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Weak magnetic field induced corrections for the Yukawa potential due to one pion exchange between
two constituent quarks (nucleons) are presented. For that, the constant magnetic field effect on the pion
propagator and on the pion form factor are taken into account. An effective gluon propagator parametrized
with an effective gluon mass (Mg ∼ 0.5 GeV) is considered. In the limit of magnetic field that is weak with
respect to the constituent quark mass and pion mass, analytical and semianalytical expressions can be
obtained. Different types of contributions are found, isotropic or anisotropic, dependent on the pion mass
and also on the constituent quark and effective gluon masses. Overall the corrections are of the order of 2%
to 5% of the Yukawa potential at distances close to 2 fm, and they decrease slower than the Yukawa
potential. The anisotropic corrections are considerably smaller than the isotropic components. A sizable
splitting between results due to the magnetic field dependent neutral or charged pion mass is found.
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I. INTRODUCTION

The Yukawa potential, due to one pion exchange [1], is a
cornerstone of nuclear and particle physics being respon-
sible, for example, for the long range nucleon potential.
Besides its real importance for particle and nuclear physics,
the Yukawa potential appears in other areas of physics
under different names, such as static screened Coulomb
potential in solid state and plasma physics [2]. More
recently, bound states of dark matter components have
been envisaged by considering this type of interaction [3].
Therefore, it is interesting to understand how it behaves
under different external conditions such as magnetic fields.
In recent years many effects in hadron degrees of freedom

due to strong magnetic fields have been investigated [4,5].
Initially, indirect effects were searched in relativistic heavy
ion collisions [6–8], in dense stars/magnetars, including in
low density outer crust regions, [9–12] and in the early
Universe [13,14]. Expectations of strong magnetic fields in
peripheral relativistic heavy ion collisions were somewhat
diminished in recent years [15]. Modifications in the

hadron’s dynamics can occur both at the more fundamental
level, for quarks and gluons, and for the hadron level. A
magnetic field leads to themagnetic catalysis, due to the high
degeneracy of the lowest Landau levels [4,16,17], and
correspondingly it increases the quark effective masses.
Less understood is the role of magnetic fields on hadron
masses/structure and dynamics in general. In this respect,
effectivemodels can bevery useful to provide a framework to
perform feasible calculations, usually making it possible to
reach reasonably correct results when compared to lattice
QCD (LQCD) [18–21]. Usually thesemodels are compatible
with the framework of the constituent quark model. Both
the Nambu-Jona-Lasinio (NJL) model and the sigma model
are suitable frameworks for the investigation of the quark-
antiquark mesons providing usually very good results for
meson dynamics and other global properties of low energy
hadrons, the list of works is extensive, to quote few examples
[22–27]. Even in such simplified effective models, there
are difficulties involved in this calculation of properties
under strong magnetic fields. Different calculations indicate
that neutral (charged) pions have their masses decreased
(increased) with the magnetic field strength [18,19,23–25].
Effects of magnetic fields on hadron couplings can also be
computed although are exploited less extensively in the
literature. Some derivations of the contribution of magnetic
fields to hadron or quark couplings are found in [28–31]. In
spite of considering strongmagnetic fields, they will be taken
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as relatively weak with respect to hadron mass scales, i.e.,
eB ≪ M2

q (as a constituent quark mass) and/or eB < m2
π

(pionmass). Thereforewe shall fix eB ∼ 0.1M2
q. In this limit,

it is possible to perform expansions in the quark and pion
propagators and to present analytical or semianalytical
calculations for the resulting form factors and overall con-
tributions for the Yukawa potential. The only contributionwe
do not take into account is the magnetic field effect on the
gluon (effective) propagator and quark running coupling
constant. The constituent quark model (CQM), in a wide
variety of different versions, has provided a sound framework
for the descriptionof global properties of hadron structure and
interactions, for example, in [32,33]. It is based in the idea that
dressed valence quarks give rise to the hadron observables
such as masses and coupling constants.
Pion constituent quark couplings and form factors have

been derived at one loop level by considering standard
techniques [34]. Full form factors can be obtained as
Lagrangian interactions by considering an important term
of the QCD effective action for quarks, which is a quark-
antiquark interaction mediated by a (nonperturbative) one
gluon exchange. This one gluon exchange is included by
means of an (external) effective gluon propagator that
accounts for nonperturbative effects of the gluon non-
Abelian dynamics and it will be parametrized by a gluon
mass. The pion pseudoscalar coupling can be obtained
by standard analytical methods, which are represented in
Fig 1. The coupling under magnetic field arises by
considering the same method [28].
In this work, we investigate weak constant magnetic field

corrections to the Yukawa potential. Different types of
effects will be considered at this order of correction: the
magnetic field correction to the pion propagator [35], the
weak magnetic field contributions for the pion coupling
to constituent quarks. These first two effects indicate the
order of ðeBÞ2. We also consider that magnetic fields lead
to corrections of quark and pion masses [16,22,23]. The
work is organized as follows. In the next section, the
corresponding corrections to the pion propagator and to
the pion form factor, due to a constant weak magnetic field,
are presented. In Sec. III the Fourier transformation of the
momentum dependent potential is calculated mostly

analytically. In Sec. IV, numerical estimations displayed
and discussed. In the final part there is a Summary.

