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We study the freeze-out parameters in a QCD-assisted effective theory that accurately captures the
quantum and in-medium effects of QCD at low energies. The functional renormalization group approach is
implemented in our work to incorporate the nonperturbative quantum, thermal, and density fluctuations. By
analyzing the calculated baryon number susceptibility ratios χB2 =χ

B
1 and χB3 =χ

B
2 , we determine the chemical

freeze-out temperatures and baryon chemical potentials in cases of hard thermal or dense loop improved
μ-dependent gluon potential and μ-independent gluon potential. We calculate the χB4 =χ

B
2 ðκσ2Þ and χB6 =χ

B
2

along the freeze-out line for both cases. It is found that κσ2 exhibits a nonmonotonic behavior in a low
collision energy region and approaches one for lower collision energy. χB6 =χ

B
2 shows a similar complicated

behavior in our calculation.
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I. INTRODUCTION

The study of QCD phase transitions is a very active
field of current research. The transitions include both the
chiral phase transition and the deconfinement phase
transition. The chiral phase transition is signaled by the
dynamical chiral symmetry breaking and responsible for
the mass of visible matter in the Universe, while the
deconfinement phase transition is signaled by the center
symmetry breaking and related to hadron formulation. A
thorough understanding of QCD phase transitions may
shed light on the process and the nature of the early
Universe evolution and the observable matter generation
[1]. The first principle lattice QCD simulations indicate that
the phase transition is a smooth crossover in low baryon
chemical potential region [2,3]. Although its predictive
capability is hampered due to the notorious sign problem
[4,5] when the finite chemical potential is considered, other
first principle methods as well as low energy effective
theories, such as the functional renormalization group

(FRG) [6–11] and Dyson-Schwinger equations (DSE)
[12–16] have come to play a complementary role, and
some evidence has been found that there might be a critical
end point (CEP) in the temperature T–baryon chemical
potential μB plane. The existence of CEP still needs
confirmation in experiments, and its exact position, if it
exists, has become one of the most significant topics in both
theories and experiments [17–20].
In experiments, however, one cannot measure the phase

transitions directly but only the hadron states after hadro-
nization, to wit, the chemical freeze-out state which is
defined as the set of sates for the hadrons to cease inelastic
collisions. For different collision energies, one obtains
different chemical freeze-out states corresponding to differ-
ent chemical freeze-out points in the T − μB plane, and
thus, one observes a chemical freeze-out line connecting
different freeze-out points in the plane. It has been shown
that a nonmonotonic behavior of conserved charge fluctu-
ations can arise as the chemical freeze-out line approaches
to the CEP [21–23]. The Beam Energy Scan (BES)
program at the Relativistic Heavy Ion Collider (RHIC),
the Facility for Antiproton and Ion Research (FAIR) in
Darmstadt, the Nuclotron-based Ion Collider Facility
(NICA) in Dubna, and the High-Intensity Heavy-Ion
Accelerator Facility (HIAF) in Huizhou all take the search
of the CEP as one of their most important scientific
objectives [17,20,24], and some important results have
been found by the RHIC Collaboration [19,25–29]. In
theoretical aspects, the freeze-out conditions have been
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studied in the DSE approach [30,31], FRG approach
[32,33], lattice QCD simulations [34–36], statistical hadro-
nization models [37–41], and other models [42–44].
However, the position of the chemical freeze-out line,
the existence and the location (if it exists) of the CEP,
the conservation charge fluctuations, and some other
problems are still unclear, and further investigations are
necessary, especially when the high baryon chemical
potential is involved. We then take the FRG approach
combining with a QCD-assisted effective field theory
model to study the position of the chemical freeze-out
line, the higher order baryon number fluctuations, and
related issues in finite temperature and baryon chemical
potential system in this paper.
The QCD-assisted low-energy effective theory naturally

emerges from QCD by integrating out the high energy
degrees of freedom at the low energy scale. We choose
the Polyakov-quark-meson (PQM) model as an effective
realization of QCD in this work and make use of the FRG
approach to deal with the effect of the fluctuations of the
fields and other nonperturbative properties of the QCD
system. The PQM model has extended the traditional
quark-meson model that describes chiral dynamics of
QCD quite well to include the description of the deconfine-
ment aspects of QCD phase structures [45–48], and it is also
well suited for the study of thermodynamical properties and
baryon number fluctuations in QCD system. It has also been
known that the low-energy effective models can be related to
full QCD systematically within the FRG approach [7,10,49].
The one vital component of the PQM model is the

construction of the gluon potential of full QCD, which
encodes the gluon dynamics in the presence of matter fields
and is represented effectively by a Polyakov-loop potential.
The potential is fixed by fitting the lattice QCD data of the
pure Yang-Mills system without quarks [46,50,51], and
thus, the coupling of the matter sector to the gauge sector is
lost. There have been many attempts on recovering this
unquenched effect, and some significant progress has been
made at least for small μB [47,52–55]. In this work, we
simply take two kinds of Polyakov-loop potentials. One is
μ dependent through μ-dependent pseudocritical decon-
finement phase transition temperature T0, which is based
on the feature of the thermal or dense loop resummation
results and first put forward in Ref. [47] for a better
treatment of the phase structures in the finite density
situations; see Eqs. (18) and (19) for the specific form
used in this work. The γ̂ in Eq. (19) has been chosen to be
one in Refs. [56,57], and the calculated results have found a
good agreement with the results of lattice QCD and the
HRG models. The other is μ independent simply by
choosing T0 as a constant with no hard thermal or dense
loop improvements incorporated. The results based on
these two different potentials are compared and discussed
in the main text. The influence of other different values of γ̂
is also explored and discussed in Appendix C.

Compared with previous works on the QCD system of
two flavors [32,33,58,59], the inclusion of the strange
quark brings more mesons into the system so that the
system is closer to the real one. To include nonperturbative
quantum, thermal, and density fluctuations, the FRG
approach is implemented at finite temperature and density.
As a nonperturbative continuum field approach, FRG has
been successfully applied in first principle QCD and model
calculations [33,60–64]. It shows a powerful performance
on nonperturbative problems.
This paper is organized as follows. After this introduction,

we briefly describe the PQM model from the FRG perspec-
tive in Sec. II. In Sec. III, we describe our theoretical
framework and present our numerical setup. In Sec. IV,
we give our numerical results on low-order susceptibility
ratios, freeze-out parameters, and higher-order susceptibility
ratios. We put a discussion of the influence of other different
values of γ̂ inAppendixC. In Sec.V,wegive a brief summary
of our obtained results.

