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Motivated by the recent lattice QCD study of the DD* interaction at unphysical quark masses, we
perform a theoretical study of the DD* interaction in covariant chiral effective field theory. In particular, we
calculate the relevant leading-order two-pion exchange contributions. The results compare favorably with
the lattice QCD results, supporting the conclusion that the intermediate-range DD* interaction is dominated
by two-pion exchanges and the one-pion exchange contribution is absent. At a quantitative level, the
covariant chiral perturbation theory results agree better with the lattice QCD results than their non-

relativistic counterparts, showing the relevance of relativistic corrections in the charm sector.
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I. INTRODUCTION

In 2021 the LHCb collaboration observed a narrow
structure in the D°D°z* invariant mass spectrum of the pp
interaction, identified as a doubly charmed tetraquark state,
i.e., T{.(3875). It is natural to expect that the width of the
T/, should be smaller than that of the D** [1-6]. Later, the
LHCb collaboration analyzed their data with a resonance
profile more suitable to account for the closeness of the T,
to the D**DP threshold, and the mass and width of T,
were found to be [7]

SMpge = =360 £ 4015 keV,
Fpole = 48 £ 270, keV.

There were many theoretical studies predicting the
existence of a ccitd tetraquark before the experimental
discovery [8-27]. The theoretical predictions for the mass
of the ccitd ground state with spin-parity quantum num-
bers J¥ = 1% and isospin I = 0, relative to the D**D°
mass threshold 6m = my+ — (mpo + mp-+), lies in the
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range —300 < 6m < 300 MeV. After the LHCb discovery,
more studies were performed, and some of the earlier
studies were updated. As the T}, state has a small binding
energy and a narrow width, the molecular picture has
gained a lot of attention [28-37]. In Ref. [1], the effective
Lagrangian approach was used to investigate the decay
width of T}, and the results support its molecular nature. In
Ref. [35], the one-boson exchange potential model and the
complex scaling method are used and T, is shown to
correspond to a quasibound state. In Ref. [37], the authors
found that the possible contribution of a nonmolecular
component or missing channels is smaller than 3%, which
supported the molecular nature of T'%,.. In addition, coupled-
channel studies exist [2,3,30,32,38]. In Refs. [3,32], the
authors studied the T¢, in the D**D° and D**D* coupled
channels and found a bound state corresponding to the 7%,
while in Ref. [38], D**D°, D*°D*, and D**D** coupled
channels and the constituent quark model were used, and it
was found that the D**D° component accounts for 86% of
the T/, wave function. In addition to its production
mechanisms and decay properties, its electromagnetic
properties [39,40], the effects of three-body DDz cut
[32,41], the compositeness [42], and even the yield of
T/, in heavy ion collisions [43] have been studied.

After the experimental discovery, several lattice QCD
studies have been performed [44—46], In Ref. [44], a
simulation of DD* scattering for m, ~280 MeV was
performed, and a doubly charmed tetraquark with J© =
1" features as a virtual bound state in the simulation with a
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charm quark mass slightly larger than its physical value. In
Ref. [45], the S-wave DD* scattering in the isospin I = 0, 1
channels was studied for m, ~ 350 MeV. The authors
found that the DD* interaction in the / = 0 channel is
attractive for a wide range of the DD* energy, while the
DD* interaction induced by the charged p meson exchange
may play a crucial role in the formation of T.(3875).

It is particularly interesting to note that in Ref. [46], the
DD* interaction in the isoscalar and S-wave channel is
studied for a nearly physical pion mass m, ~ 146 MeV,
and the long-range part of the potential is found to be
dominated by the two-pion exchange at least in the range
1 < r <2 fm." In contrast, the one-pion exchange poten-
tial is absent. The overall attraction is strong enough to
generate a near-threshold virtual state, which evolves into a
loosely bound state for the physical m, ~ 135 MeV.

In Refs. [24,47], the one-pion and two-pion exchange
potentials in the DD* system were calculated in the non-
relativistic chiral effective field theory (ChEFT) up to the
second and third order, respectively. It is interesting to note
that in Ref. [47], the nonrelativistic ChEFT supports the
dominance of the ae™>"+"/r? behavior of the two-pion
exchange, similar to the lattice simulations but for ranges
longer than 1 <r <2 fm. It was further pointed out
that the ae™"+" /" behavior with n > 2 may also play a
relevant role.

