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The leading-order chiral Lagrangian for the baryon octet and decuplet states coupled to Goldstone
bosons and external sources contains six low-energy constants. Five of them are fairly well-known from
phenomenology, but the sixth one is practically unknown. This coupling constant provides the strength
of the (p-wave) coupling of Goldstone bosons to decuplet states. Its size and even sign are under debate.
Quark models and quantum chromodynamics (QCD) for a large number of colors provide predictions,
but some recent phenomenological analyses even suggest an opposite sign for the Delta-pion coupling.
The Goldberger-Treiman relation connects this coupling constant to the axial charge of the Delta baryon.
This suggests a Wu-type experiment to determine the unknown low-energy constant. While this is not
feasible in the Delta sector because of the large hadronic width of the Delta, there is a flavor symmetry
related process that is accessible; the weak semileptonic decay of the Omega baryon to a spin 3=2
cascade baryon. A broad research program is suggested that can pin down at least the rough size and the
sign of the last unknown low-energy constant of the leading-order Lagrangian. It encompasses
experimental measurements, in particular the forward-backward asymmetry of the semileptonic decay,
together with a determination of the quark-mass dependences using lattice QCD for the narrow decuplet
states and chiral perturbation theory to extrapolate to the Delta sector. Besides discussing the strategy of
the research program, the present work provides a feasibility check based on a simple leading-order
calculation.
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I. MOTIVATION

The strong interaction binds quarks to hadrons and
protons and neutrons to atomic nuclei. It is generally
accepted that quantum chromodynamics (QCD) provides
the basis for a quantitative description of all phenomena
governed by the strong interaction [1]. Yet, understanding
the nonperturbative aspects of QCD provides the most
challenging problem within the standard model of particle
physics.
Since the famous prediction of the Ω baryon based on

the SU(3) flavor symmetry proposed by Gell-Mann [2,3]
and Ne’eman [4], the flavor-decuplet states have been very
instrumental in revealing properties of the strong inter-
action and therefore of QCD. Even if one restricts the
attention to the ground-state baryon octet, with the proton
and neutron (nucleons) as its most prominent members, the
dynamics of QCD involves the Δ and other decuplet states

at the quantum level, since those are close in mass to the
nucleons and couple strongly. Examples for the impor-
tance of decuplet states range from weak decays of octet
baryons [5–8] over baryon radii [9–13] and pion-nucleon
scattering [14] to the properties of atomic nuclei and
nuclear reactions [15–19].
Chiral perturbation theory constitutes the effective

field theory of QCD in the low-energy sector of light
quarks [5,20–23]. In the baryon sector, the two lowest-
lying multiplets (octet and decuplet) are separated by a
mass gap from the higher-lying states. In the quark model,
this gap is caused by the excitation of orbital angular
momentum. In contrast, the change from the octet to the
decuplet requires only a spin flip; see, e.g., the minire-
view of the quark model in [24]. In QCD for a large
number Nc of quark colors [25,26], the mass difference
between octet and decuplet states vanishes [27] (in
the chiral limit). The bottom line of these considera-
tions is that there is an energy regime where it makes
sense to consider an effective field theory with the
Goldstone bosons, the octet baryons and the decuplet
baryons as relevant degrees of freedom. The leading-
order chiral Lagrangian including the decuplet states is
given by [5,28–33]
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For a detailed definition of all the building blocks see
Refs. [32,33]. What matters here are the following six low-
energy constants.
mð8Þ andmð10Þ: These are the masses for the baryon octet

and decuplet, respectively, in the chiral limit. Their values
are essentially known from the Gell-Mann–Okubo mass
relations [2,34]. Yet, if one aims for higher accuracy, e.g.,
for the nucleon, the determination of the key quantity, the
nucleon sigma term, is a matter of active research [35].
D andF: These are the axial charges of the octet baryons.

They are essentially known from semileptonic weak decays
of the octet baryons [5,36]. Also here, various methods for a
more precise determination (chiral perturbation theory,
lattice QCD) are currently developed [31,37–39].
hA: This interaction strength connecting baryon octet and

decuplet is essentially known from the strong decays of
decuplet baryons to octet baryons and pions. If one fits a
leading-order calculation based on (1) to the data, the values
for hA obtained from the different strangeness sectors show a
spread of about �20% (see, e.g., [40,41]). This is the
expected size of flavor-symmetry breaking.
HA: This low-energy constant provides the strength of

the coupling of decuplet states to Goldstone bosons. On
account of the Goldberger-Treiman relation [42,43] it
might be called axial charge of the decuplet states (in
the chiral limit). This quantity is to a large extent unknown.
The purpose of the present work is to devise a strategy

that can lift our knowledge of HA to the level of the other
leading-order low-energy constants.