II. FUNCTIONAL RENORMALIZATION GROUP
APPROACH TO THE PQM MODEL

FRG is a functional continuum field approach of QCD.
A pictorial representation of the flow of QCD is shown in
Fig. 1, in which the first three loops in the right-hand side
denote the gluon, ghost, and quark contributions, respec-
tively, while the fourth is the mesonic loop introduced via
the dynamical hadronization [7,65].
In the QM model, only the contributions from the last

two loops in Fig. 1 are taken into account, accounting only
for the chiral aspect of QCD phase transitions without the
deconfinement. As a better imitation of full QCD, the PQM
model keeps all these four loops but implements an
effective gluon potential to represent the contributions
from the first two loops.
The gluon potentials are commonly phenomenologically

constructed on the basis of considering the fundamental
symmetries, and only finite order terms of polynomials
satisfying the symmetries are kept in their ansatz for
simplicity. The parameters in the potentials are determined
by fitting the lattice QCD results for the pressure, the entropy
density, the energy density, and the evolution of the expect-
ation value of the Polyakov loopwith temperature in the pure
gauge theory; see Refs. [46,50,51,66,67] for their specific
forms and further details.Note that the construction is done in

FIG. 1. Partially hadronized version of the FRG flow for the
effective action in QCD. The loops denote the gluon, ghost,
quark, and meson contributions, respectively. The crosses mark
the regulator term.
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the pure gauge theory, which corresponds to Fig. 2 in the
formulation of FRG.
In Fig. 1, the gluon propagator can receive a contribution

from quarks by quark polarization. However, the contri-
bution is missing in Fig. 2 due to the lack of quark freedoms
in the pure gauge theory. The simplification to the con-
tributions of the first two loops in Fig. 1 by the effective
action in Fig. 2 means the neglect of the backreaction of the
matter sector to the gauge sector. Moreover, the above
arguments also show that it is a formally additive structure
for the different contributions and thus allows us to
systematically improve the low-energy effective models
toward full QCD within the FRG approach.
One important effect of the inclusion of the dynamical

quarks in full QCD is the change of the scale ΛQCD, to
which the transition temperature T0 of the Polyakov-loop
potential is related. Based on the hard thermal or dense loop
resummation results, a relation is proposed in Ref. [47] to
estimate the flavor and the quark chemical potential
dependence of T0ðNf; μÞ. This accounts partially for the
backreaction effect. Furthermore, the μ dependence of T0 is
modified to account for the Silver-Blaze property of QCD
in Ref. [53]. Another important observation comes from
Ref. [52] that although the QCD gluon potential is different
from the Yang-Mills potential their shapes are similar, and
the difference between them can be significantly decreased
by a rescale of the temperature; see Eq. (17) for the specific
form. Based on this observation, a better agreement with
lattice QCD results is achieved [52,54].

III. 2 + 1 FLAVOR LOW ENERGY
EFFECTIVE MODEL

A. Theoretical framework

The PQM model is an effective realization of QCD
system [46,47,68]. The Lagrangian (density) of the 2þ 1
flavor PQM in the Euclidean space is given as

L ¼ q̄½γμ∂μ − γ0ðμ̂þ igA0Þ�qþ hq̄Σ5q

þ TrðD̄μΣ · D̄μΣ†Þ þ ŨðΣ;Σ†Þ þ VgluonðL; L̄Þ; ð1Þ

where q is the quark field with three flavors ðu; d; sÞ and
three colors. μ̂ is the matrix form of the quark chemical
potential in the flavor space, i.e., μ̂ ¼ diagðμu; μd; μsÞ. The
quark potentials are related to the baryon, isospin, and
strangeness chemical potentials as follows:

0
B@

μu

μd

μs

1
CA ¼

0
B@

1
3
μB þ 1

2
μI

1
3
μB − 1

2
μI

1
3
μB − μS

1
CA: ð2Þ

For the time being, we use μI ¼ 0 and do not consider the
strangeness neutrality requirement in experiments, to wit,
μS ¼ 0 is used. It is found that the constraint of strangeness
neutrality begins to make a sizable difference only when μB
is significantly large [57].
Meson fields are combined into the matrix forms as

Σ ¼
X8
a¼0

ðσa þ iπaÞTa; Σ5 ¼
X8
a¼0

ðσa þ iγ5πaÞTa; ð3Þ

where σa and πa are the scalar and pseudoscalar meson
nonets, Ta ða ¼ 1; 2;…; 7; 8Þ is the SU(3) generators in
the flavor space, and T0 ¼ 1ffiffi

6
p I3×3. The covariant derivative

of meson fields is defined as

D̄μΣ ¼ ∂μΣþ δμ0½μ̂;Σ�: ð4Þ

The meson potential ŨðΣ;Σ†Þ reads

ŨðΣ;Σ†Þ ¼ Uðρ1; ρ2Þ − jlσL − jsσS − cAξ; ð5Þ

where jlσL and jsσS are explicit symmetry breaking terms,
which reduce the SUVð3Þ symmetry to the SUVð2Þ. σL and
σS are related to meson fields via the chiral rotation

�
σL

σS

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p
1

1 −
ffiffiffi
2

p
��

σ0

σ8

�
: ð6Þ

Uðρ1; ρ2Þ is symmetric under the UVð3Þ ⊗ UAð3Þ trans-
formations with two chiral invariants ρ1 and ρ2,

ρ1 ¼ Tr½Σ · Σ†�; ρ2 ¼ Tr

��
Σ · Σ† −

1

3
ρ1

�
2
�
: ð7Þ

ξ is the Kobayashi–Maskawa–’t Hooft determinant which
originates from the UAð1Þ anomaly effect [69,70] and reads

ξ ¼ detðΣÞ þ detðΣ†Þ: ð8Þ

The temporal gluon background field A0 in Eq. (1) can
be formulated into the Polyakov loops, to wit,

LðxÞ ¼ 1

Nc
TrPðxÞ; L̄ðxÞ ¼ 1

Nc
TrP†ðxÞ; ð9Þ

with

FIG. 2. Flow equation of the effective action in the pure Yang-
Mills theory.
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PðxÞ ¼ P exp

�
ig
Z

β

0

dτA0ðx; τÞ
�
; ð10Þ

where P is the path ordering operator.
Once the Lagrangian is given, there are several methods

to calculate the effective action of the system. Mean-field
approximation is one of the widely used method, which
treats meson fields as background fields and neglect their
fluctuations. However, it is shown that mesonic fluctuations
are important for physics at low temperature [68]. By
contrast, the FRG approach can incorporate the fluctuations
of mesons as well as quarks. It implements the procedure
by introducing the regulator term RkðpÞ, which suppresses
the fluctuations for momenta p < k, and leaves the fluc-
tuations unchanged for p > k. So when k is near the cutoff
Λ, no fluctuations are included, i.e., Γk¼Λ ¼ Sbare. When k
approaches to zero, all fluctuations are included, and we
obtain the full effective action Γk¼0 ¼ ΓFull. The ideas are
formulated in the Wetterich equation [71], which reads