Motivated by the lattice QCD discovery of the dominant
two-pion exchange potential [46] and the discrepancy
between the nonrelativistic ChEFT and the lattice QCD
simulations [47], we adopt the covariant ChEFT to calcu-
late the two-pion-exchange contributions to the DD*
interaction, which are expected to converge faster. This
is shown to be the case for baryon masses [48], magnetic
moments [49,50], meson-baryon scattering [51-54],
nucleon-nucleon scattering [55-59], hyperon-nucleon scat-
tering [60-66], the A N system [67,68], and the singly
charmed meson sector [69-71]. However, covariant ChEFT
has not been applied to study the systems of two charmed

hadrons such as DD™)(D®)) or > D™, The effective
potential extracted by the HAL QCD method [72-76]
provides a unique opportunity to investigate how covari-
ance plays its role in such a heavy flavor system. That is,
whether the covariant ChEFT can better describe the lattice
QCD simulation [46].

This work is organized as follows. In Sec. II, we briefly
explain the ChEFT approach and calculate the relevant
Feynman diagrams. Results and discussions are given in
Sec. III, followed by a summary in the last section. The
analytical results for the pertinent Feynman diagrams are
relegated to Appendices A and B. The heavy-meson

'Note that in Ref. [47], 1 <r<2fm is referred to as
intermediate range. In this work, following Ref. [46], we refer
to 1 < r <2 fm as long range.

approximation and the comparison with the nonrelativistic
results are in Appendix C.

II. THEORETICAL FORMALISM

A. Effective Lagrangians

In the framework of ChEFT, we can expand the
amplitudes with a small parameter ¢ = max{p/A, m/A},
where p is the momentum of the pion, m is the pion mass or
the D — D* mass splitting, and A is the breakdown scale of
chiral symmetry or the mass of D*) mesons.

In this work, we only consider the one-pion-exchange
(OPE) diagram at the leading order (LO) O(¢°) and the
two-pion-exchange (TPE) diagram at the next-to-leading
order (NLO) O(e?). For this, we first spell out the covariant
chiral effective Lagrangian describing the interactions
between charmed mesons D/D* and Nambu-Goldstone
bosons (NGB), which reads [77]

L = (D,PD'P) — m}(PP) — (D, P*D'P;)
+ m} (P*P;Y) + igp(Piut PT — Put Py
9p~ % *F % * 2
+ 5 ((PuadpPy’ 0pPiuaPy ey, (1)
where P = (D°, D", D) and P} = (D*°,D**, D;") , the
axial current is u, =i(£'0,& — £0,&7), and the chiral covar-
iant derivative is

D,P,=0d,P,—Tb*P,,  D'P,=o'P,+T" P, (2)
where ', = 1 (£70,& + £0,E7) is the vector current. In the
currents, & = exp(i®/f) with f = 0.092 GeV being the

NGB decay constant in the chiral limit and @ collecting
the octet of NGB fields:

70 Ui + +
\/§+\/6 7 K
_ — ° n 0
o=V2| = o+ K. (3)
- K0 2
K K - %

The coupling g is determined from the decay width of
the D**, and the coupling g is related to gj, through the
heavy-quark spin symmetry. The values of g, and gp- are
1.177 GeV and gp/mp- = 0.583, respectively [77,78].

B. Effective potentials of the DD* system

At LO, the OPE diagram is illustrated in Fig. 1, which
mainly contributes to the longest-range interaction. The
OPE potential is

2 T
gp (€2-q)(ey-q)
Vopp = AL, 2222 174 17 4

OPE = AoPE " 2 a0 e (4)
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FIG. 1. One-pion exchange diagram at LO. The solid, double-
solid, and dashed lines stand for D, D*, and the pion, respectively.
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FIG. 2. Two-pion exchange diagrams at NLO. The solid,
double-solid, and dashed lines represent D, D* and the pion,
respectively.

where ¢ = p; — ps = p3 — P2, and €, (e) is the polari-
zation vector of the D* meson, and AL, is the isospin
factor, where the superscript I = 0, 1 denotes the isospin of
the DD* system.

At NLO, there are ten TPE diagrams, which we illustrate
in Fig. 2. One can calculate the TPE potential with the
Lagrangian given in Eq. (1). Although the procedure is
straightforward, the results are a bit tedious. Therefore, we
relegate them to Appendix A. In Table I, we list the isospin
factors appearing in Eqgs. (4) and (A1)—-(A10).

We calculate the effective potential in the center of mass
system (c.m.s.) of the DD* and project the potential to the S
wave [79]

1
VL, =38)) =3 / &Ep'V(p.p')sing  (5)

TABLE I. Isospin factors for the OPE and TPE potentials of
DD* — DD*.