II. KEY OBSERVABLE

Theory estimates forHA exist. What is missing, however,
are a direct experimental determination and a first-principle
calculation based, e.g., on lattice QCD. If one considers
two-flavor QCD for a large number of quark colors (large-
Nc limit), one obtains HA ¼ 9

5
gA≈2.27 [30,44] with the

axial charge gA ¼ Dþ F of the nucleon. This agrees
also with a quark-model estimate [45].1 Three-flavor
QCD for a large number of quark colors yields HA ¼
9F − 3D ≈ 1.74 [29,40].2 Below, wewill use jHAj ¼ 2 for a
sample calculation.

Note that all these theory estimates claim that F, D and
HA have the same sign. In this context it is important to
stress that the sign of hA relative to the other low-energy
constants is a matter of convention, but the relative signs
between F, D and HA have physical significance. Linear
combinations of F and D enter the various formulas for
semileptonic hyperon decays and baryon-meson coupling
constants [27]. Linear combinations of g3A ¼ ðF þDÞ3 and
HA · h2A enter, e.g., the loop corrections of pion-nucleon
scattering [14].
In contrast to the previously discussed “equal-sign”

estimates, a sign of HA opposite to the quark-model
prediction has been suggested by some phenomenological
analyses based on two-flavor loop calculations in chiral
perturbation theory that include the Delta degrees of
freedom [14,45]. In [14] pion-nucleon scattering has been
analyzed. Here HA appears in the loop corrections in its
incarnation as the strong coupling constant of Δ-Δ-π.3

Naturally the determination of HA is here very indirect.
Even for the nucleon-nucleon-pion coupling, a deter-

mination via pion-nucleon or nucleon-nucleon scattering
is more indirect and less precise than the direct determi-
nation via the axial charge gA. In fact, the Goldberger-
Treiman relation [42,43], which is inherent to the chiral
Lagrangian (1), relates a strong coupling to a weak
process. For the nucleon, it relates the N-N-π coupling
to the beta decay. For the Delta states this would translate
to processes like

Δ0 → Δþe−ν̄e; ð2Þ

suggesting a Wu-type experiment [46] for Delta baryons.
However, the pions are lighter than the mass difference
between Delta and nucleon. Therefore the Delta states
are very short-lived. Their weak decays like (2) are not
accessible in practice. However, SU(3) flavor symme-
try, which is also inherent to the leading-order chiral
Lagrangian (1), relates such inaccessible semileptonic
Delta decays to measurable Ω decays. The latter is stable
with respect to the strong interaction because the kaon is
heavier than the mass difference between Ω and the
cascade state Ξ [24].
The flavor sibling of (2) that is accessible by experi-

ments is

Ω−→Ξ�0l−ν̄l; ðWu-type experimentÞ ð3Þ

where Ξ�0 denotes the neutral excited cascade state of
spin 3=2 and l denotes an electron or muon. The state Ξ�0
can be completely reconstructed from charged states,

1In [14,45], the low-energy constant HA is called g1.
2In [40], the low-energy constant HA is called −H.

3Strictly speaking, the Goldstone bosons couple in two partial
waves to the spin-3=2 states; a p- and an f-wave, but the latter can
only appear in the next-to-next-to-leading-order Lagrangian at
the earliest.
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certainly an advantage for experimental analyses. The
decay sequence is Ξ�0 → πþΞ−, followed by Ξ− → Λπ−
at a displaced vertex, followed by Λ → π−p at another
displaced vertex. The unobserved neutrino can be recon-
structed by the missing mass. It should be stressed,
however, that so far this process (3) has not been observed.
Below we estimate the branching ratio and demonstrate
that the observation of the process should be feasible by
present-day experiments.
One might think that theΔ-Δ-π coupling constant can be

determined from lattice QCD. However, lattice QCD faces
similar problems as the experiments. For physical quark
masses, the Delta states are so broad that they need to be
reconstructed from pion-nucleon scattering by the Lüscher
method [47]. Thus, one would have to carry out a detailed
coupled-channel analysis involving five-point functions
with two three-quark currents (baryons) and three quark-
antiquark currents (mesons).
Also in lattice QCD, weak processes like (3), related by

the Goldberger-Treiman relation to the coupling Ω-Ξ�-K,
are much more promising to pin down HA. Note that
the Ξ�, albeit unstable, has only a width of 9 MeV. A
traditional analysis, treating the Ξ� as if stable [48], should
yield reasonable results. Still we stress that such results
require interpretation as demonstrated for the case of the
Goldberger-Treiman relation applied to the nucleon [49].
Of course, our world is not SU(3) flavor symmetric. Yet,

the traditional success of Gell-Mann and others in identi-
fying flavor multiplets and predicting the mass of the
Omega baryon suggests that the strange-quark mass is still
light enough to allow for systematic calculations of flavor-
symmetry breaking effects using chiral perturbation theory,
i.e. performing perturbation theory in the three lightest
quark masses. In particular, it appears rather unlikely that
the sign of the Δ-Δ-π coupling constant would turn out to
be different from the sign of the Ω-Ξ�-K coupling con-
stant.4 Under the assumption that the sign remains the
same, the experiment can decide about the sign of HA by
measuring the differential distribution of the decay (3). This
will be substantiated below by a crude leading-order
calculation. For the decision about the sign and the rough
size this should be sufficient.

