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Possibilities of the formation of the pion-sigma meson field vortices in a rotating empty vessel (in
vacuum) and in the pion-sigma Bose-Einstein condensates at a dynamically fixed particle number are
studied within the linear σ model at zero temperature. The charged σπ� and neutral σπ0 complex field
Ansätze (models 1 and 2) are studied. First it is analyzed which of these configurations is energetically
favorable in case of the system at rest. Then conditions are found at which a chiral field storm can arise in a
rotating empty vessel. In model 1, an important role played by the electric field is demonstrated. Its
appearance may allow for formation of a supervortex (vortex with a large angular momentum) in case of the
empty vessel rotating with an overcritical angular velocity. Influence of magnetic field is also studied. Field
configurations in presence and absence of the meson self-interaction are found in both models. Then it is
shown that the description of the charged (in model 1) and neutral (in model 2) rotating pion-sigma Bose-
Einstein condensates is analogous to that for the Bose-Einstein condensates in cold atomic gases. Various
field configurations such as vortex lines, rings and spirals are discussed. Conditions for existence of the
rigid-body rotation of the vortex lattice are then analyzed. Observational effects for vortex fields in rotating
vessels, energetic heavy-ion collisions and in rotating superheavy nuclei and nuclearites are discussed.
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I. INTRODUCTION

As it is known, the cold 4He exists in the superfluid
condensate phase. On the ground of a “mother” uniform
condensate the spectrum of excitations has the phonon-
roton form with the local minimum of the excitation energy
ωðkÞ at ωðk ¼ kmÞ, k is the excitation momentum. For a
long time it was thought that the superfluidity is destroyed
completely, if the superfluid moves uniformly with the
speed W⃗ > uL ¼ minðωðkÞ=kÞ, where uL is the Landau
critical velocity, ℏ ¼ c ¼ 1. The criterion W < uL is
usually called the Landau necessary condition of the super-
fluidity, cf. [1–4]. Reference [5] demonstrated that in case
of a superfluid 4He, undergoing a nonrelativistic rectilinear
motion in a capillary with velocity W > uL, there may
appear additional “daughter” condensate of excitations
with k ¼ km ≠ 0. Excitations appear owing to a friction
occurring near the walls. Reference [6] generalized con-
sideration to the case of various moving media. Both
uniformly moving and rotating systems were studied.
Reference [7] considered a possibility of the condensa-

tion of the Bose zero-soundlike excitations with k0 ≠ 0 in
Fermi liquids moving with W > uL ≃ vF, where vF is the
Fermi velocity. In [6,7] explicit results were presented for
pions and for various types of zero sounds in moving
nuclear matter. Reference [8] studied condensation of

excitations with k0 ≠ 0 (levons) in cold Bose gases.
Then condensation of excitations with k0 ≠ 0 in moving
systems was considered in [9]. The results might be
applicable for description of various bosonic subsystems
such as superfluid 4He, ultra-cold atomic Bose gases,
charged pion and kaon condensates in rotating neutron
stars, various superconducting fermionic systems with
the pairing, like proton and color-superconducting compo-
nents in compact stars, metallic superconductors, the
neutron superfluid component in compact stars, and ultra-
cold atomic Fermi gases, cf. also [10]. The photon
Cherenkov radiation and shock waves in supersonic fluxes
(e.g., shock wave appearing when an airplane overcomes
sound velocity) are related phenomena. However in open
systems produced excitations may run away instead of the
formation of the condensate. In case of the single wall
moving with the speed W > uL in a medium characterized
by appropriate dispersion relation we deal with an open
system. In case of two walls the condensate of excitations
can be formed in the region between the walls. In case of
the rotating bucket filled by the medium, the condensate of
excitations can be formed inside the bucket.
In case of the Bose–Einstein condensation of nonrela-

tivistic bosons in equilibrium matter one deals with fixed
averaged number of bosons determined by the value of their
chemical potential, μ, cf. [1–4]. Besides the daughter
condensate of rotonic excitations, in a vessel filled by
the condensed 4He rotating with an overcritical frequency*dvoskre@theor.jinr.ru
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Ω > Ωc1 ∼ lnR=ðmR2Þ there may appear vortices. Here m
is the mass of atoms of He, R is the transverse size of the
vessel. Vortices represent topological defects keeping the
quantum number, the angular momentum. Formation of
vortices in a moving superfluid is in a sense similar to the
mentioned above creation of excitations populating a low-
lying branch of the spectrum. Vortices and antivortices are
produced in pairs. Antivortices can be absorbed at the walls
of the rotating vessel. In this way remaining very massive
vortices select a part of the angular momentum from the
rotating vessel. At least for buckets of a sufficiently large
size R one hasΩc1 ≪ ΩcL, whereΩcL ∼ uL=R is the critical
rotation frequency, cf. [6], at which there appears con-
densate of excitations with k0 ≠ 0. The vortex-rings may
also appear at the rectilinear motion of the condensed 4He.
In this case for systems of a sufficiently large size the critical
velocity Wc1 for formation of vortex-rings proves to be
smaller than uL. In difference with the daughter condensate
of excitations the occurrence of vortices requires presence of
a mother condensate. Friction in the mother condensate in
presence of vortices and a possibility of formation of a giant
vortex states in rapidly rotating Bose-Einstein condensates
were studied in [11,12] and [13].
Formation of the vortices in the resting systems is

energetically unfavorable [1]. Some works considered ques-
tion about existence of the vortices in a static matter within
various modifications of the linear σ model, cf. [14,15]
and references therein. A role of various topological defects,
such as vortex strings in the early Universe, has been
discussed in [16].
At SPS, RHIC and LHC heavy-ion collision energies at

midrapidity a baryon-poor medium is formed [17–21] with
pion number exceeding the baryon/antibaryon number
more than by the order of magnitude. To describe such a
matter authors of the hadron resonance gas model, e.g.,
cf. Ref. [22] and references therein, assume that hadrons are
produced at the hadronization temperature Thad after cool-
ing of an expanding quark-gluon fireball. At the temper-
ature of the chemical freeze-out, Tchem ≃ Thad, inelastic
processes are assumed to be ceased and up to the thermal
freeze out only elastic processes occur. Thus at the stage
Tchem > TðtÞ > T th one may speak about a dynamically
fixed pion number, i.e. approximately not changing at this
time-stage. If the state formed at the chemical freeze-out
was overpopulated, during the cooling there may appear the
Bose-Einstein condensate of pions characterized by the
dynamically fixed pion number, as it was suggested in [23].
On the time interval, at which the particle number remains
almost constant, the Bose-Einstein condensate of pions
behaves similar to a superfluid. The problem was then
studied, e.g., in Refs. [24–31]. In [28,31] the processes
keeping the total number of pions approximately fixed
were separated from the processes including absorption
and production of pions already in the Lagrangian of
the λðΦ⃗2Þ2 model. Similarly to the pion Bose-Einstein

condensation, the Bose-Einstein condensation of gluons
may arise [32–36]. A non-equilibrium Bose–Einstein con-
densation has been observed and studied in case of the so-
called exiton-polariton bosonic quasiparticles that exist
inside semiconductor microcavities [37,38]. The ALICE
Collaboration observed a significant suppression of three
and four pion Bose–Einstein correlations in Pb-Pb colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV at the LHC [39,40]. This
circumstance can be interpreted as there is a considerable
degree of coherent pion emission in relativistic heavy-ion
collisions [41,42]. Analysis [43] indicated that about 5% of
pions could stem from the Bose-Einstein condensate. A
discussion of a possibility of the Bose-Einstein condensa-
tion in heavy-ion collisions at LHC energies can be found
in the reviews [10,44].
Estimates show presence of angular momenta L ∼ffiffiffi
s

p
Ab=2≲ 106ℏ in peripheral heavy-ion collisions of Auþ

Au at
ffiffiffi
s

p ¼ 200 GeV, for impact parameter b ¼ 10 fm,
where A is the nucleon number of the ion, cf. [45]. The
global polarization of Λð1116Þ hyperon observed by the
STAR Collaboration in noncentral gold-gold collisions [21]
indicated on existence of a vorticity with rotation fre-
quency Ω ≃ ð9� 1Þ × 1021 Hz ≃ 0.05mπ.
Besides a rotation, also strong magnetic fields are

expected to occur at heavy-ion collisions and in compact
stars. Already first estimates [46] predicted values of the
magnetic field up to ∼ð1017–1018Þ G for peripheral heavy-
ion collisions at the energy ∼GeV per nucleon. Also fields
with H ≲ ð1015–1016Þ G exist at surfaces of magnetars and
withH ≲ 1018 Gmay be may exist in neutron star interiors.
Inhomogeneous pion condensation, which may appear in a
dense nucleon matter, may survive even in such strong
magnetic fields [46]. Question about condensation of the
noninteracting charged pions in vacuum at a simultaneous
action of the rotation and a sufficiently strong magnetic
field was studied in [47]. Reference [48] included the pion
self-interaction within the λjΦj4 model and suggested
appearance of a giant pion vortex state (supervortex).
Effects of electric field were disregarded.
The chiral SUð2Þ × SUð2Þ symmetry, which is isomor-

phic to the symmetry under rotations in Euclidean 4-space-
time, plays an important role in the nuclear phenomena
involving hadron interactions and in the strong interaction
theory based on quark-gluon degrees of freedom. This
symmetry holds for massless particles and it is broken by
the terms in the Lagrangian associated with particle masses.
The quarks u and d have very small bare masses compared
with the nucleon mass mN ≃ 938 MeV, namely mu, md are
estimated as ≃ð2–5Þ MeV. Experimental value of the pion
mass mπ ≃ 140 MeV is also small compared to mN . If one
puts mu ¼ 0, md ¼ 0 and mπ ¼ 0, the model becomes
SUð2Þ × SUð2Þ symmetric. In the vacuum the symmetry is
spontaneously broken and the σ field acquires the non-zero
expectation value. Within the hadronic sigma model the
nucleons are introduced as initially massless particles and
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their large experimental value of the mass appears then as
the result of the interaction of the nucleon and the vacuum σ
meson field. Small pion mass term can be then added, as a
term explicitly breaking the SUð2Þ × SUð2Þ symmetry.
In the given paper within the linear sigma model we

employ two models, one (model 1) describing complex
charged pion field and another one (model 2) describing
neutral complex σπ0 field. The lattermodel allows to consider
fluidity in the systemof electrically neutral σπ0 field. First,we
study conditions at which either solutions of themodel 1 or of
the model 2 are energetically favorable in the system at rest.
Then we consider rotating systems. First, the question will be
studied whether the chiral-field vortices may appear in the
rotating empty vessel (in the vacuum) in absence and in
presence of the static electric potential. Then we study Bose-
Einstein condensates of the charged pions in model 1 and of
σπ0 in model 2 in the rotating vessel and in a piece of the
hadron matter. In the case of the rotating gases with a
dynamically fixed particle number the vortices may form
the lattice. We will consider a possibility to seek for various
observational consequences of the formation of chiral-vortex
structures. Recently a GigaHerz-frequency rotation of the
dynamical exciton-polariton Bose-Einstein condensates has
been studied in [49].
The paper is organized as follows. Section II introduces

the Lagrangian of the linear σ model. Two specific models
are considered, one corresponding to a possibility of the
formation of the charged pion field and another one to a
possibility of the formation of the neutral σπ0 complex field
in the system at rest. Section III studies chiral fields, which
can be formed within mentioned two models in the rotating
systems. First we consider the case of not self-interacting
bosons and then switch on the self-interaction. We study
the possibilities of the formation of the chiral-field vortex
condensates in an empty rotating vessel (vacuum) in
absence and in presence of the static electric potential,
an artificial external vector field and the magnetic field.
Then we consider appearance of a vortex field in a rotating
piece of nuclear matter and in the rotating gases with a
dynamically fixed particle number. Section IV contains
conclusions. In this paper we will use units ℏ ¼ c ¼ 1.

II. LINEAR SIGMA MODEL

A. Zero pion mass

The linear sigma model as realization of the chiral
symmetry was introduced by J. Schwinger in 1957 and
Gell-Mann and Levy in 1960, cf. [50]. In this model the
isospin triplet of pseudoscalar pions π⃗ ¼ ðπ1; π2; π3Þ is
unified with the scalar meson σ in the Euclidean quadruplet
ϕα ¼ ðσ; π1; π2; π3Þ, α ¼ 1, 2, 3, 4, ϕ2

α ¼ σ2 þ π⃗2. In
absence of nucleons the Lagrangian density is as follows

Lϕ ¼ ∂μϕα∂
μϕα

2
−
λðϕ2

α − v2Þ2
4

: ð1Þ

This Lagrangian is symmetric under rotations in 3-isospin
space of fields πi and 4-space of fields ϕα. Comparison of
different terms in (1) shows that the fields σ, πi and constant
value v have dimensionality 1=l, where l is a length scale,
and constant λ is dimensionless. We assume that λ and v2

are positive constants. Positiveness of λ is needed for
stability of the vacuum. Positiveness of v2 provides
spontaneous chiral symmetry breaking.
It is convenient to introduce complex chiral fields in the

form

Φσ ¼ ðσ þ iπ3Þ; Φπ ¼ ðπ1 þ iπ2Þ ¼
ffiffiffi
2

p
φ: ð2Þ

From (1) we recover equations of motion

ð−∂2t þ ΔÞΦσ;π þ ½λv2 − λðjΦσj2 þ jΦπj2Þ�Φσ;π ¼ 0: ð3Þ

In the uniform space this equation has constant solu-
tion jΦσj2 þ jΦπj2 ¼ v2.
In spite of the symmetry, the vacuum is usually described

by σ ¼ �v (to be specific we further fix σ ¼ þv > 0) and
πi ¼ 0 because the choice, e.g., π1 ¼ v (or π2 ¼ v, or
π3 ¼ v) would spoil isotopic symmetry of strong inter-
actions. Setting Φσ ¼ vþΦ0

σ , Φπ ¼ 0 in Eq. (3) we arrive
at equation

ð−∂2t þ ΔÞΦ0
σ − λv2ðΦ0

σ þΦ�0
σ Þ þOðΦ02

σ Þ ¼ 0: ð4Þ

From (4) and the corresponding equation for Φ�0
σ it follows

that the neutral σ0 ¼ ðΦ0
σ þΦ�0

σ Þ=2 excitation acquires the
mass term

mσ ¼
ffiffiffiffiffiffiffiffiffi
2λv2

p
> 0; ð5Þ

whereas the pion excitations remain massless. Employing
mσ ≃ 600 MeV we have λ ≃ 20. With the choice Φσ ¼ 0,
Φπ ≠ 0 one would have mπ1 ¼

ffiffiffiffiffiffiffiffiffi
2λv2

p
> 0 (or mπ2 ¼ffiffiffiffiffiffiffiffiffi

2λv2
p

> 0) and massless other fields, that is not realistic.
The conserved 4-current densities associated with theΦσ

and Φπ fields are as follows

jνΦ ¼ ðρΦ; j⃗ΦÞ ¼ −ðΦ�
σ∂

νΦσ −Φ�
σ∂

νΦσÞ=ð2iÞ;
jνπ ¼ −ðΦ�

π∂
νΦπ −Φ�

π∂
νΦπÞ=ð2iÞ; ð6Þ

and with the stationary field Ansätze Φσ ∝ e−iμΦt,
Φπ ∝ e−iμπ t, we obtain

ρΦ ¼ μΦjΦσj2; ρπ ¼ μπjΦπj2: ð7Þ

Here, the chemical potential μΦ relates to the conserved
axial current

Aμ
j ¼ πj∂

μσ − σ∂μπj; ð8Þ
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j ¼ 1, 2, 3, and the quantity μπ is the electro-chemical
potential associated with conservation of the electromag-
netic current. The Lagrangian- and energy densities render