II. THE YUKAWA POTENTIAL AND
CORRECTIONS

The standard Yukawa potential can then be written
as [1,36]

VðRÞ ¼ −
g2ps
4πR

e−mπR; ð1Þ

where gps is the pseudoscalar coupling constant.
In the presence of a constant background magnetic field,

the pion propagator will receive standard corrections from
the magnetic field. Besides that, the relatively weak
magnetic field will induce corrections to the pion pseudo-
scalar coupling constant. However, instead of considering a
punctual coupling we shall consider the whole form factor.
The following resulting potential can be calculated as

VðR⃗Þ ¼
Z

d3Q
ð2πÞ3 ðG

B
psðQ⃗2; Q2

zÞÞ2e−iQ⃗·R⃗DB
π ðQÞ ð2Þ

where the leading contributions from the magnetic field can
be written as

GB
psðQ⃗2; Q2

zÞ ≃ gps þ
�
eB
M2

�
2

FB
psðQ⃗;QzÞ;

DB
π ðQÞ ≃DπðQÞ þ ðeBÞ2D1ðQÞ: ð3Þ

The pseudoscalar pion coupling constant will be taken from
the whole form factor with Q2 ¼ 0, as shown in the
Appendix. Therefore, we will calculate quantities in the
momentum space for the one pion exchange and then
perform the Fourier transform.

A. The pion propagator under weak magnetic field

The scalar field propagator under strong magnetic fields
has been derived in Ref. [35]. We will consider the same
propagator for the pion by neglecting therefore the par-
ticular quark-antiquark structure. In the limit of very weak
magnetic field, eB ≪ m2, the scalar field propagator can be
written as

iDBðQÞ≃ i
Q2−m2

�
1−ðeBÞ2

�
1

ðQ2−m2Þ2þ
2Q2⊥

ðQ2−m2Þ3
��

≡D0ðQÞþðeBÞ2DB
1 ðQ;Q⊥Þ: ð4Þ

Note that the leading term is of the order of ðeBÞ2 and there
is one B-dependent correction that is isotropic and one that
is anisotropic.

FIG. 1. One loop structure of the pion form factor: solid line for
the quark with incoming and outgoing momenta K and K þQ,
wiggly line for the gluon, and dashed line for the pion with
momentum Q.
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B. Constituent quark-pion coupling under weak
magnetic field

By starting with a quark-antiquark interaction mediated
by a (nonperturbative) one gluon exchange, the pion
pseudoscalar form factor in vacuum and under weak
magnetic field were derived, respectively, in [28,34]. The
mediation of the (dressed) gluon, by means of an effective
gluon propagator, gives rise to a dressed quark current,
which means that it can be parametrized in terms of a gluon
effective mass of the order of magnitude of a constituent
quark mass. The quark-antiquark interaction can be Fierz
transformed leading to different Dirac and flavor types
of quark currents, dressed by components of the gluon
propagator, that can couple to any meson field. The
resulting effective Lagrangian terms for the magnetic field
induced contribution for the pseudoscalar field (P1, P2, P3)
coupling to the pseudoscalar quark current jips can be
written as

Lπ−QðBÞ ¼ ciFB
psðQ;KÞPiðQÞðjipsÞ†; i¼ 1;2;3 ð5Þ

jips ¼ ψ̄ iγ5λiψ , and c1 ¼ c2 ¼ −4=9 and c3 ¼ 5=9 are
obtained from the trace in flavor indices. c1;2 and c3
give rise, respectively, to the charged and neutral pion
couplings. The weak magnetic field couples to the internal
quark lines of Fig. 1. Although it may seem that the leading
term would be a magnetic field to a single internal quark
line [which would yield a correction of the order of ðeBÞ]
it turns out that the two possible diagrams of this type lead
to a tiny contribution that was not taken into account. The
leading contribution for the pseudoscalar pion coupling is
that of the one magnetic field insertion for each of the
internal quark lines shown in Fig. 2, which is of the order of
ðeBÞ2, is different from the axial coupling that goes with
ðeBÞ [28]. Another very small contribution is due to two
magnetic field insertions on a single quark line, shown in
Figs. 3 and 4, which is also or the order of ðeBÞ2, but is
negligible when compared to the leading contribution. The
leading Lagrangian term can be written in terms of two
parts, isotropic and anisotropic, which are, respectively,
given by

FB
psðQ;KÞ ¼

�
eB0

M2

�
2

½FB;iso
ps ðQ;KÞ þ FB;ani

ps ðQ;KÞ� ð6Þ

where Q, K are the pion and constituent quark momenta,
and the relative weak strength of the magnetic field was
factorized in the dimensionless factor. These form factors
can be written as

FB;iso
ps ðQ;KÞ ¼ iCB

PSM
�4
Z

d4k
ð2πÞ4

−k · ðkþQÞ þM2

½k2 −M2�2½ðkþQÞ2 −M2�2
Rð−k − KÞ

Kg

FB;ani
ps ðQ;KÞ ¼ iCB

PSM
�4
Z

d4k
ð2πÞ4

−k⊥ · ðk⊥ þQ⊥Þ
ðk2 −M2Þ2ððkþQÞ2 −M2Þ2

Rð−k − KÞ
Kg

ð7Þ

where Rð−kÞ is the effective gluon propagator, with a normalization Kg discussed below, and the following constant was
defined:

CB
PS ¼ 8NcαKgCi:

FIG. 2. Leading contribution: one magnetic field insertion for
each internal quark line.

FIG. 3. Two magnetic field insertions on a single quark internal
line.