III. RESEARCH STRATEGY

The first step should be a measurement of the decay
process (3). But we have the QCD tools at hand to do much
better than interpreting such a measurement by a crude
leading-order calculation and assuming implicitly that the
flavor-breaking effects are small when extrapolating to the
Delta sector (where there is disagreement about the sign of
the Δ-Δ-π coupling constant). A better quantitative

determination of HA and the impact of flavor breaking
requires a dedicated theory initiative that complements the
measurement of the process (3). This provides a formidable
task but is within reach. In general, processes like (3)
involve 14 form factors [50]. To deal with the quite
involved tensor structures, it is suggestive to develop a
projector formalism along the lines of [51].
The general strategy for a model-independent determi-

nation of these form factors involves lattice QCD and loop
calculations in chiral perturbation theory. The latter con-
tains several undetermined counter terms (low-energy
constants beyond leading order) if one pushes the calcu-
lations to the loop level. In addition, the region of validity is
limited to small momentum transfers and small quark
masses. On the other hand, there are no problems in
principle to address unstable states like the rather broad
Delta baryons; see, e.g., [45,52]. Lattice QCD is not limited
to particularly small quark masses or momentum transfers.
Instead it is numerically expensive to use quark masses as
light as the physical values for up- and down-quark masses.
In addition, the influence of excited states on the proper
extraction of form factors must be carefully studied [49]. As
already pointed out, it is highly nontrivial to address the
form factors of broad resonances. This suggests to combine
the two theory approaches.
In contrast to experimental results, both theory

approaches allow for a variation of the quark masses. In
that way one can compare not only the dependence of the
form factors on the momentum transfer but also on the
quark masses. This allows for a more detailed investigation
of the region where results from lattice QCD and from
chiral perturbation theory agree. In this way one can use
lattice-QCD results to pin down the values of low-energy
constants. In a second step one can then use chiral
perturbation theory to extrapolate to those decuplet states
with smaller life times.
Once the whole machinery has been developed, one can

check to which degree the strength or even if the sign of the
decuplet-decuplet Goldstone-boson coupling constants
depends on the strangeness sector. One can also check
to which extent the Goldberger-Treiman relation is satisfied
in the various strangeness sectors.
But one should not blur the complications that lie on the

way. The interplay between loop renormalization and
power counting and its possible complications are well-
documented [23]. In addition, calculations in chiral per-
turbation theory are often restricted to the third chiral
order [8,13,14,52,53] in view of the plethora of low-energy
constants—in particular four-point interactions—that
appear at next-to-leading order (NLO) [32]. Pushing the
calculations to the fourth chiral order requires to fix these
NLO low-energy constants, e.g., by fits to results from
lattice QCD [13,38,54,55]. Of course, this calls also for a
high quality on the lattice side, providing a variety of quark
masses and momentum transfers for the form factors.

4What is meant is always the relative sign between the axial-
vector and the vector coupling constant for the various baryon
combinations.
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Another topic of ongoing research is the question which
power counting is most effective for calculations in chiral
perturbation theory that include the Delta (two-flavor
calculations) or the decuplet (three-flavor calculations)
states. The decay region probed by (3) requires a power
counting that is somewhat different from the one applicable
to generic spacelike form factors and meson-baryon scat-
tering reactions; see, e.g., the discussions in [6,33]. In
addition, there are different suggestions how to treat the
mass difference between baryon octet and decuplet relative
to the Goldstone boson masses (MK for kaons, Mπ for
pions). For three flavors, mð10Þ −mð8Þ ∼M2

K has been
suggested in [6], while mð10Þ −mð8Þ ∼MK has been used
in [33,41]. For two flavors, the small-scale expansionmΔ −
mN ∼Mπ has been suggested in [56] while the “delta
expansion” ðmΔ −mNÞ2 ∼Mπ has been used in [30,57].
Comparisons between chiral perturbation theory and lattice
QCD will shed more light on the most effective power
counting scheme, but in view of these challenges, it should
be clear that the necessary third pillar are high-quality data
of the process (3) that serve to provide valuable constraints
and therefore cross-checks of the theory results.

