type contributions. We assume the scale independent
contributions as implied by N(x,y) to comply with the expectation of dimensional counting rules, while possible
power-counting violating terms stem from the bubble-type contributions. They take the form

1 F(x,0)
2

1672

1
dxx”{l-i—D—i—log }+(’)(d—4),
0

4l _ iﬂ4_d

0) 2y _
1610 = | g = )

where we celebrate the recursion relation

(B7)

M2_m2
1) /- 0) /- 0) /- 0
205 (5%) = 16, - =7 {16 (%) - 16, 0) }.

(n) =2 (n)
n) /- I )4 -1 0 n) /-
ar)(p) =1t e ® a2

P
DALY (52) = 2a1%) (2 2 [aAnr® D (52) — Aa19 () — a2 S (k& DAAIY (72 BS
(n+1)AI (p%) = 6L(Pp?) +mgyn cL (D7) 6L (P?) 7> (k+1) GL(P7). (B8)

that demonstrates our claim on the nature of such contributions.
The corresponding log terms involving F(x, 1 — x) in (B5) follow upon the substitutions p — p — p and mg — My in
(B7) and (B8). In particular, we find

n) /= 1 1 F(x,1-
I(L;%((p—p)2)=——2/) dxx”{l—&—D—i—logM}_,_O(d_‘L)’

167z u
dll —iptd
272) (1= p)* = ML) ((1 = p)* = M%)’

It remains to investigate the functions /(m, n), for which we claim in (35) that it suffices to include a particular subset in our
set of extended basis functions. This will be shown in the following by means of recursion equations that relate Io(m, n) for
different choices of m and n.

We derive by suitable partial-integrations,

IR ((p—p)?) = /( (B9)

p-p p? M2 +mG 1 )y m
Io(m+1,n):—FIO(m,n—f—1)+2—l_)210(m,n)—2—l_)22(m n>+2—IQR Fll(m—l,n),
= 2 2 2
p-p p-—Mp+m 1 000 +(m n
Io(m,n+1) —710(7”1"‘1,”)"‘#10(”&”)—?2(”’1 n)+2p I<Ql’)_d7p21](m’n_1)’
. n m+k
S(m.n) = <k>(—1)’<1<LR+ ), (B10)
k=0
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which imply the desired recursions upon the elimination of the structure /;(m, n). The system (B10) can be solved by
iteration most economically. It is useful to consider first the case m = 0 for arbitrary n in the expressions I,(m + 1, n) for
which the I,(—1, n) contribution vanishes identically. Given 1y(0,n) we obtain all Iy(1, n). Similarly, from the second
equation in (B10) we find /y(m, 1) from the set of all /y(m, 0) unambiguously. In the next step, we consider the second
equation at m — m — 1 and n — n + 1, so that we can eliminate the common /;(m — 1, n) term from both equations. The
resulting equation can be used to determine Io(m,n + 1) from Iy(m, n) or alternatively Iy(m + 1,n) from Iy(m, n) by
iteration.

Our basis functions in (35) are introduced with the particular choice I<G">Ue = Iy(n,0) and I(Gn)LR =1y(0,n) in (B1).

Within such a scheme we derive for a (/- Q) in the numerator of (B1) the following result:

(1 .t O-p. .0 0 0 _ (P-p)(Q-P)\,a
lj(()o)o = lJ(G,)LR = 27 (I(GZ —I(ug + (Pz —Mzze +m%})I(G,)LR> + <P % » IE}.)ZR
P 0, 0 0 _ 0 (P-p)Q-P)\,a
T (IGx — 153+ (P? — M} + m2)I)2) + (p-Q— 52 19 .. (B11)

where we observe that our result is invariant under the simultaneous exchange of L <> R and p < p. Itis emphasized that if
and only if our result is expressed in terms of 1,5(0,0) and Iy(1,0) [or Iy(0, 1)] alone, a power-counting respecting

expression is obtained with J(GI)LR ~ Q7 using mg ~ Q.

The proper evaluation of J(%)O =J (GZ)L z With (I- Q)? in the numerator of (B1) is slightly more tedious. It involves the

additional basis functions / @) and / 2

GIR G.LR of (36) for which we derive an explicit representation,

0 3/. _ 1
(4mé —(p*—Mj +mé)2/p2)1§;.>ue -7 (p2 ~ M} +mg—(p-p)(p*— Mg +M§;)/p2)l<G,)LR
1
2

. I I 1 0 _ 40
+5(-p) (18— 112) /p? “aa—2) " Mk ) (1% =183 )/

1 0,1l
~3ia—zy /ol Od=4). (B12)

2) . . . .
(G)L  Into our set of basis functions, as it is
@)
G.LR

which is an extension of (34). Our result (B12) illustrates the necessity to include /

instrumental to avoid the kinematical singularity at (p - p)?/p* = p>. Note that from (36) it follows that / is regular at

such kinematical conditions.