FIG. 4. Two magnetic field insertions on a single quark internal
line.
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In the present work we consider an effective gluon
propagator inspired in [37] that is confining and leads to
dynamical chiral symmetry breaking. It will be given by

RðkÞ ¼ Kg

ðk2 −M2
GÞ2

ð8Þ

where Kg,MG are, respectively, the normalization constant
and an effective (constant) mass. With this effective gluon
propagator it is possible to carry the overall calculation
analytically and free of UV divergences, in spite of the need
of a renormalization of their equations to settle the scale of
Kg. Besides that, this effective gluon propagator provides a
string tension and it provides numerical results for meson-
constituent quark form factors that are basically the same
as results from another gluon propagator extracted from
extensive calculations with Schwinger-Dyson equations
for the hadron structure [33]. This comparison was shown
in, for example, Refs. [28,34]. This normalization of the
gluon propagator was fixed by the pseudoscalar pion
coupling constant in vacuum, as a renormalization con-
dition, such that it reproduces the phenomenological value

Gps ≃ 13 [36,38]. The calculation of this coupling constant,
by considering the same method employed to calculate
Eq. (7), is shown in the Appendix. It is interesting to note
that in the magnetic field contribution for the form factor
above, the Schwinger phase from the quark propagators
does not contribute since it can be gauged away for this
type of diagrams [39].
By considering the charged and neutral pion fields with

pseudoscalar currents associated, the pion-constituent
quark coupling above can be written as

Lπ−QðBÞ ¼ FB
psðQ;KÞ½

ffiffiffi
2

p
c1ðπþd̄uþ π−ūdÞ

þ c3π0ðūu − d̄dÞ�: ð9Þ

To calculate these form factors we considered the
Feynman trick in terms of Feynman parameters although
it is not possible to perform all integrals analytically.
So, with the Feynman trick we perform the integral in
momentum which makes it possible to perform the Fourier
transform to calculate the Yukawa potential and corrections
at the cost of introducing integrals in the Feynman
parameters that are numerically simpler to be achieved.

1. Form factor: Isotropic part FB;iso
ps

The isotropic part FB;iso
ps (7) has the following integral:

I4ðQ2Þ ¼
Z

d3k
ð2πÞ3

Z
dk0
ð2πÞ

−ðkþ KÞ · ðkþQþ KÞ þM2

½ðkþ KÞ2 −M2�2½ðkþ K þQÞ2 −M2�2 Rð−kÞ: ð10Þ

For the gluon propagator of Eq. (8), this integral has six double poles, four of them from quark propagators and two from the
gluon propagator. For an off shell pion,Q0 → 0, and on shell constituent quark in its rest frame, K2 ¼ M2, and by using the
Feynman parametrization, this integral can be written as

I4ðQ2Þ
Kg

¼ 3

8π2

Z
1

0

dz
Z

z−1

0

dy

�
−2ð1 − y − zÞyz

3A3
þDisoð1 − y − zÞyz

A4

�
; ð11Þ

where A ¼ −½M2ð1 − zÞ2 þ Q⃗2yð1 − yÞ þM2
gz�;

Diso ¼ ½M2z2 − Q⃗2½y2 − y� þM2�ð1 − y − zÞyz: ð12Þ

2. Form factor: Anisotropic part FB;ani
ps

The anisotropic part of the magnetic field correction to the form factor (7) is given by

I5ðQ2⊥; Q2Þ
Kg

¼
Z
k

−ðk⊥ þ K⊥Þ · ðk⊥ þ K⊥ þQ⊥Þ
ððkþ KÞ2 −M2Þ2ððkþQþ KÞ2 −M2Þ2

1

ðk2 −M2
gÞ2

: ð13Þ

By employing the same Feynman trick, the momentum integration of the anisotropic part of the form factor, for K⃗ ¼ 0 and
K0 ¼ M and Q0 ¼ 0, this form factor can be written as

I5ðQ2⊥; Q2Þ
Kg

¼ 3

8π2

Z
1

0

dz
Z

z−1

0

dy

�
−
xyzQ2⊥½y2 − y�

A4
þ 1

3A3

�
: ð14Þ
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III. THE MAGNETIC FIELD CORRECTIONS TO THE YUKAWA POTENTIAL

By replacing the magnetic field dependent quantities in Eq. (2) the potential in the momentum space with corrections due
to weak magnetic fields is

ṼðQÞ ¼ GB
psðK;QÞDB

π ðQ2ÞGB
psðK;QÞ

¼
�
gps þ FB

psðK;QÞ ðeBÞ
2

M4

�
ðD0ðQÞ þ ðeBÞ2DB

1 ðQ;Q⊥ÞÞ
�
gps þ FB

psðK;QÞ ðeBÞ
2

M4

�
þ � � �

≃ V0ðQ2Þ þ VB
π ðQÞ þ VB

FFðQ2Þ þ � � � ð15Þ

where the first term yields the usual Yukawa potential, and
the two types of corrections are due, respectively, to the
pion propagator [VB

π ðQÞ] and to the pion form fac-
tor [VB

FFðQ2Þ].
Note that both the B-dependent corrections to the pion

propagator and to the pion coupling are of the order of
ðeBÞ2. They will be computed separately as suggested
above. For the corresponding potential in position space we
take Q0 ¼ 0 and K2 ¼ M2. The following Fourier trans-
formation for each of the contributions shown above will be
computed:

VðR⃗Þ ¼
Z

ṼðQ⃗2Þe−iQ⃗·R⃗ d3Q
ð2πÞ3 : ð16Þ

By defining EQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q⃗2 þm2

q
we have the following

magnetic field corrections:

VB
FFðR⃗Þ ¼ −i

�
eB
M2

�
2

gps

Z
FB
psðK;QÞ 1

E2
Q
e−iQ⃗·R⃗ dQ⃗

ð2πÞ3 ;

ð17Þ

VB
π ðR⃗Þ≡ I1ðRÞ þ I2ðRz; R⊥Þ

¼ −iðeBÞ2g2ps
Z

1

E4
Q

�
1

E2
Q
þ 2Q2⊥

E4
Q

�
e−iQ⃗·R⃗ dQ⃗

ð2πÞ3 ;

ð18Þ

where the both parts, VB
π ðR⃗Þ and VB

FFðR⃗Þ, have two
parts each, as calculated below—one isotropic and one
anisotropic.

