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We evaluate the heavy quark momentum diffusion coefficients in a hot magnetized medium for the most
general scenario of any arbitrary values of the external magnetic field. We choose to work with the
systematic way of incorporating the effect of the magnetic field, by using the effective gluon and quark
propagators, generalized for a hot and magnetized medium. To get gauge independent analytic form factors
valid through all Landau levels, we apply the hard thermal loop technique for the resummed effective gluon
propagator. The derived effective hard thermal loop gluon propagator and the generalized version of
Schwinger quark propagator subsequently allow us to analytically evaluate the longitudinal and transverse
momentum diffusion coefficients for charm and bottom quarks beyond the static limit. Within the static
limit we also explore another way of incorporating the effect of the magnetic field, i.e. through the
magnetized medium modified Debye mass and compare the results to justify the need for structural
changes.
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I. INTRODUCTION

Heavy quarks have been extensively studied within the
heavy-ion community as a significant hard probe for
characterizing the properties of hot and dense quark matter
[1–21]. Considering the noncentrality of the HIC experi-
ments and the subsequent generation of strong magnetic
fields [22–27], studies related to heavy quarks have
recently been extended to magnetized medium [28–40].
Most of the heavy quark (HQ) dynamical studies within
magnetized medium have been restricted to limiting sce-
narios, i.e. adhering to strong or weak field approximations.
In the present work we go beyond those limiting scenarios
to tackle the most general case of arbitrary valued external
magnetic fields, for the first time in literature. In the
following, we further enlarge on our motivation as a
prelude to the proceeding calculation.
HQ momentum diffusion coefficients are the essential

theoretical inputs required to describe the HQ evolution
using Langevin equations [12–15,41]. This widely adopted
approach assumes external HQ receiving random kicks
from the thermal partons in the bulk medium. The HQ
diffusion coefficients, along with the drag coefficient
acutely influence the phenomenology relevant to HQs,
thereby affecting the corresponding theoretical predictions
for the relevant experimental observable [16]. While

evaluating these parameters, numerous studies typically
consider the nonrelativistic static limit of the HQ, a
reasonable approximation for low-momentum charm and
bottom quarks [7,28]. The need for the more general
relativistic dynamic limit of the HQ comes from the current
HIC experiments for heavy flavor sector spanning well into
the high momentum region [5,12,34].
In absence of the magnetic field and within the static

limit (i.e. p ≈ 0, M ≫ T, p, and M being the HQ
momentum and mass, respectively) there is no anisotropy
imposed on the system. Hence we have a single diffusion
coefficient κ, resulting in mean squared HQ momentum
transfer per unit time to be 3κ. This 3κ can be evaluated
considering the scattering processes of thermally populated
light quarks and gluons with the HQ, i.e. 2 ↔ 2 scattering
of qH ↔ qH and gH ↔ gH (q → quark, g → gluon, and
H → HQ). Because of the large mass difference and
relatively small energy transfer, the t-channel scatterings
mediated by gluons dominate these processes at leading
order in the strong coupling and the scattering particles can
be considered as quasiparticles within the thermally equili-
brated matter. Several studies have evaluated the diffusion
coefficient κ using various techniques producing interesting
results, e.g. perturbative results up to NLO [7], within
Gribov-Zwanziger action [19] and the very recent lattice
QCD evaluation [21].
Going beyond the static limit associates a finite velocity

γv≲ 1 (i.e. p ¼ γMv≲M) with the HQ, subsequently
introducing an anisotropy in the system generated from the
movement of HQ in a preferred direction. Hence κ breaks
down into longitudinal and transverse parts, i.e.
3κ → κL þ 2κT . There also have been several beyond the
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static limit perturbative calculations for the HQ diffusion
coefficients which have usually incorporated the hard
thermal loop (HTL) resummation method for the hot
medium [1–3,5,7,12–15].
The presence of an external magnetic field brings