L ¼ μ2ΦjΦσj2
2

−
j∇Φσj2

2
−
λðjΦσj2 þ jΦπj2 − v2Þ2

4

þ μ2πjΦπj2
2

−
j∇Φπj2

2
ð9Þ

and

E ¼ μΦρΦ þ μπρπ − L: ð10Þ

The minimum of the energy corresponds to ∇Φσ ¼∇Φπ ¼ 0, and μΦ ¼ μπ ¼ 0, i.e. to the absence of particles
in the vacuum. Then E ¼ 0 and jΦσj2 þ jΦπj2 ¼ v2. At a
fixed particle number the particle density, Eq. (7), is found
from (9) as ρπ;Φ ¼ ∂L=∂μπ;Φ. The same is correct in case of
a dynamically fixed particle number provided one consid-
ers the system during the time interval shorter than the
decay time. In the description of ultrarelativistic heavy-ion
collisions at a late collision stage (after the so-called
chemical freeze out till the thermal freeze out) inelastic
pion-pion processes are assumed to be suppressed com-
pared to elastic scatterings and the total pion number can be
considered as approximately fixed, whereas processes
πþ þ π− ↔ 2π0 are allowed [31]. Then the quantities μΦ
and μπ are determined from the condition of the fixed
particle number.
To study further effects of rotation we need to deal with

complex fields. For this aim to avoid extra complications
we will consider two models.
Model 1: σ ¼ v; π3 ¼ 0, and π1 ≠ 0 or/and π2 ≠ 0. This

model permits to study fluidity of the π� charged fields.
Note that with Φσ ¼ 0 the Lagrangian (9) coincides with
the Lagrangian of the ordinary λjΦπj4=4 model.
Model 2: The mean field σ ≠ 0 or/and π3 ≠ 0, whereas

π1 ¼ π2 ¼ 0, σ2 þ π23 ¼ v2. This model allows us to
consider fluidity in the neutral σ; π0 system. In the limiting
case σ ¼ v, Φπ ¼ 0 the Lagrangian density (9) coincides
with the Lagrangian density of the λπ43=4model. Previously
the ansatz of the model 2, which allows to describe a
homogeneous condensate of the σπ0 complex electrically
neutral field, has been considered within the NJL model.
A remark is in order. The π− and πþ behave differently in

respect to the electromagnetic interactions. For a positively
charged nuclear droplet of a fixed charge density ρch the
Coulomb energy grows with the radius of the system
(Z ¼ 4πR3ρch=3) as E ∝ Z5=3, whereas the strong inter-
action part of the energy is ∝ Z. Thereby for nuclear
systems of a rather small size R ∼ Z1=3 the Coulomb effects
can be neglected, whereas they become efficient at the
increase of Z. For a sufficiently large Z, the π− level reaches
zero and the nuclear droplet with approximately the same

number of protons and neutrons via reactions n → pþ π−

produces the π− condensate and the interior becomes to be
electro-neutral, cf. [51,52].

B. Nonzero pion mass

As we have mentioned, in order to describe that pions
have a nonzero physical mass mπ ≃ 140 MeV ≪ mN ≃
934 MeV,mN is the nucleon mass, one introduces the term
in the Lagrangian density (1), which explicitly breaks the
chiral symmetry. One may use the choices:

Lð1Þ
s:b: ¼ ϵσ or Lð2Þ

s:b: ¼ −
m�2

π π⃗2

2
: ð11Þ

The value ϵ has sense of the constant density of the scalar

charge. As it is explicitly seen, the term Lð2Þ
s:b: describes the

massive pion. Here we use the value m�
π instead of mπ , that

may be particularly useful for comparison with the lattice
gauge theory. Also some authors, cf. [53], studying general
properties of the phase diagram in the σ model allowed
for a variation of the value m�

π. Then an interesting phase
structure occurs, which results in zero, one, or two critical
points depending on the value of m�

π . Moreover, the
nucleon-pion interaction in the baryon matter results in
appearance of the pion energy-momentum dependent
effective pion mass. Such an attractive interaction allows
for a p-wave (and s-wave in some models) pion condensa-
tion in a sufficiently dense baryon matter, cf. [54–56].
In case of hypothetical Bose stars [57] the gravitational
potential in the nonrelativistic limit is added to the
value m2

π .
To be specific we further employ the symmetry breaking

term in the form Lð2Þ
s:b:, which explicitly demonstrates

appearance of the pion mass. With the term Lð1Þ
s:b: at hand

it is still necessary to show that the pion acquired mass.
This case is discussed in Appendix A.

C. Charged and neutral pion-sigma condensates

Taking Φπ ¼ Φ0πe−iμπ t, σ ¼ v in model 1 and Φσ ¼
Φ0σe−iμΦt in model 2 we rewrite the Lagrangian
density (9) as

LV
π;Φ ¼ ðμΦ − gω0Þ2jΦ0σj2

2
−
j∇Φ0σj2

2

−
λðjΦ0σj2 þ jΦ0πj2 − v2Þ2

4

þ ðμπ − V − gω0Þ2jΦ0πj2
2

−
j∇Φ0πj2

2
−
m�2

π π⃗2

2

þ ð∇VÞ2
8πe2

þ npV: ð12Þ

Here we added a contribution of the static electric field
V ¼ eA0 in case of the model 1 describing charged
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particles, np is the density of an “external” charge, e is the
electron charge. If np ≠ 0, the field V appears even in
absence of the field Φπ . For instance, the charged density
can be associated with a proton distribution, if we deal with
a piece of the nuclear matter, or with a surface charge
placed on plates of the capacitor, if the system is placed in a
capacitor. In case of a cylindrical coaxial capacitor, in
absence of the charged boson field the electric potential is
constant in the region inside the inner cylinder. In case of
the model 2 we should put V ¼ 0. For generality we also
added an interaction of our scalar complex field with the
zero-component of an external neutral vector field, e.g., the
ωμ vector-meson field, g is the corresponding coupling
constant, and we will consider the case gω0 ≃ const < 0.
Unfortunately, the value of the coupling g is not exper-
imentally constrained and ordinary one puts it zero.
Inclusion of the σ-pion-nucleon interaction will be per-
formed in Sec. II D.

1. Complex charged pion field

In the model 1 equation of motion for the charged pion
field is

ΔΦ0π þ ½ðμπ −V − gω0Þ2 −m�2
π − λjΦ0πj2�Φ0π ¼ 0: ð13Þ

By variation of the action over V we recover the Poisson
equation

ΔV ¼ 4πe2ðnp þ ðV þ gω0 − μπÞjΦ0πj2Þ: ð14Þ

In a broad electric potential well, Rm�
π ≫ 1, the ground-

state π− energy level dives into the lower continuum,
μπ ≤ −m�

π, for V < Vc ¼ −2m�
π at gω0 ¼ 0. In case of the

plain capacitor, np is the charge density distributed on the
plates. The critical value Vc ¼ eEl ¼ −2mπ can be reached
at fixed value of the electric strength E ∼ 105 v=cm by
pushing the plates of the capacitor apart on the distance
l ∼ 10 m. However π� pairs are produced in the tunneling
process and the probability of their creation at such low
electric fields is negligibly small W ∼ e−πm

2
π=ðjeEjÞ and

thereby the process needs too long time to be observed,
cf. [58,59].
In case of approximately uniform system for V ≃ −V0 ¼

const from Eq. (13) we recover

jΦ0πj2 ¼ ½ðμ̄2π −m�2
π Þ=λ�θðμ̄2π −m�2

π Þ;
μ̄π ¼ μπ þ V0 − gω0; ð15Þ

where we introduced the value of the shifted chemical
potential, θðxÞ is the step-function.
The case V0 ≃ 0 is relevant for consideration of nuclear

systems of a not too large size, e.g. such as light nuclei.
Indeed in this case the Coulomb effects prove to be much
weaker than the strong-interaction ones and lV ∼ R, where

lV is the typical length of the change of the electric field. On
the other hand, for the system of a large size R ≫ lπ; lV ,
where lπ is the typical length of the change of the charged
pion condensate field, for the case np ¼ 0 the global
electroneutrality condition

R
R
0 ρðrÞrdr ¼ 0 should be sat-

isfied yielding the averaged value of the electric poten-
tial V̄ ¼ μπ − gω0.
For npðrÞ ¼ const > 0 at r < R and 0 for r > R, we can

put VðrÞ ¼ −V0 ¼ const everywhere at r < R − lV , i.e.,
except a narrow region near the edge, cf. [51,52,60,61].
As it follows from (10) and (12) for λ ≠ 0 at V ¼

−V0 ≃ const the energy density is given by

EV
π ≃ μπρπ −

ðμ̄2π −m�2
π Þ2

4λ
þ npV0;

ρπ ¼ μ̄πðμ̄2π −m�2
π Þ=λ; ð16Þ

for μ̄2π > m�2
π and for ρπ ≪ m�3

π =λ we obtain

μ̄π ≃m�
π þ ρπλ=ð2m�2

π Þ;

EV
π ≃m�

πρπ þ
λρ2π
4m�2

π
þ ðnp − ρπÞV0 þ gω0ρπ: ð17Þ

If we deal with a piece of the isospin-symmetric nuclear
matter, the chemical potential μπ may reach zero, as it
follows from the condition of the equilibrium respectively
the nuclear reactions n ↔ pþ π−. For μπ ¼ 0, np ≃ ρπ ,
we have

EV
π ðλρπ ≪ m�3

π ; μπ ¼ 0Þ ≃ ðm�
π þ gω0Þnp: ð18Þ

The total energy density renders [51]

E ¼ EV
π þ EA; ð19Þ

where EA is the strong interaction contribution and EV
π is

given by Eq. (17) and (18). Considering limiting case when
λ is very small and gω0 ¼ 0, from Eq. (13) we find that
V0 ¼ m�

π (provided V0 ∼ Ze2=R≳m�
π). For the nucleus of

a large atomic number A and for ρπ ¼ np ¼ ρ0=2, where ρ0
is the nucleus saturation density, the strong interaction
contribution is EA ≃ −32Z MeV, Z ≃ A=2 is the proton
charge of the nucleus. For λ → 0 we would have

E ≃ ðm�
π − 32 MeVÞZ ð20Þ

and we would deal with stable π− condensate nuclei and
nuclei-stars of arbitrary size (till their atomic number A is
≪ 1057 and effects of the gravity can be neglected), if m�

π

were smaller than 32 MeV, cf. [52,55,60].
For λ ≠ 0, ρπ ≫ m�3

π =λ we get

μ̄π ≃ λ1=3ρ1=3π
�
1þm�2

π =
�
3λ2=3ρ2=3π

��
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and

EV
π ðρπ ≫ m�3

π =λÞ ≃ 3λ1=3ρ4=3π =4þm�2
π ρ2=3π

6λ1=3

þ ðnp − ρπÞV0 þ gω0np; ð21Þ

where the first term is dominant. In case of a piece of the
isospin-symmetric nuclear matter, which we have dis-
cussed, taking λ ≃ 20, m�

π ¼ mπ , we may use Eq. (21).
Then we have

E ≃
�
3λ1=3ρ4=3π =4þmπ − 32 MeV

�
Z ≃mπZ > 0: ð22Þ

Thereby a decrease of the energy due to the charged pion
condensation at ignorance of the pion-nucleon interaction
is not sufficient for existence of stable approximately
isospin-symmetric nuclei of a large size with the nucleon
density ρ ≃ ρ0 in their interiors, at the positive charge
compensated by the negative charge of the pion condensate
field, cf. [52,55,60]. Influence of the pion condensation
with the momentum k ≠ 0, which can be formed at a
density ρ > ρπc > ρ0 owing to a strong p-wave pion-
nucleon interaction, on a possibility of existence of super-
charged superheavy nuclei was studied in [55,58,60,62,63].

2. Neutral complex pion-sigma field

In the model 2 the time averaging of the term −m�2
π π23=2

can be presented as −m�2
π Φ2

0σ=4, since π3 ¼ Φ0σ sinðμΦtÞ,
as it follows from Eq. (2). Equation of motion forΦσ is then
given by

ðμ̄2Φ þ ΔÞΦ0σ þ ½λðv2 − jΦ0σj2Þ −m�2
π =2�Φ0σ ¼ 0; ð23Þ

where μ̄Φ ¼ μΦ − gω0.
In case of approximately uniform system from (23) we

find the mean-field solution

Φ2
0σ ¼ ½v2 þ ðμ̄2Φ −m�2

π =2Þ=λ�θðv2 þ ðμ̄2Φ −m�2
π =2Þ=λÞ;

Φ0π ¼ 0; ð24Þ

where θðxÞ is the step-function.
The energy density is as follows

EΦ ¼ μ̄ΦρΦ þ gω0ρΦ −
ðμ̄2Φ −m�2

π =2Þv2
2

−
ðμ̄2Φ −m�2

π =2Þ2
4λ

: ð25Þ

For λρΦ ≪ m�3
π , λ ≪ 1 we have μ̄Φ ≃m�

πð1 − λv2=m�2
π þ

� � �Þ= ffiffiffi
2

p
and EΦðλρΦ ≪ m�3

π Þ ¼ λv4=4þ ρΦm�
π=

ffiffiffi
2

p þ….
We see that for np ¼ 0, gω0 ¼ 0 Eq. (17) yields a smaller

energy than (25).

In a physically meaningful case λ ≫ 1, for ρΦ ≪ v3
ffiffiffi
λ

p
,

as it follows from relations (7) and (24), we obtain

EΦ ≃
ρ2Φ
2v2

þm�2
π v2

4
þ gω0ρΦ þOð1=λÞ;

μ̄Φ ≃ ρΦ=v2
�
1þOð1=λÞ�: ð26Þ

For ρΦ ≫ m�
πv2 the first term is dominant. For ρΦ ≪ m�

πv2

the second term is dominant.
For ρΦ ≫ v3

ffiffiffi
λ

p
one has

EΦ ≃
3λ1=3ρ4=3Φ

4
−
ðλρΦÞ2=3v2

2

�
1þO

�
1

λ

��
;

μ̄Φ ≃ λ1=3ρ1=3Φ

�
1 −

λ1=3v2

3ρ2=3Φ

�
: ð27Þ

3. Energetic favorability of various configurations

As we see from the above derived expressions, for
np ¼ 0, gω0 ¼ 0, i.e. in absence of external fields, the
energetically favorable solutions correspond to ρπ;Φ ¼ 0

and solution in the model 2 is energetically unfavorable,
whereas the solution in the model 1 describes the vacuum
state σ ¼ �v, πi ¼ 0. In case of a pion gas with fixed
particle number, ρπ;Φ ≠ 0, the system energy given by
Eqs. (16) and (25) is positive for both models 1 and 2. The
case λ ¼ 0 is specific. Here we have μ̄π ¼ m�

π in the model
1 and μ̄Φ ¼ m�

Φ=
ffiffiffi
2

p
in the model 2, Φπ;Φ are expressed

through ρπ;Φ according to Eq. (7) after performing the
replacements μπ → μ̄π and μΦ → μ̄Φ.
For np ¼ 0, gω0 ¼ 0 in the case of the dynamically fixed

pion number for a system heaving a rather small size, when
we may put V0 → 0, comparing (17) and (26) at fixed
density ρπ ¼ ρπþ þ ρπ− ¼ ρ in the model 1 and ρπ0 ¼
ρΦ=2 ¼ ρ in the model 2 we see that for ρπ ≪ m�3

π =λ <
m�

πv2 < v3
ffiffiffi
λ

p
the value (17) is smaller then (26), i.e.

