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We propose a method to calculate the qq̄ light front wave functions (LFWFs) of photons at low virtuality,
i.e., the light front amplitude of γ� → qq̄ at low Q2, based on a light front projection approach. We
exemplify this method using a contact interaction model within Dyson-Schwinger equations formalism and
obtain the nonperturbative photon qq̄ LFWFs. In this case, we find the nonperturbative effects are encoded
in the enhanced quark mass and a dressing function of covariant quark-photon vertex, as compared to the
leading order quantum electrodynamics photon qq̄ LFWFs. We then use nonperturbative-effect modified
photon qq̄ LFWFs to study the inclusive deep inelastic scattering HERA data in the framework of the color
dipole model. The results demonstrate that the theoretical description of data at lowQ2 can be significantly
improved once the nonperturbative corrections are included in the photon LFWFs.
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I. INTRODUCTION

The photon provides an important probe to a hadron’s
internal structure, which historically helped find quantum
chromodynamics (QCD) [1,2]. The photon is considered as
a clean probe, as its interactions with quarks are primarily
through quantum electrodynamics (QED). While this is
true for a photon with high virtuality Q2, the situation gets
more complicated at low Q2. The reason is that, although
the photon is an elementary particle, it can quantum
fluctuate into other states with the same quantum number
in scattering processes, including γ� → qq̄ that contains
colored objects. These colored objects interact strongly at
low scales and bring nonperturbative QCD effects.
In a light front (or light cone) frame, the splitting

amplitudes of γ� → qq̄ are referred to as the photon qq̄
light front wave functions (LFWFs) [3–5]. They are
interesting by themselves as they encode qq̄ components
of a photon. Meanwhile, the photon qq̄ LFWFs are
important input in the color dipole model, which had been

applied to the study of various processes such as inclusive
and diffractive deep inelastic scattering (DIS) [6–11],
diffractive vector meson production [12–15], and ultra-
peripheral heavy ion collisions [16–19]. For a few decades,
photon LFWFs at leading order QED [3] were employed in
color dipole model studies, until next leading order correc-
tions from QCD became available in recent years [20–24].
Meanwhile, the nonperturbative photon LFWFs were also
considered in literature [4,25–27]. Therein, a model function
was introduced to mimic the nonperturbative effect, with
model parameters determined by phenomenological fitting
of experiment data. It was found that the inclusion of the
nonperturbative QCD corrections in the photon LFWFs
improve the description of the experimental data for the
observables that are sensitive to color dipoles of large size,
namely,with lowQ2 [26,27]. It is also anticipated that the real
photons (Q2 ¼ 0) produced in deeply virtual Compton
scattering are strongly affected by the nonperturbative
effects [25].
On the other hand, to our best knowledge, a theoretical

calculation on a photon’s nonperturbative qq̄ LFWFs at low
virtuality is absent in the literature to date. In this paper we
will tackle this problem using a light front projection
method we introduced in [28]. Therein, a projection
formula to extract vector meson qq̄ LFWFs from their
covariant Bethe-Salpeter (BS) wave functions was given.
As the photon is not a composite particle, the meson BS
wave functions should be replaced by the photon’s inho-
mogeneous BS wave function, which is essentially the
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covariant (unamputated) quark-photon vertex. The non-
perturbative effects in a quark-photon vertex at low Q2 had
long been investigated by the Dyson-Schwinger equations
(DSEs) approach [29]. The authors found that by properly
dressing the quark-photon vertex, the pion charge radius
increases by 50% and gets close to experimental value.
Naturally, these nonperturbative effects can be conveyed to
photon qq̄ LFWFs.
In this paper, we will explore the nonperturbative effects

in photon qq̄ LFWFs starting with a simplified model, i.e.,
the contact interaction model within the DSEs. The contact
interaction model had been widely employed in the study
of various hadron properties [30–39]. Despite the simplic-
ity of the model, it provides a good ground to depict our
projection method and calculation techniques. It also
renders analytical results on photon qq̄ LFWFs, showing
intuitively how the nonperturbative effects are encoded in
the photon qq̄ LFWFs through dressed scalar functions.
This paper is organized as follows. In Sec. II, we

introduce the general formalism of photon qq̄ LFWFs,
as well as the light front projection formula to extract them
from covariant quark-photon vertex. In Sec. III, we reca-
pitulate the contact interaction model within the Dyson-
Schwinger equations approach and demonstrate the calcu-
lation of nonperturbative photon qq̄ LFWFs with detail. In
Sec. IV, we show that the inclusion of nonperturbative
photon LFWFs can improve the agreement between color
dipole model calculations and small-x inclusive DIS data at
low Q2. Finally, we summarize in Sec. V.