A direct application of (B5) leads to a form for J(()%))o that appears power-counting violating. The source of this
complication is traced to its 7, (0, 0) ~ Q? contribution which should not be derived from (B10). Instead, it is well expressed
in application of

W5 = 1,(0,0) + [(p - p)Io(2,0) +2(p - p)Io(1,1) + (p- p)I6(0,2)]
= mElg) = e (B13)

where we observe that the particular combination
7(2) 0 2 2
o0 =~ 11(0.0) = (P - 0)°19(2,0) +2(p - Q)(p - Q)Io(1. 1) + (p - ©)*1o(0.2). (B14)

does not involve the term 7,(0,0) by construction. As a consequence we find

oy = 0in = (007 Z (59 1020+ (122 - & (0-9) 102
+2((- 00 1) - & (0 9) ) 1001.1) + L (3~ 1) (B15)
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an expression that appears at odds with dimensional counting. From (B15) we would see J, E)%))o ~ Q7 rather than the expected

0)

~Q*. Our final expression ~Q* follows in application of (B10), which leads to our result in terms of / E; 1r = 10(0,0) and

IE; )LR = Iy(n,0) only. Using (B10) we rewrite (B15) into the form

4(0 - p)* - 0*p?

(2 0
lJE?FLR = (P M2 + mG)( LG~ I(ng +(p . _M%e + mZG)I(G,)LR>

12p2p2
6(p- Q)P*(Q-p) — (P~ P)(P*Q* +2(p - 0)
L 6P Q)p Q- p) 6(§2p192)(p (p ))(I(L%_I%)
O +20-p) 0 QPP =HQ-P) ) 5 (Q-p) 0P
6p2 LR 6p2 LR G 3p GLR
_' 2_ —_
+(Q~p)(p2—M%+sz)(p Q)p p(p )(Q P) GLR
_ 1_ (p-p)Q-p)=6(p-p)(p-0) _ 0°p* +2(Q - p)?
+{(p-Q)2—3p2Q2+ 2= (©p)+ (P PP }1“
d—4
+T(Q2 (Q-p) /p)(LR+ILR)+O(d 4), (B16)

which in its renormalized form with, in particular, 7(L",g — 0, confirms the expected chiral power ~Q%.

While in this appendix we detailed the derivation of triangle loops of the Q, LR type, corresponding results are implied
for the H, PQ loops by simple replacements L — P, R — Q, and G — H. The loop functions of the L, QH follow by
replacing R — H with p — w. Similarly, the QH, R case is implied by L — H with p — w. We note that our result can be
readily generalized for the case defined by (/- Q)* — (I- )(I - q). It suffices to use the replacement 0,0, — (g,q, +
4,d,)/2 in (B16).

Finally, it is advantageous in some cases, to use a symmetrized version of (B16) that follows in apphcatlon of the
replacements L <> R and p <> p, under which J(G >LR is unchanged strictly. Such a form involves both 1) . and I (n)

G.LR G.LR’
making the right-hand side of the updated form of (B16) invariant manifestly.

APPENDIX C: FOURTH-ORDER TRIANGLE-LOOP EXPRESSIONS

In this appendix we specify the additional one-loop diagrams that involve the LEC ¢, and ¢,. Such contributions are
implied by Fig. 6 via a replacement of the leading order Tomozawa-Weinberg two-body vertex by its subleading order Q*
refinement vertex. All such diagrams have a minimal chiral order Q*. It holds

T<“><s tu) = T (s, u) + Ty (s,u) + Ty (5. w),

f4 (s,t,u) Z{ cOCf)fQLH +C1C§‘_QLH)J(L Q)H (s,u +Z(COCO on +c1Cy QRH)J22H>R(S u)
oH

+

L

2

<62C2QH+C%C3QH)J(LS3)H s, u +Z<02C2QH+C3C3 QH)JSES,)R(S”’O

g3

+ <c4C§fgLH + c5C§T(2LH)J(L Q)H (s,u) + Z(C4C2 on + ¢sCs, gﬂ) o r(S; u)}

(16) 1
f4 (s.0.u) = g 26CL LRJQtLR( W) + (COC[Q NN LR) (QIL)R(S u)

O.LR
+ (2205 + &) g el w) + (4CEER + 5Cr5F ) T(s. )}, (1)

where the missing u#-channel term T‘(;Z “ (s, u) follows from the s-channel expressions by a crossing transformation of the

Clebsch coefficients C*~ — C"~ together with corresponding loop functions J“")(s, u). In the s-channel the Clebsch
coefficients are easily accessible in terms of the already recalled Clebsch in (1) via
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Zc;—é,, L ="2By S

c<>QH

SCit], =210 3 [onct e mc] i

c<>QH ac

ch OH|, == ZQHC(LM) & b’ ch QH‘ == Z C,

n
c<QH

[ZmC +(m+mS)C;(1K)] :

ac cb

El

cb

cy

ac

, (C2)

ac cb

with n = 0, 1 in the first two lines and n = 2, 3 elsewhere. The derivation of the #-channel Clebsch is a bit more tedious. The
loop functions in the s-, ¢-, and u-channel have the form

(s,1) ddl af,uv i.u4_d
Jron(s.u) = 2r) 7laDpSL " (L4 D), (1 +w), WSH(Z +w),
0

(s.1) ddl i,u4_d aff uv
Jomr(s,u) = (2ﬂ>deH(l +W)qo(l+w)Sg ™ (I + p)upy.