∂tΓk ¼
1

2
TrðGϕϕ

k ∂tR
ϕ
k Þ − TrðGqq̄

k ∂tR
q
kÞ; ð11Þ

where t ¼ lnðk=ΛÞ; ϕ represents the mesonic degrees of
freedom, Gϕϕ

k and Gqq̄
k are the meson and quark propa-

gators, respectively; Rϕ
k and Rq

k are the regulators for the
meson and quark fields.
Similar with the DSE approach, FRG equations are

infinitely coupled, so that truncations have to be taken to
solve them. We truncate Γk as follows and make use of the
local potential approximation (LPA):

Γk ¼
Z
x
fq̄½γμ∂μ − γ0ðμ̂þ igA0Þ�q

þ hq̄Σ5qþ TrðD̄μΣ · D̄μΣ†Þ þ Ukðρ1; ρ2Þ
− jlσL − jsσS − cAξþ VgluonðL; L̄Þg; ð12Þ

where onlyUkðρ1; ρ2Þ flows with the RG scale k. The wave
function renormalizations of the fields and the Yukawa
coupling do not run with the flow in this approximation.
Substituting Eq. (12) into Eq. (11) and implementing the

optimized regulators in Ref. [72], one obtains an analytic
flow equation for Ukðρ1; ρ2Þ [57,73],

∂tUkðρ1;ρ2Þ ¼
k4

4π2

�
3lðBÞ0 ðm̄2

a0;k
;T;0Þþ 4lðBÞ0 ðm̄2

κ;k;T;0Þþ lðBÞ0 ðm̄2
σ;k;T;0Þþ lðBÞ0 ðm̄2

f0;k
;T;0Þþ 3lðBÞ0 ðm̄2

π;k;T;0Þ

þ 4lðBÞ0 ðm̄2
K;k;T;0Þþ lðBÞ0 ðm̄2

η;k;T;0Þþ lðBÞ0 ðm̄2
η0;k;T;0Þ− 4Nc

�
2lðFÞ0

�
m̄l;k;T;

1

3
μB

�
þ lðFÞ0

�
m̄s;k;T;

1

3
μB

���
;

ð13Þ

with m̄2
i;k ≡m2

i;k=k
2. The quark masses are given by

ml ¼
h
2
σL; ms ¼

hffiffiffi
2

p σS; ð14Þ

while the meson masses are obtained through diagonalizing
the Hessian matrix Hij,

Hij ¼
∂
2ŨðΣ;Σ†Þ
∂ϕi∂ϕj

; ð15Þ

with ϕi ¼ ðσ1; σ2;…; σ8; π1; π2;…; π8Þ. The explicit ex-
pressions of meson masses can be found in Refs. [63,74],

for example. The threshold functions lðB=FÞ0 in Eq. (13) are
collected in Appendix A.
The Polyakov-loop potential Vgluon needs to be specified

for the equations above. We take the parametrization in
Ref. [50],

VgluonðL; L̄Þ
T4

¼ −
aðTÞ
2

L̄Lþ bðTÞ lnMHðL; L̄Þ

þ cðTÞ
2

ðL3 þ L̄3Þ þ dðTÞðL̄LÞ2; ð16Þ

which has the advantage of reproducing the Ployakov-loop
susceptibilities as well as the usual thermal quantities of
SU(3) Yang-Mills theory obtained in lattice QCD simu-
lations. The specific form and coefficients of Eq. (16) are
collected in Appendix A; see Eqs. (A2)–(A5) and Table V.
The t in Eqs. (A2)–(A5) is the reduced temperature in the
pure gauge theory; one needs to rescale it to account for the
unquenched effect when quarks are included [52],

t ¼ T − TYM

TYM
⇒ α

T − T0

T0

: ð17Þ

The values of the α and T0 are explored and discussed in
Ref. [52]. Since they have some dependence on the number
of quark flavors and the parametrization of the Polyakov-
loop potential, we treat them as free parameters and
determine them by fitting the pressure, trace anomaly with
the lattice QCD results. We choose the same values as those
in Ref. [57], which are presented in Table I.
As mentioned in Sec. II, μ-dependent T0 is put forward

to account further for the unquenched effect of the
Polyakov-loop potential. Based on the identification of
ΛQCD in the one-loop beta function of QCD at large density
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with the modification of the critical temperature, a modi-
fication of T0 is suggested as [47],

T0ðNf; μÞ ¼ Tτe−1=ðα0bμÞ; ð18Þ

where the renormalization scale is given by Tτ ¼ 1.77 GeV
with the strong coupling α0 ¼ 0.304. The μ dependence is
encoded in bμ as [57],

bμ ¼ b0 −
16

π

�
2

μ2

ðγ̂TτÞ2
Δnl þ

μ2

ðγ̂TτÞ2
Δns

�
: ð19Þ

In Ref. [47], b0 is chosen as one-loop QCD beta function
coefficient with b0 ¼ ð11Nc − 2NfÞ=ð6πÞ, and the second
part in Eq. (19) with γ̂ ¼ 1 and Δnl=s ¼ 1 is constructed
such that the deconfinement phase transition and the chiral
phase transition coincide for finite density at mean field
level. In this work, we treat b0 as a free parameters in the
same way as T0 and choose Δnl=s as follows in order to
account for the Silver-Blaze property of QCD [53,57]:

Δnl=s ¼
1

e3ðml=s−μÞ=T þ 1
þ 1

e3ðml=sþμÞ=T þ 1

−
2

e3ml=s=T þ 1
; ð20Þ

where ml=s is the vacuum mass of the light/strange quark,
and Δnl=s reduces to the step function θðμ −ml=sÞ at
vanishing temperature.
The γ̂ in Eq. (19) controls the curvature of the deconfine-

ment phase transition line. For γ̂ ¼ ∞, bμ in Eq. (19) is a
constant which means no dependence on μ, and the
Polyakov-loop potential becomes μ independent. For finite
values of γ̂ the Polyakov-loop potential will develop a
direct dependence on μ, which can be viewed as the hard
thermal or dense loop improved Polyakov-loop potential
when the finite density is involved. In Ref. [57], γ̂ is chosen
to be one, and the obtained results show a good agreement
with the lattice QCD results for the equation of state. With
the same setup, the baryon-strangeness correlation is
calculated in Ref. [56], and the obtained results are in
agreement with those of the HRG model. Thus, in this
work, we show and compare the results calculated with
γ̂ ¼ ∞ and γ̂ ¼ 1 and denote the latter case as the μ-
dependent case. In Appendix C, we also discuss the
influence of other different values of γ̂.