II. PHOTON qq̄ LFWFs

Consider a virtual photon γ�, including the real photon as
the limiting case Q2 → 0, which schematically has a Fock-
state expansion on the light front as

jγ�physi ¼ jγ�barei þ jeþe−iγ� þ
X

f¼u;d;s…

jqfq̄fiγ� þ…: ð1Þ

Here the jeþe−iγ� can be calculated with perturbative QED.
The jqfq̄fiγ� , on the other hand, is more complicated. At
high virtuality, asymptotic freedom allows a perturbative
calculation. Yet at low virtuality, the quark and antiquark
components interact strongly and the system can be non-
perturbative, where nonperturbative QCD method is called
for. A general decomposition of jqfq̄fiγ� reads

jqfq̄fiΛγ� ¼
X
λ;λ0;i;j

Z
d2kT
ð2πÞ3

dx

2
ffiffiffiffiffi
xx̄

p δijffiffiffi
3

p ΦΛ;ðfÞ
λ;λ0 ðx; kTÞ

× b†f;λ;iðx; kTÞd†f;λ0;jðx̄; k̄TÞj0i: ð2Þ

The ΦΛ;ðfÞ
λ;λ0 is the qq̄ LFWF of photon with helicity Λ and

quark (antiquark) of flavor fðf̄Þ and spin λ (λ0). The Λ ¼
0;�1 and λ ¼ ↑ or ↓, denoted as ↑ ¼ þ and ↓ ¼ − for

abbreviation in following. The bþ and dþ are creation
operators of quarks and antiquarks, respectively. The i and
j are the color indices. The kT ¼ ðkx; kyÞ is the transverse
momentum of the quark, and k̄T ¼ −kT for antiquarks.1

The longitudinal momentum fraction carried by the quark is
x ¼ kþ=Pþ, with x̄ ¼ 1 − x for the antiquark. Note that
we take the light cone four-vector convention as A� ¼
1ffiffi
2

p ðA0 � A3Þ and AT ¼ ðA1; A2Þ throughout this paper.

Finally, from Eqs. (1) and (2) we can see that the photon
qq̄ LFWFs are the transition amplitudes of the photon into
qq̄ states on the light front. They should not be viewed as
the light front bound state wave functions, as the photon is
not a composite particle.
In [28], we have introduced the light front projection

method to obtain qq̄ LFWFs of vector mesons from their
BS wave functions. The projection formula applies to real
and virtual photons as well, e.g.,

ΦΛ;ðfÞ
λ;λ0 ðx;kTÞ

¼ −
1

2
ffiffiffi
3

p
Z

dk−dkþ

2π
δðxQþ − kþÞ

×Tr
n
Γλ;λ0γ

þSfðkÞ½efeΓγ�;ðfÞðk;QÞ · ϵΛðQÞ�Sfðk−QÞ
o
:

ð3Þ
The SðkÞ and Γγ�

μ ðk;QÞ are the fully dressed quark
propagator and (amputated) quark-photon vertex in the
momentum space. They can be obtained by solving the
quark gap equation and inhomogeneous BS equation,
which will be addressed in a later section. The ϵμΛðQÞ is
the photon polarization vector. The Γ�;∓ ¼ I � γ5 and
Γ�;� ¼ ∓ðγ1 ∓ iγ2Þ project out corresponding quark-anti-
quark helicity configurations. Note that there is an implicit
unit matrix in color space attached to quark propagators and
vertices. The trace is taken over Dirac and color indices. We
also note that this equation is formulated in Minkowski
space. As the contact interaction model we employ takes
the Euclidian space, we will transfer our calculation to
Euclidian space later, with qq̄ LFWFs being the same in
two spaces. Finally, we remark that in Eq. (3) we have taken
a specific momentum partition, i.e., the momentum of the
quark is k and the antiquark is k −Q. In a general sense,
one can choose kη ¼ kþ ηQ and kη̄ ¼ k − ð1 − ηÞQ where
η is a real number. In that case, the kþ in the Dirac δ
function in Eq. (3) should be replaced with kþη , SfðkÞ and
Sfðk −QÞ should be changed to SfðkηÞ and Sfðkη̄Þ,
respectively, and the qq̄ LFWFs would remain the same.
Analogous to the case of the vector meson, due to

symmetry constraints, the ΦΛ;ðfÞ
λ;λ0 ðx; kTÞ’s can generally

be expressed with five independent scalar amplitudes
ψðx; k2TÞ’s [28,40,41], i.e.,

1We take a frame where the virtual photon has no transverse
momentum.
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Φ0;ðfÞ
�;∓ ¼ ψ0;ðfÞ

ð1Þ ; Φ0;ðfÞ
�;� ¼ �kð∓Þ

T ψ0;ðfÞ
ð2Þ ; ð4Þ

Φ�1;ðfÞ
�;� ¼ ψ1;ðfÞ

ð1Þ ; Φ�1;ðfÞ
�;∓ ¼ �kð�Þ

T ψ1;ðfÞ
ð2Þ ;