A. Contribution of the B-dependent meson propagator

By denoting Q ¼ jQ⃗j and R ¼ jR⃗j, the first integral of
Eq. (18)

I1ðRÞ ¼ −
g2ps

ð2πÞ2 ðeBÞ
2

Z
∞

0

dQQ2
eiQjR⃗j − e−iQjR⃗j

ðiQjR⃗jÞðQ2 þm2Þ3 :

ð19Þ

There are two triple poles at Q ¼ �im, so that, by
calculating the residues, it yields

I1ðRÞ ¼ −
g2ps
32π

ðeBÞ2
m4

ðm2jR⃗j þmÞe−mjR⃗j: ð20Þ

The next correction is anisotropic with an integral
denoted by I2, it can be written as

I2ðRz;R⊥Þ¼−ðeBÞ2 g2ps
ð2πÞ3

Z
dQzd2Q⊥2Q2⊥

eiðQzRzþQ⊥·R⊥Þ

ðQ2þm2Þ4
ð21Þ

where

Rz ¼ jz1 − z2j; R⊥ ¼ jR⊥
1 − R⊥

2 j:

The first integration in Eq. (21) is the angular one, for
which one obtains the Bessel function since

2

Z
π

0

dθeβ cosðθÞ ¼ 2πJ0ðβÞ ð22Þ

where β ¼ R⊥Q⊥. The second integration that can be
done analytically (dQz) can be solved by recurring to
the residue theorem by considering the fourth order poles.
With an integration in the upper semiplane, the following
pole is taken into account: Qz ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2⊥ þm2

p ≡ iEp.
It yields

I2ðRz; R⊥Þ ¼ −
g2ps
π24

ðeBÞ2J 2ðR; RzÞ

≡ −
g2ps
π24

ðeBÞ2
Z

dQ⊥Q3⊥e−RzEpJ0ðR⊥k⊥Þ

×

�
R3
z

6E4
p
þ R2

z

E5
p
þ 5Rz

2E6
p
þ 5

2E7
p

�
ð23Þ

which is the remaining integral solved numerically. This
result is quite anisotropic.
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The resulting magnetic field dependent correction due to the pion propagator can be written as

VB
π ðR;RzÞ¼−

g2psðeBÞ2
32

��jR⃗j
m2

þ 1

m3

�
e−mjR⃗j þ2J 2ðR;RzÞ

�
: ð24Þ

B. Contribution of the pion form factor

The pion form factor contribution for the magnetic field dependent Yukawa potential (25) has two terms and, accordingly,
the corresponding contributions for the Yukawa potential splits into two terms:

VB
FFðRÞ ¼ V isoðRÞ þ VaniðRz;R⊥Þ

¼ 2i

�
eB0

M2

�
2

gpsCB
PSCi

Z
d3Q
ð2πÞ3 e

−iQ⃗·R⃗−iI4ðQ⃗2Þ
Q⃗2 þm2

þ 2i

�
eB0

M2

�
2

gpsCB
PSCi

Z
d2Q⊥dQz

ð2πÞ3 e−iðQzRzþQ⊥·R⊥Þ−iI5ðQ2⊥;Q2Þ
Q⃗2 þm2

;

ð25Þ

which is Q⃗2 ¼ Q2
z þQ2⊥.

1. Isotropic term

For the Fourier transform of V iso, first the angular integration is done and it leads to the following integral in 3-momentum
spherical coordinates:

V iso ¼ Ciso

Z
Q2dQ
ð2πÞ2

ðe−iQR − eiQRÞ
iQR

I4ðQ2Þ
Q⃗2 þm2

π

≡ Ciso½F 4aðRÞ þ F 4bðRÞ� ð26Þ

where Ciso ¼ 2iðeB0

M2 Þ2gpsCB
PSCiKg. In this integral there are the two simple poles in the complex plane from the pion

propagator and two double or triple poles (for each of the parts of integral I4) from the form factor Eq. (11). These poles can
be written as

jQ⃗j ¼ �iϕ≡�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1 − zÞ2 þM2

gz

yð1 − yÞ

s
: ð27Þ

By performing the integrals with the residue theorem, by taking into account all the poles above and below the real axis,
the following equations are obtained:

F 4a ¼ −
1

16π3

Z
y;z
½ð1 − y − zÞyz�

�
2ðe−ϕR − e−mπRÞ
Rðϕ2 −m2

πÞ3
þ Re−ϕR

4ϕ2ðϕ2 −m2
πÞ

þ e−ϕR

4ϕ3ðϕ2 −m2
πÞ

þ e−ϕR

ϕðϕ2 −m2
πÞ2

�
ð28Þ

F 4b ¼
−1
32π3

Z
y

Z
z

ð1 − y − zÞyz
½ðyð1 − yÞ�4 F4b ð29Þ

where

F4b ¼
R2e−ϕR

8ϕ3ðm2
π − ϕ2Þ þ

3Re−ϕR

8ϕ2ðm2
π − ϕ2Þ þ

3e−ϕR

8ϕ5ðm2
π − ϕ2Þ þ

3Re−ϕR

4ϕ2ðm2
π − ϕ2Þ2 −

3e−ϕR

4ϕ3ðm2
π − ϕ2Þ2

þ 6e−ϕR

2ϕðm2
π − ϕ2Þ3 þ

6ð−e−ϕR þ e−mπRÞ
ðm2

π − ϕ2Þ4 : ð30Þ

There is only one term (the last one) in each of these equations (F 4a and F 4b) due to the poles from the pion propagator,
which is all the others due to the structure of the form factor.
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2. Anisotropic term

The anisotropic contribution of the form factor is written in terms of the momentum integral equation (13) that, for K⃗ ¼ 0
and K0 ¼ M and Q0 ¼ 0, is given by

I5ðQ2; Q⊥Þ ¼ −Kg
6i

12π2

Z
1

0

dy
Z

1−y

0

dz

�
−i
4

Dð1 − y − zÞyz
ðyð1 − yÞÞ4Ã4

þ ixð1 − x − zÞz
ðyð1 − yÞÞ3Ã3 × 12

�

D ¼ Q⃗2⊥yð1 − yÞ
Ãðx; yÞ ¼ −½Q⃗2 þ ϕ�: ð31Þ

The Fourier transform of the potential can be written as

VaniðRz; R⊥Þ≡ F ðVB;ani
ps ðQÞÞ ¼ Ciso

Z
d2Q⊥dQz

ð2πÞ3 e−iðQz·RzþQ⊥·R⊥Þ I5ðQ⃗
2; Q⃗2⊥Þ

Q⃗2 þM2
π

: ð32Þ

By considering the cylindrical coordinate system, the angular integration leads to a Bessel function of the first kind,
J0ðQ⊥R⊥Þ. After that, the integration in dQz can be done with the residue theorem for the following imaginary poles:

E⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕþ Q⃗2⊥

q
; E⊥

π ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ Q⃗2⊥
q

: ð33Þ

The following equation is obtained:

VaniðRÞ ¼
Ciso

ð2πÞ
Z

dQ⊥Q⊥J0ðQ⊥R⊥Þ
½yð1 − yÞ�3

ið1 − y − zÞyz IpðQ
2⊥Þ; ð34Þ

where the following equation for IpðQ2⊥Þ was defined:

IpðQ2⊥Þ ¼
πQ2⊥Rze−ðE

⊥ÞRz

2ðE⊥Þ2ððE⊥
π Þ2 − ðE⊥Þ2Þ3 −

πQ2⊥e−ðE
⊥ÞRz

ðE⊥ÞððE⊥
π Þ2 − ðE⊥Þ2Þ4 þ

πQ2⊥e−E
⊥
π Rz

ðE⊥
π ÞððE⊥

π Þ2 − ðE⊥Þ2Þ4 þ
πRze−ðE

⊥ÞRz

6ðE⊥Þ2ððE⊥
π Þ2 − ðE⊥Þ2Þ2

−
πe−ðE⊥ÞRz

3eððE⊥
π Þ2 − ðE⊥Þ2Þ3 þ

πe−ðE⊥
π ÞRz

3ðE⊥
π ÞððE⊥

π Þ2 − ðE⊥Þ2Þ3 þ
5πQ2⊥e−ðE

⊥ÞRz

16ðE⊥Þ7ððE⊥
π Þ2 − ðE⊥Þ2Þ

þ 5πQ2⊥Rze−ðE
⊥ÞRz

16ðE⊥Þ6ððE⊥
π Þ2 − ðE⊥Þ2Þ þ

πQ2⊥R2
ze−ðE

⊥ÞRz

8ðE⊥Þ5ððE⊥
π Þ2 − ðE⊥Þ2Þ −

3πQ2⊥e−ðE
⊥ÞRz

8ðE⊥Þ5ððE⊥
π Þ2 − ðE⊥Þ2Þ2 −

πe−ðE⊥ÞRz

8ðE⊥Þ5ððE⊥
π Þ2 − ðE⊥Þ2Þ

þ πQ2⊥R3
ze−ðE

⊥ÞRz

48ðE⊥Þ4ððE⊥
π Þ2 − ðE⊥Þ2Þ −

3πQ2⊥Rze−ðE
⊥ÞRz

8ðE⊥Þ4ððE⊥
π Þ2 − ðE⊥Þ2Þ2 −

πRze−ðE
⊥ÞRz

8ðE⊥Þ4ððE⊥
π Þ2 − ðE⊥Þ2Þ −

πQ2⊥R2
ze−ðE

⊥ÞRz

8ðE⊥Þ3ððE⊥
π Þ2 − ðE⊥Þ2Þ2

þ πQ2⊥e−eRz

2ðE⊥Þ3ððE⊥
π Þ2 − ðE⊥Þ2Þ3 −

πR2
ze−ðE

⊥ÞRz

24ðE⊥Þ3ððE⊥
π Þ2 − ðE⊥Þ2Þ þ

πe−ðE⊥ÞRz

6ðE⊥Þ3ððE⊥
π Þ2 − ðE⊥Þ2Þ2 : ð35Þ

The poles of the pion propagator are responsible for the
third and fifth terms and all the others come from the pion
form factor structure.
Note that in all the contributions from the pion form

factor [VB
FFðRz; RÞ ∼ V isoðRÞ þ VaniðRz; RÞ] there is a

strong dependence on the constituent quark and gluon
effective masses that are not negligible.