—iu*~ d4(l q)

alaPpST" (L D)+ W), —
Q

Su(l+w),

2 m2 : Su(l+w)qq(l + W)/xs;leﬂ'ﬂy(l + ).y,

= ap v -\ = 21.“ -
3 laPpST (14 P)G, (1 W), G Sy 4+ w) (P41 w)(p - ) + (- g +w-q)(1- p) ) /M2,
Mo

3
(27)4 P — my,

d NPy wpor,, - _—
7ﬂ$ PON (14 B)9o09zeST™ (1 4+ P)upy»
Q

(2z)? > -
dll ip*1,py a[)’o"r
(2z)? > - m2Q
dll iyt dlapﬁ
(27)4 1> — m3,

(14 P)9s64( - @) gz S (1 + P) Do

SPPH 1+ P)9segeeST™ (L+ P)Lup,

| oy
/
/
it = [ S0 W1 WS (P L) (P 3) 4 (1234w D)0 7)) /M,
/
/
/

<2(((1+5)-a) (1 +p)-a) + (1 +5)-a) (1+p) - 2) ) /322
d?l i ,py apan _
J(Qt:?A)R<S’ l/t) :/ d272ﬂs pe (l+p)gaa(Q‘rqr qT('IT)S . (l—"_p)lppw
(27)¢ 1> —my
Joe(sou) = Toie(us),  JEon(s ) = T b (u.s), (C3)

for which we derive:

T gt =22 [Ton (M2) = Ton()] + =2 (5=t M2, )T, 0 (5) + 1 (5= )2 = 8202, ) iy (5) + O(07),
m2
T = 3 (8@ )+ (=032, [T = 1| = (5= 0T (5183 + 4 (45 =0 + 810042, (a0

= M2y (s = u)(r(s = ) +8(3- 9)) ) Tou (M2) /M3,

¥ (4= /M2, + (5 02 (r(s = ) ~8mb ~8(a-4)) + 64(@ - @)myM2, ) 1. 0n(s)
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3 (5 = )2l = /M2, + (s = )2 = 8(7 - g)rM2, + s = w) (41 =~ 1203 — 4md))T¥ (5

+ g (3m202, = (5 = ) (8@ ) = (s = 0/ M2, ) T2 (s) + O(09),
MET 5. 0) = 55 M2, 5 = )2 [Ton(s) = Tou (M3)] = 2 M2y (s = 2 (7M2, + (5 = ) o 0m (s)

M2y — ) (8mEM2, — (s — 2 ) T () + O(Q°).

64
1- 1 - - r - _
J(QtlL)R(s u) = _EIQ +Zm2Q<IL/M%, +IR/M%€) +ZM§b [IQL(MZ) +IQR(Mi)}

r .
+ M, <mQ 8M§b> Ior +0(Q%),

TG (s.10) = 42~ Q)T 5 ks 1) = (@ @)y (/M3 + T/ M3 ) + O(Q%),

(s —4u) jg:?R(s’ u)— (s I6u)
T5 1w (s 1) = O(Q%). (C4)

We note that the loop functions J (Q H)R(s u) follow from J (L‘ 5 (s, u) in (C4) upon the replacements g <> g and p <> p and

L < R. An example for such a replacement is given in (41). It remains to detail the fourth-order terms supplementing our
third-order expressions in (42). The following form is established

sz(QtisL)R(s’ u) =

iy (1/ M3+ Ta/ M} ) + O(Q).

2
~(s)4 mg
J(L.>QH(S’”) = (mg —mj, +1) 288 >+

1
—9—6(3r(s —u)+8(m2 —m3)+8m?2,) (mQIL/M2 +mply /My )

1
+96( 3(s — u) (48, — 2(M% — M2) + M2, — 6m2,)

<8(m = m) + 3r(s = u) + 12m2, 4= 9(s = u*/ M, )T

+2(m —m3)(s —u—rM2,) 4+ 6r(Mg — M}) — 12m2,rM?,
+9r(s — 1)? = 20(8(s — u) — SrM2,) — 6(s — u)> /Mg,,)IrQL (M2)

1

+3 ((s —u) (45L +8mg +2m2, 4+ 41+ r(s —u) = 3(s - u)z/M§b> —-2trM?,
=20 = m}) (M2,r =3(s = w) ) = 2(M3 = M) (rM3, + (s = )) ) Ton(s)
+@ <6r(M4 M})(3(s —u) + rM?,) +2(m3 — m%)(16m2QMﬁb +3r3(M2,)?
—6(s —u)rM, + (s —u)?) + 12(s —u)rM;, (8 — 2(8;, + my) —m3,)
+3(s —u)*(—46y + 8m2Q — M2, +8m2,) +9r(s —u)? —6(s —u)*/M?,

+26(16myM2, + 32 (M2, = 11(s = 1)%) ) T on(s)

1
(163, (01— M) -2, (M2, 2 (s — )= )
= 8(mgy )M, — 12(s —uymg, rM, — (s —u)*r’ Mg, + 10mg, (s — u)?
+3r(s—u)® = 2(s —u)* /M2, + 45, (8m2M>, — (s — u)?)