1 1 1 1 1 1 1 1
AOPE AFzAl ATZ.I ATz_z AT2.3 ABZJ ABz.z A32.3

I=0 3 3 3 =3 -3 -9 9 9
I=1 1 -1 -1 1 1 -1 1 -1

1 1 I
Ar,,  Ar, Ak,

I=0 3 -3 -3
I=1 =5 5 -5

where 0 is the angle between p and p’. We note that the
Feynman diagrams R,; and R,, have a left-hand cut
for 6€10, x|, and therefore, we approximate mp = mp-
in the dynamics but maintain the threshold of D and D,
ie., mp + mp-, the same as the lattice simulations in
the kinematics. According to the covariant power-counting
rule based on naive dimensional analysis [77], (mp- — mp)
is of order O(q?). Thus, taking (mp- —mp)/A =0 in
the TPE potential is a reasonable approximation, and
the difference is of higher chiral order, which can be
neglected.

We note that most TPE diagrams contain ultraviolet
divergences, which the corresponding contact interactions
of the same order should absorb. This, however, requires
the introduction of unknown low-energy constants. In
Ref. [24], these low-energy constants were determined in
the resonance saturation approach. In the present work, as
our main purpose is to check whether, for 1 < r < 2 fm, the
TPE contribution dominates the DD* interaction, we take a
different regularization approach, which is physically more
intuitive. That is, we multiply each pion propagator with a
monopole form factor®

m2 — A?

F(q?) =—2——,
(a°) R

(6)

as is usually done in one-boson exchange models (see,
e.g., Ref. [35]). We have checked that all the divergences
originating from the dimensional regularization can be
removed by F(g?), and the residual part can be consid-
ered the genuine two-pion exchange potential. Note that
our covariant chiral TPE potential has dimension [E]°,
while the nonrelativistic ChEFT potential and the
potential obtained in the lattice QCD simulation have
dimension [E]™2. Thus we divide our potential by
V2mp2mp2mp2mp- to set both dimensions the same,
as is usually done in the nonrelativistic EFT [84,85].

C. Subtraction of the reducible part
of the TPE potential

Note that the DD* interaction extracted from lattice
QCD simulations corresponds to the effective potential.
As a result, we need to subtract from the amplitude of
diagram B, , the reducible part. Otherwise, double count-
ing will occur when the effective potential is inserted into

2One should note that using form factors in chiral perturbation
theory can potentially break chiral symmetry. In Refs. [80,81], it
was shown that chiral symmetry is respected for loop functions
containing only one pion propagator, as can be straightforwardly
checked. On the other hand, this is not necessarily the case for the
TPE diagrams studied in this work. Given its complexity, we will
leave this issue for future work. We note that form factors are
routinely used in dealing with nonperturbative strong inter-
actions, such as the nucleon-nucleon interaction [82,83].
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FIG. 3. The reducible part of the TPE potential from
Feynmann diagram B,,, where p‘l’ =5— m%)* + m3/2+/s and
Py = s+ m —md/2\/s.

the Kadyshevsky equation. The reducible part shown in
Fig. 3 can be calculated in the following way:

v :i/ d*l ‘ Vore(p, 1) . Vope(l, p')
ke Q2n)* K2 —m? +ie k3 —m]+ie’

(7)

N/ dl ' I Vore(p. 1) - Vope(l, P') (8)
~ ) (z)® 4E\E, \/s—Er+ie

where

2 2
(s —mp +mp
k) = (72\/5 +lo,l>,

s—|—m2*—m2
k= —D "D _ | _J
2 ( 2\/5 0 )v

and E, = \/I* + m}, E, = \/P + m3,., Er = E| + E,.

To calculate the integral of Eq. (7), we put the momentum
of D* in V 5pg on shell and the momentum of D off shell, and
close the [, contour integral in the lower half-plane with the
pole located at ') = E, — (s — m2, + m})/2\/s — ie and
l(()z) = E; + (s + m3. — m3)/2\/s — ie. Then, Eq. (8) can
be easily obtained using the residue theorem. The detailed
calculation is given in Appendix A.

D. Lattice QCD DD* potential in momentum space

The lattice QCD potential Vipg(7) is given in coordinate
space [46],

e—2m,,r

V%PE(’):% 2 9)

where a; = —0.045 GeV is the fitted parameter in the
lattice simulation. To compare with the potential obtained
in covariant ChEFT, we need to transform it into momen-
tum space

Vi (q) = / dgVipe(r)eie”. (10)

Performing the integration analytically, we obtain

4 q
VL — {» — arct , 11
() = a5 are (2m) (1)

n

where a5 ~ —1.15 GeV~! is the fitted parameter in natural

units, and ¢ = |g| = \/p> + p”> — 2pp’ cos O, where q is
the transfer momentum. Note that the potential of
Eq. (11) should be projected to the S wave before it can
be compared with both the relativistic and nonrelativistic
chiral potentials.