solution of the model 1 is energetically favorable compared
to that for the model 2. The same statement holds for
ρπþ ¼ ρπ− ¼ ρπ=2 ¼ ρπ0 . In case ρ > v3

ffiffiffi
λ

p
, for ρπþ þ

ρπ− ¼ ρπ0 ¼ ρ again solution of the model 1 is energeti-
cally favorable compared to that for the model 2. However
for ρπþ ¼ ρπ− ¼ ρπ=2 ¼ ρπ0 Eq. (27) leads to a smaller
energy than (21), i.e. solution of the model 2 for ρ > v3

ffiffiffi
λ

p
is energetically favorable compared to that for the model 1.
Please notice that Refs. [28,31] demonstrated that initially
isospin-asymmetric pion gas with a dynamically fixed total
particle number at a temperature T > TBEC by reactions
2π0 ↔ πþπ− will form the state with ρπ− ¼ ρπ=2 ¼ ρπ0 ,
where TBEC is the critical temperature of the Bose-Einstein
condensation. The possibility of the σπ0 condensate fields
at T ¼ 0 was not considered there.
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In an artificial case, m�
π → 0 (chiral limit), for ρπ0 ≪

v3
ffiffiffi
λ

p
we find that Eq. (26) yields a smaller energy than

(21), i.e. solution in the model 2 is energetically favorable
compared to that in the model 1. For ρ ≫ v3

ffiffiffi
λ

p
, comparing

(21) and (27) we see that the solution in the model 1 is
energetically favorable compared to that in the model 2 for
ρπ ¼ ρ ¼ ρπ0 ¼ ρΦ=2 and the solution in the model 2
becomes to be energetically favorable compared to that
for the model 1 for ρπþ ¼ ρπ− ¼ ρπ=2 ¼ ρπ0 ¼ ρΦ=2.
In case of the zero Bose particle number and np ¼ 0,

gω0 ¼ 0 we should put μΦ ¼ μπ ¼ 0, V0 ¼ 0. In the model
1 from (13) we have

Eπðμπ ¼ 0Þ ¼ 0; σ ¼ �v; πi ¼ 0: ð28Þ

In the model 2 from (25) we get

EΦðμΦ ¼ 0Þ ¼ m�2
π v2

4
−
m�4

π

16λ
> 0; ð29Þ

for jΦσj2 ¼ v2, Φπ ¼ 0, i.e. solution (28) of the model 1 is
energetically favorable in comparison with solution (29)
of model 2. Thus the vacuum in the rest frame is stable
respectively formation of the charged and neutral pion fields.
Finally let us notice that we could consider one more

case: σ ¼ π3 ¼ 0, Φπ ¼ π1 þ iπ2 ≠ 0. In this case we
would have

jΦ0πj2 ¼ ½v2 þ ðμ2π −m�2
π Þ=λ�θðv2 þ ðμ2π −m�2

π Þ=λÞ;

and σ is massless. For a low pion density this possibility is
not realistic. However in presence of a large nucleon
density a developed p-wave pion condensate may appear
resulting in the chiral transition from the σ ≃ v vacuum to
the jπj2 ≃ v2 one, cf. [64,65].

D. Nucleon-meson interaction

With inclusion of nucleons the Lagrangian density of the
model is as follows

Ltot ¼
∂μϕα∂

μϕα

2
−
λðϕ2

α − v2Þ2
4

þ N̄iγμ∂μN

− gN̄ðσ þ iτ⃗ π⃗ γ5ÞN þ LðiÞ
s:b:; ð30Þ

i ¼ 1, 2, γμ are the Dirac matrices, cf. [50]. Interaction with
a static electric field can be introduced similar to that done
in Eq. (12).

In the case v2 < 0, LðiÞ
s:b: ¼ 0, the model describes

massless nucleons, and the pions and the sigma mesons of
the same mass m2

σ ¼ m�2
π ¼ −λv2 > 0. Such a theory does

not satisfy the data, which show that nucleons are very
massive particles and pions are lightest among hadrons.
Thus, one should take v2 > 0 in the second term of Eq. (30),
as we have done it above. Without losing generality we may

chose σ ¼ v and introduce fields describing excitations over
the vacuum state (in absence of the rotation) σ0 ¼ σ − v,

π⃗0 ¼ π⃗, N0 ¼ N. With the symmetry breaking term Lð2Þ
s:b: we

have mN ¼ gv, with Lð1Þ
s:b: the nucleon mass term is given by

mN ¼ gðvþ ϵ=ð2λv2ÞÞ. The value v is found from the
condition of the partial conservation of the axial current,
v ¼ fπ ≃ 93 MeV, where fπ is the pion weak decay
constant. Taking mN ≃ 934 MeV one recovers the value
of the coupling constant g ≃ 10.

III. CHIRAL FIELDS IN ROTATING SYSTEMS

A. Complex σπ fields in rotating reference frame

Let us now study behavior of the chiral vacuum
[minimum of energy (10) corresponds to μπ;Φ ¼ 0] and
a sigma-pion gas at T ¼ 0with a dynamically fixed particle
number (for μπ ≠ 0 or μΦ ≠ 0) described within the linear
σ-model in the rigidly rotating cylindrical system at the
constant rotation frequency Ω⃗kz. We seek the solution
of Eq. (3) in cylindrical system of coordinates ðr; θ; zÞ,
∇ ¼ ð∂r; ∂θ=r; ∂zÞ, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The coordinate trans-

formation between the laboratory ðt0; r⃗0Þ frame and the
rotating ðt; r⃗Þ frame is as follows: t0 ¼ t, x0 ¼ x cosðΩtÞ−
y sinðΩtÞ, y0 ¼ x sinðΩtÞ þ y cosðΩtÞ, z0 ¼ z. Employing
it and that ðds0Þ2 ¼ δμνdx0μdx0ν ¼ ðdsÞ2, where δμν ¼
diagð1;−1;−1;−1Þ, we recover expression for the interval
in the rotating frame

ðdsÞ2 ¼ ð1 −Ω2r2ÞðdtÞ2 þ 2Ωydxdt − 2Ωxdydt − ðdr3Þ2;

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
. As we see from here, a uniformly rotating

system must be finite, otherwise the causality condition
Ωr < 1 is not fulfilled. Formally requirement of finiteness
of the system can be satisfied by imposing a boundary
condition at some r ¼ R. The latter condition will be dis-
cussed below. So, the rotating frame is determined as [66]:
et0 ¼ ex1 ¼ ey2 ¼ ez3 ¼ 1, ex0 ¼ yΩ, ey0 ¼ −xΩ, eα ¼ eμα∂μ,
e0 ¼ ∂t þ yΩ∂x − xΩ∂y, ei ¼ ∂i. Latin index i ¼ 1, 2, 3,
Greek index μ ¼ 0, 1, 2, 3. Thus in the rotating frame we
should perform the replacement

∂t → ∂t þ yΩ∂x − xΩ∂y ¼ ∂t − iΩl̂z ¼ ∂t −Ω∂θ: ð31Þ

In presence of the gauge fields Aμ and ωμ in the
laboratory frame, the Lagrangian density in the rotating
frame renders [47,48,66]:

Lrot
π ¼ jðDt þ yΩDx − xΩDyÞΦπj2

2
−
jDiΦπj2

2

−
m�2

π jΦπj2
2

−
λjΦπj4

4
; ð32Þ

where Dμ ¼ ∂μ þ ieArot
μ þ igωrot

μ , eArot
μ ¼ Aνeνμ. In case of

uniform constant magnetic field H⃗kz and electric field
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eA0ðrÞ ¼ VðrÞ, gω0ðrÞ ¼ 0 we have eArot
μ ¼ ðVðrÞ−

eHΩr2=2; eHy=2;−eHx=2; 0Þ. We continue to employ

the symmetry breaking term in the form Lð2Þ
s:b:.

At Ω ¼ 0 we choose as the vacuum state σ ¼ þv > 0,
πi ¼ 0 in the whole space. Let us now show that for
Ω > Ωc, where Ωc is a critical angular velocity, at r < R,
there may appear a phase transition from the state σ ¼ v
and πi ¼ 0 to a chiral-vortex state either characterized by
the charged pion condensate Φπ ≠ 0 and σ ¼ v, π3 ¼ 0
within the model 1, or by the mean field Φσ ≠ 0 at Φπ ¼ 0
in the model 2.
Within the model 1 (Φπ ≠ 0, σ ¼ v) we seek solution

of the equation of motion in the form of the individual
vortex [1,2]:

Φπ ¼ Φ0πχðrÞeiξðθÞ−iμπ tþipzz; Φσ ¼ v; ð33Þ

with Φ0π ¼ const, pz ¼ const. Below we disregard a trivial
dependence Φ ∝ eipzz on z, since we will be interested in
description of the minimal energy configurations corre-
sponding to pz ¼ 0.
Circulation of the ξðθÞ-field yields

I
d⃗l∇ξ ¼ 2πν; ð34Þ

at the integer values of the winding number ν ¼ 0;�1;…
and ∇ξ ¼ ν=r, ξ ¼ νθ, thereby. For the case V ¼ VðrÞ,
A⃗ ¼ 0, ω⃗ ¼ 0, ω0 ¼ ω0ðrÞ of our main interest the
Lagrangian density with taking into account the rotation
in the model 1 can be presented as

LV
π ¼ −

j∂iΦπj2
2

þ jμ̃Φπj2
2

−
λjΦπj4

4
−
m�2

π jΦπj2
2

þ ð∇VÞ2
8πe2

þ npV; μ̃ ¼ μπ þΩν − VðrÞ − gω0; ð35Þ

cf. Eqs. (12) and (32). Equation of motion for the con-
densate field is simplified as

½μ̃2 þ Δr − ν2=r2 −m�2
π �χðrÞ − λjΦ0πj2χ3ðrÞ ¼ 0; ð36Þ

cf. Eq. (13), Δr ¼ ∂
2
r þ ∂r=r.

Within the model 2 (Φσ ≠ 0, Φπ ¼ 0, V ¼ 0) a complex
field Φσ is affected by the rotation, in spite of the σ and π0

separately, being described by the one-component fields,
which are not influenced by the rotation. We seek solution
of the equations of motion in the form [1,2]:

Φσ ¼ Φ0σχðrÞeiξðθÞ−iμΦt;Φπ ¼ 0; ð37Þ

Φ0σ ¼ const. The Lagrangian density renders

LΦ ¼ −
j∂iΦσj2

2
þ jðμΦ þ Ων − gω0ÞΦσj2

2

−
λðjΦσj2 − v2Þ2

4
−
m�2

π π23
2

: ð38Þ

Neglecting rapidly oscillating terms we may replace
sin2ðνθ − μΦtÞ by 1=2, cf. Eq. (23). Then equation of
motion for the stationary field reads

½μ̃2þΔr−ν2=r2−m�2
π =2�χðrÞþλ½v2− jΦ0σj2χ2ðrÞ�χðrÞ¼0;

ð39Þ
For the model 2 we have μ̃ ¼ μ̄Φ ¼ μΦ þ Ων − gω0.
The angular momentum associated with the boson field

Φπ;σ is given by

L⃗π;Φ ¼
Z

d3 X½r⃗ × P⃗�;

P⃗ ¼ 1

2

�
∂Lπ;Φ

∂∂tΦπ;σ
∇Φπ;σ þ

∂Lπ;Φ

∂∂tΦ�
π;σ

∇Φ�
π;σ

�
;

Pθ ¼ μ̃Φ�
π;σ∇Φπ;σ=i: ð40Þ

In case of the vortex (index v) placed in the center of the
coordinate system Pv

θ ¼ μ̃jΦπ;σj2ν=r ¼ ρπ;Φν=r and L⃗v ¼R
d3X½r⃗ × P⃗v�. Thus we obtain

Lv
z ¼ 2πdz

Z
R

0

rdrνρπ;Φ; ð41Þ

where the charged particle/field density is given by

ρπ;Φ ¼ ∂LV
π;Φ

∂μπ;Φ
¼ μ̃jΦπ;Φj2: ð42Þ

In case ρπ;Φ ≃ const we would have Lv
z ≃ νπdzR2ρπ;Φ. dz ≫

R is the size of the system in z direction. If thevortex is placed
at a distanceb from the center, one should replaceR in (41) toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
, cf. [3]. Note that the same Eq. (41) follows from

Eqs. (35) and (38) after usage that the angular momentum is
L⃗π;Φ ¼ R

d3r∂LV
π;Φ=∂Ω⃗. For ν ≫ 1 we will name the result-

ing vortex field the supervortex. The superfluid as a whole
can either remain at rest or it can participate in a rotation. In
the latter case the superfluidmaymimic a rigid body rotation
with the angular velocity ω close to Ω. The total boson
angularmomentum is the sumof the vortex term and the term
related to the rotation of the superfluid with the angular
velocity ω. First we will focus on the case when ω ¼ 0. The
caseω ≠ 0 is relevant for the rotation of the condensed Bose
gas in some frequency interval when the vortices form a
lattice. It will be discussed in Sec. III D 4 and in Appendix B.
Above we considered the case when the rotation fre-

quency Ω of the rotating frame is fixed. The vortex field
arises when its energy in the rotation reference frame
becomes negative.
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B. Rotation- and laboratory frames.
Rigid-body rotation

The question how to treat the rotating reference frame
and the response of the Bose field vacuum and the Bose gas
at zero temperature (i.e. the Bose-Einstein condensate) on
the rotation in this frame is rather subtle owing to necessity
to fulfill the causality condition r < 1=Ω. We may associate
the rotation frame with a rotating rigid body of a finite
transversal size. For instance, we may consider either the
vacuum or the pion-sigma gas inside a long empty
cylindrical vessel of a large internal transversal radius R,
external radius R>, hight dz ≫ R, mass M and constant
mass-density ρM, rotating in the z direction with constant
cyclic frequency Ω at Ω < Ωcaus ¼ 1=R>, as the require-
ment of causality. Limiting cases R → 0 and R> → Rþ 0
as well as R> ≫ R are allowed. For the Bose gas described
by a complex field there are two possibilities: (1) it
responses on the rotation of the vessel creating the vortices,
and (2) it does not rotate, cf. [1–4]. The latter possibility is
realized for rotation frequencies Ω < Ωc1, where Ωc1 is a
critical angular velocity. For the vacuum (the ground state
in absence of particles) we also should study two possibil-
ities: (1) in the rotation reference frame it responses on the
rotation of the vessel producing a vortex field and (2) it
does not rotate, remaining the same as in the laboratory
reference frame.
Further, there are two possibilities: (i) conserving rota-

tion frequency Ω⃗fin ¼ Ω⃗in of the rotating rigid body, and
(ii) conserving angular momentum L⃗fin ¼ L⃗in.
In case (i) the kinetic energy of the vessel at the

nonrelativistic rotation measured in the laboratory (resting)
reference frame,

Ein ¼ πρMΩ2
indzðR4

> − R4Þ=4; ð43Þ

does not change with time. The loss of the energy due to a
radiation is recovered from an external source. We will
consider the situation when in the rest frame the pion field
condensate does not appear from the vacuum even in
presence of external fields. It is so at least provided external
fields are not too strong. However we still should consider a
possibility for formation of the pion condensate from the
vacuum in the rotation reference frame. In presence of
Bose excitations the final energy of the system is Efin ¼
Ein þ Eπ;Φ½Ωin�, Eπ;Φ½Ωin� is the rotation part of the energy
associated with a Bose condensate in the rotating system.
The condition for the formation of the condensate in the
rotating piece r < R of the vacuum is as follows

Eπ;Φ½Ωin� < 0: ð44Þ

The same condition holds, if we deal with the gas with fixed
particle number, with the only difference that for the gas
μπ;Φ ≠ 0, and the latter quantity is determined from the
condition of the fixed particle number.