20(4M2 2, — 5(s — u)?) + 4(m3 — m3 ) M2, (—=4(M2 — M3) + PPM%, — 2m2, —3r(s — u) + z;))ig b (5)

1 (2
5 (2 = %+ ) BmEME, = (s = )Ty (5),
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4

J g?LR

(s, u)

S—Uu - - - —
_s-u {—4rIQ +2rmy (I, /M3 + T/ M3) + 2(5L + 65— 4md + 32 M2, /4) [IQL (M2) + I g (Mi)}

16

m

— M2, (5L + g —4md + M2, /4)1Q LR(;)} b2, [IQL (M2) — IQR(Mb)]
+— 1 (m2—m2)M2 (sz _rZMZ)[T(l) () - () ()}

16 a b ab Q ab O.LR Q ’
1 2 2
B(éH 3mp —my —ml, + 3t — 4( )
T (25,, = 3y = m2, + 31+ 4(ME — M3) )T

1
T (2(25H +m2, = 2(M2 — M2))m, — 48ym2, — 3(mh + mb) — 2mbmd
— (3 = 3m2,)(m3g = 2m2,) + 3(ME = M3)(m}, — my) ) T/ M3

1 Ipg(1)
+— (M2 —M3)(m}y + m2,) (m} — m}) g

16 t reg

+ % ((mfoQ — 31— 26y) (mpy + m, — 31)
=3(M2 = M3) (= m) ) [T (1) = Tp/ (2m3) = To/ (2m3)]
2, (= iy M2 023) [T (43) — Ty (023)]

+ E M2, (2m§,Q — 28y + m, — 3;) [TQH(Mi) + 7PH(M§)}

- Lo, (mPQ + 2, 3z) (m%Q —2f— 25H) Tpo(1).

STUS 7 7 2 247 2

e { g + 1) = rlm 4+ my) 1/ M3

- (2mbg = 1= 28 = 3°M2, /4) [Ton(M3) + Tpu (M2)]

(M2 = M3+ i = m) | Ty (M2) = To (M3)|

— r(mpg — 26, —21) [iPQ(t) —1Ip/(2mp) = 1o/ (2m) + TH/M%-I]
- ((m%Q - 25H)(m%’Q —t=3r°M,/4) + tr*M,)1y po(t)

+ (myg — 1t = PM2,/4) (1 = M3+ M)T, ), (1)

+ (b — 1= rPM2,/4)(1 + M3 — M2)1<H>PQ(I)}

— 1 (72 = 2 (M2 = M3) [T (1) = T/ (2m3) ~ T/ (2 + T/ M
2 2 2
+ma16mb{ M72nM + 20 M3, T (M3) = Ton (3|

o+ 3(m = ) [ Tog 1) = T/ (2m3) = To/ (2my) + T/ M3

=S 0= 33) [0 (1 =) 25 = ) + 20083~ My 13) [
Jreg reg

F(1 F(1
— PM2, (3 — 21 — 25y [lﬁifpg(z) - IL?PQ(t)} }
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()2 1 .- - - 1 ip (l)
T4 ol = g+ To = (2 =263 = 302, T/ M3) = (M = ) = ) |21
reg

— 5 (g = 3t = 26T (1) = T/ (2m) =T/ (2my)]

—l—lrMih{(m%Q =2t =264) 1y po(t) = 1pu(M2) = Iou(M3)}, )

8
h 1 n—1 _k k
] -5
reg k=0 """

APPENDIX D: SCALAR BOX LOOPS

where we use the convenient notation

to}h(t). (C6)

We begin with an over-complete basis of scalar-box loop terms of the generic form

on [ @0 (Y L) lg- 1)
000 = | o = 7 M=~ M1 PP =)

with w = p + g = p + g. Let us first discuss the case with i > 0 or j > 0. Here the problem can be reduced toi = j =0
and k = 0 always. Using the identities

(D1)

P =[P —mg] +mg,
2(1-p) = =[(l = p)* = Mi] + [I* = mg] = M} + p* + mg,
—[(l = p)? = M| + [* = m§] — M} + p* + m§, (D2)

o
—
=
S
Ny
|

such terms lead to triangle diagrams already reduced systematically before and box loops with i = k = j = 0. Upon
renormalization such reductions conserve the expected dimensional counting rules with /> ~ Q% and (p - 1) ~ (I - p) ~ Q.

We turn to the (g - [) ~ Q2 and (I - ¢) ~ Q? structures in (D1). At first one may expect that a similar reduction is possible
via (I - w) ~ Q with the cancellations of propagators. While this is possible and results can be derived, the chiral order of
such contributions is in conflict with the expectation of dimensional counting rules. This is caused by the required rewrite
(l-q)={-w)—(-p)~Qor(l-q)=(l-w)—(I-p)~ Q, expressed as the difference of two order-one expressions.

The task is to derive specific correlations of scalar box, triangle, and bubble diagrams, such that the counting results are
made explicit. This is illustrated by our previous triangle expressions (34) and (35) which imply 1521), z ~ Q°. From the
explicit representation (34) we find the nontrivial counting result,

(p* =My +mp) o —Ing + oy ~ Q%
(w? = M7 + mZQ)IQH,R —Iyg +1pg ~ 0%,
with  p*w? — (w-p)* = ¢*p* = (p-q)* ~ 0. (D3)

In the following we will generalize the triangle definitions (35) to the box case (48), from which our desired expressions will
follow.