IV. NUMERICAL RESULTS

The complete leading weak magnetic field correction to
the Yukawa potential can be written in terms of three terms:

VBðRz; RÞ ¼ VB
π ðRz; RÞ þ VB

FFðRz; RÞ;
VB
FFðRz; RÞ ¼ VB

isoðRÞ þ VB
aniðRz; RÞ: ð36Þ

These terms were given in Eqs. (24), (26), and (34) and they
will be shown below compared to the Yukawa potential
[VYukðRÞ] by means of the ratios:

VBðRz; RÞ
VYuk

¼ VB
FFðRz; RÞ þ VB

π ðRz; RÞ
VYukðRÞ

; ð37Þ

V4;5ðRz; RÞ
VYukðRÞ

¼ VB
FFðRz; RÞ
VYukðRÞ

; ð38Þ
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I12ðRz; RÞ
VYukðRÞ

¼ VB
π ðRz; RÞ
VYukðRÞ

; ð39Þ

VYukðRÞ ¼ −g2ps
e−mπR

4πR
: ð40Þ

The following phenomenological or experimental numeri-
cal values for the parameters will be considered for the
pseudoscalar pion coupling [36,38], quark effective mass,
gluon effective mass, and pion mass (whenever degenerate):

gps ¼ 13; Mq ¼ 0.35 GeV;

Mg ¼ 0.5 GeV; mπ ¼ 0.137 GeV: ð41Þ

This effective gluon mass is slightly larger than most recent
results in lattice QCD and Schwinger-Dyson equation
calculations suggest [40]. For values Mg ∼ 0.35 GeV,
numerical results from the form factor contributions are
increased nearly by a factor ð0.5=0.35Þ4 ∼ 4. However, the
large quark mass expansion performed to obtain the form
factors above [28,34] also have to be compatible with a
reasonable large gluon effective mass, since the gluon
effective propagator dresses the quark currents. Therefore,
such a smaller gluon mass may invalidate the expansion and
it would lead to too large magnetic field corrections as it was
verified numerically. Besides that, there are indications, from
lattice QCD for exotic mesons, of constituent gluons with a
mass close to 1 GeV [41]. Therefore, we keep the value
Mg ¼ 0.5 GeV to provide a first calculation for which the
gluon is attached to a (constituent) quark.
Besides the effects of the magnetic field on the shape

of the Yukawa potential discussed along this work, we
also present the effect of the magnetic field dependence
of the hadron masses: pions and constituent quarks.
Quark effective masses increase with increasing magnetic
fields [16] and neutral and charged pions were found to
have decreasing and increasing masses, respectively, as
found from different calculations with LQCD and with the
NJL model [18,19,22–25]. To present estimations of these
effects on the overall corrections to the Yukawa potential,
we consider the numerical results obtained in these just
quoted for the range of weak magnetic field considered in
the present work (eB ∼ 0.01 GeV2). The following numeri-
cal values will be adopted:

MqðBÞ ∼Mq þ 0.020 GeV; ðMqBÞ
mπ0ðBÞ ∼mπ0 − 0.020 GeV; ðpneBÞ
mπ�ðBÞ ∼mπ� þ 0.020 GeV; ðpchBÞ; ð42Þ

where the electromagnetic parts of the pion masses are
considered in these cases specifically: mπ� ¼ 0.139 GeV
(pch) and mπ0 ¼ mπ ¼ 0.135 GeV (pne). However, it is
important to point out that the difference in the results of

using mπ� or mπ0 in the curves for the magnetic field
independent pion mass is not noted in the figures below.
In Fig. 5 the total ratio VBðRz; RÞÞ=VYukðRÞ is presented

by fixing Rz ¼ 1 fm for a unique constant value of the
[degenerate (deg)] pion mass (mπ ¼ 0.137 GeV) in differ-
ent situations for the quark effective mass:

M ¼ Mq≡ 0.35 GeV; M ¼ 3Mq;

Mmix ¼ MixedMq and 3Mq: ð43Þ

The first case, Mq, is a typical constituent (up or down)
quark mass and the second one, 3Mq, is a large quark
effective mass, of the order of magnitude of the nucleon
mass, to test the resulting behavior. This may be seen as a
partial account of the whole nucleon, since the constituent
quark is considered to carry the whole nucleon mass tightly
but not necessarily the entire nucleon size. In this case, the
normalization of the effective gluon propagator (Kg) was
found to increase considerably, although the form factor
contribution is reduced. The overall effect is to increase the
strength of the magnetic field correction to the Yukawa
potential because of the increase in Kg. To make clearer the
effect of a larger quark mass in the form factor and
consequently in the Yukawa potential, the Mmix case
was done as follows. The value of the effective gluon
propagator normalization Kg was fixed to reproduce gps, as
shown in the Appendix, with usual quark mass Mq ¼
0.35 GeV and the whole estimation of the effects of the
magnetic field for the Yukawa potential was done by
considering a large mass 3Mq (possibly as if one had a
full nucleon mass). In this case, the contribution of the
form factor should be trivial (toward punctual particles and
coupling) and the magnetic field correction to the Yukawa
potential reduces basically to the simpler (punctual) pion
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FIG. 5. Total ratio VBðRz; RÞÞ=VyukðRÞ for Rz ¼ 1 fm for the
following cases: M ¼ Mq ¼ 0.35 GeV, M ¼ 3Mq and the
mixed calculation Mmix, for degenerate mπ by reducing GB

psci
with unique coupling ci ¼ 1 (deg).
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exchange. Indeed, it is seen in the figure that the strength of
the curves Mmix (the mixed case) is reduced and the term
due to the pion propagator is dominant.
The role of the magnetic field corrections to the charged

and neutral pion (pch and pne) form factors, by considering
the different couplings according to Eqs. (5) and (9), is
presented in Fig. 6 by keeping the unique constant pion
mass mπ ¼ 0.137 GeV. These c1 ¼ c2 and c3 factors are
given, respectively, by

