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Motivated by the recent lattice QCD study of the DD� interaction at unphysical quark masses, we
perform a theoretical study of theDD� interaction in covariant chiral effective field theory. In particular, we
calculate the relevant leading-order two-pion exchange contributions. The results compare favorably with
the lattice QCD results, supporting the conclusion that the intermediate-rangeDD� interaction is dominated
by two-pion exchanges and the one-pion exchange contribution is absent. At a quantitative level, the
covariant chiral perturbation theory results agree better with the lattice QCD results than their non-
relativistic counterparts, showing the relevance of relativistic corrections in the charm sector.
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I. INTRODUCTION

In 2021 the LHCb collaboration observed a narrow
structure in the D0D0πþ invariant mass spectrum of the pp
interaction, identified as a doubly charmed tetraquark state,
i.e., Tþ

ccð3875Þ. It is natural to expect that the width of the
Tþ
cc should be smaller than that of the D�þ [1–6]. Later, the

LHCb collaboration analyzed their data with a resonance
profile more suitable to account for the closeness of the Tþ

cc

to the D�þD0 threshold, and the mass and width of Tþ
cc

were found to be [7]

δmpole ¼ −360� 40þ4
−0 keV;

Γpole ¼ 48� 2þ0
−14 keV:

There were many theoretical studies predicting the
existence of a ccū d̄ tetraquark before the experimental
discovery [8–27]. The theoretical predictions for the mass
of the ccū d̄ ground state with spin-parity quantum num-
bers JP ¼ 1þ and isospin I ¼ 0, relative to the D�þD0

mass threshold δm ¼ mTþ
cc
− ðmD0 þmD�þÞ, lies in the

range −300 < δm < 300 MeV. After the LHCb discovery,
more studies were performed, and some of the earlier
studies were updated. As the Tþ

cc state has a small binding
energy and a narrow width, the molecular picture has
gained a lot of attention [28–37]. In Ref. [1], the effective
Lagrangian approach was used to investigate the decay
width of Tþ

cc, and the results support its molecular nature. In
Ref. [35], the one-boson exchange potential model and the
complex scaling method are used and Tþ

cc is shown to
correspond to a quasibound state. In Ref. [37], the authors
found that the possible contribution of a nonmolecular
component or missing channels is smaller than 3%, which
supported the molecular nature of Tþ

cc. In addition, coupled-
channel studies exist [2,3,30,32,38]. In Refs. [3,32], the
authors studied the Tþ

cc in the D�þD0 and D�0Dþ coupled
channels and found a bound state corresponding to the Tþ

cc,
while in Ref. [38], D�þD0, D�0Dþ, and D�0D�þ coupled
channels and the constituent quark model were used, and it
was found that the D�þD0 component accounts for 86% of
the Tþ

cc wave function. In addition to its production
mechanisms and decay properties, its electromagnetic
properties [39,40], the effects of three-body DDπ cut
[32,41], the compositeness [42], and even the yield of
Tþ
cc in heavy ion collisions [43] have been studied.
After the experimental discovery, several lattice QCD

studies have been performed [44–46], In Ref. [44], a
simulation of DD� scattering for mπ ≃ 280 MeV was
performed, and a doubly charmed tetraquark with JP ¼
1þ features as a virtual bound state in the simulation with a
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charm quark mass slightly larger than its physical value. In
Ref. [45], the S-waveDD� scattering in the isospin I ¼ 0, 1
channels was studied for mπ ≃ 350 MeV. The authors
found that the DD� interaction in the I ¼ 0 channel is
attractive for a wide range of the DD� energy, while the
DD� interaction induced by the charged ρ meson exchange
may play a crucial role in the formation of Tþ

ccð3875Þ.
It is particularly interesting to note that in Ref. [46], the

DD� interaction in the isoscalar and S-wave channel is
studied for a nearly physical pion mass mπ ≃ 146 MeV,
and the long-range part of the potential is found to be
dominated by the two-pion exchange at least in the range
1 < r < 2 fm.1 In contrast, the one-pion exchange poten-
tial is absent. The overall attraction is strong enough to
generate a near-threshold virtual state, which evolves into a
loosely bound state for the physical mπ ≃ 135 MeV.
In Refs. [24,47], the one-pion and two-pion exchange

potentials in the DD� system were calculated in the non-
relativistic chiral effective field theory (ChEFT) up to the
second and third order, respectively. It is interesting to note
that in Ref. [47], the nonrelativistic ChEFT supports the
dominance of the ae−2mπr=r2 behavior of the two-pion
exchange, similar to the lattice simulations but for ranges
longer than 1 < r < 2 fm. It was further pointed out
that the ae−2mπr=rn behavior with n > 2 may also play a
relevant role.
Motivated by the lattice QCD discovery of the dominant

two-pion exchange potential [46] and the discrepancy
between the nonrelativistic ChEFT and the lattice QCD
simulations [47], we adopt the covariant ChEFT to calcu-
late the two-pion-exchange contributions to the DD�
interaction, which are expected to converge faster. This
is shown to be the case for baryon masses [48], magnetic
moments [49,50], meson-baryon scattering [51–54],
nucleon-nucleon scattering [55–59], hyperon-nucleon scat-
tering [60–66], the ΛcN system [67,68], and the singly
charmed meson sector [69–71]. However, covariant ChEFT
has not been applied to study the systems of two charmed

hadrons such as DDð�ÞðD̄ð�ÞÞ or Σð�Þ
c D̄ð�Þ. The effective

potential extracted by the HAL QCD method [72–76]
provides a unique opportunity to investigate how covari-
ance plays its role in such a heavy flavor system. That is,
whether the covariant ChEFT can better describe the lattice
QCD simulation [46].
This work is organized as follows. In Sec. II, we briefly

explain the ChEFT approach and calculate the relevant
Feynman diagrams. Results and discussions are given in
Sec. III, followed by a summary in the last section. The
analytical results for the pertinent Feynman diagrams are
relegated to Appendices A and B. The heavy-meson

approximation and the comparison with the nonrelativistic
results are in Appendix C.