another new anisotropy into the system along with some
interesting new questions regarding the incorporation of an
extra scale eB. HQ diffusion coefficients in a hot and
magnetized medium are presently being explored both
within and beyond the static limit [28–35], most of which
have been done considering the lowest-Landau-level (LLL)
approximation, i.e. assuming eB ≫ T2 [28,32–34] or the
weak magnetic field approximation [40]. The validity of the
LLL or weak field approximations can be argued assuming
the strength of the magnetic field generated in noncentral
HICs and its time dependence. But extending the approxi-
mated calculations to the most general scenario of arbitrary
external magnetic fields puts an end to all those arguments.
It also unburdens us from extra constraints imposed on the
magnetic field scale eB. The evaluation of the HQ
momentum diffusion coefficients (which are directly de-
pendent on the HQ scattering rate) in presence of arbitrary
valued magnetic fields requires us to compute the effective
gluon propagator generalized for hot magnetized medium
beyond the LLL approximation. On this front we employ
HTL approximations to calculate the form factors of the
effective generalized gluon propagator valid across all
Landau levels. An alternate way of incorporating the effect
of the magnetic field has been utilized recently in the
calculations of HQ potential and HQ energy loss where the
sole medium effect has been assumed to be channeled
through the medium dependent Debye mass [36,37,39].
Within the static limit, we will compare the results
originating from both these methods and discuss the
limitations of using the apparently crude approximation
of medium modified Debye mass.
In this paper, we aim to address an important state of the

art problem, i.e. the calculation of the heavy quark
momentum diffusion coefficients beyond the static limit
in a quark-gluon plasma under the influence of an arbitrary
external magnetic field. To explore the same:
(1) We consider a HQ moving with a velocity v⃗ in

presence of an anisotropic B⃗ ¼ Bẑ and analytically
derive the full results for the longitudinal and
transverse momentum diffusion coefficients for
charm and bottom quarks.

(2) Though the heavy quark mass M ≫
ffiffiffiffiffiffi
eB

p
; T is

considered to be the largest scale of the system,
unlike LLL or weak field approximations we do not
restrict ourselves with further scale hierarchies with
respect to eB and T.

(3) Similar to Refs. [28,34], here we alsowork within the
HTL approximation with a further constraint αseB ≪
T2 (αs being the QCD running coupling), which helps

us neglect the soft self-energy corrections of the
quarks and gluonswhile evaluating the scattering rate.

The rest of this paper is organized as follows. In the
following section (Sec. II) we provide the formalism and
summarize the calculational steps, to be carried out in this
work. In Sec. III we evaluate the expressions for various
form factors required to construct the most general one-
loop effective gluon propagator in a hot magnetized
medium. Section IV witnesses the computation of the
HQ scattering rate in an arbitrarily magnetized medium
beyond the static limit. In Sec. V we provide the final
expressions for the momentum diffusion coefficients of HQ
in a magnetized medium for both v⃗kB⃗ and v⃗⊥B⃗. We divide
the results into two sections. Section VI contains special
discussions about the HQ momentum diffusion coefficients
within the static limit of HQ and comparison between two
alternate ways of incorporating the magnetic field induced
effects within them. In Sec. VII we show our estimations of
the HQ momentum diffusion coefficients beyond the HQ
static limit and discuss the results. Finally we summarize
and conclude in Sec. VIII. Novelty of the present work is
well reflected in the explicit calculations presented in the
Appendices A–E.

II. FORMALISM

The present work evaluates the HQ diffusion coefficients
in the general most scenario of hot and magnetized
medium, also assuming the HQ to be relativistic (i.e. going
beyond the static limit). Before going into the details of the
evaluation procedure, in this section we will give an
overview of the same and clarify the notations to be used
throughout the paper.
When a HQ traverses through the medium, it encounters

collisions with other partons. Because the HQ has a much
higher energy scale than the temperature of the medium, i.e.
P≡ ðM;pÞ≡ ðE; vÞ ≫ T, it usually takes a large number of
collisions (around M=T within and p=T beyond the static
limit of HQ) to change the HQ momentum by a substantial
amount. Hence one can approximate the interaction of the
HQ with the medium in a simplified way, such that it
becomes a series of uncorrelated momentum kicks. At
T ≠ 0, these uncorrelated momentum kicks can be compre-
hended as originating from the scatterings faced by the HQ
with the thermally populated light quarks and gluons. As a
result of that, the transport coefficients, i.e. in our case the
momentum diffusion coefficients (κ) in our case, are directly
related to the corresponding scattering/interaction rate (Γ), as
is shown below through explicit expressions.
In the presence of an external magnetic field and

considering that the HQ is moving in a particular direction,
i.e. going beyond the static limit of HQ, the complex
interplay between anisotropies generated from the preferred
directions of HQ momentum/velocity and the magnetic
field leads to nontrivial scenarios. In this situation it is
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useful to work with two simple cases, i.e. v⃗kB⃗ and v⃗⊥ B⃗.
The first case v⃗kB⃗ leads to two different diffusion coef-
ficients κL and κT , related to the HQ scattering rate as

κTðpÞ ¼
1

2

Z
d3q

dΓðvÞ
d3q

q2⊥; κLðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2z :

ð2:1Þ

On the other hand, v⃗⊥ B⃗ case generates three different
diffusion coefficients κjs j ¼ fx; y; zg≡ f1; 2; 3g), i.e.

κjðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2j : ð2:2Þ

It is straightforward to realize that retracing the static limit
(v⃗ → 0) within a magnetized medium would mean there is
only one anisotropy given by the specific direction of B⃗ and
would cause the v⃗⊥B⃗ case to vanish.
From Eqs. (2.1) and (2.2) one can easily deduct that to

evaluate the momentum diffusion coefficients, we first need
to evaluate the scattering rate or interaction rate of the
2 ↔ 2 scatterings between the light quark/gluon and
the HQ (i.e. qH ↔ qH and gH ↔ gH). The dominant
t-channel scattering processes involving them are diagram-
matically portrayed in the top half of Fig. 1. Now, to
evaluate the corresponding scattering rates, we use an
effective approach, first provided by Weldon [42]. In this
approach we can express the t-channel 2 ↔ 2 scatterings
involving HQ as cut/imaginary parts of the HQ self-energy,
demonstrated in Fig. 1. Using this technique the expression
for the scattering rate [ΓðPÞ] comes out to be

ΓðPÞ ¼ −
1

2E
1

1þ e−E=T
Tr½ðPþMÞImΣðp0 þ iϵ; p⃗Þ�;

ð2:3Þ

where ΣðPÞs represent the two-loop HQ self-energy dia-
grams involving second-order quark and gluon loops. The
hard contribution of the scattering rate comes from cutting
these ΣðPÞs, depicted by the right-hand side of the
diagrammatic equation shown in the bottom half of
Fig. 1. For the present study we also want to incorporate
the soft contributions, i.e. where the momentum flowing
through the mediating gluon (Q) is considered to be soft. In
this scenario, the HTL corrections to the gluon propagator
contribute at the leading order in the strong coupling
constant, which in turn suggests that resummation must
be taken into account. At this point we will emphasize the
advantage of using Eq. (2.3), which allows us to include all
the necessary resummations by applying the imaginary
time formalism of the thermal field theory. Hence effec-
tively to include the resummation, all we have to do is to
replace the several separate ΣðPÞs by a sole effective HQ
self-energy [which we will also symbolize as ΣðPÞ from
this point onward] with an HTL resummed effective gluon
propagator (depicted by the left-hand side of the diagram-
matic equation shown in the bottom half of Fig. 1), which in
a magnetized medium can be expressed as

ΣðPÞ ¼ ig2
Z

d4Q
ð2πÞ4D

μνðQÞγμSmðP −QÞγν: ð2:4Þ

Here DμνðQÞ is the effective gluon propagator and
SmðP −QÞ is the heavy fermion propagator in presence of
an external magnetic field.
Next we will discuss the individual components of

Eq. (2.4) in details. First of all, the heavy fermion
propagator SmðP −Q≡ KÞ in presence of an arbitrary
external magnetic field is given by [43–45]