Φ�1;ðfÞ
∓;� ¼ �kð�Þ

T ψ1;ðfÞ
ð3Þ ; Φ�1;ðfÞ∓;∓ ¼ ðkð�Þ

T Þ2ψ1;ðfÞ
ð4Þ ; ð5Þ

with kð�Þ
T ¼ kx � iky, and

ψ1;ðfÞ
ð2Þ ðx; k2TÞ ¼ −ψ1;ðfÞ

ð3Þ ð1 − x; k2TÞ: ð6Þ

The convention is to take þ and − signs in the same row

of one equation at once, e.g., Φ�1;ðfÞ
�;∓ ¼ �kð�Þ

T ψ1;ðfÞ
ð2Þ means

Φþ1;ðfÞ
þ;− ¼ þkðþÞ

T ψ1;ðfÞ
ð2Þ and Φ−1;ðfÞ

−;þ ¼ −kð−ÞT ψ1;ðfÞ
ð2Þ . In prac-

tice, we extract the scalar amplitudes ψðx; k2TÞ’s.
It is convenient to classify the qq̄ LFWFs by their quark-

antiquark orbital angular momentum projected along the z
axis, denoted by lz. The angular momentum conservation in
the z direction then enforces Λ ¼ λþ λ0 þ lz. Given all

possible spin configurations in ΦΛ;ðfÞ
λ;λ0 , the lz can be 0, �1,

and �2, which are s-, p-, and d-wave qq̄ LFWFs,
respectively. One can also read off the lz from the power

of kð�Þ
T in Eqs. (4) and (5) directly. Note that, in principle,

all five amplitudes ψðx; k2TÞ’s are nonzero, yet in a model
calculation or at leading order QED, some of them can be
vanishing, which will be shown later.

III. THE CONTACT INTERACTION MODEL
AND PHOTON LFWFs AT LOW VIRTUALITY

The contact interaction model is a simplified model for
strong interaction within the Dyson-Schwinger equations
approach. Here we recapitulate the formalism based on [42].
The quark’s Dyson-Schwinger equations (or gap equation)
formulated in Euclidean space reads

SfðkÞ−1 ¼ iγ · kþmf

þ
Z

d4q
ð2πÞ4 g

2Dμνðk − qÞ λ
a

2
γμSfðqÞ

λa

2
Γνðq; kÞ:

ð7Þ

In the contact interaction model, one defines

g2Dμνðk − qÞ ¼ δμν
4παIR
m2

G
ð8Þ

withmG a dynamical mass scale associated with the gluon’s
infrared behavior.2 The Γνðq; kÞ is the Dirac structure part of

the quark-gluon vertex. Taking the rainbow truncation, i.e.,
Γνðq; kÞ ¼ γμ, and analogously the ladder approximation for
the quark-antiquark interaction kernel, one arrives at the
quark gap equation and quark-photonvertex inhomogeneous
BS equation,

S−1f ðkÞ ¼ iγ · kþmf þ
4

3

4παIR
m2

G

Z
d4q
ð2πÞ4 γμSfðqÞγμ; ð9Þ

Γγ�;ðfÞ
μ ðk;QÞ ¼ γμ −

4

3

4παIR
m2

G

Z
d4q
ð2πÞ4

× γαSfðqÞΓγ�;ðfÞ
μ ðq;QÞSfðq −QÞγα; ð10Þ

Figure 1 displays the Feynman diagram representation for
Eq. (10). Intuitively, if perturbation theory is applicable,

one can see the Γγ�;ðfÞ
μ ðk;QÞ is a sum of infinite diagrams

containing ladders of one-gluon exchange at all orders. Yet

Eq. (10) is essentially nonperturbative and the Γγ�;ðfÞ
μ ðk;QÞ

contains all the nonperturbative dynamics. Note that the
infinite resummation is also encoded in the fully dressed
quark propagator SfðkÞ as well.
The solution to Eq. (9) is generally

SfðpÞ−1 ¼ iγ · pþMf; ð11Þ

where Mf is a momentum-independent constant. Mean-
while, the contact interaction kernel eliminates the relative

momentum k in Γγ�;ðfÞ
μ ðk;QÞ and the general form of the

solution to Eq. (10) becomes

Γγ�;ðfÞ
μ ðQÞ ¼ γTμP

ðfÞ
T ðQ2Þ þ γLμP

ðfÞ
L ðQ2Þ; ð12Þ

where γTμ ¼ γμ −
Qμ

=Q
Q2 and γTμ þ γLμ ¼ γμ. Note that if

the k dependence is kept, there will be ten more Dirac
structures [29].
In solving Eqs. (9) and (10), proper time regularization is

employed. The method is to enforce the replacement

1

sþM2
f

¼
Z

∞

0

dτe−τðsþM2
fÞ →

Z
τ2ir

τ2uv

dτe−τðsþM2
fÞ ð13Þ

FIG. 1. The diagrammatic representation of inhomogeneous
Bethe-Salpeter equation for quark-photon vertex in rainbow-
ladder truncation. The black blobs indicate the objects are fully
dressed. The dressed gluon propagator here is modeled by contact
interaction Eq. (8).

2This definition takes the notation used in more recent
papers such as [35], which makes a simple replacement
1
m2

G
→ 4παIR

m2
G

in [42].