It has been noticed that in Ref. [86], the potentials
extracted by the HAL QCD method do not always match
the intuitive expectation for baryon-baryon interactions.
The potential from the HAL QCD method was much longer
ranged and much stronger at larger distances than the
intuitive expectations for the QQ [87] or QN [88] inter-
action where the pion exchanges cannot occur directly.
On the other hand, for the interactions where the pion
exchanges dominate the long-range part, such as the DD*
interaction studied here or the EN interaction [89], the HAL
QCD method seems to be valid. Therefore, we treat the
potential in Eq. (11) as a realistic interaction.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, for the sake of convenience, we use V¢
and VR, to denote our relativistic OPE and TPE potentials,
respectively. VR refers to the nonrelativistic TPE potential
in momentum space derived in Ref. [47] and Vi refers to
the TPE potential given in Eq. (11) Fourier transformed
from the lattice QCD potential [46].

We first compare our covariant chiral potentials with
those obtained in the heavy meson chiral effective field
theory (HMChEFT) [24]. The details of the analytic results
are shown in the Appendix C, where at the nonrelativistic
limit, i.e., p — 0 and mp. — oo, our potentials have the
same analytic structure as those of HMChEFT, as they
should be. However, they will be different for finite
momentum and heavy quark masses, as we will see later.

In Fig. 4, we show the contributions of various diagrams
for a cutoff of A =~ 0.95 GeV to match Vi, at p = 0. One
can see that the relativistic TPE potential is dominated by
diagram B, , at p ~ 0, or in the long range because the pion
mass is close to the D — D* mass splitting. Thus, the four
propagators of diagram B,, can approach their on-shell
conditions simultaneously and therefore enhance the con-
tribution, which is the so-called box singularity [90]. The
amplitude of diagram B,, is also sensitive to the c.m.s.
momentum and provides the dominant contribution to the
momentum dependence of the TPE potential.

Next, in Fig. 5, we show the OPE and TPE potentials for
a A =0.95 GeV cutoff in the / = 0 channel. One can see
that both the OPE and TPE potentials are attractive for all
the ranges, and Vo ~0 as p ~0. In particular, Vgpg is
much weaker than VX, in the long range, which is
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FIG. 4. Contributions of different Feynman diagrams as a

function of p=/[s—(mp+mp-)?|[s— (mp—mp-)?]/2+/s in
the c.m.s. of DD* for a cutoff of A ~0.95 GeV.

consistent with the observation that Vpg is absent in the
lattice QCD simulation [46].

In Fig. 5, we also show the OPE and TPE potentials for
the physical pion mass in the / = 0 channel. The interaction
becomes more attractive than the potentials obtained with
the lattice QCD pion mass. This is also consistent with the
lattice QCD study where the potential for m, = 0.146 GeV
produces a virtual state, while a loosely bound state is
generated for m, = 0.135 GeV.

We also show the isovector OPE and TPE potentials
in Fig. 5. They become comparable in the range of
0.05-0.3 GeV, and although both are attractive, they are

= phy I=1
Vore Vérk Vork 7

- — IR — — pRophy _ _ pR 1
Vire VisE Vibe

-
-
-

V(p) [GeV?|

-
-
- -
- -

-~ -

-

- -

-
-

\\

0.0 0.1 0.2 0.3
p [GeV]

FIG. 5. Vgpg and V&, for different pion masses and different
isospin channels for a cutoff A ~ 0.95 GeV, where the solid lines
denote the OPE potentials and the dashed lines denote the TPE
potentials. The black and blue lines denote the potentials for
m, = 0.146 GeV, mp = 1.878 GeV, mp- =2.018 GeV, and
m, = 0.138 GeV, mp = 1.870 GeV, mp- =2.007 GeV. The
red lines denote the OPE and TPE potentials in the / = 1 channel.

less attractive than their isoscalar counterparts. Since the
isoscalar OPE and TPE potentials (black lines) can barely
produce a virtual (or a loosely bound) state [46], and
the contact interaction determined in the resonance satu-
ration model is repulsive [24], we can assert that there
exists no bound state in the / = 1 channel, consistent with
Refs. [19,24,91].