SmðKÞ ¼ e
−

k2⊥
jqfBj

X∞
l¼0

ð−1ÞlDlðqfB; KÞ
K2

k −M2 − 2lqfB
; ð2:5Þ

with l ¼ 0; 1; 2;…, denoting the Landau levels and

DlðqfB; KÞ ¼ ðKk þMÞðð1 − iγ1γ2ÞLlðξ⊥k Þ
− ð1þ iγ1γ2ÞLl−1ðξ⊥k ÞÞ − 4k⊥L1

l−1ðξ⊥k Þ;
ð2:6Þ

where ξ⊥k ¼ 2k2⊥
qfB

and Lα
l ðξ⊥k Þ is the generalized Laguerre

polynomial, defined as

ð1 − zÞ−ðαþ1Þ exp
�

zξ⊥k
z − 1

�
¼

X∞
l¼0

Lα
l ðξ⊥k Þzl; ð2:7Þ

where qf is the fermionic charge for a particular flavor f.
Kμ ≡ ðKμ

k; k
μ
⊥Þ is the fermionic four momentum with Kμ

k ¼
ðk0; 0; 0; kzÞ and kμ⊥ ¼ ð0; kx; ky; 0Þ. The metric tensor can

FIG. 1. The equivalences of the t-channel scatterings of heavy
quarks due to thermally generated light quarks and gluons, qH →
qH (left) and gH → gH (right) are shown, as they can also be
expressed as the cut (imaginary) part of the HQ self-energy. An
HTL resummed heavy quark self-energy with effective gluon
propagator takes into account the diagrams for the hard process
among others.
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also be broken down as gμν ¼ gμνk þ gμν⊥ , with gμνk ¼
diagð1; 0; 0;−1Þ and gμν⊥ ¼ diagð0;−1;−1; 0Þ, such that
the individual components satisfy K2 ¼ K2

k − k2⊥, i.e. K2
k ¼

k20 − k2z and k2⊥ ¼ k2x þ k2y.
Next we focus on the effective gluon propagator. Several

recent advances have been made on the general structures
of the fermion and gauge boson self-energies with propa-
gators at finite temperature and in presence of an external
magnetic field [46–55] as well as thermomagnetic correc-
tion to the quark-gluon vertex [56,57]. Out of these choices
we usually work with the effective gluon propagator in a
hot and magnetized medium from Ref. [53], i.e.,

DμνðQÞ ¼ ξQμQν

Q4
þ
X4
i¼1

J iΔ
μν
i ; ð2:8Þ

where ξ is the gauge parameter, Δμν
i s are the constructed

tensor basis and J is are the corresponding coefficients.
Various Δμν

i s can be expressed as

Δμν
1 ¼ 1

ū2
ūμūν; ð2:9aÞ

Δμν
2 ¼ gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

; ð2:9bÞ

Δμν
3 ¼ n̄μn̄ν

n̄2
; ð2:9cÞ

Δμν
4 ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p ; ð2:9dÞ

with

ūμ ¼ uμ −
q0Qμ

Q2
; ð2:10aÞ

gμν⊥ ¼ diagð0;−1;−1; 0Þ; ð2:10bÞ

Qμ
⊥Q⊥

μ ¼ Q2⊥ ¼ Q2 −Q2
k ¼ −q2⊥; ð2:10cÞ

n̄μ ¼ nμ −
q3Qμ

q2
þ q0q3uμ

q2
; ð2:10dÞ

where uμ ¼ ð1; 0; 0; 0Þ is the heat bath velocity and nμ ¼
ð0; 0; 0; 1Þ is defined uniquely as the projection of the
electromagnetic field tensor Fμν along uμ.
Subsequently corresponding coefficients J is are

given as

J 1 ¼
ðQ2 − d3Þ

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð2:11aÞ

J 2 ¼
1

ðQ2 − d2Þ
; ð2:11bÞ

J 3 ¼
ðQ2 − d1Þ

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð2:11cÞ

J 4 ¼
d4

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð2:11dÞ

where dis are the form factors defined as

d1ðQÞ ¼ Δμν
1 ΠμνðQÞ; ð2:12aÞ

d2ðQÞ ¼ Δμν
2 ΠμνðQÞ; ð2:12bÞ

d3ðQÞ ¼ Δμν
3 ΠμνðQÞ; ð2:12cÞ

d4ðQÞ ¼ 1

2
Δμν

4 ΠμνðQÞ; ð2:12dÞ

ΠμνðQÞ being the one-loop gluon self-energy. The form
factors dis have previously calculated only in the strong
magnetic field limit within the lowest Landau level
approximation in Ref. [53] and subsequently used in
Ref. [34] to explore the HQ dynamics. For the general
scenario of any arbitrary external magnetic field, explicit
evaluation of the form factors dis requires the computation
of one loop HTL gluon self-energy including quarks
residing in any arbitrary Landau levels, which we will
discuss in the next section. Before jumping into that,
readers should look at the calculational steps to be followed
to obtain the final expressions for the HQ momentum
diffusion coefficients, in the form of a flow chart (Fig. 2).

III. EVALUATION OF THE FORM FACTORS
FROM THE ONE-LOOP HTL GLUON

SELF-ENERGY

In the previous section, we covered the basic formalism
and summarized the calculational steps to be followed. As
the first step of the same, in this section we will first
compute the one-loop gluon self-energy (Πμν) in a hot and
arbitrarily magnetized medium, which will then help us to
evaluate various form factors (dis) required to construct the
HTL effective gluon propagator (Dμν).