−4
ffiffiffi
2

p

9
× GB

psðpchÞ;
5

9
×GB

psðpneÞ: ð44Þ

Whereas the neutral pion form factor provides a positive
correction (i.e., more attractive potential), the charged pion
form factor leads to a reduction of the total magnetic field
correction (slightly less attractive potential). In fact, there
is a cancellation of contributions from the charged pion
propagator and the charged pion form factor that leads to a
much smaller overall modulus than the neutral pion. For the
large quark mass limit, 3Mq, the overall correction to the
(charged pion exchange) Yukawa potential becomes repul-
sive. However, most of the other magnetic field corrections
are basically attractive, and they make the Yukawa potential
more and more negative with increasing distances—this
helps to increase the range of the interaction. Note that
by the distance typical of the stability of the deuteron,
R ∼ 2 fm, the neutral and charged pion lead to different
strengths of the order of 2%–3% without taking into
account further effects as discussed below.
Different values for Rz, 1 fm and 2 fm, were used to test

the contributions of the anisotropic terms V5 and I2. It turns
out that the resulting anisotropies were found to be very

small, of the order of few percent of the isotropic terms.
Therefore, by fixing another value, for example, Rz ¼ 2 fm
for R > 2 fm, it leads to very tiny negligible differences in
the figures.
Figures 7 and 8 present the same cases of the previous

two figures by considering constituent quark mass under
magnetic field according to Eq. (42). The strengths of the
magnetic field corrections increase slightly as compared to
the previous Figs. 5 and 6. As can be seen, also from the
previous figures, the difference between the mixed case
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FIG. 6. Total ratio VBðRz; RÞÞ=VyukðRÞ for Rz ¼ 1 fm for the
following cases: M ¼ Mq ¼ 0.35 GeV, M ¼ 3Mq and the
mixed calculation Mmix, for unique mπ and GB

psci for charged

and neutral pions (c1 ¼ −4
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2

p
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Mmix (or MmixB in Fig. 7) and Fig. 8, respectively, for
degenerate pion mass (deg) and neutral pion (via the form
factor) (pne), is not large.
It is important to make clear the difference between the

cases with larger quark masses, 3Mq andMmix. In the first
case, the quark mass is large in all calculations, i.e. it leads
to a more trivial punctual interaction but it makes the
normalization of the effective gluon propagator larger.
This effect in Kg manifests in all the resulting curves for
VBðRz; RÞ. The second case, Mmix, helps to identify
the role of particular corrections to the Yukawa potential.
For large quark mass, the form factor tends to be trivial and
the most important contribution for the Yukawa potential is
the one from the pion propagator. Having shown this point,
Mmix will not be exploited much further below.
Figure 9 presents similar curves to Fig. 6, by considering

the neutral and charged pion masses to be nondegenerate
and with magnetic field correction according to (42) in all
the terms—by keeping the quark effective mass in the
vacuum. Constituent quark mass was kept as Mq or 3Mq.
The difference in the behavior of these magnetic field
corrections for neutral or charged pions becomes slightly
larger than in the cases presented in Fig. 6 for which the
pion masses were taken for B ¼ 0.
Figure 10 presents the same cases of the previous Fig. 9,

by considering the magnetic field dependent quark effective
mass, Eq. (42). Again we see that, by taking into account
the magnetic field dependent masses, the strength of the
corrections to the Yukawa potential increases for both
neutral and charged pions.
In the next Fig. 11, the separate contributions VB

FF (from
V4 and V5) and VB

π (from I1 þ I2), Eqs. (38) and (39), are
shown for the degenerate numerical factors in the form

factors and degenerate pion mass. Three cases of quark
masses, Mq, 3Mq, and Mmix were considered. In Fig. 12
similar curves are presented for two cases for the magnetic
field dependent quark mass, MqB and 3MqB, by consid-
ering the degenerate numerical factors of the form factors
ci. The effect due to nondegenerate pion mass is stronger in
the contribution from the pion exchange. The nondegen-
erate pion mass effect in the form factor is small although it
is amplified if the nondegenerate coupling to magnetic
field, Eq. (9), is taken into account. As seen before, these
two effects increase the strength of the magnetic field
corrections to the Yukawa potential and they make the
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range of the potential to change different for neutral or
charged pions. For neutral pion exchange the range of the
Yukawa potential increases, whereas for the charged pion
exchange it is nearly unchanged depending on the range of
the parameters such as constituent quark mass.