II. THEORETICAL FORMALISM

A. Effective Lagrangians

In the framework of ChEFT, we can expand the
amplitudes with a small parameter ϵ ¼ maxfp=Λ; m=Λg,
where p is the momentum of the pion,m is the pion mass or
the D −D� mass splitting, and Λ is the breakdown scale of
chiral symmetry or the mass of Dð�Þ mesons.
In this work, we only consider the one-pion-exchange

(OPE) diagram at the leading order (LO) Oðϵ0Þ and the
two-pion-exchange (TPE) diagram at the next-to-leading
order (NLO)Oðϵ2Þ. For this, we first spell out the covariant
chiral effective Lagrangian describing the interactions
between charmed mesons D=D� and Nambu-Goldstone
bosons (NGB), which reads [77]

L ¼ hDμPDμPi −m2
PhPP†i − hDμP�νDμP�†

ν i
þm2

P�hP�νP�†
ν i þ igDhP�

μuμP† − PuμP�†
μ i

þ gD�

2
hðP�

μuα∂βP
�†
ν − ∂βP�

μuαP
�†
ν Þϵμναβi; ð1Þ

where P ¼ ðD0; Dþ; Dþ
s Þ and P�

μ ¼ ðD�0; D�þ; D�þ
s Þμ, the

axial current is uμ¼ iðξ†∂μξ− ξ∂μξ
†Þ, and the chiral covar-

iant derivative is

DμPa ¼ ∂μPa − Γba
μ Pb; DμP†

a ¼ ∂
μP†

a þ Γμ
abP

†
b; ð2Þ

where Γμ ¼ 1
2
ðξ†∂μξþ ξ∂μξ

†Þ is the vector current. In the
currents, ξ2 ¼ expðiΦ=fÞ with f ¼ 0.092 GeV being the
NGB decay constant in the chiral limit and Φ collecting
the octet of NGB fields:

Φ ¼
ffiffiffi
2

p
0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA: ð3Þ

The coupling gD is determined from the decay width of
the D�þ, and the coupling gD� is related to gD through the
heavy-quark spin symmetry. The values of gD and gD� are
1.177 GeV and gD=mD� ¼ 0.583, respectively [77,78].

B. Effective potentials of the DD� system

At LO, the OPE diagram is illustrated in Fig. 1, which
mainly contributes to the longest-range interaction. The
OPE potential is

VOPE ¼ AI
OPE ·

g2D
f2

·
ðϵ2 · qÞðϵ†4 · qÞ
q2 −m2

π þ iϵ
; ð4Þ

1Note that in Ref. [47], 1 < r < 2 fm is referred to as
intermediate range. In this work, following Ref. [46], we refer
to 1 < r < 2 fm as long range.
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where q ¼ p1 − p4 ¼ p3 − p2, and ϵ2 (ϵ4) is the polari-
zation vector of the D� meson, and AI

OPE is the isospin
factor, where the superscript I ¼ 0, 1 denotes the isospin of
the DD� system.
At NLO, there are ten TPE diagrams, which we illustrate

in Fig. 2. One can calculate the TPE potential with the
Lagrangian given in Eq. (1). Although the procedure is
straightforward, the results are a bit tedious. Therefore, we
relegate them to Appendix A. In Table I, we list the isospin
factors appearing in Eqs. (4) and (A1)–(A10).
We calculate the effective potential in the center of mass

system (c.m.s.) of theDD� and project the potential to the S
wave [79]

Vð2Sþ1LJ ¼ 3S1Þ ¼
1

2

Z
d3p0Vðp; p0Þ sin θ ð5Þ

where θ is the angle between p and p0. We note that the
Feynman diagrams R2;1 and R2;2 have a left-hand cut
for θ∈ ½0; π�, and therefore, we approximate mD ¼ mD�

in the dynamics but maintain the threshold of D and D�,
i.e., mD þmD� , the same as the lattice simulations in
the kinematics. According to the covariant power-counting
rule based on naive dimensional analysis [77], ðmD� −mDÞ
is of order Oðq2Þ. Thus, taking ðmD� −mDÞ=Λ ¼ 0 in
the TPE potential is a reasonable approximation, and
the difference is of higher chiral order, which can be
neglected.
We note that most TPE diagrams contain ultraviolet

divergences, which the corresponding contact interactions
of the same order should absorb. This, however, requires
the introduction of unknown low-energy constants. In
Ref. [24], these low-energy constants were determined in
the resonance saturation approach. In the present work, as
our main purpose is to check whether, for 1 ≤ r ≤ 2 fm, the
TPE contribution dominates theDD� interaction, we take a
different regularization approach, which is physically more
intuitive. That is, we multiply each pion propagator with a
monopole form factor2

Fðq2Þ ¼ m2
π − Λ2

q2 − Λ2
; ð6Þ

as is usually done in one-boson exchange models (see,
e.g., Ref. [35]). We have checked that all the divergences
originating from the dimensional regularization can be
removed by Fðq2Þ, and the residual part can be consid-
ered the genuine two-pion exchange potential. Note that
our covariant chiral TPE potential has dimension ½E�0,
while the nonrelativistic ChEFT potential and the
potential obtained in the lattice QCD simulation have
dimension ½E�−2. Thus we divide our potential byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD2mD�2mD2mD�

p
to set both dimensions the same,

as is usually done in the nonrelativistic EFT [84,85].