In case (ii) the vessel is rotated owing to the initially applied
angular momentum L⃗in ¼

R
d3X½r⃗3 × P⃗in�, P⃗in¼ ρM½Ω⃗in; r⃗3�,

L⃗in ¼ IinΩ⃗in ¼ πρMΩ⃗indzðR4
> − R4Þ=2; ð45Þ

which value is conserved and can be redistributed between
the vessel and the condensate of the chiral field, if the
formation of the condensate is energetically favorable. Iin is
the moment of inertia. We have

L⃗in ¼ L⃗M;fin þ L⃗lab
π;Φ;

L⃗M;fin ¼ πρMΩ⃗findzðR4
> − R4Þ=2: ð46Þ

A somewhat similar problem has been studied in [6,7,9,10]
in case of rectilinear motion of the wall in the superfluid.
The final energy is

Efin ¼ πρMΩ2
findzðR4

> − R4Þ=4þ Elab
π;Φ; ð47Þ

and for the gas with fixed particle number

Elab
π;Φ ¼ Eπ;Φ½ν;Ω ¼ 0�: ð48Þ

From the latter equation in case (ii) of the conserving initial
angular momentum we obtain

Efin ¼ Ein − L⃗lab
π;ΦΩ⃗in þ Elab

π;Φ½ν;Ω ¼ 0�
þ ðLlab

π;ΦÞ2=½πρMdzðR4
> − R4Þ�: ð49Þ

In case of a weak condensate field (for Llab
π;Φ ≪ Lin), which

we will be interested in, the last term can be neglected and

δE ¼ Efin − Ein ≃ −Llab
π;ΦΩin þ Elab

π;Φ½ν;Ω ¼ 0�: ð50Þ

The vortex-condensate field appears provided δE < 0.
Below we will show that for the description of the non-
relativistic pion-sigma gas at a fixed particle number
conditions (44) and (50) coincide. On the other hand, the
vacuum at Ω ¼ 0 is described by σ2 ¼ v2 but Φπ;σ ¼ 0 and
the condition (50) becomes helpless. The response of the
Bose vacuum on the rotation is manifested in the rotat-
ing frame.
Generalization of the expression for the kinetic energy

given by the first term Eq. (43) to the case of a relativistic
rotation of the vessel is as follows

Ekin
in ¼

Z
R>

R
2π

ρMdzrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

inr
2

p − πρMdzðR2
> − R2Þ

¼ −
2ρMπdz
Ω2

in

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

inR
2
>

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

inR
2

q 


− πρMdzðR2
> − R2Þ: ð51Þ

PION-SIGMA MESON VORTICES IN ROTATING SYSTEMS PHYS. REV. D 109, 034030 (2024)

034030-9



In case R> ≃ Rþ δR, δR ≪ R, δΩ ¼ Ωin −Ωfin ≪ Ωin
we have

Ekin
in − Ekin

fin ≃
2ρMπdzR2ΩinRδΩδR

ð1 −Ω2
inR

2
>Þ3=2

: ð52Þ

Criterion of causality requires that the condition
ΩinR> < 1 should be fulfilled at the rigid-body rotation
of the vessel. However there is still a possibility to further
increase the rotation frequency Ωin, provided it is ener-
getically favorable to destroy the supervortex or the lattice
of vortices and redistribute the angular momentum between
the individual separately rotating vortices. This possibility
will be considered in Sec. III D 4.

C. Fields in absence of self-interaction

1. Equation of motion, boundary conditions
and energy in rotation frame

First let us consider the case λ ¼ 0, which is actually not
specific for the σ model. From Eqs. (36) and (39) we
recover equation of motion

�
∂
2
r þ

∂r

r
−
ν2

r2
þ ðμ̃2 − m̃2Þ

�
χðrÞ ¼ 0; ð53Þ

where we introduced the quantities m̃2 ¼ m�2
π in case of

the model 1 and m̃2 ¼ m�2
π =2 for model 2 provided we

continue to use the symmetry breaking term in the form

Lð2Þ
s:b:, μ̃ is determined by Eq. (35). Equation (53) describes a

spin-less relativistic particle of the energy ϵn;ν ¼ μπ;Φ, mass
m̃ and z projection of the angular momentum Lz ¼ ν,
placed in the axially symmetric potential well with the zero-
component of the vector potential UðrÞ ¼ −Ωνþ VðrÞ þ
gω0 for r < R, with V ≠ 0 in the model 1. Behavior at
r > R depends on the boundary condition put at r ¼ R. In
case of the σ þ iπ3 field (within the model 2) one should
put V ¼ 0 at all r.
Now we are interested in the description of the ground

state, then μπ;Φ ¼ minfϵn;νg plays a role of the chemical
potential. The term Ωνμπ;ΦjΦπ;Φj2 in the energy density
can be associated with the Coriolis force and the term
Ω2ν2jΦπ;Φj2=2, being an attractive relativistic ∝ 1=c2

contribution to the centrifugal force term ν2=r2. The
Schrödinger equation follows from the Klein-Gordon
equation (53) after doing the replacement μπ;Φ →
m̃þ μn:r: and subsequent dropping of small quadratic terms
ðμn:r: þ Ων − V − gω0Þ2. Then Eq. (53) acquires the form

�
−
Δr

2m̃
−Ωνþ VðrÞ þ gω0 þ

ν2

2m̃r2

�
χ ¼ En:r:χ; ð54Þ

Uef ¼ −Ωνþ VðrÞ þ gω0 þ ν2=ð2m̃r2Þ, En:r: ¼ μn:r:. As
we see, the rotation in the cylindrical rotating frame acts

similarly to a constant (and attractive for Ων > 0) electric
potential acting on a nonrelativistic particle with the
angular momentum ν. Treating the vessel as the potential
box with infinite walls, we may use the boundary con-
dition χðr ¼ RÞ ¼ 0.
The Schrödinger equation should not change under

simultaneous replacements r⃗3 → r⃗03 þ W⃗t0 and t ¼ t0, pro-
vided

Ψðt; r⃗3Þ ¼ eiχðt;r⃗3ÞΨ0ðt0; r⃗03Þ; ð55Þ

where χ is a real function, W⃗ is a constant vector. Indeed,
the latter transformation does not modify probability
density, i.e. jΨðt; r⃗3Þj2 ¼ jΨ0ðt0; r⃗03Þj2. Then using

∂r⃗0
3
¼ ∂r⃗3 ; ∂t0 ¼ ∂t þ W⃗∂r⃗3 ð56Þ

we find

χðt; r⃗3Þ ¼ m̃ W⃗ r⃗3 −
m̃W2t
2

ð57Þ

apart irrelevant constant. Using these expressions we see
that in the nonrelativistic case the rotation can be intro-
duced in the Schrödinger equation with the help of the
replacement, cf. [13],

−
Δ
2m̃

→ −
ð∇ − im̃ W⃗Þ2

2m̃
−
m̃W⃗2

2
ð58Þ

with W⃗ ¼ ½Ω⃗ × r⃗3� that results in the same Eq. (54). This
equivalence exists only for a nonrelativistic rotation.
Thus we see that uniform rotation can be introduced

in nonrelativistic case similarly to a uniform rather weak
magnetic field described by the vector-potential A⃗ ¼
1
2
½H⃗; r⃗3�. In the general relativistic case the shift of variables

∂t → ∂t −Ω∂θ in the Klein-Godron equation done in the
rotation frame is not equivalent to the shift of the spatial
variables ∇ → ∇ − im̃½Ω⃗; r⃗3� in the Hamiltonian and sub-

traction of the m̃W⃗2

2
term associated with the motion of the

system as a whole, cf. [66].
Further, dealing with the model 1 let us for simplicity

consider the case V ≃ −V0 ¼ const. This approximately
constant value can be treated as a contribution to the
chemical potential. For example we may assume that an
ideal rotating vessel is placed inside the cylindrical co-axial
capacitor. Then in absence of the classical boson field the
electric potential VðrÞ ¼ −V0 ¼ const at distances r < R
of our interest. Appearance of the field Φπ ≠ 0 produces a
dependence of V on r. However, if Φπ is a rather small, we
can continue to consider V ¼ −V0 ≃ const. In case of the
model 2 the electric field and the boson field decouple, as
we have mentioned.
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Employing dimensionless variable x ¼ r=rlin0 , with

rlin0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̄2 − m̃2

q
; μ̄ ¼ μπ;Φ þΩνþ V0 − gω0; ð59Þ

for μ̄ > m̃, V0 ¼ const from Eq. (53) we obtain equation

ð∂2x þ x−1∂x − ν2=x2Þχ þ χ ¼ 0: ð60Þ

Simplest appropriate boundary conditions are

χð0Þ ¼ 0; χðR=rlin0 Þ ¼ 0: ð61Þ

The latter condition is equivalent to the existence of the
infinite wall at r ¼ R in the single-particle quantum
mechanical problem.
Further to be specific let us consider Ω; ν > 0.

Appropriate solution of Eq. (60) is the Bessel function

χðrÞ ¼ Jνðr=rlin0 Þ ð62Þ

for ν > 0, cf. [67]. For x → 0 we have Jν ∼ xν. The energy
of the n ¼ 1 level is determined by the first zero of the
function JνðR=rlin0 Þ ¼ 0, jn¼1;ν¼0 ≃ 2.403. The n ¼ 1, ν ¼ 1

zero yields j1;1 ¼ R=rlin0 ≃ 3.832, j1;ν increases with increase
of integer values of ν. For x ≫ ν we have JνðxÞ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπxÞp

cosðx − πν=2 − π=4Þ. From here we find approxi-
mate asymptotic value jasn;ν ≃ πðνþ 1=2þ 2n − 1Þ=2,
where the integer number n ≥ 1 is the corresponding zero
of the function cosðx − πν=2 − π=4Þ, and thereby jas1;1 ≃
5π=4 ≃ 3.927 that only slightly differs from the exact
solution 3.832. For ν ≫ 1 we have jas1;ν → νþ
1.85575ν1=3, e.g., j1;100 ≃ 108.84, j1;104 ≃ 10040.
Equation of motion (60) together with the boundary

conditions (61) is satisfied only for discrete values of the
rotation frequency. Employing the boundary condition
χðx ¼ R=rlin0 ¼ jn;νÞ ¼ 0 for the energy level with the
quantum numbers n, ν we find

ϵn;ν ¼ μπ;Φ ¼ −Ων − V0 þ gω0

þ m̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2n;ν=ðR2m̃2Þ

q
; ð63Þ

μ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ j2n;ν=R2

q
. It is important to notice that with

increase of the quantity Ωνþ V0 − gω0 the n, ν ≠ 0 levels
become more bound than the level n ¼ 1, ν ¼ 0. For
example for gω0 ¼ 0, Rm̃ ≫ 1 the level n ¼ 1, ν ¼ 1
crosses the level n ¼ 1, ν ¼ 0 at ΩR ≃ 2.41=ðRm̃Þ.
For such heavy nuclei as U the nucleus radius is
R ≃ 7 fm ≃ 5=mπ, V0R ≃ 1.2Ze2 ≃ 0.8 and following our
estimate the crossing of the levels for charged pions may
occur only for ΩR≳ 0.5, and for the neutral σ − π
excitations for ΩR > 0.7. Similar estimates hold for the

nuclear fireball prepared in peripheral the heavy-ion colli-
sions. From (63) we also find that the roots ϵn;ν for V0 ¼
gω0 ¼ 0 do not reach zero for ΩR < 1. Thus for V0 ¼
gω0 ¼ λ ¼ 0 the fields Φπ;σ would not appear at the
rotation of the vacuum.
Using Eqs. (35) and (38) and boundary conditions

ðΦΦ0
rÞr¼R ¼ ðΦΦ0

rÞr¼0, taking np ¼ const, np4πR3=3¼ Z,
V ¼ −V0 ≃ const in case λ ¼ 0, which we now consider,
we recover the energy:

Eπ;ΦðΩÞ ¼ El;0
π;Φ þΦ2

0π;σdzπ
Z

R

0

rdrχ2ðrÞμ2π;Φ þ V0Z

¼ El
π;Φ þ μπ;ΦNπ;Φ þ V0Z

¼ El
π;Φ þΦ2

0π;σdz2π
Z

R

0

rdrχ2ðrÞμ̃2

− LvΩ − V0ðNπ − ZÞ þ gω0Nπ;Φ; ð64Þ

where Lv ¼ νNπ;Φ, Nπ;Φ ¼ Φ2
0π;σdz2π

R
R
0 rdrχ2ðrÞμ̃,

El;0
π;Φ ¼Φ2

0π;σdzπ
Z

R

0

rdrχðrÞ

×

�
−∂2r −

∂r

r
þ ν2

r2
− ½ðΩνþV0 − gω0Þ2 − m̃2�

�
χðrÞ;

El
π;Φ ¼Φ2

0π;σdzπ
Z

R

0

rdrχðrÞ

×

�
−∂2r −

∂r

r
þ ν2

r2
− ðμ̃2 − m̃2Þ

�
χðrÞ; ð65Þ

Nπ;Φ is the number of particles placed on the energy level
ϵn;ν, Φ0π;σ is an arbitrary constant. To get Eq. (64) we
used equation of motion (53) and boundary conditions
ðΦΦ0

rÞr¼R ¼ ðΦΦ0
rÞr¼0. Within the model 1 due to the

charge neutrality condition inside the system of a suffi-
ciently large size we haveNπ ¼ Z. To consider general case
V ≠ const one should add to the energy density the term
−ð∇VÞ2=ð8πe2Þ. After taking into account the Poisson
equation for V it results in that in the first line (64) one
should replace V0Z → −

R
R
0 ðnp þ μ̃jΦj2ÞπrdrVdz.

We could employ the boundary condition χ0ðr ¼ RÞ ¼ 0
instead of the condition χðr ¼ RÞ ¼ 0 that we have used.
In both cases there is no current through the surface r ¼ R.
Thereby such a change of the boundary condition would
not affect our conclusion that at V0 ¼ gω0 ¼ 0 the energy
level does not cross zero. Also we note that in cases of the
vacuum and the Bose condensate in the vessel usage of one
of mentioned boundary conditions is motivated provided
the typical frequency of atomic transitions in the solid wall,
ωat, is larger than difference between energies of the first
excited and ground state energy levels, ∼ð1þ νÞ2=ðR2m̃Þ.
The latter condition is well satisfied for R > a, where a is
the typical atomic size.