Evaluation of one-loop
Gluon self-energy (

Computation of various
form factors (

contracting

Constructing the effective
Gluon propagator

using different

Evaluation of effective
HQ self-energy

using and

Computation of the
scattering rate

using HQ self-energy

Final estimations of HQ
momentum diffusion

coefficients s from

FIG. 2. A flow chart summarizing the calculational steps to be
followed from Sec. III.
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One loop gluon self-energy in a hot and magnetized
medium can be written as a combination of the pure glue
Yang-Mills contribution Πg

μν and the fermionic loop con-
tribution Πm

μν, i.e. Πμν ¼ Πm
μν þ Πg

μν. The pure glue part Πg
μν

is unaffected in presence of magnetic field and can be
written as

Πg
μνðQÞ ¼ −

Ncg2T2

3

Z
dΩ
4π

�
q0K̂μK̂ν

K̂ ·Q
− gμ0gν0

�
: ð3:1Þ

As later we will be using it, at this point we also define the
angular factor as T Q, given as

T Q ¼
Z

dΩ
4π

q0
K̂ ·Q

¼ q0
2q

ln

�
q0 þ q
q0 − q

�
: ð3:2Þ

On the other hand the fermionic part of the one-loop
gluon self-energy can be computed as

Πm
μνðQÞ ¼

X
f

ig2

2

Z
d4K
ð2πÞ4 TrfγμSmðKÞγνSmðRÞg;

¼
X
f

ig2

2

Z
d4K
ð2πÞ4 e

−
k2⊥þr2⊥
qfB

X∞
l¼0

X∞
l0¼0

ð−1Þlþl0

×
�

1

K2
k −m2

f − 2lqfB

��
1

R2
k −m2

f − 2l0qfB

�

× TrfγμDlðqfB;KÞγνDl0 ðqfB; RÞg; ð3:3Þ

where we have used the form of the fermionic propagator
from Eq. (2.5), replacing the HQ mass M by flavor
dependent light quark mass mf. We can further simplify
the expression by the virtue of the Hard thermal loop
approximation, neglecting the external momenta and the
quark mass mf in the numerator, i.e.

Πm
μνðQÞ ¼

X
f

ig2

2

Z
d4K
ð2πÞ4 e

−
2k2⊥
qfB

X∞
l¼0

X∞
l0¼0

ð−1Þlþl0

×

�
1

K2
k −m2

f − 2lqfB

��
1

R2
k −m2

f − 2l0qfB

�

× TrfγμDlðqfB;KÞγνDl0 ðqfB; RÞg: ð3:4Þ

The nontrivial trace part can be computed by progressing
term by term [see Eq. (2.6)],

TrfγμDlðKÞγνDl0 ðRÞg ¼ Tμν ¼
X9
i¼1

ðTiÞμν: ð3:5Þ

We list the explicit expressions for each of the terms in
Appendix A. Evaluation of the trace finally yields the
fermionic part of the one-loop gluon self-energy to be

Πm
μνðQÞ¼

X
f

ig2

2

Z
d4K
ð2πÞ4 e

−
2k2⊥
qfB

X∞
l¼0

X∞
l0¼0

ð−1Þlþl0

×

P
9
i¼1ðTiÞμν

ðK2
k−m2

f−2lqfBÞðR2
k−m2

f−2l0qfBÞ
: ð3:6Þ

Equation (3.6) along with Eq. (3.1) give the final expres-
sion for the one-loop gluon self-energy in a hot and
arbitrarily magnetized medium.
After having the expression for the one-loop gluon self-

energy ΠμνðQÞ, we can proceed to evaluate the form factors
in Eq. (2.12) one by one. To do that, we need to contract
various tensor basis Δμν

i [explicitly given in Eq. (2.9)] with
ΠμνðQÞ. We provide the expressions for the four form
factors in the next four subsections. For the corresponding
thorough steps of contractions, readers should look into
Appendix B.