Consider the particular case,

ci+ce<a+b
_iBE)t(l)g) = Z (é . P)ml (‘_1 . w)ol (q . p)m (p . q)mz(q . W)uz (p . q)n2<q ) Z])hl (E] . q)hz(q . q)h3
] [ T ol
(ab)
x C[ J[h][m][o][n]" € (m, 0, I’l),
e, 0 =01+ 0y, n=ny+ ny,

a:m1+01+n1+2h1+h2, b:m2+02+n2+2h3+h2,
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=(a+b-c1—c)/2, ¢y =my + oy +ny, Cy = My + 0y + Ny,
with m; >0 and 0; >0 and n; >0 and Ah; >0,
F(x,2,y) = my = x(p* = M} + mg) — 2(w? = My + mg) — y(p* — Mf + mg;)
+x2p? + 22w + 2 p? + 2xy(p - p) + 2xz(p - w) + 2yz(w - p),

ddl —x —x— 4 d 2
Ic(m, 0, }’l) — / / / dy/ y #xmz()yn’
F(x.z,y))*
a =+ b + a
Clithimaln = < ’ ) <Cl ) <m1 " ) ( > (62) <m2 n2>XcYEcﬁ13r
C1 01 my Cy 09 my

1
—X,,
d+2c ¢

yarr (AN (P S b=y — By — 1)1y
[L'][h] _— h2 h2 1 2 .o 2 2 .o 2..

with

X(): 17 XL‘+1 =

Again we split the integral into a convergent and scale-dependent piece with

(D4)

(D5)

(1)
1—x 1—x— ) N ,Z, F(x,z,
_lBooo = / dx/ dy/ < ab (X Z, Y)+ up (X.2 y1)+Lab(x,z,y){D+log(xT§y)}> +0(d-4),

F(x,z,y)]*  [F(x,2,y)]
Ni’;)(x,z,w:[]L['IZJZTT;(qp)ml<zz~w>f~<zz-p>"' (5-q)™(q-w)*(p-q)"™
X (P )" (wW)2(g- q)"s Clayt) . [F(x,2,9)]°* (1= k(1 +3¢)),
Loteen)= S0 @B @@ o) (5 (g (g

[c].[n].[o].[m].c=2

abe l+c+3(d-4
X (b P (0223 ) CL) [Pz )= ) 24D

[F(x.z.y)]?

2
D=—"— —1—log(4
g tvE og(4n),

where we expand around d = 4. A further step,

N(O) A
- -y Nl/l (x,z,y) Nab(x’l_x_yuy)
B = d d d
BT / / y{/ FlzyP  Flrni-x—y.y)
Nop(x,0.y) | - Fx,1-x—-y,y)
—7+LQ x,l=x—y,y {D—i—log
F(x0,y) Rl ) w2

0,
— L (x,0,y {D+log ak y)}}+(’)(d—4),

1 A

W z,y) = N (x,2,y) = Lop(x,2,3)0.F (x, 2, y),
NO(x,2,y) = N9 (2,2, 9) = Ny (x, 2, 9)0.F (x, 2, y),

0.Luy(x.2.) = Lap(x.2.y).  0.N(x2.y) = NG (x.2.y),

>

(Do)

(D7)

shows that all scalar-box-type contributions take the form I, (m, o, n) with m + o + n < a + b always. This is so since in

the vicinity of d ~ 4 it holds
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m o

1—x 1—x— \ x™Mz y
1, d d —_
o(m,o,n) =16 / x/ y/ Friy)l
+0(d—-4). (D8)

All remaining terms have the form of scalar triangle and
bubble diagrams as studied in Appendix B already. This
follows by a partial integration in x and y of the log-type
terms with either z = O or z = 1 — x — y fixed. We note that
|

the terms with z = 1 — x — y correspond to triangle loops
that involve three heavy particles and therefore can be
dropped altogether in our renormalization scheme. In
contrast, the terms with z = 0 correspond to triangle loops
with two heavy and one light meson, contributions analo-
gous to previously considered triangles.

We generalize our triangle relations (B10) to the box
case. Suitable partial-integration leads to

Iy(m+1,0,n) = —p_—lo(m,o +1,n) —p_;zplo(m,o,n +1) = >=Z(m,o0,n)
p* p 2p
) 2 2
V4 _ML+mG 5m0 (n,0) m
+—2l_72 Io(m, o0, n) ~|——2p sTonr — i Iy(m—1,0,n),
. 5 . 1
Iy(m,o,n+1) = —pp—zwlg(m,o +1,n) —g]o(m +1,0,n) —z—lsz(m,o,n)
p2 - M%? + m%} 5n.0 (m,0) n
+—2p2 Io(m,o,n)—|—2—p21L’QH——dp211(m,o,n—1),