In Fig. 6, we compare Vi, VR, and VIR.. We set
A=~0.95GeV for V. and A~1.4 GeV for VIR, to
match Vi at p = 0. We can see that VRpi is consistent
with V. between 0 and 0.03 GeV, consistent with our
analytic results shown in Appendix C. In addition, V¥
increases faster than VYR; in the long-range (or in the small-
momentum 0-0.3 GeV) region.

The different behavior between VIR and VR, mainly
originates from the nonrelativistic approximation, i.e., the
neglect of terms of O(1/mp) or higher order.

The lattice QCD simulations [46] show that in the range of
1 < r <2 fm, the DD* interaction can be described by a
TPE potential, i.e., Eq. (10) which corresponds to Eq. (11) in
momentum space as shown in Fig. 6. In Ref. [47], it was
revealed that VIK; with a cutoff of A €[0.4,0.9] GeV has
the same asymptotic behavior as the lattice QCD potential,
ie., Eq. (10), but dominates the range longer than
1 < r < 2 fm. This can be seen in Fig. 6—because 1 < r <
2 fm corresponds to 0.07 < p < 0.15 GeV approximately,
a longer range corresponds to the momentum smaller than
0.07 GeV, while in Fig. 6 we can see that in the range of
0 < p <0.03 GeV especially, both VR,; and VK. are
similar to Vi, In the range of 0 < p < 0.3 GeV, with a
reasonable cutoff, our covariant TPE potential can better
describe Vg than the nonrelativistic TPE.

-46 - L R’
— Ve — — Ve
-48 - =i Vive
50F — —VR ., Dipolar
0.0 0.1 0.2 0.3
p [GeV]

FIG. 6. Vipg, VR, and VER.. We used a cutoff A ~ 0.95 GeV
for Vi and A =~ 1.4 GeV for VR, to match Vi, at p = 0. The
V%,E denoted by a red dashed line is the potential obtained with
the unphysical parameter f with A ~0.74 GeV.

034015-5



ZHAI, LIU, LU, and GENG

PHYS. REV. D 109, 034015 (2024)

Note that V. shown in Fig. 6 does not agree well with
Vkop. To understand whether this is due to the particular
form factor we used, we tried a dipolar form factor instead
of the monopolar one

A - ()

q2_A2

to consider the internal structure of the pion at each
interaction vertex. The results are also shown in Fig. 6.
We found that the dipolar form factor only improves the
agreement between VR and Vo a little bit, thus gives
nearly the same description. Meanwhile, this nearly neg-
ligible improvement is at the expense of a large cutoff
A ~ 1.6 GeV, which is unreasonable in the chiral effective
field theory. One notes that the potentials sensitively
depend on the cutoff A in the monopole or dipole form
factors. The form factors multiplied on the pion propa-
gators allow the removal of spurious short-distance physics
associated with high-momentum intermediate states.
However, as mentioned previously, these cutoff momenta
are determined by matching the lattice QCD results at the
threshold, and we have not included any contact inter-
actions. The cutoff here actually contains parts of the short-
range contributions.

On the other hand, we believe that the differences
between our VR and V.. can be attributed to the fact
that we used physical g, and f and unphysical meson
masses in the derivation of the TPE potential. The quark
mass dependence of these quantities needs to be carefully
taken into account for a proper comparison with the
lattice QCD potential and is highly nontrivial. This goes
beyond the scope of the present work. For demonstration,
we replace P with f = C,, - fP. The results are shown in
Fig. 6 for a cutoff A ~0.74 GeV. With this reasonable
cutoff, our TPE agrees well with Vipp in the range of
0.075 < p <03 GeV for C,~09. Note that in
Refs. [92,93], the m, dependence of f, up to NLO reads

2
_ 0] _ mxz My
“‘”]Mw@#%gw)+]’

which shows that a large m, corresponds to a small f,;
thus, our use of a smaller f, is reasonable. Overall, our
results support the conclusion of the lattice QCD simulation
that the TPE potential is dominant in the 1 < r <2 fm
range.

VFZ.I = AI

IV. SUMMARY

In this work, we have studied the long-range S-wave
DD* interaction in covariant chiral effective field theory. In
particular, we calculated the OPE and TPE potentials,
regulated with a monopolar form factor F(g?). We found
that Feynman diagram B,, dominates the momentum
dependence of the TPE potential. By comparing our
OPE and TPE potentials, we found that, in the I/ =0
channel, the TPE potential is dominant in the long range,
and both potentials become more attractive as the pion mass
approaches the physical point. While in the / = 1 channel,
the OPE and TPE potentials are comparable and less
attractive than those of the / = 0 channel. All the results
are consistent with the lattice QCD study [46].