IV. FEASIBILITY CHECK

To check the feasibility of experimental measurements, a
leading-order calculation is presented for the reaction (3).
We stress again that eventually this should and can be
improved by calculations in lattice QCD confronted with
the corresponding (loop) calculations in chiral perturbation
theory. The sole purpose of the present work is to motivate
such activities in experiment and theory.
In the following, Ξ� denotes the neutral spin-3=2

decuplet state with strangeness −2, K denotes the charged
kaon. The Lagrangian (1) leads to the following Feynman
matrix element for the process (3):

M ¼ ūlγαð1 − γ5Þvνl
× ūμΞ�

�
cVγα − cAγβγ5

�
gαβ −

qαqβ
q2 −M2

K

��
gμνuνΩ ð4Þ

with q ≔ pΩ − pΞ� and

cV ¼
ffiffiffi
3

2

r
GFVus; cA ¼HA

ffiffiffi
1

6

r
GFVus; ð5Þ

whereGF denotes the Fermi constant and Vus the element of
theCabibbo-Kobayashi-Maskawa quark-mixingmatrix [24].
For massless leptons, the kaon pole in (4) would not

contribute. If one then replaced HA → þ3, one would
obtain an overall structure γαð1 − γ5Þ, resembling the
elementary structure of the weak interaction. Of course,
spin-3=2 decuplet states are not elementary. A common
way to construct interpolating quark currents for the

spin-3=2 vector-spinors involves left- and right-handed
quarks [58]. Therefore, a positive value for HA is not
guaranteed. But it makes it plausible that quark model and
large-Nc considerations lead to positive values for HA.
The complete angular distributions will be shown else-

where [50]. Here we determine the decay width

ΓΩ→Ξ�lν̄l ¼
Z

Δm2

m2
l

dq2
1

ð2πÞ3
jp⃗ljjp⃗Ωj
16m3

Ω

Z þ1

−1
d cosθ jMj2 ð6Þ

and the forward-backward asymmetry

Γfb ≔
Z

Δm2

m2
l

dq2
1

ð2πÞ3
jp⃗ljjp⃗Ωj
16m3

Ω

×

�Z
0

−1
d cos θ jMj2 −

Z þ1

0

d cos θ jMj2
�
; ð7Þ

whereΔm ≔ mΩ −mΞ� . Results are presented for the cases
HA ¼ �2, 0 for electrons and for muons. In the previous
formulas, q2 denotes the square of the invariant mass of the
dilepton system. The angle θ and the three-momenta are
determined in the center-of-mass frame of the dilepton (not
in the rest frame of Omega). The angle θ is measured
between the flight direction of the charged lepton l and the
baryon direction.5

The results are provided in Table I. To interpret these
results, it is important to understand that for massless
leptons the forward-backward asymmetry is proportional to
the product cV · cA. For massive leptons, there are extra
terms that scale with c2V and c2A; see also [33,41] for a
related discussion. The decay involving an electron is
sufficiently close to the massless case, while the muon
is not. The results suggest that the decay with an electron is
well-suited to determine the sign of HA, but one needs to
achieve a 1% accuracy to resolve the forward-backward
difference, i.e. one needs sufficient statistics for a high-
quality angular distribution.
For the decay with a muon, the differences caused by a

sign change of HA are small. It remains to be seen if a
fully differential distribution reveals more differences [50].

TABLE I. Branching ratios and forward-backward asymmetry
for various cases.

ΓΩ→Ξ�lν̄l=ΓΩ;tot Γfb=ΓΩ→Ξ�lν

l ¼ e, HA ¼ þ2 1.2 × 10−4 þ0.011
l ¼ e, HA ¼ 0 6.7 × 10−5 −0.00043
l ¼ e, HA ¼ −2 1.2 × 10−4 −0.012
l ¼ μ, HA ¼ þ2 4.3 × 10−6 −0.23
l ¼ μ, HA ¼ 0 2.5 × 10−6 −0.33
l ¼ μ, HA ¼ −2 4.3 × 10−6 −0.25

5In this dilepton rest frame, both baryons fly in the very same
direction.
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But in addition, the muon case has a significant phase-
space suppression. Thus, the electron case appears to be
more promising.
The estimates of the branching ratio indicate that the

decay (3) is rare but should be within reach of present
experiments like BESIII [59] or LHCb [60]. The branching
ratio does not depend on the product cV · cA. It contains
only c2V and c2A terms. Thus it cannot be used to determine
the sign ofHA, but if the branching ratio can be determined
with a precision of, say, 10%, then it will be possible to
estimate the size of the low-energy constant HA. If the

flavor-breaking effect is comparable to the case of the other
decuplet related low-energy constant hA (around �20%),
then the measurement of the process (3) will provide a first
direct determination of size and possibly sign of the last
unknown low-energy constant of the leading-order
Lagrangian of chiral perturbation theory.
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