C. Subtraction of the reducible part
of the TPE potential

Note that the DD� interaction extracted from lattice
QCD simulations corresponds to the effective potential.
As a result, we need to subtract from the amplitude of
diagram B2;2 the reducible part. Otherwise, double count-
ing will occur when the effective potential is inserted into

FIG. 1. One-pion exchange diagram at LO. The solid, double-
solid, and dashed lines stand forD,D�, and the pion, respectively.

FIG. 2. Two-pion exchange diagrams at NLO. The solid,
double-solid, and dashed lines represent D, D� and the pion,
respectively.

TABLE I. Isospin factors for the OPE and TPE potentials of
DD� → DD�.

AI
OPE AI

F2;1
AI
T2;1

AI
T2;2

AI
T2;3

AI
B2;1

AI
B2;2

AI
B2;3

I ¼ 0 3 3 3 −3 −3 −9 9 9
I ¼ 1 1 −1 −1 1 1 −1 1 −1

AI
R2;1

AI
R2;2

AI
R2;3

I ¼ 0 3 −3 −3
I ¼ 1 −5 5 −5

2One should note that using form factors in chiral perturbation
theory can potentially break chiral symmetry. In Refs. [80,81], it
was shown that chiral symmetry is respected for loop functions
containing only one pion propagator, as can be straightforwardly
checked. On the other hand, this is not necessarily the case for the
TPE diagrams studied in this work. Given its complexity, we will
leave this issue for future work. We note that form factors are
routinely used in dealing with nonperturbative strong inter-
actions, such as the nucleon-nucleon interaction [82,83].
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the Kadyshevsky equation. The reducible part shown in
Fig. 3 can be calculated in the following way:

VRP ¼ i
Z

d4l
ð2πÞ4 ·

VOPEðp; lÞ
k21 −m2

1 þ iϵ
·
VOPEðl; p0Þ
k22 −m2

2 þ iϵ
; ð7Þ

≃
Z

dl
ð2πÞ3 ·

l2

4E1E2

VOPEðp; lÞ · VOPEðl; p0Þffiffiffi
s

p
− ET þ iϵ

; ð8Þ

where

k1 ¼
�
s −m2

D� þm2
D

2
ffiffiffi
s

p þ l0; l

�
;

k2 ¼
�
sþm2

D� −m2
D

2
ffiffiffi
s

p − l0;−l
�
;

and E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

D

p
, E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

D�
p

, ET ¼ E1 þ E2.
To calculate the integral of Eq. (7), we put the momentum

ofD� inVOPE on shell and themomentum ofD off shell, and
close the l0 contour integral in the lower half-plane with the

pole located at lð1Þ0 ¼ E1 − ðs −m2
D� þm2

DÞ=2
ffiffiffi
s

p
− iϵ and

lð2Þ0 ¼ E2 þ ðsþm2
D� −m2

DÞ=2
ffiffiffi
s

p
− iϵ. Then, Eq. (8) can

be easily obtained using the residue theorem. The detailed
calculation is given in Appendix A.

D. Lattice QCD DD� potential in momentum space

The lattice QCD potential VL
TPEðrÞ is given in coordinate

space [46],

VL
TPEðrÞ ¼ a3

e−2mπr

r2
; ð9Þ

where a3 ¼ −0.045 GeV is the fitted parameter in the
lattice simulation. To compare with the potential obtained
in covariant ChEFT, we need to transform it into momen-
tum space

VL
TPEðqÞ ¼

Z
d3qVL

TPEðrÞe−iq·r: ð10Þ

Performing the integration analytically, we obtain

VL
TPEðqÞ ¼ ã3

4π

q
arctan

�
q

2mπ

�
; ð11Þ

where ã3 ≃ −1.15 GeV−1 is the fitted parameter in natural
units, and q ¼ jqj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p02 − 2pp0 cos θ

p
, where q is

the transfer momentum. Note that the potential of
Eq. (11) should be projected to the S wave before it can
be compared with both the relativistic and nonrelativistic
chiral potentials.
It has been noticed that in Ref. [86], the potentials

extracted by the HAL QCD method do not always match
the intuitive expectation for baryon-baryon interactions.
The potential from the HAL QCDmethod was much longer
ranged and much stronger at larger distances than the
intuitive expectations for the ΩΩ [87] or ΩN [88] inter-
action where the pion exchanges cannot occur directly.
On the other hand, for the interactions where the pion
exchanges dominate the long-range part, such as the DD�
interaction studied here or the ΞN interaction [89], the HAL
QCD method seems to be valid. Therefore, we treat the
potential in Eq. (11) as a realistic interaction.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, for the sake of convenience, we use VR
OPE

and VR
TPE to denote our relativistic OPE and TPE potentials,

respectively. VNR
TPE refers to the nonrelativistic TPE potential

in momentum space derived in Ref. [47] and VL
TPE refers to

the TPE potential given in Eq. (11) Fourier transformed
from the lattice QCD potential [46].
We first compare our covariant chiral potentials with