PION-SIGMA MESON VORTICES IN ROTATING SYSTEMS PHYS. REV. D 109, 034030 (2024)

034030-11



Setting solution (63) to the second line of Eq. (64) and
employing that El

π;Φ ¼ 0 on the solutions of equation of
motion (60), we find

Eπ;ΦðΩÞ¼Φ2
0π;σdz2π

Z
R

0

rdrχ2ðrÞϵn;νm̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj2n;ν=ðR2m̃2Þ

q
:

ð66Þ

2. Empty rotating vessel. A “rotating vacuum”

Conditions of vacuum instability in rotating frame in
case (i). In QED in electric potential well for the π− in
absence of the matter, the πþπ− pairs are produced from the
vacuum when the π− ground state level crosses the energy
−mπ . The πþ go off to infinity. In a piece of the nuclear
matter πþπ− pairs can be produced in reactions n↔pþπ−

when the level energy reaches zero, cf. [51,54].
In case V0 ¼ gω0 ¼ 0 energetically favorable solution in

the rotating frame corresponds to ϵn;ν > 0 and Eπ;Φ > 0 for
Φπ;σ ≠ 0 and thereby Φπ;σ ¼ 0 in the vacuum in both
models 1 and 2. The solutions of Eq. (63) corresponding
to ϵn;ν < 0, may exist at the condition ΩR < 1 only for
V0; gω0 ≠ 0. If the chemical potential μπ;Φ crosses zero,
the boson field can be produced from the vacuum. For
attractive V and ν > 0, π− mesons occupy the dangerous
level ð1; νÞ, whereas πþ can be absorbed on the wall of the
vessel. In case of λ ¼ 0 under consideration now, the
energy gain ∝ Φ2

0π;σ can be made arbitrary large, as it
follows from Eq. (66).
The values of the rotation frequency, at which the

equation of motion (63) could be fulfilled for
μπ;Φ ¼ ϵ1;ν ≤ 0, V0 ≠ 0 and/or for gω0 < 0 are given by

Ω ≥ Ωc ¼ Ωðϵ1;ν ¼ 0Þ
¼

	
m̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j21;ν=ðR2m̃2Þ

q
−V0 þ gω0



=ν: ð67Þ

In case 1 ≤ ν ¼ c1m̃R ≪ m̃R, i.e. for c1 ≪ 1, m̃R ≫ 1
from Eq. (63) we have

ϵ1;ν ≃ −V0 þ gω0 −Ωνþ m̃þ � � � ð68Þ

The levels ϵ1;ν reach zero only for V0 − gω0 > m̃ð1 − c1Þ.
The critical rotation frequency is then given by

Ωc ¼Ωðϵ1;ν ¼ 0; c1 ≪ 1Þ≃ ðm̃−V0 þ gω0Þ=ν> 0: ð69Þ

As we see, the critical rotation frequency Ωc decreases with
increasing ν.
In case of the solution describing a supervortex with ν ¼

c1m̃R ≫ m̃R ≫ 1 (for c1 ≫ 1) from (63) we have

ϵ1;ν ≃ −V0 þ gω0 þ ð−ΩRþ 1Þν=Rþ Rm̃2=ð2νÞ
þ 1.86ν1=3=Rþ � � � ð70Þ

Setting in (70) the limiting value Ωcaus ¼ 1=R we see that
ϵ1;ν → −V0 þ gω0 þ m̃=ð2c1Þ þ…. Thus the level ϵ1;ν
may reach zero for ΩR < 1 for V0 − gω0 > m̃=ð2c1Þ.
So, with increase of the angular momentum of the rotating
vessel the critical value V0 − gω0, at which the level ϵn¼1;ν

reaches zero, decreases. Formation of the supervortex state
becomes energetically favorable for c1 ≫ 1 at

Ω > Ωc ¼ Ωðϵ1;ν ¼ 0; c1 ≫ 1Þ

≃
1

R
−
V0 − gω0 − m̃=ð2c1Þ

c1m̃R
;

V0 − gω0 > V0c − gω0c ¼ m̃=ð2c1Þ: ð71Þ
The larger is ν the smaller is the value V0c − gω0c > 0. In
case (i) the critical value V0c − gω0c tends to zero for
Ω → 1=R, whereas in case (ii) the value c1 is fixed by the
conservation of the initial angular momentum. In case of
the charged field (in the model 1) we should still care of the
charge conservation.
Examples of instability of rotated vacuum. Let us give

some examples when the rotated vacuum is unstable to
formation of the vortex pion-sigma field.
(a) Rotating vessel inside a charged capacitor. Let

np ¼ 0. In case when an ideal rotating vessel is placed
inside a cylindrical co-axial charged capacitor (with cylin-
drical plates placed at r ¼ Rex and r ¼ Rin for Rex >
Rin > R>) we have Zin þ 2πdz

R
R
0 rdrρπðrÞ ¼ −Zex, where

Zin is the charge placed on the internal surface of the
capacitor and −Zex is the charge placed on the external
surface. The strength of the electric field between the
plates is Eðr > RinÞ ¼ −Zex=ð2πrdzÞ and Vðr ¼ RinÞ ¼
RinEðRinÞ lnðRex=RinÞ. For ρπdzπR2 ≪ Zex we have
Vðr < RÞ ≃ Vðr ¼ RinÞ. As we have estimated above,
the conditions jVj > jVcj ≃ m̃=ð2c1Þ and even jVj≳mπ
can be easily fulfilled in both (i) and (ii) cases.
(b) Redistribution of charge inside the rotating vessel.

Let us rise a question whether the vortex field can be
produced in absence of the capacitor. In case of the rotation
of the electrically neutral empty vessel, the charge of the
supervortex, if the latter is formed in the center of the
vessel, should be compensated by the oppositely charged
particles (antiparticles) shifted closer to the inner surface of
the rotating vessel such that

R
R
0 ρπrdr ¼ 0. We recall that

j1;1 ¼ rlin0 =R ≃ 0.26 and j1;ν≫1 ≃ 1=ν and thereby rlin0 ≪ R
in all cases we are interested in. We have 2πrEðrÞ≃
4πjej R r

0 ρπ2πrdr. Let for simplicity gω0 ¼ 0. Assuming
for a rough estimation for ν ≫ 1 that J2νðr=rlin0 Þ≃
2rlin0 cos2ðr=rlin0 − πν=2 − π=4Þ=ðπrÞ, using Eq. (42) we
get E ≃ 4jejμ̄Φ2

0πr
lin
0 and V0ðr ∼ RÞ ∼ 4e2μ̄Φ2

0πr
lin
0 R. The

level energy ϵ1;ν reaches zero for 8e2μ̄Φ2
0πr

lin
0 R≳ m̃=c1.

Since here Φ2
0π is an arbitrary constant, this condition can

be easily satisfied for both cases (i) and (ii). In case V ≠
const the electric field produces extra positive energy termR
R
0 ðE2=8πÞ2πrdrdz ≃ 2e2μ̄2Φ4

0ðrlin0 Þ2R2dz, which proves
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to be smaller than the negative contribution (66) at least for
8e2μ̄Φ2

0πr
lin
0 R ≫ m̃=c1. The uniform rotation acting as an

effective electric field provides separation of the electric
charges and formation of an electric potential, which can be
sufficient for production of a supervortex of the charged
pion field. Thereby statement that cold vacuum in absence
of external fields cannot rotate can be questioned.
(c) Pion-sigma field in peripheral heavy-ion collisions.

In heavy-ion collisions at LHC conditions the typical
parameters of the pion fireball estimated in the resonance
gas model [22] are as follows: the temperature T ≃
155 MeV, the volume is 5300 fm3, the π� density is ρπ ≃
m3

π and we estimate the electric potential as V0 ∼ Ze2=R ∼
0.2mπ for central collisions. For peripheral collisions
typical values of V0 can be even larger. Estimation V0 >
mπ=ð2c1Þ with V0 ∼ 0.2mπ yields c1 > 2.5 and ν≳ 20. At
these conditions even a not too rapid rotation may result in
the formation of a condensate pion-sigma field in the form
of a supervortex or a more whimsical vortex structure,
provided the vortex field is not destroyed by the temper-
ature effects, which are disregarded in our present study.
(d) Formation of vortices in magnetic field. In Ref. [47]

the rotation of the vacuum of non-interacting charged pions
was considered in presence of a rather strong external
uniform constant magnetic field H. This analysis becomes
not applicable for jejH ≲ 1=R2, i.e. when the Larmor radius
of the particle becomes larger than the size of the vessel.
The number of permitted states in the uniform magnetic
field is given by N ¼ jejHS=ð2πÞ ¼ jejHR2=2 and for
jejH < 2=R2 we have N < 1. Thus the results [47] do not
describe the case H → 0, which we have studied above.
In our case the interaction with the magnetic field can be

introduced within the model 1. Strong magnetic fields with
H ≲m2

π , m2
π=jej ≃ 3.5 × 1018 G, can be generated in peri-

pheral heavy-ion collisions and central regions of neutron
stars [46]. Uniform magnetic field inside the rotating ideal
vessel can be generated, if the vessel is put inside a solenoid.
A magnetic field can be generated also, if we deal with the
charged rotating cylindrical capacitor. In the latter case a
simple estimate shows that for R ¼ 1 cm it is sufficient to
switch on a tiny external field jejH > 10−8 G in order to get
N > 1 and thereby to overcome the problem with absence of
the solution μπ ¼ 0 of Eq. (67) at V0 ¼ 0. Now, in presence
of such a magnetic field satisfying condition N > 1 instead
of Eq. (63) we have

ϵ1;ν ¼ −Ων − V0 þ gω0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ jejH

q
ð72Þ

and instead of Eq. (67) we obtain

νΩH
c ¼ νΩðϵ1;ν ¼ 0Þ ¼ −V0 þ gω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ jejH

q

≃ −V0 þ gω0 þ m̃: ð73Þ

The latter relation holds for jejH ≪ m2
π. Please compare

(69) and (73). We see that dependence on R disappeared
from this relation, as in case studied in Ref. [47]. The
degeneracy factor 0 < ν ≤ N. The fields H ≲ ð105–107Þ G
can be successfully generated at the terrestrial laboratory
conditions. Note that for jejH ∼ 106 G at R ¼ 1 cm we
have N ∼ 1014. With ν ¼ c1m̃R we estimate that ν≲ N for
c1 ≲ 10 and ΩH

c ≲ 109 Hz.
(e) Injection of the proton gas in rotating vessel. In

absence of the capacitor, in case of the rotation of the
electrically neutral vessel, in which an amount of heavy
positively charged particles is injected (e.g. protons, which
are 7 times heavier than pions), the positive charge density
np can be compensated by the produced negatively charged
pion vortex field, i.e. jρπj ¼ μ̄Φ2

π ≃ np. For μπ ¼ 0 the pion
field energy is Eπ ≃ V0Z, as it follows from the first line of
Eq. (64). Maximum value of Φ2

π at eHR2 ∼ Ze2ΩR ≫ 1
corresponds to μ̄ ≃ m̃, cf. (73), and thus the minimum of the
energy is given by Eπ ¼ ðm̃ −Ωνþ gω0ÞZ and it becomes
negative for Ω > ðm̃þ gω0Þ=ν, where the latter quantity
coincides with ΩcðV0 ¼ 0Þ given by Eq. (69).
Concluding, above we demonstrated that in the model 1

for V ¼ H ¼ gω0 ¼ 0 and in the model 2 for gω0 ¼ 0 the
vacuum in the rotating frame remains to be stable respec-
tively production of non-interacting charged and neutral
pions. However within the model 1 instability for produc-
tion of non-interacting charged pions in the rapidly rotating
frame occurs already in presence of a weak external electric
field, cf. (71), and/or magnetic field and charged defects.
Also instability feasibly appears already in absence of
external electric field owing to spatial redistribution of the
charge at formation of the vortex.
Instability of vacuum in laboratory frame. Above we

considered a piece of the rotating vacuum r < R assuming
that the rigidly rotating reference frame rotates with a fixed
angular velocity. Now let us focus attention on the case (ii).
The angular momentum needed for formation of the vortex
is taken from the bucket walls. Employing Eq. (50) for the
energy balance, and Eqs. (63) and (64) now at Ω ¼ 0, we
recover the condition for the appearance of the vortices in
the laboratory frame:

δE ¼ 2πdz

Z
R

0

rdrρπ;Φϵ1;ν½ν;Ω ¼ 0� − Llab
π;ΦΩ

¼ 2πdz

Z
R

0

rdrρπ;Φ
	
−V0 þ gω0

þ m̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j21;ν=ðR2m̃2Þ

q
−Ων



< 0; ð74Þ

which coincides with that we derived above considering the
rotation frame, cf. Eq. (66).
About dynamics of creation of the vortex field. It is

important to notice that in case of the vacuum placed in a
strong static electric field in absence of the rotation, the
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charged bosons are produced non locally by the tunneling
of particles from the lower continuum to the upper
continuum. As we have mentioned, the typical time of
such processes is exponentially large τ ∼ em

2
π=jeEj=mπ for

jeEj ≪ mπ . Another mechanism is a production of pairs
locally near a wall placed in the vacuum (Casimir effect).
The probability of such processes is still smaller than the
mentioned probability of the tunneling.
In case of the rotation of the empty vessel the charged

pion field can be produced in more rapid processes, in
reactions with particles of the rotating wall of the vessel. As
one of the possibilities to create the vortex condensate, one
may inject inside the vessel an admixture of protons, as we
have mentioned. The protons accelerated during the rota-
tion of the system will then produce the radiation of the
charged pion pairs, which further can form the vortex field.

3. Ideal pion gas with fixed particle number
in rotating system

In case of the ideal gas characterized by the dynamically
fixed particle number Nπ, being put in a resting vessel,
the value Φ2

0π;σ is found from the normalization condition
Nπ ¼ μπ;ΦΦ2

0π;σ½Ω ¼ 0�πR2dz obtained by integration of
Eq. (7). In the rotating frame the constant Φ2

0π;σ is found
from the condition

Nπ ¼ Φ2
0π;σ

Z
R

0

μ̃χ22πrdrdz

≃ μ̄Φ2
0π;σπdzR

2J2νþ1ðR=rlin0 ½μ̄�Þ; ð75Þ

with rlin0 and μ̄ given in Eq. (59). Equation (75) yields the
relation between the fixed (on a timescale under consid-
eration) value Nπ and the constant value μ̄. The quantity
ϵn;ν ¼ μπ;Φ depends on Ω through the relation (59).
The vortex energy is given by Eq. (66), where now Φ2

0π;σ

is determined by the condition of the fixed particle number
(75), i.e., Eπ;Φ½Ω� ¼ Nπϵ1;ν. To understand will the gas be at
rest or rotating with the angular velocity Ω we should
compare Eπ;Φ½Ω� and Eπ;Φ½Ω ¼ 0�. The minimal value of
the quantity Eπ;Φ½Ω ¼ 0� corresponds to ν ¼ 0 and for
m̃R ≫ 1 is given by

Eπ;Φ½Ω ¼ 0� ≃ Nπ½−V0 þ gω0 þ m̃þ j21;0=ð2R2m̃Þ�; ð76Þ

compare with Eqs. (17) and (25). For ν ≪ Rm̃ we find that

Eπ;Φ½Ω� − Eπ;Φ½Ω ¼ 0� ≃ Nπ½−Ωνþ ðj21;ν − j21;0Þ=ð2R2m̃Þ�
< 0; ð77Þ

for

Ω > Ωid
c1ðνÞ ≃ ðj21;ν − j21;0Þ=ð2νR2m̃Þ: ð78Þ

The minimal value Ωid
c1ðνÞ corresponds to jνj ¼ 1.

Comparing (67) and (78) we see that Ωid
c1 ≪ Ωcðλ ¼ 0Þ

at least for small values V0 − gω0, i.e. in the presence of a
pion gas the vortices appear already at much smaller
rotation frequencies than in case of the rotating vacuum.
For the former case at m̃R ≫ 1 we deal with nonrelati-
vistic rotation for Ω ∼ Ωid

c1ð1Þ. For a single vortex with
ν ¼ 1 we have

δEð1Þ ≃ −½Ω −Ωid
c1ð1Þ�Nπ: ð79Þ

In presence of ν single vortices, each with ν ¼ 1, the energy
gain is δE ¼ νδEð1Þ.
In absence of the external rotation, as well as for

Ω < Ωc1, production of vortices is energetically not profit-
able. However, if a vortex appeared by some reason, it
would survive due to conservation of the winding number.
In this case presence of a vortex results in a weak self-
rotation of the Bose gas with the rotation velocity ωself ∼
−ν=ðm̃R2Þ. In our consideration performed above we
assumed that jωself j ≪ Ωc1. Also, in case of the ideal
gas under consideration, at the increasing rotation fre-
quency the individual vortices may form the lattice. This
possibility will be considered in the next section on
example of the self-interacting fields.