NONPERTURBATIVE PHOTON qq̄ LIGHT FRONT … PHYS. REV. D 109, 034020 (2024)

034020-3



with τir;uv infrared and ultraviolet regulators. Finally, the
solution to Eqs. (9) and (10) can be summarized as [42]

Mf ¼ mf þ
4αIRMf

3πm2
G

CiuðM2
fÞ; ð14Þ

PðfÞ
L ðQ2Þ ¼ 1; ð15Þ

PðfÞ
T ðQ2Þ ¼ 1

1þ KðfÞ
γ ðQ2Þ

; ð16Þ

with

KðfÞ
γ ðQ2Þ ¼ 4αIRMf

3πm2
G

Z
1

0

dααð1 − αÞQ2C̄iu1 ðωðM2
f; α; Q

2ÞÞ;

ð17Þ
where CiuðM2Þ=M2 ¼ Γð−1;M2τ2uvÞ − Γð−1;M2τ2irÞ, with
Γðα; yÞ being the incomplete Γ function. The nota-
tions C̄iu1 ðzÞ ¼ Ciu1 ðzÞ=z, Ciu1 ðzÞ ¼ −zðd=dzÞCiuðzÞ and
ωðM2; α; P2Þ ¼ M2 þ αð1 − αÞP2 are used. The model
parameters are set to be mG ¼ 0.5 GeV, αIR=π ¼ 0.36,
and Λir ¼ 0.24, Λuv ¼ 0.91, mu=d ¼ 0.007, and ms ¼
0.17 GeV, which well reproduces the meson and baryon
spectra [35]. These model parameters yield Mu=d ¼ 0.37

and Ms ¼ 0.53 GeV, so KðfÞ
γ ðQ2Þ can be determined.

We can now calculate the qq̄ LFWFs of the photon
through Eq. (3). We first perform a rearrangement of

Γγ�;ðfÞ
μ ðQÞ in Eq. (12) to be

Γγ�;ðfÞ
μ ðQÞ ¼ γμP

ðfÞ
T ðQ2Þ þ γLμ ½PðfÞ

L ðQ2Þ−PðfÞ
T ðQ2Þ�: ð18Þ

In this way, the first term has the Dirac structure of a
bare vertex, which is the leading order vertex in QED.
Meanwhile, a few notations and relations between four
momentums in the Euclidian space are as follows. A four
momentum in Euclidian space is k ¼ ðk1; k2; k3; k4Þ, with
the first three components corresponding to x, y, and z
directions. We separate it into longitudinal and transverse
vectors, e.g., kk ¼ ð0; k3; k4Þ≡ ð0; kkÞ and k⊥ ¼ ðk⊥; 0Þ.
In Minkowski space, denoting the four-vector of a photon
moving in the z direction as q ¼ ðq0; 0; q3Þ, which
satisfies q2 ¼ −Q2, the polarization vector is taken as
ϵ0 ¼ ðq3=Q; 0; q0=QÞ [3,43], where the abbreviation

Q≡ ffiffiffiffiffiffi
Q2

p
is used. We introduce a light front null vector

n ¼ 1=
ffiffiffi
2

p ð1; 0; 0;−1Þ, which satisfies n2 ¼ 0 and can be
used to project out the plus component of a four-vector,
i.e., n · A ¼ Aþ. Making use of the relation ðA · BÞM →
−ðA · BÞE from Minkowski to Euclidian space, one can
obtain the following useful identities in Euclidian space:
k⊥ · n ¼ 0, ϵ0 · n ¼ Q · n=Q, ϵ0 · k⊥ ¼ 0, and ϵ0 ·Q ¼ 0.
Here Q denotes the four momentum of the photon in

Euclidian space, and we will use it and Q ¼
ffiffiffiffiffiffi
Q2

p
without distinction, but they can be easily distinguished
from the context. Starting with Eqs. (3), (11), and (18),
and omitting the flavor index for abbreviation, the
derivation goes as