B. Numerical setup

There are several methods to solve the flow equation in
Eq. (13). The most commonly used method is the Taylor
expansion around the scale-dependent minimum of the
effective potential (the so-called running Taylor method),
which is numerically labor saving but has some drawbacks.
Its convergence property is suspicious [75], and it may not
allow for the value of the σ meson mass below 500 MeV
due to numerical instabilities [73]; see also Ref. [76] for
more discussions about the properties of convergence for
this method. Another used approach is the grid method,
which discretizes the fields (ρ1, ρ2) on the multidimen-
sional grid and replace the derivatives of Uk with respect to
the fields with appropriate numerical differences, and then,
the flow equation can be transformed into a set of coupled
ordinary differential equations [63,77]. The grid method
can capture the global properties of the effective potential
but requires more numerical efforts. A fixed-point Taylor
expansion has been developed in Refs. [75,78]. In contra-
distinction to the running Taylor method whose conver-
gence property is hampered by the linear feedback from the
higher-order expansion coefficients to the lower ones
[75,76], the potential is expanded around a scale-indepen-
dent point, and a better convergence is obtained. More
specifically, we expand the Uk in Eq. (13) as

Ukðρ1;ρ2Þ¼
XN

nþ2m¼0

ωnm;kðT;μÞ
n!m!

ðρ1− κ1Þnðρ2− κ2Þm; ð21Þ

where expansion point κ1 and κ2 are scale independent and
should be the IR minimum of the effective potential. Setting
N ¼ 5 has been shown to be sufficient for numerical
convergence [56,57,78]. The equations for the coefficients
are

∂kωnm;kðT; μÞ ¼
∂
nþm

∂kUkðρ1; ρ2Þ
∂ρn1∂ρ

m
2

				
κ1;κ2

; ð22Þ

where ∂kUkðρ1; ρ2Þ is given in Eq. (13), and initial
conditions for Eq. (22) can be transformed from

Uk¼Λðρ1; ρ2Þ ¼ a10ρ1 þ
1

2
a20ρ21 þ a01ρ2 þ ΔUΛ½T; μ�;

ð23Þ

where ΔUΛ½T; μ� is the modification of initial conditions.
Its form is given in Eq. (B2), and more detailed descriptions
are put in Appendix B.
With the full effective potential Ωk as

ΩkðT; μ; σL; σS; L; L̄Þ ¼ ŨkðΣ;Σ†Þ þ VgluonðL; L̄Þ; ð24Þ

the minimum of the effective potential satisfies

TABLE I. Values of parameters for the initial conditions and the
Polyakov-loop potential.

Λ=MeV h a10=MeV2 a20 a01
900 6.5 8302 10 54
jl=MeV3 js=MeV3 cA=MeV α b0
120.732 336.413 4807.84 0.47 1.6
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∂Ωk¼0

∂ψ

				
ψp

¼ 0; ð25Þ

where ψ represents (σL; σS; L; L̄), and ψp represents the
physical solution of ψ .
In Table I, we show our used parameters for the initial

conditions and the Polyakov-loop potential. The last two
are related to the Polyakov-loop potential, see, for example,
Eqs. (17) and (19), while the other parameters are related to
the effective action of the matter sector. Λ sets our cutoff
scale, below which the gluon has developed a mass gap and
decoupled from the low energy physics [60]. The h; jl; js
are fixed by the Goldberger-Treiman relation and the partial
conservation of axial vector current theorem [79]. The cA
represents the strength of the UAð1Þ anomaly, and it
depends generally on the external parameters, such as
the temperature or chemical potential. For the time being,
we take it as a constant for simplicity. Then, one should
tune the parameters a10, a20, a01 to produce the vacuum
hadronic observables. The produced vacuum hadronic
observables are listed in Table II, in which fπ , fK can
be related to the quark masses via mu;d ¼
h
2
fπ; ms ¼ h

2
ð2fK − fπÞ. The other important constrains

on the parameters come from the pion mass mπ ¼
138 MeV, the kaon mass mK ¼ 496 MeV, the sum
m2

η þm2
η0 ¼ 1.219 GeV2, and the σ meson mass mσ ¼

463 MeV. In experiments, the σ meson mass shows a large
uncertainty, and its value from the latest particle data group is
400–550 MeV. The parameters used here are the same as
those used in Refs. [56,57].
In Fig. 3, we show the calculated results of the pressure p,

the trace anomaly I ≡ ε − 3p, and the speed of sound
squared c2s ≡ s=ð∂ε=∂TÞ with ε ¼ −pþ T∂p=∂T þ μqnq
at varnishing density. Since the intrinsic scale of the model is

different from that in lattice QCD, T lattice
χ ∼ 155 MeV in

lattice QCD simulations [80], whereas Tmodel
χ ∼ 176 MeV in

this model, we compare the results as a function of reduced
temperature t ¼ ðT − TχÞ=Tχ . One observes a good agree-
ment with the lattice QCD results for the pressure p and the
trace anomaly I, which is not a surprise since we have made
use of them to determine the parameters α; b0 in the
Polyakov-loop potential. However it is remarkable that the
speed of sound c2s which entails the second order derivatives
of the thermodynamical function also shows a good
agreement.
It seems that many parameters are involved in our model

setup.However, only the γ̂ in Eq. (19) belonging to the part of
the Polyakov-loop potential is truly free, while others are
determined by certain constrains. In this work, we show and
compare the results calculated with γ̂ ¼ 1 and γ̂ ¼ ∞, the
former case of which we denote as a μ-dependent T0 case,
while the latter as the μ-independent T0 case. We put the
discussion of cases with other values of γ̂ in Appendix C.

IV. NUMERICAL RESULTS

A. Low-order fluctuations and freeze-out parameters

It is known that the baryon number fluctuations are
proportional to the powers of the correlation length ξ in the
phase transitions, which becomes more prominent when it
comes close to the CEP [22,23]. We can see from Fig. 4 that
fluctuations becomes more and more significant with the
increase of μB. Thus, one can investigate the phase
transitions by studying the baryon number susceptibilities.
The theoretical susceptibility ratios are related to moments
of the multiplicity distributions of the conserved charges in
experiments by

χB2
χB1

¼ σ2=M;
χB3
χB2

¼ Sσ;
χB4
χB2

¼ κσ2; ð26Þ

where σ2;M; S, and κ are the invariance, mean, skewness,
and kurtosis of the multiplicity distributions, respectively.
The first susceptibility χB1 is related to the baryon number
density by χB1 ¼ nB=T3. The particle number density can be
obtained via

TABLE II. Calculated hadronic observables (in MeV).