D. Self-interacting complex scalar fields
in rotating system

1. Equation of motion, boundary conditions and energy

We continue to use the symmetry breaking term in the

form Lð2Þ
s:b: For λ ≠ 0, V0; gω0 ≃ const, employing Eqs. (37)

and (39), in the dimensionless variable x ¼ r=rλ0, now with

rλ0 ¼ ðλv2i þ μ̄2 − m̃2Þ−1=2 > 0; ð80Þ

where vi ¼ 0 for the model 1 and vi ¼ v2 for the model 2,
we arrive at equation:

ð∂2x þ x−1∂x − ν2=x2Þχ þ χ − λΦ2
0π;σðrλ0Þ2χ3 ¼ 0: ð81Þ

In case of the model 1 we have rλ0 ¼ rlin0 . For the pion gas
at a low density and a small Ω using (17) and (80) we have
rλ0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

π=ðρπλ
p Þ. In case of the model 2, for λ ≫ 1 we

have rλ0 ≃ 1=
ffiffiffiffiffiffiffi
λv2

p
both in case of the low density pion gas

and for the vacuum.
Similarly to Eq. (24) we may introduce the quantity

Φ0π;σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v2i þ ðμ̄2 − m̃2Þ=λ�

q

× θðv2i þ ðμ̄2 − m̃2Þ=λÞ; ð82Þ

which is the solution of Eq. (81) at x → ∞ corresponding to
the boundary condition χðx → ∞Þ → 1.
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If we are interested in description of the bulk region far
away from the boundary, we can ignore the influence of the
boundary condition at r ¼ R for R ≫ rλ0. Thus we may
chose boundary conditions χðx→0Þ→0 and χðx→∞Þ→1.
Then the asymptotic solution of Eq. (81) for x ≫ 1 gives
χ ¼ 1 − ν2=ð2x2Þ, and for x → 0 we get χ ∝ xjνj. Thus the
field Φπ;σ is expelled from the vortex core and the
equilibrium value (82) is recovered at r ≫ rλ0. An inter-
polation solution satisfying both asymptotics can be pre-
sented for ν > 2 as

χ ¼ xjνj=½1þ xjνjð1þ ν2=ð2x2ÞÞ�: ð83Þ

We still should clarify how the boundary condition at
r ¼ R can be fulfilled on the wall of the vessel. As example,
let us consider the model 1. We can solve Eq. (81)
employing the variable y ¼ ðr − RÞ=rλ0, x ¼ yþ R=rλ0,

for R ≫ rλ0 at the boundary conditions χðy → −∞Þ ¼ 1

and χðy ¼ 0Þ ¼ 0. The latter condition demonstrates
absence of the normal component of the Φπ field flux
through the boundary r ¼ R. At rλ0 ≪ R for typical dimen-
sionless distances y ∼ 1, the angular momentum term,
∼ðνrλ0Þ2=R2, and the curvature term, ∼rλ0=R ≪ 1, can be
dropped for not too large ν, which means that geometry can
be considered as effectively one-dimensional one, cf. a
similar argumentation employed in [51]. Then appropriate
solution gets the form

Φπ ¼ −Φ0πeiνθth½ðr−RÞ=ð
ffiffiffi
2

p
rλ0Þ�; rλ0 ≪ r < R: ð84Þ

Using Eqs. (35), (38), and (64), which we derived above
for λ ¼ 0, now for λ ≠ 0 we find

Eπ;ΦðΩÞ ¼
Φ2

0π;σdz
2

2π

Z
R

0

rdrχ

�
−∂2r −

∂r

r
þ ν2

r2
− ðλv2i þ μ̃2 − m̃2Þ þ λΦ2

0π;σχ
2

�
χ − λ

πΦ4
0π;σdz
2

Z
R

0

rdrχ4 þ λv4i dzπR
2

4

−
Z

R

0

npV2πrdrdz þΦ2
0π;σdz2π

Z
R

0

rdrχ2μ2π;Φ þ μπ;ΦðΩνþ V0 − gω0ÞΦ2
0π;σdz2π

Z
R

0

rdrχ2

¼ El
π;Φ þ λdz

4
2π

Z
R

0

rdrðv2i −Φ2
0π;σχ

2Þ2 þ 1

2
Φ2

0π;σdz2π
Z

R

0

rdrχ2μπ;Φμ̃π;Φ −
Z

R

0

npV2πrdrdz: ð85Þ

For ν ¼ 0, χ ¼ 1, V0 ¼ gω0 ¼ 0 from (85) we recover
Eqs. (16) and (25). For λ ¼ 0 we recover Eq. (64). Actually
the linearized equation of motion is recovered at a weaker
condition χ2 ≪ 1.
Employing (85) and equation of motion (81) we find

Eπ;ΦðΩÞ ¼ 2πdz

Z
R

0

rdr

�
−
λðv2i −Φ2

0π;σχ
2Þ2

4

−
λv2i ðΦ2

0π;σχ
2 − v2i Þ

2
þ μπ;Φμ̃Φ2

0π;σχ
2 − npV

�
:

ð86Þ

For V0 ≃ const and gω0 ¼ const that we assumed, we have

Eπ;Φ ≃ 2πdz

Z
R

0

rdr

�
−
λðv2i −Φ2

0π;σχ
2Þ2

4

−
λv2i ðΦ2

0π;σχ
2 − v2i Þ

2
þ μ̃2Φ2

0π;σχ
2

�

− LvΩ − ðV0 − gω0ÞNπ þ V0Z:

Employing Eq. (82) we may also rewrite Eq. (86) as

Eπ;Φ≃2πdz

Z
R

0

rdr
�
λv4i ð1−χ4Þ

4
−
v2i χ

4ðμ̄2− m̃2Þ
2

þðμ̃−Ων−V0þgω0Þμ̃v2i χ2
�

þ2πdz

Z
R

0

rdr

�
−
ðμ̄2− m̃2Þ2χ4

4λ

þðμ̃−Ων−V0þgω0Þμ̃ðμ̄2− m̃2Þχ2
λ

−npV

�
: ð87Þ

In the model 1 there remains only contribution of the
second line. In the model 2 the latter contribution can be
dropped for λ ≫ 1 compared to the contribution of the
first line.

2. Rotating vacuum. Empty rotating vessel

Instability of vacuum in rotating frame, case (i). For
μπ;Φ ¼ μ̄ −Ων − V0 þ gω0 ¼ 0 from (87) for v2i þ ðμ̄2π;Φ −
m̃2Þ=λ > 0 we have

Eπ;ΦðΩÞ ¼ 2πdz

Z
R

0

rdr

�
−npV þ λv4i ð1 − χ4Þ

4

−
v2i χ

4ðμ̄2 − m̃2Þ
2

−
ðμ̄2 − m̃2Þ2χ4

4λ

�
: ð88Þ
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For χ ¼ 1 we obtain

Eπ;Φðχ ¼ 1Þ ¼ πR2dz

�
npV0 −

v2i ððΩνþV0 − gω0Þ2 − m̃2Þ
2

−
ððΩνþV0 − gω0Þ2 − m̃2Þ2

4λ

�
: ð89Þ

In the model 1 only the last term in Eqs. (88) and (89)
remains for np ¼ 0. So production of the vortex condensate
becomes to be energetically favorable, Eπ;ΦðΩÞ < 0, for
Ωνþ V0 − gω0 > m̃, i.e. for

Ω > Ωπ
c ¼ ðm̃ − V0 þ gω0Þ=ν: ð90Þ

Note that Ωπ
c approximately coincides with Ωc given above

by Eq. (69) and (73) but differs from (67). The quantity Ωπ
c

can be made very small for very large values of the quantum
number ν provided m̃ − V0 þ gω0 > 0, certainly at the
condition that in case (ii) the maximum value of ν is
restricted by the value of the initial rotation angular
momentum.
On the other hand it is important to notice that the

asymptotic solution χ ¼ 1 − ν2=ð2x2Þ is valid only for
R ≫ νrλ0, i.e. for Ωνþ V0 − gω0 ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ ν2=R2

p
. Thus

this asymptotic solution is realized for ΩR < 1 only for Ω
very near the limiting value 1=R for V0 − gω0 ≫
m̃2R=ð2νÞ at ν ≫ m̃R, cf. Eq. (71) for nonself-interacting
pions.
In the model 2 the second term in the square brackets in

Eq. (88) produces the contribution to the kinetic energy
given by

Ekin ¼ 2πdzðν2v2=2Þ lnðR=νrλ0Þ ð91Þ

with a logarithmic accuracy. Here we assumed that asymp-
totic solution holds for R=νrλ0 ≫ 1 and rλ0 ≃ 1=

ffiffiffiffiffiffiffi
λv2

p
for

λ ≫ 1, i.e. for ν ≪ Rm̃
ffiffiffi
λ

p
. Comparing the term (91) with

the third term in square brackets in Eq. (88) we see that the
σπ0 condensate vortex field can appear for

Ω > ΩΦ
c ¼

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ 2ν2 lnðR=νrλ0Þ=R2

q
þ gω0



=ν: ð92Þ

As it is seen from this expression, there is no solution for
ΩR < 1 for gω0 ¼ 0. Such a solution could exist only at not
too small values of the attractive interaction gω0. Please
compare Eqs. (90) and (92), which we derived here for the
case of the self-interacting fields, with Eq. (67) derived
above for the case of not self-interacting fields.
For Ω > Ωπ;Φ

c the state σ ¼ v, πi ¼ 0 becomes not a
ground state provided conditions (90) or (92) are fulfilled
for ΩR < 1. Near the walls of the rotating vessel there may
appear numerous vortices and antivortices. Then vortices
migrate into the vessel volume and antivortices are

absorbed by the walls of the vessel. We recall that in case
(i) the constancy of the rotation frequency is recovered
from the external source of the rotation.
Formation of vortices in case (ii). In this case a decrease

of the angular momentum of the vessel can be energetically
preferable. Therefore we should study this possibility
similarly to that we have done in case of nonself-interacting
bosons.
Let us consider a nonrelativistic rotation. Employing

condition (50) and Eq. (41) for μπ;Φ ¼ 0 (in case of the
vacuum) we obtain

δE ≃ Elab
π;Φ − Lπ;ΦΩ ¼ Eπ;Φ½ν;Ω ¼ 0� − ν2πdz

×
Z

R

0

rdrðΩνþ V0 − gω0ÞΦ2
0π;Φχ

2Ω < 0: ð93Þ

Within the model 1 the condition (90) for appearance of the
vortex field, i.e. Φ2

0π;Φ > 0 at λ ≫ 1, does not change.
Within the model 2 presence of the additional term −Lπ;ΦΩ
allows to overcome the causality problem only for suffi-
ciently large negative values of gω0, cf. Eq. (92).
The maximum value of the angular momentum of the

vortex, νmax, is limited by the value of the angular momen-
tum of the rotation of the vessel, Lin, given by Eq. (45).
About dynamics of creation of the vortex field. In the

ground state σ ¼ v, πi ¼ 0 of the static vacuum (at Ω ¼ 0)
there is no any friction. Charged π� pairs can be produced,
e.g., in uniform static electric field in the process of the
tunneling of particles from the lower continuum to the
upper continuum, however the probability of the produc-
tion of pairs e−m

2
π=jeEj is tiny for the strength of the electric

field E ≪ m2
π=jej ≃ 1021 V=cm, as we have discussed

above, cf. [59]. In presence of a moving wall, there arises
a tiny friction force between virtual particles and the wall
(dynamical Casimir effect, cf. [68]). Also there are other
reasons, which may cause creation of vortices near the wall,
e.g., interaction of the virtual charged pions with the
electric charge of the particles of the wall. As in case
λ → 0, which we have discussed above, the most efficient
way to produce a vortex field inside the rotating vessel
might be is to put in it a rare rotating gas of protons. The
pions forming the vortex state will be then produced in
radiation reactions. Such processes do not require any
tunneling of particles from the lower to upper continuum
and their production is not suppressed by a e−m

2
π=E factor.

3. Rotating supercharged nucleus

Above we have reminded the idea of a possibility of
existence of stable supercharged pion condensate nuclei.
If we deal with a rotating nucleus of a large atomic number
A ≃ 2Z for np ¼ ρ0=2, there may appear the charged pion
condensate compensating the initial proton charge in
interior of the nucleus. For Zje3j ≫ 1 the charge is repelled
to a narrow surface layer and screened to a value
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Zs ∼ Z=ðZje3jÞ1=3, cf. [51]. In spite of this, the condi-
tion N ¼ jejHð0ÞR2=2 ≫ 1 with eHð0ÞR2 ∼ Zse2ΩR is
satisfied.
For λ → 0, gω0 ¼ 0, using (72) for ϵ1;ν ¼ 0 and jejH ≪

m�
π and the second line (64) we have V0 ≃m�

π −Ων and

E − Ein ≃ ðm�
π −Ων − 32 MeVÞZ; ð94Þ

cf. Eq. (20). Vortex condensate state appears for E−Ein< 0,
i.e., for ν=R > Ων ¼ m�

π − 32 MeV.
In a realistic case, λ ≃ 20, instead of (22) we now have

E − Ein ≃ ½λρ2π=ð4m2
πÞ þmπ −Ων − 32 MeV�Z

≃ ðmπ −ΩνÞZ: ð95Þ

At a fixed Ω > mπ=ν a rotating nucleus forming a charged
pion-sigma supervortex is stable.
Let us recall estimates of Ref. [45] done for the values of

the angular momentum, ν≲ 106, and rotation frequency,
Ω ≃ 0.05mπ , performed for peripheral heavy-ion collisions
at

ffiffiffi
s

p ¼ 200 GeV. Thus we may expect occurrence of
metastable rotating states in peripheral heavy-ion colli-
sions. Also in case of rotating cold superheavy nuclei
and nuclearites it might be profitable to form a charged
pion vortex condensate, which will stabilize them in the
rotating frame. The kinetic energy of such a rotating
nuclear systems is then lost on a long timescale via a
surface electromagnetic radiation. For very large number of
baryons, A, such a radiation is strongly suppressed.

4. Nonideal gas with fixed particle number
in rotating system

Now let us consider the case μπ;Φ ≠ 0 and μπ;Φ ≫
Ωνþ V0 − gω0. This case is similar to that takes place
at a nonrelativistic rotation of cold atomic gases and He-II
when μπ;Φ ≃mHe and Ωνþ V0 − gω0 ≪ mHe.
In absence of the rotation of the vessel appearance of

vortices is energetically not profitable, since the kinetic
energy of the vortex with ν ≠ 0 is positive. Moreover,
at Ω ¼ 0 the vortices characterized by ν > 0 could be
produced only in pairs with anti-vortices characterized by
−ν due to the angular momentum conservation. If a vortex
having the integer winding number ν was formed by some
reason, it would continue to exist till a collision with the
corresponding antivortex, or with the walls of the vessel
due to conservation of the angular momentum.
In presence of the rotation, in the rotation frame, using

Eq. (86) and the asymptotic solution χ ¼ 1 − ν2=ð2x2Þ of
the equation of motion for x ≫ ν we find that the energy
balance is controlled by the kinetic energy of the vortex,

Eð1Þ
kin, given by the first term in the second line (87) in the

model 1 and by the first term in the first line (87) in the
model 2, and the rotation contribution LΩ extracted from
the last term in squared brackets in first line (87). The same

consideration can be performed in the laboratory frame
employing Eq. (50). In the latter case the kinetic energy
associated with the single vortex line with the logarithmic
accuracy is given by

Eð1Þ
kin ≃

R
d3Xj∇Φπ;σj2

2
¼ dzπν2ρπ;Φ

μ̄
lnðR̃=r0λÞ: ð96Þ

At large distances r we cut integration at r ∼ R̃ ≫ rλ0, being
the transversal size of the vessel R in case of the single
vortex line with the center at r ¼ 0, and at the distance RL
between vortices in case of the lattice of vortices. The latter
possibility will be considered below. At small distances
integration is naturally cut at r ∼ rλ0.
Lower critical angular velocity. Let us consider the

system at approximately constant density ρπ;Φ. Then from

the condition Eð1Þ
kin − L⃗ Ω⃗ < 0 we now find that the first

vortex filament (together with the antivortex) appears for

Ω > Ωλ
c1ðνÞ ¼

ν lnðR=rλ0Þ
R2μ̄

≃
ν lnðR=rλ0Þ

R2m̃
: ð97Þ

In the last equality we used that for a low density and for a
slowly rotating gas μ̄ ≃ μπ;Φ ≃ m̃. Please compare this
result with Eq. (78) derived above for the case of the ideal
gas. We should put ν ¼ 1 and take R̃ to be equal to the
maximum distance between the vortex and the edge of the
vessel ∼R, since it corresponds to the minimum value of
Ωλ

c1 ¼ Ωλ
c1ðν ¼ 1Þ.