those obtained in the heavy meson chiral effective field
theory (HMChEFT) [24]. The details of the analytic results
are shown in the Appendix C, where at the nonrelativistic
limit, i.e., p → 0 and mDð�Þ → ∞, our potentials have the
same analytic structure as those of HMChEFT, as they
should be. However, they will be different for finite
momentum and heavy quark masses, as we will see later.
In Fig. 4, we show the contributions of various diagrams

for a cutoff of Λ ≃ 0.95 GeV to match VL
TPE at p ¼ 0. One

can see that the relativistic TPE potential is dominated by
diagram B2;2 at p ≃ 0, or in the long range because the pion
mass is close to the D −D� mass splitting. Thus, the four
propagators of diagram B2;2 can approach their on-shell
conditions simultaneously and therefore enhance the con-
tribution, which is the so-called box singularity [90]. The
amplitude of diagram B2;2 is also sensitive to the c.m.s.
momentum and provides the dominant contribution to the
momentum dependence of the TPE potential.
Next, in Fig. 5, we show the OPE and TPE potentials for

a Λ ¼ 0.95 GeV cutoff in the I ¼ 0 channel. One can see
that both the OPE and TPE potentials are attractive for all
the ranges, and VR

OPE ≃ 0 as p ≃ 0. In particular, VOPE is
much weaker than VR

TPE in the long range, which is

FIG. 3. The reducible part of the TPE potential from
Feynmann diagram B2;2, where p0

1 ¼ s −m2
D� þm2

D=2
ffiffiffi
s

p
and

p0
2 ¼ sþm2

D� −m2
D=2

ffiffiffi
s

p
.
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consistent with the observation that VOPE is absent in the
lattice QCD simulation [46].
In Fig. 5, we also show the OPE and TPE potentials for

the physical pion mass in the I ¼ 0 channel. The interaction
becomes more attractive than the potentials obtained with
the lattice QCD pion mass. This is also consistent with the
lattice QCD study where the potential formπ ¼ 0.146 GeV
produces a virtual state, while a loosely bound state is
generated for mπ ¼ 0.135 GeV.
We also show the isovector OPE and TPE potentials

in Fig. 5. They become comparable in the range of
0.05–0.3 GeV, and although both are attractive, they are

less attractive than their isoscalar counterparts. Since the
isoscalar OPE and TPE potentials (black lines) can barely
produce a virtual (or a loosely bound) state [46], and
the contact interaction determined in the resonance satu-
ration model is repulsive [24], we can assert that there
exists no bound state in the I ¼ 1 channel, consistent with
Refs. [19,24,91].
In Fig. 6, we compare VL

TPE, V
R
TPE, and VNR

TPE. We set
Λ ≃ 0.95 GeV for VR

TPE and Λ ≃ 1.4 GeV for VNR
TPE to

match VL
TPE at p ¼ 0. We can see that VR

TPE is consistent
with VNR

TPE between 0 and 0.03 GeV, consistent with our
analytic results shown in Appendix C. In addition, VR

TPE
increases faster than VNR

TPE in the long-range (or in the small-
momentum 0–0.3 GeV) region.
The different behavior between VNR

TPE and VR
TPE mainly

originates from the nonrelativistic approximation, i.e., the
neglect of terms of Oð1=mDÞ or higher order.
The latticeQCDsimulations [46] show that in the range of

1 < r < 2 fm, the DD� interaction can be described by a
TPE potential, i.e., Eq. (10)which corresponds to Eq. (11) in
momentum space as shown in Fig. 6. In Ref. [47], it was
revealed that VNR

TPE with a cutoff of Λ∈ ½0.4; 0.9� GeV has
the same asymptotic behavior as the lattice QCD potential,
i.e., Eq. (10), but dominates the range longer than
1 < r < 2 fm. This can be seen in Fig. 6—because 1 < r <
2 fm corresponds to 0.07 < p < 0.15 GeV approximately,
a longer range corresponds to the momentum smaller than
0.07 GeV, while in Fig. 6 we can see that in the range of
0 < p < 0.03 GeV especially, both VR

TPE and VNR
TPE are

similar to VL
TPE. In the range of 0 < p < 0.3 GeV, with a

reasonable cutoff, our covariant TPE potential can better
describe VL

TPE than the nonrelativistic TPE.

FIG. 4. Contributions of different Feynman diagrams as a
function of p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðmDþmD� Þ2�½s− ðmD−mD� Þ2�

p
=2

ffiffiffi
s

p
in

the c.m.s. of DD� for a cutoff of Λ ≃ 0.95 GeV.

FIG. 5. VOPE and VR
TPE for different pion masses and different

isospin channels for a cutoff Λ ≃ 0.95 GeV, where the solid lines
denote the OPE potentials and the dashed lines denote the TPE
potentials. The black and blue lines denote the potentials for
mπ ¼ 0.146 GeV, mD ¼ 1.878 GeV, mD� ¼ 2.018 GeV, and
mπ ¼ 0.138 GeV, mD ¼ 1.870 GeV, mD� ¼ 2.007 GeV. The
red lines denote the OPE and TPE potentials in the I ¼ 1 channel.