hxim ≡
Z

1

0

dxxmΦ0þ;−ðx; kTÞ ð19Þ

¼ −
efePTðQ2Þ

2
ffiffiffi
3

p
Z

d2kk
2π

�
kþ

Qþ

�
m 1

jQþjTr
h
ðI þ γ5ÞγþSðkÞ½Γγ�ðk;QÞ · ϵ0ðQÞ�Sðk −QÞ

i
ð20Þ

¼ −
efePTðQ2Þ
2

ffiffiffi
3

p jQ · nj
Z

d2kk
2π

�
kk · n
Q · n

�
m Tr½=nð−ikþMÞϵ0ð−ikþ i=QþMÞ�
ðk2 þM2Þðk2 − 2k ·QþQ2 þM2Þ ð21Þ

¼ −
ffiffiffiffiffiffi
Nc

p
efePTðQ2Þ
2jQ · nj

Z
d2kk
2π

�
kk · n
Q · n

�
m −2

ffiffiffi
2

p ½ðk2k þ k2⊥ þM2 −Q · kkÞð−
ffiffiffi
2

p
ϵ0 · nÞ þ

ffiffiffi
2

p ð2n · kk −Q · nÞðϵ0 · kkÞ�
ðk2k þ k2⊥ þM2Þðk2k − 2kk ·QþQ2 þM2 þ k2⊥Þ

ð22Þ

¼
ffiffiffiffiffiffiffiffi
2Nc

p
efePTðQ2Þ
jQ · nj

Z
1

0

du
Z

d2kk
2π

�
kk · n
Q · n

�
m ðk2k þ k2⊥ þM2 −Q · kkÞð−

ffiffiffi
2

p
ϵ0 · nÞ þ

ffiffiffi
2

p ð2n · kk −Q · nÞðϵ0 · kkÞ
½uðk2k þ k2⊥ þM2Þ þ ð1 − uÞðk2k − 2kk ·QþQ2 þM2 þ k2⊥Þ�2

ð23Þ

¼
ffiffiffiffiffiffiffiffi
2Nc

p
efePTðQ2Þ
jQ · nj

Z
1

0

du
Z

d2kk
2π

�
kk · n
Q · n

�
m ðk2k þ k2⊥ þM2 −Q · kkÞð−

ffiffiffi
2

p
ϵ0 · nÞ þ

ffiffiffi
2

p ð2n · kk −Q · nÞðϵ0 · kkÞ
½ðkk − ð1− uÞQÞ2 þΔ2�2

ð24Þ
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¼
ffiffiffiffiffiffiffiffi
2Nc

p
efePTðQ2Þ
jQ · nj

Z
1

0

du
Z

d2kk
2π

½k2⊥ þM2 − ð1 − uÞuQ2�ð1 − uÞmð− ffiffiffi
2

p
ϵ0 · nÞ

ðk2k þ Δ2Þ2 ð25Þ

¼ 2
ffiffiffiffiffiffi
Nc

p
efePTðQ2Þ
Q

Z
1

0

du0u0m
Z

d2kk
2π

k2⊥ þM2 − u0ð1 − u0ÞQ2

½k2k þQ2u0ð1 − u0Þ þM2 þ k2⊥�2
ð26Þ

¼
Z

1

0

du0u0m
ffiffiffiffiffiffi
Nc

p
efePTðQ2Þ
Q

�
1 −

2u0ð1 − u0ÞQ2

Q2u0ð1 − u0Þ þM2 þ k2⊥

�
: ð27Þ

Comparing Eq. (19) and Eq. (27), we deduce

Φ0þ;−ðx; kTÞ ¼ efePTðQ2Þ
ffiffiffiffiffiffi
Nc

p
Q

×

�
1 −

2xð1 − xÞQ2

k2⊥ þQ2xð1 − xÞ þM2

�
: ð28Þ

From Eqs. (20) and (21), the trace operation in color
space produces an overall color factorNc and unity in flavor
space. The Feynman parametrization technique is imple-
mented in getting Eq. (23). From Eq. (24) to Eq. (25), we
have performed a momentum shift in kk. The numerator is
fully expanded into polynomials and, due to n2 ¼ 0, only a
few terms survive after integration over kk. We also changed
the variable u to 1 − u0 in getting Eq. (26), and the identityZ

d2k
1

ðk2 þ A2Þ2 ¼
π

A2
ð29Þ

is used in gettingEq. (27). Finally, we remark that employing
the proper time regularization scheme in calculating the
momentum integral in Eq. (26) might be more appropriate
from the perspective of an effective model. Yet it would
hinder a direct comparison with leading order (LO) QED
LFWFs, and since the integral converges, we do not impose
the proper time regularization.
Analogously, using Euclidian space relations ϵ�1 ·Q¼0,

ϵ�1 · n ¼ 0, ϵ�1 · k⊥ ¼ ∓kð�Þ
T , and ϵ�1 · kk ¼ 0 in the

photon’s collinear reference frame (Q⊥ ¼ 0), we can derive
all other photon qq̄ LFWFs, which are summarized as

ψ0;ðfÞ
ð1Þ ðx; k2TÞ reduced − efeP

ðfÞ
T ðQ2Þ

ffiffiffiffiffiffi
Nc

p
Q

×
2xð1 − xÞQ2

k2⊥ þQ2xð1 − xÞ þM2
f

; ð30Þ

ψ0;ðfÞ
ð2Þ ðx; k2TÞ ¼ 0; ð31Þ

ψ1;ðfÞ
ð1Þ ðx;k2TÞ ¼ efeP

ðfÞ
T ðQ2Þ

ffiffiffiffiffiffiffiffi
2Nc

p Mf

k2⊥þQ2xð1− xÞþM2
f

;

ð32Þ

ψ1;ðfÞ
ð2Þ ðx;k2TÞ ¼ efeP

ðfÞ
T ðQ2Þ

ffiffiffiffiffiffiffiffi
2Nc

p x
k2⊥þQ2xð1− xÞþM2

f

;