fπ fK mu;d ms ma0 mκ

93 113 302 433 1040 1139
mσ mf0 mπ mK mη mη0

463 1157 138 496 538 964

FIG. 3. Calculated pressure p, trace anomaly I, and the speed of sound c2s as functions of the reduced temperature at varnishing density
in comparison to the lattice QCD results [80].
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dΩk¼0

dμ
¼ ∂Ωk¼0

∂μ
þ ∂Ωk¼0

∂ψ

∂ψ

∂μ
¼ ∂Ωk¼0

∂μ
; ð27Þ

where the equations of motion, Eq. (25), are taken in the
last equality. Therefore, we partially differentiate Eqs. (21)
and (22) to compute χB1 . Subsequently, the higher-order
susceptibilities can be obtained by numerical differentiation
of χB1 ,

χBiþ1 ¼
1

βi
∂
iχB1
∂μiB

; ð28Þ

where β ¼ 1=T; i ¼ 1; 2; 3….
Then, by comparing the theoretically calculated ratios

χB2 =χ
B
1 and χB3 =χ

B
2 with the experimental data, we can

determine the freeze-out points ðμfB; TfÞ [34,35,40,81]. In
Fig. 5,we illustrate the obtainedμB dependence of χB1 =χ

B
2 and

χB3 =χ
B
2 at different temperatures in the case of μ-dependent

gluon potential and show our assigned freeze-out points for
center values of the experimental data [25] at different

collision energies. Note that the error bars in the figure
represent the experimental error of χB1 =χ

B
2 and χB3 =χ

B
2 at

different collision energies. As the experimental data con-
tains systematic and statistical errors, we take the statistical
error to change the experimental data and then estimate the
influence on the change of the freeze-out points. In this way,
we obtain the freeze-out points ðμfB; TfÞ with errors stem-
ming from the experimental errors at different collision
energies. The obtained results are listed in Table III.
With the obtained freeze-out points, the freeze-out line is

fitted as

Tf ¼ Tf
0

�
1 − a

�
μfB
Tf
0

�
2

− b

�
μfB
Tf
0

�
4
�
; ð29Þ

μfB ¼ c
1þ d

ffiffiffiffiffiffiffiffi
SNN

p : ð30Þ

Since the last data corresponding to
ffiffiffiffiffiffiffiffi
SNN

p ¼ 7.7 GeV in
Table III shows large uncertainty, we do not use them for
fitting the parameters. The best-fitted parameters are listed
in Table IV. With the obtained parameters, we can use
Eqs. (29) and (30) to predict the freeze-out points ðμfB; TfÞ
of the system at any collision energy.
We illustrate the calculated χB2 =χ

B
1 ; χ

B
3 =χ

B
2 along the

respective freeze-out lines as a function of collision energyffiffiffiffiffiffiffiffi
SNN

p
for μ-dependent and -independent cases and the

comparison with the experimental data in Fig. 6. One can
see a good agreement with the experimental data except for
the collision energy

ffiffiffiffiffiffiffiffi
SNN

p
∼ 7.7 GeV. On one hand, we do

not include the last experimental data corresponding toffiffiffiffiffiffiffiffi
SNN

p ¼ 7.7 GeV in the fitting process due to their large
uncertainty; on the other hand, the plateau of χB3 =χ

B
2 belowffiffiffiffiffiffiffiffi

SNN
p

∼ 14.5 GeV may indicate the unaccounted effects in
our work, for example, the identification of baryon number
fluctuations with the proton number fluctuations, volume

FIG. 4. Calculated ratio of the baryon number susceptibilities
χB4 =χ

B
2 at several values of μB in case of the μ-independent gluon

potential.

FIG. 5. Calculated baryon chemical potential dependence of the susceptibility ratios χB1 =χ
B
2 (left panel) and χB3 =χ

B
2 (right panel)

at several temperatures in the case of μ-dependent gluon potential and the comparison with experiment data. The red stars stand
for our assigned freeze-out points for the center values of the experimental data [25] at collision energies

ffiffiffiffiffiffiffiffi
SNN

p ¼
200; 62.4; 54.4; 39; 27; 19.6; 14.5; 11.5; 7.7 GeV. Error bars of the red stars represent the experimental errors of χB1 =χ

B
2 and

χB3 =χ
B
2 at different collision energies.
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fluctuations, global baryon number conservation at low
collision energy [82], and so forth. It should also be noted
that, since we take the χB2 =χ

B
1 and χB3 =χ

B
2 to determine our

freeze-out points listed in Table III, and then these points are
used to produce the freeze-out line by fitting Eqs. (29) and
(30), the obtained parameters are listed in Table IV. The
degree of the agreement between theoretical calculation
results and experimental data shown in Fig. 6 can also be
viewed as a test of our fitting process. Moreover, we can see
that the lines for bothμ-dependent and -independentT0 cases
coincide almost with each other for

ffiffiffiffiffiffiffiffi
SNN

p
> 7.7 GeV. This

is due to the slight difference in low order susceptibilities
between the two T0 cases in the region of μB being not high.
However, because of the direct μ dependence in the gluon
potential, the difference in the higher-order fluctuations
between the two cases will be more apparent (see, for
example, Fig. 9).
The parameter a describes the curvature of the freeze-out

line at large collision energy, and its small value in our

fitting process is closely related to the slightly increasing
trend of the temperature of the freeze-out points with μB at
large

ffiffiffiffiffiffiffiffi
SNN

p
; see the freeze-out points plotted in Fig. 8 at

small μB. The trend also appears in Ref. [40], and small
values of the parameter a are consistent with the con-
clusions in Ref. [83].

B. Freeze-out lines and higher-order fluctuations

With the obtained parameters in Eqs. (29) and (30), one
can predict the higher-order fluctuations along the freeze-out
line as a function of collision energy

ffiffiffiffiffiffiffiffi
SNN

p
. To this end, we

first illustrate the calculated dependence of the freeze-out
baryon chemical potential μfB on the collision energy

ffiffiffiffiffiffiffiffi
SNN

p
and the comparison with those given in lattice QCD
simulation [34] and other model calculations [37,38,40] in
Fig. 7. It is apparent that our obtained result matches the
lattice QCD and othermodel results well for μB ≲ 300 MeV,
while for μB ≳ 300 MeV it begins to deviate from the HRG
results.
We also depict the obtained freeze-out lines and the

comparison with Andronic and collaborators result [38] in
Fig. 8, where the obtained phase transition lines and the
freeze-out points in the two T0 cases are provided. The
background in Fig. 8 is the density plot of the susceptibility
ratio RB