Landau critical velocity for formation of vortices. For a
vessel of a large size, R ≫ rλ0, following (97) we have
Ωλ

c1R ≪ 1. The quantity uv;L ¼ Ωλ
c1R < 1 can be treated as

the Landau critical velocity for formation of vortices, being
very massive excitations compared to other particle exci-
tations. Due to this circumstance for rotating systems
of a large size uv;L is much less than uL necessary for a
production of roton-like excitations with the momentum
k ≠ 0 occurring in some rectilinearly moving and rotating
systems studied in [5–9].
Interaction between vortex lines. With the help of

Eq. (96) one may also recover the energy of the interaction
between two vortex lines, cf. [3],

Eð2Þ
int ¼

Z
d3Xð∇Φ1∇Φ�

2 þ∇Φ�
1∇Φ2Þ=2;

≃ dzπν1ν2ðρπ;Φ=μ̃Þ lnðR̃=r12Þ; ð98Þ

where r12 is the distance between two vortices under
consideration having momenta ν1 and ν2, R̃ is here the
distance from the vortex to the edge of the vessel at R̃ ≫
r12 ≫ rλ0. This interaction energy is smaller than the energy

of two isolated vortex filaments, 2Eð1Þ
kin for ν1 ¼ ν2 ¼ ν.
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Spirals. A slightly deformed vortex line undergos a
precession. Undergoing a long-wave oscillation the
vortex line forms a spiral, cf. [4]. Permitting a shift of
the line in perpendicular direction x ¼ d⊥ cosðkz − ωtÞ,
y ¼ d⊥ sinðkz − ωtÞ we have

δdz ¼
Z

dz

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂x=∂zÞ2 þ ð∂y=∂zÞ2

q
dz − dz

≃ dzd2⊥k2=2: ð99Þ

Using Eq. (96) we have

δEð1Þ
kin ≃ dzd2⊥k2πν2ρπ;Φ=ð2μ̄Þ lnð1=kr0λÞ; ð100Þ

where we assumed that 1=k ≫ r0λ, and

δLv ≃ −dzd2⊥πνρπ;Φ: ð101Þ

The precession frequency ωprec is given by

ωprec ¼ ð∂δEð1Þ
kin=∂d⊥Þ=ð∂δLð1Þ

z =∂d⊥Þ
¼ −νk2 lnð1=kr0λÞ=ð2μ̄Þ; ð102Þ

i.e., the spiral rotates in opposite direction to the direction
of the external angular velocity.
Rings. In the system of a finite size individual vortices

characterized by the minimal angular momentum ν ¼ 1
may form rings. Their energy is also given by Eq. (96),
however dz should be replaced by 2πRring, where Rring is
the radius of the ring provided Rring ≫ rλ0. As it follows

from Eq. (40), the full momentum of the ring is pring
θ ¼R Rring

rλ
0

½νρπ;Φ=r�2πrdr2πRring with a logarithmic accuracy,

cf. [4], and thereby

p⃗ring ¼ 4π2R2
ringρπ;Φνe⃗⊥;

e⃗⊥ is the unit vector perpendicular to the ring. In the
rotating frame the vortex rings move with the momentum

Pring ¼ μ̃
dEð1Þ

kin

dpring
¼ μ̃

dEð1Þ
kin=dRring

dpring=dRring

¼ ν
lnðRring=rλ0Þ

4Rring
: ð103Þ

It is curious to notice that giant classical vortex rings with
ν ≫ 1 can be formed in heavy-ion collisions and in rotating
nuclei, cf. [69–72] and references therein.
Supervortex and vortex lines with ν ¼ 1. Minimization

of the quantity

δEðν;ΩÞ ¼ Eð1Þ
kinðR; νÞ − LvðR; νÞΩ

¼ −LvðR; νÞ½Ω − Ωλ
c1ðνÞ� ð104Þ

in ν yields for R ≫ rλ0:

νm ¼ R2μ̃Ω=½2 lnðR=rλ0Þ�: ð105Þ

Here we used Eqs. (41), (42), and (96). As we see from
Eq. (104), dδE=dΩ ≠ 0 for Ω → Ωλ

c1, being in favor of the
first-order phase transition at Ω ¼ Ωλ

c1. In accordance with
Eq. (97) for Ω > 2Ωc1ðνÞ we have νm > 1. However
comparison of δEðνm;ΩÞ and νmEðν ¼ 1;ΩÞ shows that
at Ω > 2Ωc1ðνÞ the supervortex state becomes to be
unstable respectively the decay on νm vortices with ν ¼ 1

at least for R ≫ rλ0.
At a slow rotation, for an individual vortex the circu-

lation is κ ¼ R
v⃗d⃗l ¼ 2πjνj=m̃, cf. [2]. In a general rela-

tivistic case with the help of Eq. (6) we may write

Z
j⃗π;Φd⃗l ¼

Z
ðΦ�

π;σ∇Φπ;σ −Φπ;σ∇Φ�
π;σÞd⃗l=ð2iÞ

¼ νρπ;Φ2π=μ̄; ð106Þ

thus we recover relativistic generalization of the expression
for the circulation, i.e., κ ¼ 2πν=μ̄.
Lattice of vortices. As we have mentioned, the vortices

may form a lattice and the system begins to mimic rotation
of the rigid body characterized by the linear velocity
vrig ¼ ΩR < 1. In case of a vortex lattice we have [2]:

Nrig
v κ ¼ nvπR2κ ¼ 2πR · ΩR: ð107Þ

Here Nrig
v is the total number of vortices inside the vessel of

the internal radius R, which should be formed at given Ω in
order the interior of the vessel would rotate as a rigid body
together with the walls, and nv is the corresponding number
of vortices per unit area. We have

Nrig
v ¼ R2=R2

L; nv ¼ 1=ðπR2
LÞ; ð108Þ

and thereby distance between vortices at a rigid-body
rotation,

RL ¼ ffiffiffi
ν

p
=

ffiffiffiffiffiffiffi
μ̄Ω

p
; ð109Þ

decreases with increasing Ω.
The energy gain due to the rigid-body rotation of the

lattice of vortices mimicking the rotation of the vessel is
given by [2,73],

δE ≃ Nrig
v
�
Eð1Þ
kinðRLÞ − LvðRL; νÞΩ

�
: ð110Þ

This result is obtained within a simplifying assumption of
a uniform distribution of vortices [11]. A more accurate
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result computed for the triangular lattice [13,74], differs
only by a factor π

2
ffiffi
3

p ≃ 0.91 from that found for the uniform

approximation. Also, following simplifying consideration
of Ref. [2] we disregarded a difference of the rotation
angular velocity of the vortex lattice ω from that of the
vessel Ω. As it is shown in Appendix B, for Rm̃ ≫ 1 this
difference proves to be a tiny quantity.
Minimization of (110) yields

Nrig
v LvðRL; νÞ ¼ Nrig

v πρπ;Φν
2dz=ð2μ̄ΩÞ: ð111Þ

Setting this expression to (110) and using (108) and (109)
we obtain expression for the equilibrium energy

δE ≃ ρπ;ΦνΩπR2dz½lnðRL=rλ0Þ − 1=2�: ð112Þ

Minimum of δE corresponds to ν ¼ 1.
Thus, on this example we demonstrated that at the

rotation frequency Ω > Ωλ
c1 in the rotating vessel filled by

a pion-sigma gas (in our case at T ¼ 0) in cases described
by both models 1 and 2 there may appear chiral-vortices,
which at increasing Ω may form the lattice mimicking the
rigid-body rotation.
About upper critical angular velocity. With a further

increase of the rotation frequency the lattice is destroyed.
The minimal distance RL ∼ rλ0 at a dense packing of
vortices corresponds to the number of vortices per unit
area nv ∼ 1=ðπðrλ0Þ2Þ in Eq. (108) and to the maximum
rotation frequency given by

Ω ≃Ωc2 ∼ 1=½ðrλ0Þ2m̃�: ð113Þ

For a larger rotation frequency, Ω > Ωc2, the Φπ;σ vortex-
state should disappear completely and the initial σ ¼ v,
πi ¼ 0 vacuum state is restored. Note that for an extended
rotating system the value Ωc2R ≫ 1, however now it does
not contradict to causality, since the system does not
anymore rotate as a rigid body but it is separated on
filaments with typical distance ∼rλ0 between them and
Ωc2rλ0 ≪ 1. Note that in cold atomic gases the breakup of
the lattice occurs when Ω reaches the value Ωh ≪ Ωc2,
cf. Ref. [13], Ωh ∼Ωc2ξ=R in our case ξ ¼ rλ0, and for
Ω > Ωh in the center of the bucket there appears a hole.

E. Some estimates

Taking R ¼ 1 cm we haveΩR < 1 forΩ < 3 × 1010 Hz.
In case of He-II,Ωc1∼0.01Hz for R¼1 cm,Ωc2∼1012 Hz.
In 87Rb, Ωc2 ∼ 104 Hz. For μπ;Φ ¼ mπ following Eq. (97)
and using that mπ ≃ 2.1 × 1023 Hz we estimate Ωλ

c1 ∼
0.1 Hz at jνj ¼ 1. For Ω ≫ Ωλ

c1 we have LvΩ ≫ Eð1Þ
kin.

With the help of Eq. (108) and (109) we may estimate
number of vortices in the lattice at the rigid-body rotation

Nv ¼ μ̄ΩR2=ν < μ̄ðR=R>Þ2R>=ν; ð114Þ

where we used that ΩR> < 1. For R> ¼ 10 m, R ¼ 1 cm,
and μ̄ ∼mπ , ρπ;Φ ∼m3

π we estimate Nv < 1010=ν. The
distance between vortices is RL ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν=Ω½Hz�p
10−2 cm.

Causality condition for the rigid-body rotation is fulfilled
for Ω < 1=R> ∼ 107 Hz.
The initial rotation energy should be larger than the

rotation energy of the condensate, i.e. the condition

νρπ;ΦΩR2 < ρMΩ2R4
>=4 ð115Þ

should be fulfilled in case if R> − R ≫ R. From here we
get νρπ;Φ ≪ ρMðR>=RÞ2R>, provided ΩR> < 1. Taking
ρM ∼ 10 g=cm3 and R> ¼ 10 m, R ¼ 1 cm we obtain
νρπ;Φ ≪ 109ρ0. So, the condition (115) is easily satisfied,
since in any case in hadronic systems we deal with
ρπ;Φ ≲ 10ρ0. Taking R> ∼ R ¼ 1 cm we get νρπ;Φ ≪ ρ0.
For ρπ;Φ ∼ 0.1ρ0 with ρM ∼ 10 g=cm3 and R> ¼ 10 m we
have ν < 1010 and we estimate ν < 10 for R> ∼ R ¼ 1 cm.
Nucleons in pulsars form a superfluid. Then we deal

with the neutron Cooper pairs, which play a role of
the boson excitations, and μ̄ ≃ 2mN . Taking ν ¼ 1 and
using Eqs. (107) and (114) one gets estimation nv ≃
6.3 × 103 ðP= secÞ−1 vortices=cm2 provided rotation
period P is measured in seconds, cf. Ref. [75]. Then for
the Vela pulsar having period P ≃ 0.083 sec the distance
between vortices is 4 × 10−3 cm. For the pion superfluid
(at dynamically fixed particle number), μ̄ ≃mπ and we
get nv ≃ 5 × 102 ðP= secÞ−1 vortices=cm2.
As we have mentioned, rotation with a large circular

frequency (certainly at the constraint ΩR < 1) is possible
in energetic peripheral heavy ion collisions. Taking
diameter of the overlapping region of colliding nuclei
to be R ¼ 10 fm we get Ω < Ωcaus ¼ 1=R ≃ 0.14mπ .
Employing Eq. (97) we estimate Ωλ

c1 ∼ 0.05mπ . Taking
Ω ∼ ð1021–1022Þ Hz, R ≃ 10 fm we estimate Nv ∼ 3–30.
So, in a heavy-ion collision a part of the initial angular
momentum could be transferred from the baryon subsystem
to the chiral-vortex structure.
We should notice that, as it is believed, the spin

polarization of particles emitted in heavy-ion collisions
is induced by the coupling of the angular momentum
produced by colliding nuclei at a nonvanishing impact
parameter and the spin of particles distributed in the matter,
cf. the Barnett effect. Baryons in heavy-ion collisions
participate in production of strange particles, e.g., Λ
hyperons. The polarization of the Λ hyperon is measured
in its rest frame, cf. [76,77] and references therein. In our
case, the pion vortices, which can be formed provided the
temperature is smaller than the critical temperature for their
production and Ω > Ωλ

c1, absorb a part of the angular
momentum of the system and even may mimic a rigid-body
rotation of the system. At the freeze out they return part of
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their angular momentum back to baryons contributing to
the baryon polarization and thereby the measurable Λ
polarization. This possibility was not yet studied. Also,
pion and baryon momentum distributions for particles
involved in the vortex structures participating in the rotation
should be different from the ordinary thermal distributions.
For completeness we should also notice that the particle

vortex rings are inherent in the fluid dynamics. An example
of such vortex rings is the smoke rings. The toroidal baryon
vortex structures can be formed not only in heavy-ion
collisions but also in proton-nucleus collisions, cf. [78].
Vortex rings produced by jets propagating through the
quark-gluon matter were considered in Ref. [79]. In heavy-
ion collisions two baryon vortex rings can be formed at the
periphery of the stronger stopped matter in the central
region, one at forward rapidities and another at backward
rapidities, cf. [71] and references therein. At forward/
backward rapidities signal is expected to be strongest.
The ring Λ polarization observable is RΛ ¼ hP⃗Λη⃗iy, where
P⃗Λ is the polarization of Λ, η⃗ ¼ ½e⃗z × p⃗�=j½e⃗z × p⃗�j, e⃗z is
the unit vector along the beam, p⃗ is the momentum,
averaging runs over all momenta with fixed rapidity y.
Reference [71] argued that the vortex rings can be detected
by measuring the ring observable RΛ even in rapidity range
0 < y < 0.5 (or −0.5 < y < 0) on the level of ð0.5 −
1.5Þ% at

ffiffiffiffiffiffiffiffi
sNN

p ¼ ð5–20Þ GeV. It would be interesting
to study baryon-pion interaction within the vortex struc-
tures. These questions however require a detailed inves-
tigation, that goes beyond the scope of this paper.

F. Nuclear medium effects on chiral vortices

In the nucleon matter the pion mass should be replaced
by the effective pion gap,

m̃2 → ω̃2ðk0Þ ¼ m2
π − μ2π þ k20 þ Πðμπ; k0Þ; ð116Þ

in the above derived equations, cf. [10,54–56]. Here
k̂φ ¼ ∇φ=i, k0ðρÞ corresponds to the minimum of the
squared effective pion gap,Πðμπ; kÞ is the pion polarization
operator. For Ω ¼ 0 the minimum of ω̃ðkÞ at k0 ≠ 0
appears for ρ > ρc1, ρc1 ≃ ð0.5 − 0.8Þn0, cf. [10,80]. In-
equality ω̃2ðk0Þ > 0 holds for the nucleon density ρ < ρcπ,
where ρcπ ∼ ð1.5–3Þmπ is the critical density for the
pion condensation. For a nuclear droplet with ρ nearby
the critical point the value Ωc may become very small,
Ωc ∼ ω̃ðk0Þ.
For ρ > ρcπ one has ω̃2ðk0ðρÞÞ < 0. In absence of the

rotation within the σ model the p-wave pion condensation
in the cold matter was considered in [64] and for nonzero
temperature in [65], cf. also [55]. The nuclear droplet with
ρ > ρcπ may undergo self-rotation, some rough estimates
for this case were done in [6].
We should also note that in some models, like the

Manohar-Georgi model, cf. [56], the value ω̃2ðk0 ¼ 0Þ

may become negative for ρ > ρscπ. A rough estimate yields
ρscπ ∼ 2ρ0 demonstrating a possibility of the s-wave pion
condensation besides the p-wave one.