ð33Þ

¼ −ψ1;ðfÞ
ð3Þ ð1 − x; k2TÞ; ð34Þ

ψ1;ðfÞ
ð4Þ ðx; k2TÞ ¼ 0: ð35Þ

Note that, in rewriting Eq. (28) into Eq. (30), we have
omitted the unity term, as it becomes a Dirac δ function
after Fourier transform with respect to kT and does not
contribute in the color dipole model regarding the cross
sections we are interested in.
There are a few remarks worth addressing. Since

ϵΛ ·Q ¼ 0, which leads to ϵΛ · γL ¼ 0, the quark-photon
vertex in Eq. (18) has only one Dirac structure γμ that
contributes to Eq. (3). So the quark-photon vertex is
equivalent to the bare vertex γμ and the quark propagator
takes a constituent quark mass M. These are exactly the
same structures used in [3] to obtain photon LFWFs, only
that therein the light cone perturbation method is employed.
In this sense, our derivation confirms that both approaches
yield analytically same result. Yet our approach does not
rely on the perturbation method and is nonperturbative in
essence. In Eqs. (30)–(35), the intrinsic nonperturbative
information is encoded in the constituent quark mass M
and the quark-photon vertex dressing factor PTðQ2Þ.

u/d quark
s quark

0 2 4 6 8 10
0.88

0.90

0.92

0.94

0.96

0.98

1.00

Q2 (GeV2)

P
T
( f
) (Q

2 )

FIG. 2. The Pðu=dÞ
T ðQ2Þ and PðsÞ

T ðQ2Þ.
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We remind the reader that the Mu=d=s is generally 2 orders
of magnitude larger than the current quark mass. It is a
direct reflection of the chiral symmetry breaking in QCD,
as well as the nonperturbative dynamics. In this connection,
a quark mass around 140MeV that was popular in the color
glass condensate (CGC) model fitting to the HERA
data [44] seems to be a compromise between constituent

quark mass around 300–400 MeV and partonlike current
quark mass. In addition, we also notice a multiplicative
(and nonperturbative) factor PTðQ2Þ in Eq. (28). It brings a
few percents of suppression to photon qq̄ LFWFs at low
Q2, as shown in Fig. 2, but reduces to unity at Q2 ¼ 0.
In Fig. 3 we show the 3D plot of perturbative and
nonperturbative photon qq̄ LFWFs at Q2 ¼ 0.2 GeV2

FIG. 3. Photon uū LFWFs at a low virtuality Q2 ¼ 0.2 GeV2. The perturbative LFWFs are shown in the left column and
nonperturbative ones are in the right column. See Eq. (5) for definition of the ψðx; k2TÞ’s.
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for comparison. The perturbative photon uū LFWFs are in
the left column. They are strongly peaked at low jkT j so a
small portion of the surface extends beyond the plots.
On the other hand, taking nonperturbative effects into
account, the peaks get suppressed and the LFWFs change
significantly.
The limitations in our result should also be kept in mind.

First, due to the contact interaction model, the quark-
photon vertex has only one Dirac structure γμ that con-
tributes. If one employs a more realistic model that allows
Γγ�
μ ðk;QÞ to be dependent on k, ten more Dirac structures

would appear, such as kμ; kμ=Q, etc. In that case, the ψ0
ð2Þ

and ψ1
ð4Þ will no longer be vanishing, i.e., p- and d-wave

components could appear. Such property has been obser-
ved in the study of vector meson leading Fock-state
LFWFs [28]. Second, the contact interaction model works
at low energy so our result [Eqs. (30)–(35)] only holds for
low Q2. At large Q2, the photon LFWFs should approach
the perturbative result. Therefore, we expect a complete
photon LFWF from low to high Q2 should undergo a
transition from our nonperturbative LFWFs to the pertur-
bative ones.

IV. INCORPORATING NONPERTURBATIVE
PHOTON qq̄ LFWFs IN SMALL-x DIS

The inclusive ep DIS at small x can be described by the
color dipole model [6,7,45], in which a virtual photon is
emitted by the incoming electron and then splits into a color
dipole that scatters with proton inelastically. The cross
section takes the factorized form

σγ
�p
L;Tðx;Q2Þ ¼ 2

X
f

Z
d2r

Z
d2b

Z
1

0

dzjΨðfÞ
L;Tðz; r;Q2Þj2

×N ðxðfÞ; r; bÞ; ð36Þ
where

jΨðfÞ
T ðr; z;Q2Þj2 ¼ 1

2

X
λ;λ0

h
jΦ̃1;ðfÞ

λ;λ0
ðr; z;Q2Þj2

þ Φ̃−1;ðfÞ
λ;λ0

ðr; z;Q2Þj2
i
; ð37Þ

jΨðfÞ
L ðr; z;Q2Þj2 ¼

X
λ;λ0

jΦ̃0;ðfÞ
λ;λ0

ðr; z;Q2Þj2 ð38Þ

are the squared photon qq̄ LFWFs. The Φ̃ is defined as the
photon qq̄ LFWFs in coordinate space, e.g.,

Φ̃Λ;ðfÞ
λ;λ0 ðz; rÞ ¼

Z
d2k
ð2πÞ2 e

ik·rΦΛ;ðfÞ
λ;λ0 ðz; kÞ: ð39Þ

In this work we take the light quarks (u, d, and s) and charm
quark into account. In this case the xðfÞ equals Bjorken-x
for light quarks, and xðcÞ ¼ xð1þ 4m2

c=Q2Þ for the charm
quark.