We compared our covariant TPE potential with the
nonrelativistic one and the lattice QCD potential, and we
found that all three potentials share nearly the same
behavior in a range longer than 2 fm, while between 1
and 2 fm, our covariant TPE potential describes better the
lattice QCD potential. We further demonstrated that with a
smaller pion decay constant, e.g., by 10% compared with
its physical value, one can better describe the lattice QCD
potential with a reasonable cutoff. Overall, our study
supports the conclusion of the lattice QCD study that
the two-pion-exchange potential is dominant in the
1 <r<?2fm.

In Ref. [94], it was shown that the TPE potential also
dominates the long-range N® potential. In Ref. [95], it was
argued that the TPE potential can play a relevant role in the
J/w — J/y interaction. We plan to study these systems in
chiral effective field theory.
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APPENDIX A: COVARIANT TPE POTENTIAL

This Appendix shows the explicit expressions of the TPE
potentials derived in covariant chiral effective field theory.
They read as follows:

(e €Dv

Fop® 8f4 ’ 2 (27[)4

11 / id*l [(py+ pa) - (pa = pa +2D][(p1 + p3) - (p2 — pa +20)]
(P2 = pa +1)* = m* + i€ (P = m* + ie)

(A1)
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@ —id*l [(Psa—pP2+1)- 61][(191 +p3) - (Pa—p2 +2D)](1 - €2)

V. =AL . A2
T AR ot | @n (ps - 07 — 0+ el (P = m2 + i€)(pa — pa & DF — 12 + i (A2)
G [ —id*l P2 =10 (pa =1 15 o
VT2.2: 922.8D4 2 eﬂ ﬁ€4 (p4_p2+l> (p2+p4_l)ﬂ —9#54'( 2 )2( 2 ) elép €%lﬂ(2p2_l)
i) oy .y
" (p1+p3) - (ps—p2+20) (A3)
[(p2 = 1)* = m}y. + i€](I* — m3 + i€)[(ps — pa + 1)* — m3 + i€]’
gp [ —id*l [(Pz + pa) - (Pz — ps+2D)](e, - €})
% AI — + 1P
Toa = T 2f4 2r)* [(py = 1)? —m%. +ie](P —m2 +ie)[(py — ps + > —m2+ i ](p2 pat1)
AV
y {_g,,a (pr = 1Py =1) ]ﬂ, (A4)
mps
2 2 . 14 1
By [ idl . P2 =D (P2 =D oy 16
VBzAl = Agz,l ’ fo / (2”)4 e ﬁ€4 (p4 — D2 + l) (p2 + P4 — l)ﬁ _gIM + ( 2 r)né* 2 ) (:‘p/1 '7631 (2p2 - l)”
(Pa = P2 +1)[=g"° + W}l‘s
x 2 2 : 2 2 ) > 2 T (AS)
[(p1 + D)7 = mp. + i€][(pr = 1)* = mp. + i€] (I — mz + i€)[(ps — po + 1)* — m + ie]
V,, = Al / id*l [(Pa=po+1)- €4](€z )
2 T BB | Q) [(py + 1) = my +i€][(py — 1) — m + ie] (P — m2 + i€)[(pa — py + )> — m2 + ie]
p1+DP(py + 1)
r |:—9M+( 1 ) 2( 1 ) (p4—p2+l)1, (A6)
m3,.
2 2 5
9p9 id*l - - (Pz - l) (Pz - l)y
VBz.s = A%M 4f411) /( ) €’ 5'76”1 (2172 - l) [ "+ m%* (p2 —P3— l)y
‘ s v a
P—git e b () — py = 1)9(py + py + 1) "
X , 2 - - —, A7
[(p1 + 1> = mjy. + i€][(py = 1)* = mp + ie](I = m; + ie)[(p2 = p3 = 1)* — m; + i€]
G id* 5 — DH(py = 1)
Vi, = Ak, - ngf / ——3¢Pe) (ps = pr+ D (P2 + ps = 1) | =g + (P2 =) 2(p2 ) e neNle(2py = 1)1
4f (27) mi,
(p4 - py+ [)7[_975 +W#N&
X 2 2 : 2 2 ) R 2 7 (A8)
[(p3 = 1)* = mp. +iel[(py = 1)* — mp. + ie|(I> = mz +i€)[(ps — p2 + 1)* — my + ie]
Ve — Al -9 / id'l (ps = P2+ -€ll(ez )
for =R b | a) [(py — 12 = m + i€][(p3 — 1) — mb. + i€ (P — m2 + i€)[(py — pa + )? — m? + i]
— P — D4
R s (L (49
2.
2 2 5
9oy [ s (P2 =D°(p2 = 1)
VR2.3 - Aﬁ?z,s ’ 4le¥) /( ) 6/) 5”€pl (2}72 - l) |: "+ m%)* (pS — D2 =+ l)y
(ps — pa + D[~ 4 (pam )‘2(174 l)”]e””“ﬁez”l“(2p4—l)ﬂ
"o (A10)