V. SUMMARY

Magnetic field induced corrections to the Yukawa
potential were presented for ðeBÞ∼0.1M2

q∼50×1012 T.
Most of the calculations are basically analytical, with
remaining numerical integrals mostly in Feynman param-
eters and, in some cases, one integration in a component
of the pion three-momentum. Three types of effects were
investigated, two of them concerning the shape of the
potential, besides the role of masses of pion and of
constituent quarks. First, the (relatively) weak magnetic
field contribution for the pion propagator. Second, the
contribution of the weak magnetic field for the pseudo-
scalar pion form factor, GB

psðQ2Þ, in a one loop calculation.
This second contribution leads to a dependence on the
constituent quark effective mass and on a gluon effective
mass which parametrizes the gluon propagator. Finally, the
effects of the magnetic field on the pion and constituent
quark masses were also considered. The first two effects are
of the order of magnitude of ðeBÞ2 and the third ones go
with ðeBÞ. Considering the values of the (phenomenologi-
cal) parameters of masses, three different situations were
analyzed. First, the constituent quark mass was taken to be
Mq ¼ 0.35 GeV for which results are well inside the
perturbative regime for Mg ¼ 0.5 GeV. Second, a larger
quark mass, 3Mq, corresponding to nearly the nucleon
mass was considered. However, in this calculation the

normalization of the gluon propagator was modified
accordingly to keep gps ¼ 13, the physical value. Results
from the form factor contributions increase accordingly by
nearly 3 times. Finally a mixed calculation (Mmix) to keep
the quark mass Mq ¼ 0.35 GeV to fit gps was done, but
increasing the quark mass of the form factors to 3Mq. This
yielded a strong reduction of the contribution of the form
factors leading to a pointlike interaction.
The overall modification of the potential for the weak

magnetic field limit is not large in the range of distances
R ∼ 1–3 fm, the long range component of the nucleon
interactions. These magnetic field contributions become
larger at larger distances, mainly for the neutral pion
exchange. Anisotropic components are, in general, quite
smaller than the isotropic ones in the range of distances
exploited in this work. However, for larger distances, the
overall Yukawa potential becomes tiny. Perturbative
corrections due to the magnetic field are, therefore,
of the order of around 5%. Charged and neutral pion
exchanges receive different contributions from the cou-
pling to the magnetic field, and therefore nucleon (and
more generally baryons) interactions should manifest
this splitting associated to the neutral or charged pion
exchange.
In most of the cases, the Yukawa potential becomes more

attractive with slightly longer range, given that the mag-
netic field correction increases the strength of the Yukawa
potential. The exception to this increase was found for the
charged pion exchange that may lead to a less attractive
Yukawa potential and a shorter range interaction. The
magnetic field contributions to constituent quark and pion
masses lead overall to amplification of the effects due to the
form factor and to the pion propagator. The inclusion of
the form factor in the calculation of the potential has
brought several issues into discussion. For the limit of
very large constituent quark mass and effective gluon mass
these contributions from the form factor tend to zero.
Modifications due to magnetic fields can be expected to
occur in the neighborhood (low density outer crust) of
dense stars when magnetic fields may reach such values we
consider [12]. Our results suggest nontrivial contributions
to the deuteron formed in such environment, or alterna-
tively, for the equation of state and other related observ-
ables at low baryon density, may be expected. In the outer
crust of dense stars, the density is estimated to be less
than the nuclear saturation density. Note, however, that the
long range pion exchange term is suppressed in the high
density regime. Besides that, currently, the expected
values of magnetic fields in heavy ions collisions are quite
reduced [15]. However, if magnetic fields with such
strengths are reached by the hadronization time scales or
in the spectator region of the collisions, in peripheral heavy
ions collisions [8] or in experiments where low density
matter is obtained, Yukawa long range nucleon interaction
may also be probed. Accordingly, deuterons formed in such
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tributions for VB
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magnetic fields possibly undergo to excited states when
passing to a region of zero magnetic field. Along the same
lines, other meson exchanges must be verified. This will
be developed elsewhere. Magnetic field corrections to the
effective gluon propagator and quark-gluon running cou-
pling constant were not considered. This kind of calculation
may possibly help to identify the validity of the CQM in
what concerns the hadron couplings by means of such
internal degrees of freedom. A detailed investigation of the
role of the form factor for the potential in vacuum will be
performed elsewhere by one of the authors. The role of
different choices of the gluon effective propagator and the
limit of very strong magnetic fields are intended to be
scrutinized further in a different work.
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APPENDIX: PSEUDOSCALAR PION COUPLING
TO CONSTITUENT QUARKS

The one loop pseudoscalar pion form factor, for the
gluon effective propagator (8), can be written as

GPS ¼ Cps0

Z
d4k
ð2πÞ4

k · ðkþQÞ þM2

ðk2 −M2ÞððkþQÞ2 −M2Þððk − KÞ2 −M2
gÞ2

ðA1Þ

where Cps0 ¼ 8NcðαKgÞ. By employing the Feynman trick to carry the momentum integral, it can be written as

GPS ¼ Cps0
i

6ð4πÞ2
Z

1

0

dz
Z

1−z

0

dyz

�
−2
E

þ F
E2

�
ðA2Þ

E ¼ Q2yðy − 1Þ þ K2zðz − 1Þ − 2K ·QyzþM2ð1 − y − zÞ þM2yþM2
gz

F ¼ Q2ðy − 1Þyþ K2z2 þ K ·Qzð1 − 2yÞ þM2: ðA3Þ

For the numerical calculation of this coupling constant, we considered off shell pions and quarks: Q2 ¼ 0 and K2 ¼ 0.
The value of Kg is fixed with

Kg ¼
13
GPS
Kg
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