The N ðx; r; bÞ is the imaginary part of the forward
dipole-proton scattering amplitude, with color dipole trans-
verse size r and collision impact parameter b. Here we
employ the bCGC model [44,46], which reads

N ðx; r; bÞ ¼
�
N0ðrQs

2
Þ2γeff rQs ≤ 2;

1 − exp½−A ln2ðBrQsÞ� rQs > 2;
ð40Þ

with

Qsðx; bÞ ¼
�
x0
x

�λ
2

exp

�
−

b2

4γsBCGC

�
; ð41Þ

γeff ¼ γs þ
1

κλY
ln

�
2

rQs

�
; ð42Þ

Y ¼ lnð1=xÞ; ð43Þ

and

A ¼ −
N2

0γ
2
s

ð1 − N0Þ2 lnð1 − N0Þ
; ð44Þ

B ¼ 1

2
ð1 − N0Þ−

1−N0
N0γs : ð45Þ

The κ ¼ 9.9 is fixed to be the LO Balitsky-Fadin-Kuraev-
Lipatov value, and BCGC ¼ 5.5 GeV−2 determined by
fitting exclusive meson production data in [46]. Other
model parametersN0, γs, x0, and λ are determined by fitting
inclusive DIS data [46]. In this work, we employ the
reduced cross section σr data from HERA [47], which is
a linear combination of proton structure functions F2 and
FL, i.e.,

σrðx; y;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ ð46Þ

with

F2ðx;Q2Þ ¼ Q2

4π2αem
½σγ�pL ðx;Q2Þ þ σγ

�p
T ðx;Q2Þ�; ð47Þ

FLðx;Q2Þ ¼ Q2

4π2αem
σγ

�p
L ðx;Q2Þ: ð48Þ

The y ¼ Q2=ðsxÞ is the inelasticity parameter and s is the
center of mass energy square.
From Eq. (36) we can see the inclusive DIS cross section

is the convolution between the square of LFWFs and the
color dipole model. This makes the σrðx; y; Q2Þ sensitive to
photon LFWFs. From high to low Q2, the color dipole gets
larger in size and the nonperturbative effect should emerge.
We can therefore investigate whether the nonperturbative
photon qq̄ LFWFs can play a role at low Q2.
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As perturbative photon qq̄ LFWFs are applicable at large
Q2, and our nonperturbative photon qq̄ LFWFs only work
at low Q2, we introduce a modified model that linearly
combines the two, i.e.,

jΨ0ðfÞ
T;Lðr; z;Q2Þj2 ¼ FpartðQ2ÞjΨðfÞ;np

T;L ðr; z;Q2Þj2

þ ½1 − FpartðQ2Þ�jΨðfÞ;p
T;L ðr; z;Q2Þj2

ð49Þ
with a Q2-dependent weighting factor

FpartðQ2Þ ¼ Q2n
0

ðQ2 þQ2
0Þn

: ð50Þ

We remind the reader that the nonperturbative ΨðfÞ;np
T;L

uses Eqs. (30)–(35), and the perturbative term ΨðfÞ;p
T;L can

be obtained by setting PTðQ2Þ ¼ 1 and Mf ¼ mf in

Eqs. (30)–(35). The two parameters Q0 and n modulate
the rising of the nonperturbative effect. We further assume
the Q0 and n are the same for u=d and s quarks. For the
heavy charm quark, we ignore the nonperturbative effect
for now, as it is supposed to be small due to the large
intrinsic scale brought by quark mass. A quantitative check
will be left for future investigation. At large Q2, FpartðQ2Þ
approaches zero so the jΨ0ðfÞ

T;Lðr; z;Q2Þj2 is dominated by

perturbative photon qq̄ LFWFs jΨðfÞ;p
T;L ðr; z;Q2Þj2. As Q2

decreases, FpartðQ2Þ increases and jΨ0ðfÞ
T;Lðr; z;Q2Þj2 starts

to pick up contributions from nonperturbative photon

LFWFs jΨðfÞ;np
T;L ðr; z;Q2Þj2, until the LFWFs become com-

pletely nonperturbative at Q2 ¼ 0 GeV2.
We then fit the reduced cross section data [47] with