—

2= 07 = mb + icll(pa — 17 — nidy + i€l (P = m2 + ic) (ps — pa + )2 — m2 + ic]

We calculate these loop integrals using dimensional regularization.
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APPENDIX B: SUBTRACTION OF THE
REDUCIBLE PART OF FEYNMAN
DIAGRAM B, ,

The reducible part of Feynman diagram B, is

Voo — i/ d*l ' Vore(p. 1) ) Vore(L. p')
K (27)* K2 —m? +ie k3 —m}+ie’

where

s —m3. + m?
ky = (——D "D AR
: ( 25 *0)

s+ m3, —m?
ky = DiD—l,—l.
= ()

To calculate Eq. (B1), we set D* on shell, and D off shell,
and obtain

) d31
VRPEZ/WVOPE(pv\/E_EZszJ)

S VOPE(\/— - Ey) E). L p')

dl, 1 1
% 0, . , B2
/27t k%—m%—i—ie k%—m%—l—ie (B2)

where E, = /I? + m%*. The integral of [, can be calcu-
lated by using the residue theorem. We close the /, contour
integral in the lower half-plane with the poles located at

) 2

lél) :El _(S mD* +mD) —i€,
2y/s

2 (s +m2 —m3) .

lg)):Ez'f'zD—\/E—l&

where E; = /I> + m},. Then we have

{1, .-}

d31
VRP:/WVOPE(P’\/E_EZ’EZ’I)

E\+E, 1

XVOPE(J_E27E2’l’p/)' T
2E1E2 S—E%

(B3)

where E; = E| + E,. We use the approximation /s ~ E7,
which is the same as reducing the Bethe-Salpeter equation
to the Kadyshevsky equation. Then we have

Vv —/ al . P Vops(p.1) - Vops(L p')
RP (27)® 4E\E, Vs —Er +ie
— / i . 2 Vope(p.1) - Vopr(L p')
(27)® 4E\E, Vs —Er
I pem

- iﬂwrﬁ Vore(Ps Pem)VopE(Pems P')

(B4)

where  pey = +/[s = (mp +mp:)*|[s = (mp—mp-)*]/2\/s
is the momentum in the c.m.s., and P denotes the principal
value of the integral.

In principle, the reducible parts of all the three box
diagrams B,;, B;,, and B,; should be subtracted.
However, since we do not take into account the coupled
channel of DD* — D*D*, and the energy region of our
interest is below the threshold of D*D*, that is, the D*D*
channel does not open, there exists no double counting for
the reducible parts of B,; and B,j3. Therefore only the
reducible part of diagram B, , is subtracted.

APPENDIX C: NONRELATIVISTIC
APPROXIMATION OF THE COVARIANT
NLO POTENTIAL

Following Refs. [24,96], one can decompose the poten-
tial to combinations of J functions employing the following
tensor decomposition rules,

~/ﬂ4_Dle
i
(27)P (P —m3 +ie)|(qg + 1)*> — m3 + i€

{0,011 e,

-//'44_Dle
: 2m)P [(+/=)v 1+ o +ie](? —m? + i€)[(q + 1)* — m3 + ie]

={70". T\ + v T 9 T + ¢ ¢ T,
gV QTS + ¢ TS + (v ) TS+ (gv o) TS + (g v vz)J;/S + v”v”vf’ﬂés, ot

E{jgaqﬂjquﬂqug] +gﬂp‘]§2""}v (Cl)
+ v T+ (g v ) Th)°
(C2)

034015-8



LONG-RANGE S-WAVE DD* INTERACTION IN ... PHYS. REV. D 109, 034015 (2024)

,//44_Dle (L0 1, e, e, -
Q2m)P (v 1+ w) +ic)[(+/—)v- |+ @, + i€](I* — m} + ie)[(l + q)* — m3 + ic]
_ {jR/B q”jR/B " vﬂjllez/B’g”,,jR/B g DJR/B UMUUJR/B +(gv v)jgz{B,
v T+ ' TH + (v )T + (g v )TN + (g v ) TR + v T3P,
GV aTil"+ (v AT + ¢ TS + (g v )T’ + v v TP + (¢ v o) T4°