. ' |
I(m.o+1,n) ==L 2W10(m+l’O’n)_¥10(m707”+1)——22(m,0,n)
" w 2w
w2 — M + mg 80,0 1(m. 0
+#I°(m’o’n)+2iv’21<é’l"13‘wll(m’0—l,n),
- 0 ‘ +k—1,n+1)
m n
Hmom) = ) (-1 < >Z< )IHLR ’ (DY)
k I

where we encounter the triangle functions / (é';)R and / (LonF)]
from (35) and (D8) with x" — x"y° and x" — x"y°, re-
spectively. Similar replacements can be ready for generalized
triangle functions, / (QanR and 1" PQ,, from Eq. (36). Alto-

gether, we have

1—x
ILQH—16 /dx/ dy xyO) +0(d-4),

I—x

—4

QH,R T6n 2/a’/ dy ny) +0(d-4),

): 1 1—x 4

) 16”2/dx/ dy xoy>+(9(d )
’"”I/Id/”d YL od-4)
HLR =1 6x2 * TP 1—x—y.y) (x,1=x—y,y) '
(D10)

(Béoo> +Booo ) (p-0)Iy(1,0,0) +

w-Q
2w

+(p-Q) -

(Q-w)Iy(0,1,0) +

w* = M3 + mglgy r(s, 1) +

(p-w)(Q - w) /Wi r(s.1) +

|
The system (D9) can be used to express box contributions in
terms of our extended basis functions / Egm,fz r = 1o(m,0,n).
This is readily achieved in application of the third line
equation in (D9). While it would be possible to further reduce
the size of our extended basis set, this is possible only at the
price of encountering kinematical singularities. By a suitable
combination of the first two lines in (D9), a relation among

I(me’,flzR of different pairs of m, n can be derived. An
application of such relations would lead to kinematical
singularities atw - p =0or p-w = 0.

We provide two examples illustrating our advocated
rewrite. First we consider the numerator (/- Q) in (D1), for
which we find

(Q - p))(0.0.1)

(p-0)—(p-w)(Q- W)/W ]IGHLR(S 1)
(IG,LR(t> - IH,LR(I))’

W .
2w?

(D11)
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where we used the third identity in (D9). While the first line in (D11) appears to cause a conflict with the expectation of
power counting, a suitable rewrite as implied by (D9) leads to expressions that are consistent with this expectation after
renormalization. Here we assume that the renormalized triangle loop functions I,z — O vanish.

We turn to a (/- Q)?> numerator in (D1). Following our strategy already used successfully for the corresponding
triangle case in (B16), we manipulate that expression in two steps, with the first step involving the intermediate object

B(()(;g ) and

2

il + 2855 + 800 = |- 07 =%+ )| 1(2.0.0)

2

+ {(Q'P)z—%z(pj))]lo(o, 0.2) + [(Q-w)2 —%(w-m 15(0,2,0)

w2010 » - - pn0.on
w2 010w - L (w]n01.1.0)
+2f@wie-p -G om0
+ & o anls. 1) = Tnal0)] (D12)

Like in the triangle case, after the first step, the apparent chiral power of (D12) is at odds with the expectation of
dimensional counting rules. In the second step we apply the third line of (D9) as to eliminate 7,(0,2,0) in favor
of Iy(1,1,0) and 1y(0, 1, 1) and some triangle contributions. In the final step, upon a further application of the third line
of (D9), we are left with 7,(2, 0, 0), 1,5(0,0,2) and I,(1,0,0), 14(0,0, 1) and I,(1, 0, 1), all members of our extended basis
set (48). The coefficients in front of such terms start at chiral order four in all cases. Similarly, after an application of (B10),
the associated triangle basis functions contribute according to their expected chiral order. Altogether, we find

(2.0 1,1 02 1 .
_l(Bt()oo) + 23(()00) + B(()oo)>ren = E{( M2 + mQ) [4Q Vs = ]}IQ,LR
1 1 -
+ {6050, —w; 203 /5 + 0] }1 2 {60,0, - [203 /5 + 02w, }T

1
+ o {4Q$V(—M%{ +md + 5) + s(—4mb 0% + 4mb s

- Q*(-M7p + ng + 5)2)}7QH,LR

%w (s — M%{ + mQQ){(QiJS - WpQw)iS)S,)LR + (Q s = pQw) (QOHI)LR}
1
+3_ 6QprQW+W (2Q2/S+Q2)+3Q2S+P (QW Q2 )} QHLR

s

1
3—{ QPWPQW+WP(2Q2/S+Q2)+3Q S+P2<Q Q2 )} QHLR
{ (03w, + 0w ] 0y + (P - P)(Q5 — Q%) +30;0,5
W

p(203/5+ ) Hiighe + O(d - 4), (D13)

where we use the short-hand notation a;, = a - b. We note that our result can be readily generalized for the case defined by
(I-0)* - (1-g)(l- q). Like in the corresponding triangle case, it suffices to use the replacement 0,0, — (3,9, +
9,4,)/2 in (D13).
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APPENDIX E: FOURTH-ORDER BOX-LOOP EXPRESSIONS

METgha(5:1) = = Tzarss (5 = WP +-aM3, (1= )
+ e (5= #4022, (1= m2) )To = o ((5 = )7 = 2042, 5 = )t ) Tgu(s)
m2 — 2
64
— 8rM;, (t — m;, )) [IQL( 3)+7QR(M%):|

(s = M2, [Tor (M2) = Tor(M3)| + + Moy (G5 = /M2, + 2(s = w) (2, = 20 = r(s = )

+ 384

2

M
* 3862 ((S — u)*(=60y + 3(8, + 8g) + 8my + Tmy, + 3r(s — u) = 71)