42 ≡ χB4 =χ
B
2 . The chiral phase transition point is

defined as the inflection point of the subtracted chiral
condensate ΔLS,

TABLE III. Obtained freeze-out points ðμfB; TfÞ for μ-dependent and μ-independent gluon potentials ðμfB; TfÞ (MeV) and
ffiffiffiffiffiffiffiffi
SNN

p
(GeV).
ffiffiffiffiffiffiffiffi
SNN

p
200 62.4 54.4 39 27 19.6 14.5 11.5 7.7

μ dependent μfB 23.2þ0.6
−0.6 68.9þ0.8

−0.8 77.1þ0.2
−0.2 102.6þ0.4

−0.4 143.9þ0.3
−0.2 185.2þ1.1

−0.7 231:þ6.1
−5.3 260.0þ14.2

−9.9 282.9þ37.5
−19.6

Tf 152.5þ4.2
−4.2 154.3þ2.3

−2.2 155.5þ0.5
−0.5 155.3þ1.1

−1.0 156.1þ1.6
−1.4 156.2þ2.2

−2.0 150.1þ2.0
−1.9 153.3þ3.1

−2.9 154.6þ5.2
−4.3

μ independent μfB 23.1þ0.6
−0.6 68.6þ0.8

−0.7 76.7þ0.2
−0.2 102.0þ0.3

−0.3 142.8þ0.1
−0.0 183.8þ1.4

−1.1 231.2þ6.4
−5.4 262.9þ16.9

−12.4 288.4þ50.2
−26.5

Tf 151.9þ4.0
−4.2 153.6þ2.2

−2.1 154.6þ0.5
−0.5 154.3þ1.0

−1.0 154.6þ1.4
−1.3 154.1þ1.9

−1.7 147.9þ1.8
−1.8 149.8þ3.0

−2.8 150.3þ5.3
−4.7

TABLE IV. Parameters T0; a; b in Eq. (29) and c, d in Eq. (30)
for both μ-dependent and -independent T0 cases [c; Tf

0ðMeVÞ;
dðGeV−1Þ].

T0 c d Tf
0 a b

μ dependent 708.96 0.147 154.8 4.05 × 10−7 0.0022
μ independent 751.31 0.159 153.9 7.35 × 10−7 0.0040

FIG. 6. Comparison of the calculated χB2 =χ
B
1 , χ

B
3 =χ

B
2 for the two T0 cases along the respective freeze-out line with the experimental

data [25].
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ΔLS ¼
ðσL − jl

js
σSÞjT

ðσL − jl
js
σSÞjT¼0

; ð31Þ

while the deconfinement phase transition point is defined as
the inflection point of the Polyakov-loop L. Their respec-
tive values at vanishing density are Td ∼ 155 MeV and
Tχ ∼ 176 MeV. In our explored μB ≤ 700 MeV range, we
do not find the CEP within the currently applied static
Taylor expansion algorithm. By taking the grid method to
the larger μB region, we could find the CEP at ðT; μBÞ ∼
ð34; 885Þ MeV with an error about 15 MeV. Although it
could give the position of the CEP, it is still a very
challenging task to study the higher-order baryon number
fluctuations with the grid method. While the currently used
method suffices for our present purpose, one can see that

the freeze-out line in the μ-dependent case tends to larger
μB for the low temperature and is overall closer to that from
Andronic et al. [38] when compared to the μ-indepen-
dent case.
Then, we calculate the χB4 =χ

B
2 along the freeze-out line as

a function of the collision energy
ffiffiffiffiffiffiffiffi
SNN

p
for both T0 cases.

They are depicted in the left panel of Fig. 9. The inlay
zooms in at

ffiffiffiffiffiffiffiffi
SNN

p
∼ 20 GeV and indeed shows a non-

monotonicity of χB4 =χ
B
2 , which is somehow rather weak

compared to the STAR data (0%–5%). When
ffiffiffiffiffiffiffiffi
SNN

p
comes

to lower, χB4 =χ
B
2 in Fig. 9 shows a peak and then approaches

one in both T0 cases. The peak positions and their heights
are different for the two cases.
We further calculate the

ffiffiffiffiffiffiffiffi
SNN

p
dependence of χB6 =χ

B
2

along the obtained freeze-out lines. The obtained results are
depicted in the right panel of Fig. 9. We take bands to
represent our numerical errors for χB6 =χ

B
2 . For the μ-depen-

dent case, with the decreasing collision energy, χB6 =χ
B
2 begins

to have a minimum at
ffiffiffiffiffiffiffiffi
SNN

p
∼ 5–10 GeV, then a maximum

around
ffiffiffiffiffiffiffiffi
SNN

p
∼ 2 GeV and approaches one for the lower

collision energy. The μ-independent case shows a similar
behavior, except that the minimum becomes very flat.
It should also be mentioned that there are several aspects

to be included for the improvement on the current calcu-
lations and results. The LPA approximation is employed in
the present calculation, while it is shown that the baryon
number fluctuations calculated beyond the LPA approxi-
mation could be more prominent [85]. Constrains from
charge conservation such as the baryon number conserva-
tion, the strangeness neutrality, and the electric charge
conservation should be considered for a more realistic
setting of the experimental situation, which may play an

FIG. 8. Calculated phase diagrams for μ-dependent and μ-independent T0 cases. The left panel is for the μ-dependent case, while the
right panel is for the μ-independent case. The background is the density plot of the susceptibilities ratio RB

42 ≡ χB4 =χ
B
2 . Red stars are the

obtained freeze-out points in the respective cases; see Table III for their specific values. Solid blue, solid black, and dashed black curves
represent the freeze-out, the chiral phase transition, and the deconfinement phase transition lines, respectively. Solid red curve is the
freeze-out line from Andronic et al. [38].

FIG. 7. Comparison of the collision energy dependence of the
freeze-out chemical potential μfBð

ffiffiffiffiffiffiffiffi
SNN

p Þ with those given in
lattice QCD simulation [34] and HRG model (Alba et al. [40] and
Andronic et al. [37,38]).
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important role at high density. Also, the finite volume
effects can make a sizable difference on the baryon number
susceptibilities [31,86,87]. Last but not least, inclusion of
the gluon and ghost fields via the dynamical hadronization
may advance the low energy effective model toward full
QCD further, and the progress has been made in Ref. [64].
With all these improvements, one may obtain a better
freeze-out line in Fig. 8, and the agreement of collision
energy dependence of the freeze-out chemical potential
with other models in Fig. 7 would be improved especially at
low collision energy. The weak nonmonotonicity shown in
Fig. 9 may also be overcome. The relevant improvements
will be done in the future.