FIG. 6. VL
TPE, V

R
TPE, and VNR

TPE. We used a cutoff Λ ≃ 0.95 GeV
for VL

TPE and Λ ≃ 1.4 GeV for VNR
TPE to match VL

TPE at p ¼ 0. The
VR0
TPE denoted by a red dashed line is the potential obtained with

the unphysical parameter f with Λ ≃ 0.74 GeV.
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Note that VR
TPE shown in Fig. 6 does not agree well with

VL
TPE. To understand whether this is due to the particular

form factor we used, we tried a dipolar form factor instead
of the monopolar one

Fðq2Þ ¼
�
m2

π − Λ2

q2 − Λ2

�
2

to consider the internal structure of the pion at each
interaction vertex. The results are also shown in Fig. 6.
We found that the dipolar form factor only improves the
agreement between VR

TPE and VL
TPE a little bit, thus gives

nearly the same description. Meanwhile, this nearly neg-
ligible improvement is at the expense of a large cutoff
Λ ≃ 1.6 GeV, which is unreasonable in the chiral effective
field theory. One notes that the potentials sensitively
depend on the cutoff Λ in the monopole or dipole form
factors. The form factors multiplied on the pion propa-
gators allow the removal of spurious short-distance physics
associated with high-momentum intermediate states.
However, as mentioned previously, these cutoff momenta
are determined by matching the lattice QCD results at the
threshold, and we have not included any contact inter-
actions. The cutoff here actually contains parts of the short-
range contributions.
On the other hand, we believe that the differences

between our VR
TPE and VL

TPE can be attributed to the fact
that we used physical gD and f and unphysical meson
masses in the derivation of the TPE potential. The quark
mass dependence of these quantities needs to be carefully
taken into account for a proper comparison with the
lattice QCD potential and is highly nontrivial. This goes
beyond the scope of the present work. For demonstration,
we replace fphy with f ¼ Cπ · fphy. The results are shown in
Fig. 6 for a cutoff Λ ≃ 0.74 GeV. With this reasonable
cutoff, our TPE agrees well with VL

TPE in the range of
0.075 < p < 0.3 GeV for Cπ ≃ 0.9. Note that in
Refs. [92,93], the mπ dependence of fπ up to NLO reads

fπ ¼ fð0Þπ

�
1 −

m2
π

4π2ðfð0Þπ Þ2
log

�
mπ

mphy
π

�
þ � � �

�
;

which shows that a large mπ corresponds to a small fπ;
thus, our use of a smaller fπ is reasonable. Overall, our
results support the conclusion of the lattice QCD simulation
that the TPE potential is dominant in the 1 < r < 2 fm
range.

IV. SUMMARY

In this work, we have studied the long-range S-wave
DD� interaction in covariant chiral effective field theory. In
particular, we calculated the OPE and TPE potentials,
regulated with a monopolar form factor Fðq2Þ. We found
that Feynman diagram B2;2 dominates the momentum
dependence of the TPE potential. By comparing our
OPE and TPE potentials, we found that, in the I ¼ 0
channel, the TPE potential is dominant in the long range,
and both potentials become more attractive as the pion mass
approaches the physical point. While in the I ¼ 1 channel,
the OPE and TPE potentials are comparable and less
attractive than those of the I ¼ 0 channel. All the results
are consistent with the lattice QCD study [46].
We compared our covariant TPE potential with the

nonrelativistic one and the lattice QCD potential, and we
found that all three potentials share nearly the same
behavior in a range longer than 2 fm, while between 1
and 2 fm, our covariant TPE potential describes better the
lattice QCD potential. We further demonstrated that with a
smaller pion decay constant, e.g., by 10% compared with
its physical value, one can better describe the lattice QCD
potential with a reasonable cutoff. Overall, our study
supports the conclusion of the lattice QCD study that
the two-pion-exchange potential is dominant in the
1 < r < 2 fm.
In Ref. [94], it was shown that the TPE potential also

dominates the long-range NΦ potential. In Ref. [95], it was
argued that the TPE potential can play a relevant role in the
J=ψ − J=ψ interaction. We plan to study these systems in
chiral effective field theory.
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APPENDIX A: COVARIANT TPE POTENTIAL

This Appendix shows the explicit expressions of the TPE
potentials derived in covariant chiral effective field theory.
They read as follows:

VF2;1
¼ AI

F2;1
·
1

8f4
·
1

2

Z
id4l
ð2πÞ4

½ðp2 þ p4Þ · ðp2 − p4 þ 2lÞ�½ðp1 þ p3Þ · ðp2 − p4 þ 2lÞ�
½ðp2 − p4 þ lÞ2 −m2 þ iϵ�ðl2 −m2 þ iϵÞ ðϵ2 · ϵ†4Þ; ðA1Þ
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VT2;1
¼ AI