IV. CONCLUSION

In this work within the linear σ model we studied the
possibilities of the formation of the charged σπ� and
neutral σπ0 condensate complex vortex fields in various
systems: in the rotating cylindrical empty vessel, in the
vessel filled by the pion-sigma gas at the temperature T ¼ 0
(Bose-Einstein condensate) with a dynamically fixed (on
the timescale under consideration) particle number, as well
as in case of rotating nuclear systems. In the case of the
vessel filled by a pion-sigma Bose-Einstein condensate an
analogy is elaborated with the Bose-Einstein condensates
in cold gases and the condensed 4He. Various applications
of the results were discussed.
In Sec. II two models describing the σπ� condensate

(model 1) and the σπ0 complex field condensate (model 2)
were formulated. The presence of complex fields is
required to consider then the vortex field configurations
in the rotating charged and neutral systems. In the paper
body we employ the symmetry breaking term in the
Lagrangian density in the form explicitly demonstrating

presence of the nonzero pion mass, Lð2Þ
s:b: ¼ − m�2

π π⃗2

2
in

Eq. (11). The other choice, using Lð1Þ
s:b: ¼ ϵσ, is considered

in Appendix A. In the latter case in the model 2 the neutral
complex field appears at much higher value of the chemical

potential, μΦ, than it occurs for the model employing Lð2Þ
s:b:.

In the model 1 both choices lead to the same results in our
consideration. Therefore we further focused our consid-

eration on the choice Lð2Þ
s:b:. We demonstrated that in the rest

frame the vacuum state proves to be stable respectively
creation of the pion condensate fields. In case of the pion-
sigma gas with a dynamically fixed particle number at
T ¼ 0, comparing the energies in the models 1 and 2 we
found conditions, at which either the solution of the
model 1 or of the model 2 is energetically favorable.
When the density of πþ plus density of π− equals to the
density of π0, the charged field condensate proved to be
energetically favorable compared to the neutral σπ0 con-
densate. However for the case when densities of πþ, π− and
π0 are equal, the solution within the model 2 proved to be
energetically favorable. Moreover, the latter solution
appeared to be energetically favorable in the chiral limit
when the effective pion mass m�

π is artificially put zero.
Also, within the model 1 we found the response of the π�
condensate on the presence of charged massive particles
such as protons.
In Sec. III we studied chiral fields, which can be formed

within mentioned two models in the rotating systems. First
we noticed that the rotation at a constant angular velocity is
introduced in the Klein-Gordon equation in the rotating
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reference frame similarly to the constant electric potential,
cf. Eq. (35). In case of the nonrelativistic rotation the
rotation term equivalently can be introduced in the
Schrodinger and Klein-Gordon equations with the help
of the Galilean shift of the spatial variables, cf. Eq. (58). In
case of the relativistic rotation we then discussed a subtle
question about relations between the rotating frame, rigid-
body rotation and the causality condition. Then we con-
sidered a possibility of the formation of the chiral-field
vortex condensates in an empty rotating electrically neutral
vessel. Conditions for the formation of vortices in the
rotating frame and in the laboratory frame were discussed.
Two cases were studied: when the vessel rotates at the fixed
rotation frequency, case (i), and at the conserved initial
angular momentum, case (ii).
In Sec. III C we considered the case of the nonself-

interacting fields (λ ¼ 0), which is not specific for the σ
model. For the charged pions studied within the model 1 we
included interaction with the static electric field V ¼ eA0

and in both models 1 and 2 for a generality we included a
possibility of additional coupling of the complex boson
field with the 0-component of a static attractive external
vector field ω0. Putting both V and ω0 fields zero, we
demonstrated that the energy levels ϵn;ν in the rotating
vessel do not reach zero at increasing rotation frequency Ω
for ΩR < 1. [Equation (63) has no solution ϵ1;ν ¼ 0 for
V ¼ gω0 ¼ H ¼ 0 at ΩR < 1, where R is the internal
radius of the vessel]. Thereby we concluded that for
λ; V; gω0; H equal zero the rotated σπ vacuum remains
to be stable relatively formation of the vortex field.
However presence of even a rather small external attractive
V or/and ω0 fields may allow for the energy levels with
ν ≠ 0, where ν is the quantum of the angular momentum, to
reach zero at 1=R > Ω > Ωc. In case of the charged pions
described by the model 1 we demonstrated that the vortex
boson fields can be formed in the rotating vacuum in
presence of external electric and magnetic fields atΩ > Ωc.
Since the uniform rotation acts as an artificial electric field
it may cause a separation of the electric charges and
formation of a charged boson field vortex together with
an electric and magnetic fields. The critical rotation
frequency, Ωc, was evaluated for the limiting cases of
not too large values of the angular momentum, ν ≪ mπR,
cf. Eq. (69), and for the supervortex state with ν ≫ mπR,
cf. Eq. (71). We discussed various possibilities to observe
supervortex states. One of these possibilities is to place the
rotating vessel inside a charged capacitor in order to
produce an additional electric field potential inside the
vessel. Moreover we discussed influence of the switching
on and off an external magnetic field and injection of
external charged massive particles (e.g. protons) inside the
vessel.
Then we focused attention on a possibility of the

formation of the σπ vortices in the rotated ideal pion-
sigma gas at T ¼ 0 with a dynamically fixed particle

number. Here, the vortices appear for Ω > Ωid
c1ðν ¼ 1Þ ∼

1=ðR2mπÞ within both models 1 and 2, even in case V0 ¼
gω0 → 0. The latter quantity Ωid

c1ðν ¼ 1Þ proved to be very
small for mπR ≫ 1, cf. Eq. (78). Formation of vortex lines,
spirals and rings was considered. With increasing Ω the
individual vortices form the lattice mimicking the rigid-
body rotation of the system.
In Sec. III D we studied rotation of the σπ vacuum

and the pion-sigma Bose-Einstein condensate with a
dynamically fixed particle number in presence of the self-
interaction. It was shown that in the realistic case of a large
value of the coupling constant, λ, the interpolation solution,
cf. Eq. (83), of the equation of motion (81) differs
significantly from the Bessel function, which holds in
the limit λ → 0, see solution (62) of Eq. (60). The former
solution is constant in a broad region outside a narrow
vortex core. Also, the question about the boundary con-
dition at r ¼ R was discussed. Then we focused attention
on the consideration of the rotation of the vacuum in
absence and in presence of the fields V and gω0. In case of
the model 1 we demonstrated that the value of the critical
rotation velocity, Ωπ

c , cf. (90), coincides with the value
Ωc ¼ Ωðϵ1;ν ¼ 0; c1 ≪ 1Þ given by Eq. (69) in case of non-
self-interacting fields for ν ≪ mπR and with the value ΩH

c
given by Eq. (73) in presence of a magnetic field H (for
2=R2 < jejH ≪ m2

π both expressions (69) and (73) approx-
imately coincide). Note that Eq. (90) is easily fulfilled
for any attractive V and gω0 at large ν. So, a supervortex
state is formed for Ω > Ωπ

c. The largest possible values
of ν allowed by conservation of the angular momentum
are energetically favorable. In case of the model 2,
condition for the appearance of the vortex, cf. (92), proved
to be essentially different from that found for nonself-
interacting fields. The vortex solution for ΩR < 1 exists
here only at sufficiently large values of the attractive
interaction gω0.
We demonstrated that inside the rotating superheavy

nuclei of a large atomic number consisting of the nuclear
matter at a normal nuclear density at the condition
ΩR > 1=c1, at ν ¼ c1mπR, c1 ≫ 1, it may become ener-
getically profitable to form a charged pion supervortex.
Thereby such a rotating nucleus proves to be stable in the
rotating frame [in case (i)]. In case (ii) the kinetic energy of
the rotating nucleus is lost on a long timescale via the
surface electromagnetic radiation. For very large number of
baryons, A, such a radiation is strongly suppressed. So, it is
worthwhile to seek rather long-living relativistically rotat-
ing nuclei in heavy-ion collisions, superheavy nuclei and
nuclearites in cosmic rays.
We also indicated that in difference with the tunneling

mechanism for the creation of the particle pairs in static and
slowly varying electric fields, the boson vortex field can be
produced right inside the rotating vessel. The most efficient
way to produce a vortex field might be is to inject into the
vessel a rare gas of massive charged particles, e.g., protons.
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Charged pions forming the vortex state will be then created
in radiation reactions inside the system.
Then we studied behavior of the rotating nonideal pion-

sigma Bose-Einstein condensate (gas with a dynamically
fixed particle number) at zero temperature. In this case the
chemical potential μπ;Φ ≠ 0 is found from the condition of
the conservation of the particle number and we considered
the case when μπ;Φ ≫ Ωνþ V0 − gω0. Here our consid-
eration is similar to that takes place at nonrelativistic
rotation of the He-II and the cold atomic gases. We note
that expression for the critical angular velocity, cf. Eq. (97),
in this case with a logarithmic accuracy coincides with
Eq. (78) derived above for the ideal gas.
Vortex lines may form spirals. In the system of a finite

size, individual vortices characterized by the minimal
angular momentum ν ¼ 1 may form rings. Also we
considered a possibility that the external angular momen-
tum is accumulated in the lattice of vortices mimicking
the rigid-body rotation. With increasing rotation frequency
the lattice is destroyed. As the result, either a giant vortex
state can be formed for 1=R > Ω > Ωh, or the system will
represent a dense packing of individual vortices placed at
distances ∼rλ0 from each other undergoing a very rapid
rotation (with 1=rλ0 > Ω > 1=R). For Ω > Ωc2 the vortex
fields should disappear completely.
We discussed various possible applications of the results

to such objects as the rotating empty buckets, buckets filled
by bosons at a fixed particle number, nuclear rotating
metastable objects and fireballs formed in peripheral heavy-
ion collisions. In the latter case the vortices may appear
owing to a friction and viscosity between fluxes of hadrons-
participants and hadrons-spectators. One of the restrictions
for the rapid rotation of the fireball formed in a heavy-ion
collision follows from the causality limit, Ω < Ωcaus.
For Ω ≥ Ωcaus ∼ 1=R, where R now is the transversal
radius of the nuclear fireball, one may expect occurrence
of an instability. This instability may result in the formation
of separately rotating vortices or a fission of the system on
smaller pieces rotating with higher rotation frequencies.
These possibilities should be studied more carefully.
In the given paper we studied vortex solutions for complex

scalar fields in rotating systems. The case of the vector
complex boson fields will be considered elsewhere.
Instabilities in rotating hot gluon plasma were recently
studied by lattice simulations, cf. [81].
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APPENDIX A: SYMMETRY BREAKING TERM
TAKEN IN FORM Lð1Þ

s:b:

In this appendix we study the case when the symmetry
breaking term in the Lagrangian density is taken in the

form Lð1Þ
s:b:. For a small ϵ > 0 energy minimum corresponds

to σ ¼ vþOðϵÞ.
From (10) we see that the energy density of the state

σ ¼ vþOðϵÞ is now smaller than that for σ ¼ −vþOðϵÞ
by δE ≃ −2vϵ. Substituting the fields σ0 ¼ σ − v, π⃗0 ¼ π⃗ in

the expression Lϕ þ Lð1Þ
s:b: and varying it in fields we find

new quantities

σ ¼ vþ ϵ=ð2λv2Þ; m2
σ ¼ 2λv2 þ 3ϵ=v: ðA1Þ

Replacing these quantities back to the Lagrangian density
we see that there appears the pion mass term δL ¼
−ϵπ⃗2=ð2vÞ and thereby we find

m�2
π ¼ ϵ=v: ðA2Þ

Within the model employing the charged pion fields
(model 1) we now take σ ¼ vþ ϵ

2λv2, Φπ ¼ π1 þ iπ2,
π3 ¼ 0. Including interaction of Φπ with static electric
field V and static external field ω0 after separation of terms
linear in ϵ we arrive to the Lagrangian density

LV
π ¼ ðμπ − V − gω0Þ2jΦ0πj2

2
−
j∇Φ0πj2

2
−
m�2

π jΦ0πj2
2

−
λjΦ0πj4

4
þ ϵvþ ð∇VÞ2

8πe2
þ npV; ðA3Þ

compare with Eq. (12) taken at Φσ ¼ 0. Thus all results we
obtain in the paper body employing the model 1 with the

symmetry breaking term Lð2Þ
s:b: hold also with Lð1Þ

s:b:.
Now let us focus on the model 2. Shift of the vacuum

value σ by the linear term ∝ ϵ, which we did in order to
reproduce pion mass term, results in necessity of a
modification of the model 2, where σ and π3 meson fields
should be unified in a complex field. So, we take

Φσ ¼ σ̃ þ iπ3; ðA4Þ

π1 ¼ π2 ¼ 0, V ¼ 0, with the field σ̃ ¼ σ − v − ϵ
2λv2

counted from the new vacuum value. Then in the linear
approximation in small ϵ we arrive at

LΦ ¼ ðμΦ − gω0Þ2jΦ0σj2
2

−
j∇Φ0σj2

2
−
m�2

π π23
2

−
m2

σσ̃
2

2
−
λjΦ0σj4

4
þ ϵv; ðA5Þ

Averaging of the term m�2
π π2

3

2
þ m2

σ σ̃
2

2
yields M2Φ2

0σ
2

with
M2 ¼ ðm2

σ þm�2
π Þ=2 ≫ m�2

π . Thereby the complex mean-

field solution Φ0σ ≠ 0 in the model using Lð1Þ
s:b: appears at

much higher value of μΦ than it occurs for the model

employing Lð2Þ
s:b:.
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APPENDIX B: ANGULAR VELOCITIES
OF VORTEX LATTICE AND VESSEL

The kinetic energy density of the individual vortex in a
rather rare boson sigma-pion gas at its nonrelativistic
rotation with the angular velocity ω in the laboratory frame
is given by

Eð1Þ
kin ≃

ðm̃½ω⃗ × r⃗3� þ m̃δv⃗Þ2jΦπ;σj2
2

; m̃δv⃗θ ¼
ν

r
; ðB1Þ

cf. [11], and we used the variable shift∇ → ∇ − im̃ v⃗ in the
gradient term of the energy density. The ω, Ω dependent
contribution to the Gibbs energy density in the rotation
frame is as follows

δEð1Þ½ω;Ω� ≃ m̃2ð½ω⃗ × r⃗3� þ δv⃗Þ2jΦπ;σj2
2

− ⃗lð1Þv Ω⃗; ðB2Þ

density of angular momentum is ⃗l ¼ Isω⃗þ ⃗lð1Þv ,
Is ¼ m̃2r2jΦπ;σj2.
For the array of vortices we have ⃗l ¼ Isω⃗þ nv ⃗l

ð1Þ
v . Thus

we obtain

E½ω;Ω� ≃ Jsω2=2 − JsωΩ − NvLvðΩ − ωÞ
þ NvEv

kinðωÞ; ðB3Þ

where

Ev
kinðωÞ ≃ dzπν2jΦπ;σj2 lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νΩc2=ω

p
Þ; ðB4Þ

cf. Eq. (91), Js ≃ πR4dzm̃2jΦ0π;σj2=2. We used that the
logarithmic divergence is now cut at r ∼ RLðωÞ given by
Eq. (109) where now Ω should be replaced by ω. Minimi-
zation of Ev

kinðωÞ in ω gives Lv ¼ −∂Ev
kinðωÞ=∂ω ¼

dzπν2jΦπ;σj2=ð2ωÞ that for ω ¼ Ω coincides with (111).
Minimizing Eq. (B3) in ω we obtain ω½Ω� ≃Ω−
NvðLv þ Ev

kin=ωÞ=Js.
The difference ω −Ω is proved to be negative showing

that the lattice of vortices rotates with a bit smaller angular
velocity than the vessel. For Ω ≫ 1=ðm̃R2Þ we recover
Eq. (112). For Ωc1 ≪ Ω ≪ Ωc2 we can put ω ≃Ω, as it has
been done in the paper body.
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