= (5= u)* /M2, = 2M2, (8 (1 = m2,) + 3r(s = w)0)) |T1.on(s) + Tom a(s)]

M2
= T (4 = )P, o A ) M — MM, + (s = )= r(s = )

+ M2, (4rm2, (s —u) —4m2,t — 2r(s — u)t)) [T(LIY)QH(S) + T(Ql;,’R(s)}

4 ﬁ (s = w2 = ab2ym2, ) (s = w)? + 402 (1 = 102,) ) [T i () + TG00 (5)]
2

+ Ii/lzaé’ (s —u)? <5L = Ok + 2(mg — mj) — (Mg — M%’)) PLQH(S) B IQH‘R(S)}

M;,
= T2 (=3 = ) (s — u)? + (M3 = M3) (4M2ym2, + (5 = u)?)

2 = M2, (22, + (s = ) = 20) ) [T g (5) = Ty a5)]

Mo (o3 2 (5 = )P + 402, (1= ) 720 () = 15h.0(5)]
926 b ab ab L.,OH QH.R

384 ( 2(8, + 6r)((s —u)* = 2M3, (1 — m,)) + 86, ((s — u)* + My, (1 — m3,))

+ 8(s —u)*/MZ, —r(s —u)® + (s — u)*(161 — 24m?, — 28my + r* M)

+AM, (1 = mZy,) (1 —mg, — 4m2Q + M) +2(s — u)rM?, (2t — méb))jQ,LR(t)

M? 501
=52 (s = 4+ M2 1= m2,) )11 0) + 15 (0]
M2
) (‘7(’"3 = mp)(s = u)? +2(mg — my) Mz, (Smz, + 3r(s — u) = 5t)

+3(M3 = M3)((s — ) + 202,0) ) [T (1) = 5 1 0]

1
+ 103 (2(5 —u)® 4+ (M%) r(3r(s — u)t + 16mg (t — m?,)) /2
+ M2, (s —u)* (88, — 3(8;, + 6g) — 18m — 14m?, + r(s — u) + 101)/2
= Mo, M, (s — u)(=8(m3,)* + 6(8;, + Sp)r(s — u)
+ 14rm?, (s — u) + 3r2(s — u)? + 45 (4m?, = 3r(s — u) — 4t) + 16m2,t
— 14r(s — u)t — 8¢% + 16mg(=3m, + r(s — u) + 2t))/4> Ton rr(s.1)

+ 35 (4 = MM (= M (MG, = (5 = )
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+4(mG — mp) MM, (M3 = M3)(2(s = u) + rM7,) = (6, = 6g) (s — u))
(4M2bmab (s — ”) - 2M3b 1)(2(6;, + 6 — 26y)M M2 (s —u)
+ 8M2me(s —u)+ MibMabr (s —u)+ 6Mabmab(s —u)

—4(s —u)® = 2rM>*,M>

2yt = M2, (s = )0) ) | TG0, 1) + T (s, 1)]

2
T (25, = 801 + (50 + By = 203)(m = mE) M2 (s = )
= I (S0 = 6(1 = m2)(5 = ) + (= mE) MM (5 = )

+ (m2 —m2)M2,r(s
(M2 = M) (s — )’

= u)? + (Mg = My)rMy, (s — u)* = 3(mg — mp)(s — u)?
+2(M2% — M2)rM2,M> 1

+ A2 = MM, (s = w)t) T (5. 1) = T, 1)]

M3,
192
= (rM3, = 2(s — u))

+ 7 (12(m2 - m}

(rM2, = (s — ) + 12(m2 — m3) (M2 — M3)(s — u)

(4mg, = (s = u)*/M3,)? + 4(=rM7y, + (s — u))??

+2(rM2, = 3(s = u)) (4m2, = (s = w2/ M2,)1) Tyt (5. 1)

M,
384
— (s —u)*(16m2, +
+2(s —u)’/M?, )[
_ M3,

+

192

(402, (5 = w) (42, + r(s = w) = 20) 22, = 1)

r(s —u) = 8t) + 16r(M2,)?m2, (1 — m2,)

2.0
(QH)LR(S t)+I(QH>LR(S f)}

T (—(M2 = M3)(s = u) (s = w)® + 4M2, (1 = mi2,)

+ (m2 —m3)(3(s —u)® —2M2, (s — u)(6m2, + r(s — u) — 41)

2,0
= 82 M2 (1= 2,)) ) [T (5. 1) = Toir (s, )], (E1)

and

m2

2 3(1)4
M2y J o r(S:1) = m

Mll
+ 52 (5= up /M2, =5
2

(77(5— )2/8+25M2, (1 —m? )) 384(11(s— u)? +32M2, (1 — m? ))7Q

M2 (1= mi2,) + (5 = w) (1= m2, = r(s = 1)) Ton (s)

+M”b(m2—mb)(s— )[IQL(M) Tor(M;} )}

64

M2,
Dab (_1a(s—u)¥/M
768( (s—u)’/
2

384

+

2+ (5= ) Or(s—u) = 141=4m2,) + T2M2, r(1=m2,) ) [Tou (M2) +Tgu(M3)]