T2;1
·
g2D
2f4

Z
−id4l
ð2πÞ4

½ðp4 − p2 þ lÞ · ϵ†4�½ðp1 þ p3Þ · ðp4 − p2 þ 2lÞ�ðl · ϵ2Þ
½ðp2 − lÞ2 −m2

D þ iϵ�ðl2 −m2
π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2

π þ iϵ� ðA2Þ

VT2;2
¼ AI

T2;2
·
g2D�

8f4

Z
−id4l
ð2πÞ4 ϵ

μναβϵ†ν4 ðp4 − p2 þ lÞαðp2 þ p4 − lÞβ
�
−gμδ þ ðp2 − lÞμðp2 − lÞδ

m2
D�

�
ϵλδρσϵλ2l

ρð2p2 − lÞσ

×
ðp1 þ p3Þ · ðp4 − p2 þ 2lÞ

½ðp2 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2
π þ iϵ� ; ðA3Þ

VT2;3
¼ AI

T2;3
·
g2D
2f4

Z
−id4l
ð2πÞ4

½ðp2 þ p4Þ · ðp2 − p4 þ 2lÞ�ðϵ2 · ϵ†4Þ
½ðp1 − lÞ2 −m2

D� þ iϵ�ðl2 −m2
π þ iϵÞ½ðp2 − p4 þ lÞ2 −m2

π þ iϵ� ðp2 − p4 þ lÞρ

×

�
−gρλ þ ðp1 − lÞρðp1 − lÞλ

m2
D�

�
lλ; ðA4Þ

VB2;1
¼ AI

B2;1
·
g2Dg

2
D�

4f4

Z
id4l
ð2πÞ4 ϵ

μναβϵ†ν4 ðp4 − p2 þ lÞαðp2 þ p4 − lÞβ
�
−gμλ þ ðp2 − lÞμðp2 − lÞλ

m2
D�

�
ϵρλσηϵρ2l

σð2p2 − lÞη

×
ðp4 − p2 þ lÞγ½−gγδ þ ðp1þlÞγðp1þlÞδ

m2
D�

�lδ
½ðp1 þ lÞ2 −m2

D� þ iϵ�½ðp2 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2
π þ iϵ� ; ðA5Þ

VB2;2
¼ AI

B2;2
·
g4D
f4

Z
id4l
ð2πÞ4

½ðp4 − p2 þ lÞ · ϵ†4�ðϵ2 · lÞ
½ðp1 þ lÞ2 −m2

D� þ iϵ�½ðp2 − lÞ2 −m2
D þ iϵ�ðl2 −m2

π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2
π þ iϵ�

× lρ
�
−gρλ þ ðp1 þ lÞρðp1 þ lÞλ

m2
D�

�
ðp4 − p2 þ lÞλ; ðA6Þ

VB2;3
¼ AI

B2;3
·
g2Dg

2
D�

4f4

Z
id4l
ð2πÞ4 ϵ

ρσδηϵρ2l
σð2p2 − lÞη

�
−gδγ þ ðp2 − lÞδðp2 − lÞγ

m2
D�

�
ðp2 − p3 − lÞγ

×
lλ½−gλμ þ ðp1þlÞλðp1þlÞμ

m2
D�

�ϵμναβϵ†ν4 ðp2 − p3 − lÞαðp1 þ p4 þ lÞβ
½ðp1 þ lÞ2 −m2

D� þ iϵ�½ðp2 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp2 − p3 − lÞ2 −m2
π þ iϵ� ; ðA7Þ

VR2;1
¼ AI

R2;1
·
g2Dg

2
D�

4f4

Z
id4l
ð2πÞ4 ϵ

μναβϵ†ν4 ðp4 − p2 þ lÞαðp2 þ p4 − lÞβ
�
−gμλ þ ðp2 − lÞμðp2 − lÞλ

m2
D�

�
ϵρλσηϵρ2l

σð2p2 − lÞη

×
ðp4 − p2 þ lÞγ½−gγδ þ ðp3−lÞγðp3−lÞδ

m2
D�

�lδ
½ðp3 − lÞ2 −m2

D� þ iϵ�½ðp2 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2
π þ iϵ� ; ðA8Þ

VR2;2
¼ AI

R2;2
·
g4D
f4

Z
id4l
ð2πÞ4

½ðp4 − p2 þ lÞ · ϵ†4�ðϵ2 · lÞ
½ðp2 − lÞ2 −m2

D þ iϵ�½ðp3 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp4 − p2 þ lÞ2 −m2
π þ iϵ�

× lρ
�
−gρλ þ ðp3 − lÞρðp3 − lÞλ

m2
D�

�
ðp4 − p2 þ lÞλ; ðA9Þ

VR2;3
¼ AI

R2;3
·
g2Dg

2
D�

4f4

Z
id4l
ð2πÞ4 ϵ

ρσδηϵρ2l
σð2p2 − lÞη

�
−gδγ þ ðp2 − lÞδðp2 − lÞγ

m2
D�

�
ðp3 − p2 þ lÞγ

×
ðp3 − p2 þ lÞλ½−gλμ þ ðp4−lÞλðp4−lÞμ

m2
D�

�ϵμναβϵ†ν4 lαð2p4 − lÞβ
½ðp2 − lÞ2 −m2

D� þ iϵ�½ðp4 − lÞ2 −m2
D� þ iϵ�ðl2 −m2

π þ iϵÞ½ðp3 − p2 þ lÞ2 −m2
π þ iϵ� : ðA10Þ

We calculate these loop integrals using dimensional regularization.
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APPENDIX B: SUBTRACTION OF THE
REDUCIBLE PART OF FEYNMAN

DIAGRAM B2;2

The reducible part of Feynman diagram B2;2 is

VRP ¼ i
Z

d4l
ð2πÞ4 ·

VOPEðp; lÞ
k21 −m2

1 þ iϵ
·
VOPEðl; p0Þ
k22 −m2

2 þ iϵ
; ðB1Þ

where

k1 ¼
�
s −m2

D� þm2
D

2
ffiffiffi
s

p þ l0; l

�
;

k2 ¼
�
sþm2

D� −m2
D

2
ffiffiffi
s

p − l0;−l
�
:

To calculate Eq. (B1), we set D� on shell, and D off shell,
and obtain

VRP ≃ i
Z

d3l
ð2πÞ3 VOPEðp;

ffiffiffi
s

p
− E2; E2; lÞ

× VOPEð
ffiffiffi
s

p
− E2; E2; l; p0Þ

×
Z

dl0
2π

·
1

k21 −m2
1 þ iϵ

·
1

k22 −m2
2 þ iϵ

; ðB2Þ

where E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

D�
p

. The integral of l0 can be calcu-
lated by using the residue theorem. We close the l0 contour
integral in the lower half-plane with the poles located at

lð1Þ0 ¼ E1 −
ðs −m2

D� þm2
DÞ

2
ffiffiffi
s

p − iϵ;

lð2Þ0 ¼ E2 þ
ðsþm2

D� −m2
DÞ

2
ffiffiffi
s

p − iϵ;

where E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

D

p
. Then we have

VRP≃
Z

d3l
ð2πÞ3VOPEðp;

ffiffiffi
s

p
−E2;E2; lÞ

×VOPEð
ffiffiffi
s

p
−E2;E2; l;p0Þ ·E1þE2

2E1E2

·
1

s−E2
T
; ðB3Þ

where ET ¼ E1 þ E2. We use the approximation
ffiffiffi
s

p
≃ ET ,

which is the same as reducing the Bethe-Salpeter equation
to the Kadyshevsky equation. Then we have

VRP ¼
Z

dl
ð2πÞ3 ·

l2

4E1E2

VOPEðp; lÞ · VOPEðl; p0Þffiffiffi
s

p
− ET þ iϵ

;

¼ P
Z

dl
ð2πÞ3 ·

l2

4E1E2

VOPEðp; lÞ · VOPEðl; p0Þffiffiffi
s

p
− ET

− iπ
1

ð2πÞ3
pcm

4
ffiffiffi
s

p VOPEðp; pcmÞVOPEðpcm; p0Þ; ðB4Þ

where pcm¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðmDþmD� Þ2�½s− ðmD−mD� Þ2�

p
=2

ffiffiffi
s

p
is the momentum in the c.m.s., and P denotes the principal
value of the integral.
In principle, the reducible parts of all the three box

diagrams B2;1, B2;2, and B2;3 should be subtracted.
However, since we do not take into account the coupled
channel of DD� → D�D�, and the energy region of our
interest is below the threshold of D�D�, that is, the D�D�
channel does not open, there exists no double counting for
the reducible parts of B2;1 and B2;3. Therefore only the
reducible part of diagram B2;2 is subtracted.

APPENDIX C: NONRELATIVISTIC
APPROXIMATION OF THE COVARIANT

NLO POTENTIAL

Following Refs. [24,96], one can decompose the poten-
tial to combinations of J functions employing the following
tensor decomposition rules,

i
Z

μ4−DdDl
ð2πÞD

f1; lμ; lμlρ; � � �g
ðl2 −m2

1 þ iϵÞ½ðqþ lÞ2 −m2
2 þ iϵ�≡ fJ F

0 ; q
μJ F

11; q
μqρJ F

21 þ gμρJF22; � � �g; ðC1Þ

i
Z

μ4−DdDl
ð2πÞD

f1; lμ; lμlν; lμlνlρ; � � �g
½ðþ=−Þv · lþ ωþ iϵ�ðl2 −m2

1 þ iϵÞ½ðqþ lÞ2 −m2
2 þ iϵ�

≡ fJ T=S
0 ; qμJ T=S

11 þ vμJ T=S
12 ; gμνJ T=S

21 þ qμqνJ T=S
22 þ vμvνJ T=S

23 þ ðq ∨ vÞJ T=S
24 ;

ðg ∨ qÞJ T=S
31 þ qμqνqρJ T=S

32 þ ðq2 ∨ vÞJ T=S
33 þ ðg ∨ vÞJ T=S

34 þ ðq ∨ v2ÞJ T=S
35 þ vμvνvρJ T=S

36 ; � � �g; ðC2Þ
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i
Z

μ4−DdDl
ð2πÞD

f1; lμ; lμlν; lμlνlρ; lμlνlρlσ; � � �g
ðv · lþ ω1 þ iϵÞ½ðþ=−Þv · lþ ω2 þ iϵ�ðl2 −m2

1 þ iϵÞ½ðlþ qÞ2 −m2
2 þ iϵ�

≡ fJ R=B
0 ; qμJ R=B

11 þ vμJ R=B
12 ; gμνJ R=B

21 þ qμqνJ R=B
22 þ vμvνJ R=B

23 þ ðq ∨ vÞJ R=B
24 ;

ðg ∨ qÞJ R=B
31 þ qμqνqρJ R=B

32 þ ðq2 ∨ vÞJ R=B
33 þ ðg ∨ vÞJ R=B

34 þ ðq ∨ v2ÞJ R=B
35 þ vμvνvρJ R=B

36 ;

ðg ∨ gÞJ R=B
41 þ ðg ∨ q2ÞJ R=B

42 þ qμqνqρqσJ R=B
43 þ ðg ∨ v2ÞJ R=B

44 þ vμvνvρvσJ R=B
45 þ ðq3 ∨ vÞJ R=B

46

þ ðq2 ∨ v2ÞJ R=B
47 þ ðq ∨ v3ÞJ R=B

48 þ ðg ∨ q ∨ vÞJ R=B
49 ; � � �g: ðC3Þ

More specifically, we follow the following steps to perform
the nonrelativistic reduction of our covariant potentials:
(1) Rewrite the denominator

Note that the expression of the J functions can be
derived by the heavy meson approach, that is

pμ ¼ mvμ þ kμ with v2 ¼ 1; ðC4Þ

where k2 is infinitesimal and can be neglected.
(2) Rewrite the momentum.