V. SUMMARY

In summary, we have calculated the baryon number
susceptibilities with the FRG approach which incorporates
the nonperturbative quantum, thermal, and density fluctua-
tions. For a better treatment of finite density situations, we
make use of the hard thermal or density loop improved μ-
dependent Polyakov-loop potential and compare the results
with those obtained from μ-independent Polyakov-loop
potential in the main text. We calculate the ratios χB2 =χ

B
1 and

χB3 =χ
B
2 at different baryon chemical potentials and temper-

atures, and by comparing them with the experimental data,
we determine the freeze-out points ðμfB; TfÞ at different
collision energies. The obtained collision energy depend-
ences of χB2 =χ

B
1 and χB3 =χ

B
2 are in good agreement with the

experiment, see, for example, Fig. 6. With the obtained
freeze-out points, we fit the freeze-out line via fitting model
Eqs. (29) and (30), and the collision energy dependence of
the freeze-out chemical potentials agrees well with the
lattice QCD simulations and other model calculations forffiffiffiffiffiffiffiffi
SNN

p
> 7.7 GeV. The freeze-out line obtained with the

hard thermal or density loop improved μ-dependent
Polyakov-loop potential is closer to that from Andronic
et al. [38] when compared to that with μ-independent

Polyakov-loop potential. Then, we calculate the χB4 =χ
B
2 and

χB6 =χ
B
2 along the respective freeze-out lines. The obtained

χB4 =χ
B
2 shows a weak nonmonotonicity around

ffiffiffiffiffiffiffiffi
SNN

p
∼

20 GeV in both μ-dependent and -independent T0 cases,
which then develops a maximum and approaches one with
the decreasing collision energy. The obtained χB6 =χ

B
2 shows

a similar complicated behavior, which develops a minimum
and then a maximum with the decreasing collision energy,
and approaches one for the lower collision energy.
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APPENDIX A: THE POLYAKOV-LOOP
POTENTIAL AND THRESHOLD FUNCTIONS

The Polyakov-loop potential Vgluon in Eq. (16) is

VgluonðL; L̄Þ
T4

¼ −
aðTÞ
2

L̄Lþ bðTÞ lnMHðL; L̄Þ

þ cðTÞ
2

ðL3 þ L̄3Þ þ dðTÞðL̄LÞ2; ðA1Þ

with the Haar measure MHðL; L̄Þ

MHðL; L̄Þ ¼ 1 − 6L̄Lþ 4ðL3 þ L̄3Þ − 3ðL̄LÞ2: ðA2Þ

The coefficients in Eq. (16) are of the form

xðTÞ ¼ x1 þ x2=ðtþ 1Þ þ x3=ðtþ 1Þ2
1þ x4=ðtþ 1Þ þ x5=ðtþ 1Þ2 ; ðA3Þ

for x∈ fa; c; dg, and

bðTÞ ¼ b1ðtþ 1Þ−b4ð1 − eb2=ðtþ1Þb3 Þ; ðA4Þ

FIG. 9. Left panel: calculated collision energy dependence of κσ2 ¼ χB4 =χ
B
2 along the freeze-out line. The blue circles are the

experimental values [25] for 0%–5% centrality. The inlay zooms in at
ffiffiffiffiffiffiffiffi
SNN

p
∼ 20 GeV. Right panel: calculated collision energy

dependence of χB6 =χ
B
2 (in logarithmic scale) along the freeze-out line. The shadowed regions represent our numerical uncertainties. The

black circles and gray squares are the experimental values [84] for 0%–10% and 30%–40% centralities, respectively.
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t ¼ ðT − TYMÞ=TYM; ðA5Þ

where TYM is the critical temperature for the deconfinement
phase transition in pure gauge theory. Values of parameters
in Eqs. (A3) and (A4) are listed in Table V.
The threshold functions lðB=FÞ0 in Eq. (13) read

lðBÞ0 ðm̄2; T; μÞ ¼ 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p ð1þ nBðm̄2; T; μÞ

þ nBðm̄2; T;−μÞÞ;

lðFÞ0 ðm̄2; T; μÞ ¼ 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p ð1 − nFðm̄2; T; μ; L; L̄Þ

− nFðm̄2; T;−μ; L̄; LÞÞ; ðA6Þ

with

nBðm̄2;T; μÞ ¼ 1

eðE−μÞ=T − 1
; ðA7Þ

nFðm̄2;T; μ; L; L̄Þ

¼ 1þ 2L̄eðE−μÞ=T þ Le2ðE−μÞ=T

1þ 3L̄eðE−μÞ=T þ 3Le2ðE−μÞ=T þ e3ðE−μÞ=T
; ðA8Þ

where E ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p
is the particle energy. Equation (A8)

is the Polyakov-loop modified fermion distribution

function, which has an intuitive interpretation. With
L; L̄ ¼ 0, one has nF ∼ 1=ð1þ e3ðE−μÞ=TÞ, which is the
distribution function for a qqq-state. At low temperature,
the modified fermion distribution function can be related to
the correct counting of baryonic degrees of freedom in a
subtle manner; see Ref. [85] for a detailed discussion. At
high temperature L; L̄ ∼ 1, one recovers the ordinary
fermion distribution function nF ∼ 1=ð1þ eðE−μÞ=TÞ.

APPENDIX B: MODIFICATION
OF INITIAL CONDITIONS

When the external parameters of the temperature and
chemical potential, such as 2πT and 2πμ, that represent
additional energy scales are comparable to the cutoff scale
Λ of the model, the initial conditions Γk¼Λ would develop a
dependence on these parameters. We follow the procedure
proposed in Refs. [57,73], and for more detailed discus-
sions see also Refs. [88,89]. The basic idea is to start the
flow from a high enough scale in which the dependence of
the external parameters can be neglected and flow down to
the cutoff scale, and then, the modification of initial
conditions is

ΔΓΛ½s� ¼ ΓΛðsÞ − ΓΛð0Þ
¼ ½ΓΛðsÞ − Γ∞ðsÞ� − ½ΓΛð0Þ − Γ∞ð0Þ�

¼
Z

Λ

∞
dk½∂kΓkðsÞ − ∂kΓkð0Þ�; ðB1Þ

where s denotes the external parameters (T, μ in the present
case). Since quark fluctuations dominate over meson
fluctuations at a high energy scale, we could approximate
the flow in Eq. (B1) by fermionic parts, to wit,

ΔUΛ½T; μ� ¼
Z

Λ

∞
dk

Nck4

3π2

8<
:

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
�
nF

�
m2

l

k2
; T; μ;L; L̄

�
þ nF

�
m2

l

k2
; T;−μ;L̄; L

��

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

s

p
�
nF

�
m2

s

k2
; T; μ;L; L̄

�
þ nF

�
m2

s

k2
; T;−μ;L̄; L

��9=
;: ðB2Þ

Generally speaking, ml and ms depend on the ρ1 and ρ2. It
is a good approximation to set the values to their respective
vacuum constituent quark masses [57]. Thus, we set ml ∼
300 MeV and ms ∼ 430 MeV in our calculation.