+ (@ v ATE + (g v ) Td +(gvav )Tyt ). (C3)
|
More specifically, we follow the following steps to perform In such limits, p; = —p, = (0,0, p), p3 = —ps =
the nonrelativistic reduction of our covariant potentials: (psin6,0, pcos ). Thus ¢ = —-p3)’ =
(1) Rewrite the denominator 2p%(1 —cos®), p* = (p, —p4)> = 2p*(1 + cos6).
Note that the expression of the J functions can be (3) Calculate the coefficient of the integrated tensor, and
derived by the heavy meson approach, that is do the nonrelativistic approximation.

We explain this procedure using Vg, —as an
example. In obtaining Vp, , we need to calculate

=mv,+k, with 22 =1, C4
Py T Ky (C4) the following integral

where k2 is infinitesimal and can be neglected. . [ utPdPl {1,010, I!IP}
(2) Rewrite the momentum. ! 2r)P (P —m? +ie)|[(l - q)* — m*> + ie]’
We approximate the momentum with the velocity,

ie., which equals to J§, —¢* 7%, and ¢* ¢ T%, + g7 J5%,
in the nonrelativistic ChEFT, respectively. One can
Py see that the coefficients of these three tensors are
v, (C5)
" 0,0,4i(e; - €3)(p1 + p3) (P2 + pa).
and set mp = mp = m. In Refs. [24,96], the After the contraction and under the nonrelativistic
definition of ¢ and p is g =p; —p3; and p = approximation, we have

P1 — P4, we take the following limits

1 3

R 16 e - €
pr-€,—=0, py-es—0, Fyy = 2 8f4 mDmD<2 4>j22
P2€4= =q €4, Pro€a—DoEy, = ViR - dmpmp-. (C7)

P3-€=>p €, P4-€27q €
' ' We also elaborate on Vi = as an example. Our

Pir€2—>q-e3+p€y pyes—pes—q-eq. (C6) covariant potential has the following structure
|
/ d*l {1, e mee, .-} (C8)
i .
(27)* [(p2 = 1)? — m + ie|(P = mZ + i€)[(q + 1)* — mz + ie]

According to the heavy meson approach, we deal with the first denominator by replacing (p, — 1), = mpv, + k,,
and therefore have

(Pz—l)z—mznﬁszU‘k:ZmD(—U‘1+U‘P2—mD)- (C9)

We rewrite @ = v - p, — mp ~ A, and under the nonrelativistic approximation, we have
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i (1,0, 10, 11, )

l/ 27)* [(p2 = 1)* = mpy + ie](1P — m} + i€)[(q + 1)* — m} + ie]
Qa4 (1,0, 1P, e, )

_2"11) / 2r)* (=v- 1+ o+ ie) (P —m2 +ie)[(I + q)* — m2 + ie]’

2—{~70 T} + 0" T ¢T3 + 4" q* T3, + " 1* T35+ (g v 0) T3,

( q)TJ5, + Q”q”q”JS (V) T35+ (gV )T+ (g vV 1*) T35 + v*0°0° T 36, - - -},

Hov Vi
T§ 0 T+ 22 70,90 T8 + ¢ T8 + P2 78+ L2 73,
“2m, mp my,. mp
2y, v
(g\/q)ng +qﬂquﬂj‘§2+q P2 j§3 gV p2j q 2p2jS p2p2p2 j36""}' (CIO)
D ¥
Contract with the coefficients and do the nonrelativistic approximation, we finally obtain
R 39 s (7S s 1
Vi, = Iz [(e2-€5) T34+ (q-€)(q-€;) (T3 + T33)(ms, A, |ql) - =) (C11)
VR _ 392D 4 * S 4 * S 4 1
T,, — 2—f4 [=4mpmp(q-€)(q-€;) - T, —4mpmp(q - €)(q - €;) - T3 —4mpmp:- (€2-€;) - J34] mpmy.
NR gD
=Vr,, - 7 -4 (C12)

Note that in our covariant potential, the order of the integrated tensor may be higher than what we have shown in

Egs. (C1)—(C3). However, since [#I*/ m?)

y =0, the problem does not matter.

From the steps shown above, after dividing our potentials by \/2mp2mp-2mp2mp- according to Refs. [84,85], and note
that gp- ~ g, it is obvious that after taking the nonrelativistic approximation, our covariant TPE potential is the same as the

HMChHEFT one.
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