We approximate the momentum with the velocity,
i.e.,

pμ

m
≃ vμ ðC5Þ

and set mD ¼ mD� ¼ m. In Refs. [24,96], the
definition of q and p is q ¼ p1 − p3 and p ¼
p1 − p4, we take the following limits

p2 ·ϵ2→0; p4 ·ϵ4→0;

p2 ·ϵ4→−q ·ϵ4; p1 ·ϵ4→p ·ϵ4;

p3 ·ϵ2→p ·ϵ2; p4 ·ϵ2→q ·ϵ2;

p1 ·ϵ2→q ·ϵ2þp ·ϵ2; p3 ·ϵ4→p ·ϵ4−q ·ϵ4: ðC6Þ

In such limits, p1 ¼ −p2 ¼ ð0; 0; p̃Þ, p3 ¼ −p4 ¼
ðp̃ sin θ; 0; p̃ cos θÞ. Thus q2 ¼ ðp1 − p3Þ2 ¼
2p̃2ð1 − cos θÞ, p2 ¼ ðp1 − p4Þ2 ¼ 2p̃2ð1þ cos θÞ.

(3) Calculate the coefficient of the integrated tensor, and
do the nonrelativistic approximation.
We explain this procedure using VF2;1

as an
example. In obtaining VF2;1

, we need to calculate
the following integral

i
Z

μ4−DdDl
ð2πÞD

f1; lμ; lμlρg
ðl2 −m2 þ iϵÞ½ðl − qÞ2 −m2 þ iϵ� ;

which equals to J F
0 , −qμJ F

11, and q
μqρJ F

21 þ gμρJF22
in the nonrelativistic ChEFT, respectively. One can
see that the coefficients of these three tensors are

0; 0; 4iðϵ2 · ϵ�4Þðp1 þ p3Þμðp2 þ p4Þν:
After the contraction and under the nonrelativistic
approximation, we have

VR
F2;1

¼ 1

2
·
3

8f4
· 16mDmD� ðϵ2 · ϵ�4ÞJ F

22

¼ VNR
F2;1

· 4mDmD� : ðC7Þ

We also elaborate on VR
T2;1

as an example. Our
covariant potential has the following structure

i
Z

d4l
ð2πÞ4

f1; lμ; lμlν; lμlνlρ; � � �g
½ðp2 − lÞ2 −m2

D þ iϵ�ðl2 −m2
π þ iϵÞ½ðqþ lÞ2 −m2

π þ iϵ� : ðC8Þ

According to the heavy meson approach, we deal with the first denominator by replacing ðp2 − lÞμ ¼ mDvμ þ kμ,
and therefore have

ðp2 − lÞ2 −m2
D ≃ 2mDv · k ¼ 2mDð−v · lþ v · p2 −mDÞ: ðC9Þ

We rewrite ω ¼ v · p2 −mD ≃ Δ, and under the nonrelativistic approximation, we have
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i
Z

d4l
ð2πÞ4

f1; lμ; lμlν; lμlνlρ; � � �g
½ðp2 − lÞ2 −m2

D þ iϵ�ðl2 −m2
π þ iϵÞ½ðqþ lÞ2 −m2

π þ iϵ�

≃
i

2mD

Z
d4l
ð2πÞ4

f1; lμ; lμlν; lμlνlρ; � � �g
ð−v · lþ ωþ iϵÞðl2 −m2

π þ iϵÞ½ðlþ qÞ2 −m2
π þ iϵ� ;

≡ 1

2mD
fJ S

0; q
μJ S

11 þ vμJ S
12; g

μνJ S
21 þ qμqνJ S

22 þ vμvνJ S
23 þ ðq ∨ vÞJ S

24;

ðg ∨ qÞJ S
31 þ qμqνqρJ S

32 þ ðq2 ∨ vÞJ S
33 þ ðg ∨ vÞJ S

34 þ ðq ∨ v2ÞJ S
35 þ vμvνvρJ S

36; � � �g;

≃
1

2mD

�
J S

0; q
μJ S

11 þ
pμ
2

mD�
J S

12; g
μνJ S

21 þ qμqνJ S
22 þ

pμ
2p

ν
2

m2
D�

J S
23 þ

q ∨ p2

mD�
J S

24;

ðg ∨ qÞJ S
31 þ qμqνqρJ S

32 þ
q2 ∨ p2

mD�
J S

33 þ
g ∨ p2

mD�
J S

34 þ
q ∨ p2

2

m2
D�

J S
35 þ

pμ
2p

ν
2p

ρ
2

m3
D�

J S
36; � � �

�
: ðC10Þ

Contract with the coefficients and do the nonrelativistic approximation, we finally obtain

VNR
T2;1

¼ 3g2

f4
½ðϵ2 · ϵ�4Þ · J S

34 þ ðq · ϵ2Þðq · ϵ�4ÞðJ S
24 þ J S

33Þ�ðmπ;Δ; jqjÞ ·
�
−
1

4

�
; ðC11Þ

VR
T2;1

¼ 3g2D
2f4

½−4mDmD� ðq · ϵ2Þðq · ϵ�4Þ · J S
24 − 4mDmD� ðq · ϵ2Þðq · ϵ�4Þ · J S

33 − 4mDmD� ðϵ2 · ϵ�4Þ · J S
34�

1

2mDmD�
;

¼ VNR
T2;1

·
g2D
g2

· 4: ðC12Þ

Note that in our covariant potential, the order of the integrated tensor may be higher than what we have shown in
Eqs. (C1)–(C3). However, since lμlν=m2

Dð�Þ ≃ 0, the problem does not matter.
From the steps shown above, after dividing our potentials by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD2mD�2mD2mD�

p
according to Refs. [84,85], and note

that gD� ≃ g, it is obvious that after taking the nonrelativistic approximation, our covariant TPE potential is the same as the
HMChEFT one.
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