APPENDIX C: THE INFLUENCE OF
PARAMETER γ̂ IN EQ. (19)

In the main text, we do the calculation and compare the
results in both μ-dependent and μ-independent T0 cases. The

former case corresponds to γ̂ ¼ 1 in Eq. (19), which has been
used in Refs. [56,57], and the obtained results have found
good agreement with those of the lattice QCD and the HRG
models. The latter case corresponds to γ̂ ¼ ∞ with no hard
thermal or dense loop improvements incorporated. For
completeness, we also explore the influence of other values
of γ̂. We choose the range of γ̂ to be γ̂ ∈ ð0.35;∞Þ. The lower
bound corresponds to an unphysical value, at which T0ðμÞ in
Eq. (18) already tends to be zero at μ ∼ 300 MeV.

TABLE V. Values of parameters in Eqs. (A3) and (A4).

1 2 3 4 5

ai −44.14 151.4 −90.0677 2.77173 3.56403
bi −0.32665 −82.9823 3.0 5.85559
ci −50.7961 114.038 −89.4596 3.08718 6.72812
di 27.0885 −56.0859 71.2225 2.9715 6.61433
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We illustrate the phase structures corresponding to
γ̂ ¼ ∞; 1, 0.7, 0.5, and 0.35 in Fig. 10. We observe that
the phase structures are not sensitive to large values of γ̂ and
are mildly changed for small μB, while for larger μB a
smaller value of γ̂ will result in lower transition lines in the
T-μB plane. The sensitivity of the phase structures to γ̂
shown here is less than that in Ref. [53]. This has some
relevance with the parametrization of the Polyakov-loop
potential. The fractional polynomial dependence on T0 is
encoded in Eq. (A3), while it is polynomial dependence in
Eq. (5) in Ref. [53]. Also, the currently used Polyakov-loop
potential has more subtle refinements compared to the one
used there, such as the inclusion of the Haar measure and
rescaling of the deconfinement critical temperature, see, for
example, Eqs. (17) and (A2).
Since there is a direct contribution from μ-dependent

Polyakov-loop potential to the baryon number susceptibil-
ities, the influence of γ̂ on the freeze-out line will be more
apparent than that on the phase structures. We collect the
obtained freeze-out points for γ̂ ¼ 0.7 and γ̂ ¼ 0.5 cases in
Table VI and depict the freeze-out line for γ̂ ¼ 0.7 case in
Fig. 10. One observes that the freeze-out temperatures are
overall higher when compared to the results obtained in the
cases of γ̂ ¼ ∞ and γ̂ ¼ 1, and the freeze-out line extends
to larger μB in the low temperature region.
We do not explore the lower values of γ̂. As one can see

from Fig. 10, the freeze-out temperatures show a slowly
increasing trend with the decreasing collision energy for the
first six freeze-out points already in the γ̂ ¼ 0.7 case. The
trend is much more apparent with lower values of γ̂; see, for
example, the obtained freeze-out points in the case of γ̂ ¼
0.5 in Table VI. The trend continues to large μB and thus is
not physical, and we think the value γ̂ ¼ 0.7 has already
come close to the unphysical one in the present settings.
Therefore, we refrain ourselves from lower values of γ̂.

TABLE VII. Parameters T0; a; b in Eq. (29) and c, d in Eq. (30)
for the case of γ̂ ¼ 0.7 [c; Tf

0 (MeV); d (GeV−1)].

T0 c d Tf
0 a b

γ̂ ¼ 0.7 690.76 0.141 156.6 4.06 × 10−8 0.0017

TABLE VI. Obtained freeze-out points ðμfB; TfÞ for γ̂ ¼ 0.7 and 0.5 cases [μfB, T
f (MeV);

ffiffiffiffiffiffiffiffi
SNN

p
(GeV)].

ffiffiffiffiffiffiffiffi
SNN

p
200 62.4 54.4 39 27 19.6 14.5 11.5 7.7

γ̂ ¼ 0.7 μfB 23.3þ0.7
−0.6 69.3þ0.9

−0.8 77.6þ0.2
−0.2 103.3þ0.5

−0.5 145.3þ0.5
−0.4 187.3þ0.6

−0.0 230.7þ5.7
−4.5 259.9þ10.5

−7.0 284.0þ29.1
−15.6

Tf 153.1þ4.5
−4.3 155.2þ2.5

−2.3 156.5þ0.6
−0.5 156.5þ1.2

−1.2 158.0þ1.9
−1.7 159.1þ2.7

−2.4 152.9þ2.3
−2.1 157.8þ3.2

−3.0 159.4þ4.6
−4.1

γ̂ ¼ 0.5 μfB 23.5þ0.8
−0.7 70.2þ1.2

−1.0 78.8þ0.3
−0.3 105.2þ0.9

−0.7 149.9þ1.7
−1.4 195.6þ0.9

−1.0 235.3þ2.6
−1.6 271.9þ7.8

−6.1 299.9þ35.7
−17.8

Tf 154.4þ5.3
−4.5 157.1þ3.3

−2.7 158.9þ0.7
−0.7 159.5þ1.8

−1.6 163.7þ3.0
−2.8 167.6þ2.9

−3.2 161.5þ2.8
−2.9 167.1þ2.8

−2.6 168.0þ5.0
−4.1

FIG. 10. Upper panel: calculated parameter γ̂ dependence of the
deconfinement phase transitions line (in dashed) and the chiral
phase transitions line (in solid). The black, blue, green, red, and
cyan colors correspond to γ̂ ¼ ∞; 1, 0.7, 0.5, and 0.35, respec-
tively. The inlay zooms in at large μB. Lower panel: the obtained
freeze-out points and line in case of γ̂ ¼ 0.7 (the orange stars and
curve). For the convenience of comparison, we depict also the
freeze-out lines of γ̂ ¼ ∞ and γ̂ ¼ 1 (black and blue curves). Red
curve is the line from Ref. [38]. The solid and dashed green lines
represent the chiral and deconfinement phase transitions in the
case of γ̂ ¼ 0.7, respectively.

JUN-XIANG SHAO, WEI-JIE FU, and YU-XIN LIU PHYS. REV. D 109, 034019 (2024)

034019-12



We collect the fitting parameters in Eqs. (29) and (30) in
the case of γ̂ ¼ 0.7 in Table VII. Then, we calculate χB4 =χ

B
2

and χB6 =χ
B
2 along the freeze-out line and illustrate the

ffiffiffiffiffiffiffiffi
SNN

p
dependence of χB4 =χ

B
2 and χB6 =χ

B
2 in Fig. 11. We observe

from Fig. 11 that although the overall shapes of χB4 =χ
B
2 and

χB6 =χ
B
2 are similar to those obtained in the cases of γ̂ ¼ ∞

and γ̂ ¼ 1. The nonmonotonicity of χB4 =χ
B
2 shown in the

inlay of the left panel of Fig. 11 is much weaker, and the
minimum or maximum of χB6 =χ

B
2 tends to lower collision

energy with larger depth or height.
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