( 12(8, + 6r)M2,m2, + 88M2, mbm?,

=20r° M2, M2, m2, — 14rM>?, m2, (s —u) + 65y (s —u)?
—22my (s —u)* +5r* My, (s —u)> = 5mZ, (s —u)*
—r(s—u)® —4(s—u)* /M3, + M}, (12(5, + 6g) — 88mg, +20r° M,

+20r(s =) = (s =)/ M2,) ) [T1. o1 () + Tom a(5)]
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2

M
+1024( 24(m2 — m2)>M2, + 24(m? — m2) (M2 — M2)M>,

—16(s — u)*/M?, + (s — u)*(64m2, — 8r(s — u) — 331)
+4M?, (8rm?, (s — u) + 12m2,t — r(s — u)t — 6t2)) [TS)QH(S) + 7(QIIL’R(S)}

3 (0= 0P = 90302 (5= = 408,02 = ) [0+ )

Mar (61— 60— (3 = 1)) (905 = 2 = 16022, (2, ~ ) [T.0n(5) ~ Tona()]

2

Mab 2 .2 _ 2 —
+—1024((ma my)(s —u)(28M:,r +47(s — u))

+ 8(M2 = M3)((5 = u)® + M2, (22, + 1)) 1111 (5) = T ()]

M? 72 e
12 (2 = ) (A2, + (s = 1) + 4M240) 10 (5) = TG as)]
2

768 (4(5L +6p)((s —u)?> = 2M3, (t = m,)) = 168, ((s — u)* + Mz, (t — m,))
_ 8(.5‘ — u)4/M121b + 14r(s - u)3 + 20(5‘ - u)rMib(z — mgb)
—2(s — u)*(11t — 20m2, — 14m} + 13r>M?, /4)

= 8M2, (1 = m2,) (1 = w12, = 20m% + 4r2M2,) )T 14 (s)

2

2 (5 = w2+ M2 (1= m2,) ) [19)405) + 10,5
2

42 (6042, (m2 — m2 2 (s = ) =22, (14 202,) ) [12405) + 12, 509
2

+ 1;492 ((m% —m?)((s —u)> —2M2,(5m2, + 3r(s — u) — 51))

- 3(Mg = M)((s = u)? + 22,0 ) [T o) = T 2(5)]

384 (4M3hMahrmab —12mg + M3, 1> + m?,)
+4M3, (= 14mg + 3M%,r* — mg, )m?, (s — u)
pr(=12mg + M3, 1> 4+ 13m2, ) (s — u)?

+ (14mQ =3M2, 2+ 12m2,) (s — u)® + 6r(s — u)* = 2(s — u)3/M?,
=205 (4(s — u)* = M3y (s — u)(4miy, + r(s — u) — A1) + 4rMZ, M5, (m3,, — 1))
+3(8L + 8r) (=M, r(s — u)® + (s —u)> + 4rMy, M2, (3, — 1))
+ t(=8rM3, M7, (—=6mg, + P M, /2 + m2,)

M3, (68mg + 8m%, —27r*M3, /2)(s — u) + 10rM7, (s — u)* = 15(s — u)*/2)
+AM2, (M2 = (5 = ) ) Tom (5. 1)

M3, 542 3 2
+FS (—(s —u)’ /M, + (s —u)’ (=265 + 6, + g + Tmz, + 2r(s — u) — 41)
+4M2, M2, r(2m? m2, — 3m?,t + 12) + M?, (s — u) (=46t
= 6p((m2 —m3) +4m2, —2t) + 6, ((m2 — m3) — 4m>2, + 21)
+ 2(mg — my)* = 3(mg — my) (Mg — M}) + 88mg), — 12m,m,
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—10rm?, (s — u) + 14m2,t + 6r(s — u)t — 4t2)> [ S,?LR(S 1) + IQHLR(S t)}

2

128

2

= (mg =mj)(s —u)’ + (6p = 8, )M

M
—ab (Z(m[zl —m2)M2, (s — u)(Sp + Sg — 26y + 3m2, + 2r(s — u) — 3t)

(s =)+ 4(mg — mp) Mo, M2, r(t — m3,)

(M2 = M3)(s = u)((s — u)? + 3M5hr>) 7030 a(s:0) = Tgit (s 1)

_ Mg
192

+ (s = u) = rMZ, ) ((s — u)? — 4MG,m3,

+t(9(s —u) —4rM?,)((s — u)? — 4M>*, m?
M, 3 2
+ 768 ((s —u)’(16ms, +2r(s —u) —

(1202 = m2) (M2 = M3)M2, (5 = ) + 3(om

91) +32rM2,

a—mp)*M, (4rM7, + (s — u))

)2/ MG, = MG, ((s — u) +4rMz,)

)/2> OH. LR(S 1)

M3 m3, (ms, — 1)

=2(s —u)’ /M2, —2M?, (s — u)(3(m2 — m?)? + 16m2, m>, + 8rm>2, (s — u)

—18m? 1t — 4r(s —u)t + 111‘2)) [ QHLR(S 1)+ I(QH)LR<S t)]

_Ma
192

+ (mg — m3)(—(s — u)? + 8M2, M2, r(t -

M2, (s — u)(2m2, + r(s — u) + t))) [

(V22 = M3 (s = ) (=402, 2, + (5 = ) + 422,)
my,)

20 02
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