jΨ0ðfÞ
T;Lðr; z;Q2Þj2. The employed data are limited to x <

0.01 and Q2 < 50 GeV2. We remind the reader that in [46]
the authors found that, when current quark masses are
employed in perturbative photon LFWFs, the bCGC model
can well fit HERA data only for Q2 ≥ 0.85 GeV2. This is
reasonable, as the photon LFWFs can only approach the
perturbative form for certain large Q2. Here with non-
perturbative corrections, our result is shown in Table I. The
first column indicates whether perturbative- (LO QED and
QCD) or the nonperturbative-effect modified photon
LFWFs are employed. The first row shows that data of
Q2 ∈ ½0.85; 50� GeV2 can be fitted using perturbative
photon LFWFs with current quark masses, in agreement
with [46]. Here the determined parameters are a bit
different from those in [46] as we use mu=d ¼ 4 and
ms ¼ 95 MeV, while therein ms ¼ mu=d ≈ 0 MeV. To
investigate nonperturbative effects, we then employ data
to lower Q2, e.g., Q2 ≈ Λ2

QCD. We find that, for Q2 ∈
½0.25; 50� GeV2, the fitting with perturbative photon
LFWFs (second row) becomes significantly worse, while
that incorporating nonperturbative effects (third row)
remains good.3 Figures 4 and 5 show the HERA σr data
as compared to calculated cross section using parameters in

TABLE I. Fitting the reduced DIS cross section data of HERA [47] with the bCGC model using nonperturbative-effect modified
photon LFWFs [Eq. (49)]. The current quark masses are set to physical values mu=d ¼ 4 MeV, ms ¼ 95 MeV, and mc ¼ 1.27 GeV.

The dressed quark mass Mu=d=s and dressing function Pðu=d=sÞ
T ðQ2Þ are determined by the contact interaction model in Sec. III.

LFWFs [Eqs. (30)–(35), (49)] Q2=GeV2 γs N0 x0 λ Q2
0 n χ2=d:o:f:

Perturbative [0.85, 50] 0.6290 0.4199 2.395 × 10−4 0.1962 � � � � � � 265.8=223 ¼ 1.192
Perturbative [0.25, 50] 0.3869 0.7556 7.047 × 10−7 0.1052 � � � � � � 678.4=282 ¼ 2.406
Perturbativeþ Nonperturbative [0.25, 50] 0.6177 0.4596 1.326 × 10−4 0.1875 1.052 3.970 337.9=280 ¼ 1.207

FIG. 4. The reduced cross section σr of DIS at
ffiffiffi
s

p ¼ 318 GeV.
Data points are taken from [47] and curves are calculated using
parameters from the third (black solid) and second (red dashed)
rows of Table I.

3Note that, to accommodate low Q2 data, the bCGC model
parameters in the third row are quite different from those in the
first row. However, if the model parameters in row one are used,
we will get χ2 ≈ 2000 for data of Q2 ∈ ½0.25; 50� GeV2, which is
unreasonable.
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the second (red dashed) and third (black solid) rows of
Table I. Since FpartðQ2Þ is a positive definite function, this
result strongly suggests that incorporating the nonpertur-
bative photon qq̄ LFWFs can significantly improve the
agreement between color dipole model calculations and
inclusive small-x DIS data at low Q2.

V. SUMMARY

Circumventing the light front quantization procedure,
the photon qq̄ LFWFs can be extracted from covariant the
unamputated quark-photon vertex, which is available from
various nonperturbative QCD methods or models that are
quantized in ordinary space-time. In this paper, we resort
to a contact interaction model. With this particular model,
the nonperturbative effects are encoded in the enhanced
quark massM and a dressing factor PTðQ2Þ that both arise
through nonperturbative dynamics, as compared to LO

QED photon LFWFs. In particular, for a real photon
PTðQ2 ¼ 0Þ ¼ 1, so the nonperturbative effects are totally
absorbed into the enhanced quark mass M. The QCD’s
dynamical chiral symmetry breaking property thus plays
a significant role in shaping the photon qq̄ LFWFs at
low Q2.
Within the color dipole model, the cross section of

inclusive DIS is an integral of the squared photon qq̄
LFWFs, and hence is sensitive to photon LFWFs. We then
modify the perturbative photon LFWFs by incorporating
nonperturbative effects at low Q2 through Eq. (49). It is
found that this modification can significantly improve the
agreement between the color dipole model and small-x
inclusive DIS HERA data toward the lower Q2 region, in
agreement with earlier works using a phenomenological
model [4,25–27].
Finally, we remind the reader that, in the present work,

the nonperturbative photon LFWFs in Eqs. (30)–(35) are
limited to some unknown low Q2. They do not transform
into perturbative ones at large Q2 by themselves. The
transition is thus modeled by a primitive function (50). Yet
this limitation is not brought by the projection method
[Eq. (3)], but is rooted in the contact interaction model,
which only works at low scales. It can be overcame by
employing a covariant unamputated quark-photon vertex
that contains both infrared and ultraviolet dynamics. In this
connection, the Maris-Tandy model within the Dyson-
Schwinger equations approach [48,49], along with other
studies of the quark-photon vertex formulated in ordinary
space-time, can be considered as good candidates for
future study.
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