A. Form factor d1
We first focus on d1, which can be written as [see

Eq. (2.12a)]

d1 ¼ Δμν
1 ðΠg

μν þ Πm
μνÞ ¼ dYM

1 þ dm1 ; ð3:7Þ

whereΔμν
1 is given in Eq. (2.9a). dYM

1 is the contribution for
the gluon part, i.e.

dYM
1 ¼ Δμν

1 Πg
μν ¼ Ncg2T2

3ū2
½1 − T Qðq0; qÞ�: ð3:8Þ

On the other hand dm1 is the contribution from the quark
loop (see Appendix B), given as

dm1 ¼ Δμν
1 Πm

μν ¼ −
X
f

g2jqfBj
2πū2

X∞
l;l0¼0

ð−1Þlþl0

×

�
ðδl;l0 þ δl−1;l0−1Þ

Z
dk3
2π

fð2 − ū2kÞΦ1 þ ð2k23

þ ð2 − ū2kÞ2ljqfBjÞΦ2g þ ū2⊥ðδl;l0−1 þ δl−1;l0 Þ
Z

dk3
2π

× fΦ1 þ 2ljqfBjΦ2g þ 4ū2jqfBjlδl;l0
Z

dk3
2π

Φ2

�
;

ð3:9Þ

where ū2k ¼ 1 − q2
0

Q2 ð2 − Q2
k

Q2Þ, ū2⊥ ¼ q2
0
q2⊥

Q4 , and ū2 ¼ −q2=Q2.

In expressing dm1 we have also used the shorthand notations
Φis for the following frequency sums:
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Φ1 ¼ T
X
k0

1

K2
k −m2

f − 2ljqfBj
;

¼ T
X
k0

1

k20 − E2
k3

¼ nFðEk3Þ
Ek3

; ð3:10Þ

and

Φ2 ¼ T
X
k0

1

ðK2
k −m2

f − 2ljqfBjÞðR2
k −m2

f − 2l0jqfBjÞ
;

¼ T
X
k0

1

ðk20 − E2
k3
Þðr20 − E2

r3Þ
;

¼ −
X

s1;s2¼�1

s1s2
4Ek3Er3

�
1 − nFðs1Ek3Þ − nFðs2Er3Þ

q0 − s1Ek3 − s2Er3

�
;

ð3:11Þ

where Ek3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þm2

f þ 2ljqfBj
q

and Er3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23 þm2

f þ 2l0jqfBj
q

.

At this point, we should make some comment about the
LLL approximation. One can see in a straightforward way
that from Eq. (3.9), it is easy to obtain the LLL limit by
putting l ¼ l0 ¼ 0, i.e.

dLLL1 ¼ dYM
1 −

X
f

g2jqfBj
2πū2

Z
dk3
2π

½Φ1 þ 2k23Φ2�: ð3:12Þ

This is similar to what has been obtained in Ref. [28],
where the authors further exploited HTL approximations
withinΦ2 to simplify the expression for d1 and express it in
terms of the medium modified Debye mass mD.

B. Form factor d2
Focusing on d2, we have [see Eqs. (2.12b) and (2.9b)]

d2 ¼ Δμν
2 ðΠg

μν þ Πm
μνÞ ¼ dYM

2 þ dm2 : ð3:13Þ

The pure-glue part dYM
2 yields

dYM
2 ¼ Δμν

2 Πg
μν ¼ Ncg2T2

3

1

2

�
q20
q2

−
Q2

q2
T Qðq0; qÞ

�
: ð3:14Þ

For the quark part, we obtain the final expression as

dm2 ¼ Δμν
2 Πm

μν ¼
X
f

g2jqfBj
2π

X∞
l;l0¼0

ð−1Þlþl0

×

�
ðδl;l0−1 þ δl−1;l0 Þ

Z
dk3
2π

fΦ1 þ 2ljqfBjΦ2g

þ4jqfBjlδl;l0
Z

dk3
2π

Φ2

�
: ð3:15Þ

C. Form factor d3
Similar to d1 and d2, we can break down d3 into two

parts [see Eqs. (2.12c) and (2.9c)], i.e.

d3 ¼ Δμν
3 ðΠg

μν þ Πm
μνÞ ¼ dYM

3 þ dm3 ; ð3:16Þ

where the pure glue part yields

dYM
3 ¼ Δμν

3 Πg
μν ¼ Ncg2T2

3

1

2

�
q20
q2

−
Q2

q2
T Qðq0; qÞ

�
: ð3:17Þ

For the quark part we can subsequently write down

dm3 ¼ Δμν
3 Πm

μν ¼ −
X
f

g2jqfBj
2πn̄2

X∞
l;l0¼0

ð−1Þlþl0

×

�
−n̄2kðδl;l0 þ δl−1;l0−1Þ

Z
dk3
2π

fΦ1 þ ð2k23

þ2ljqfBjÞΦ2g þ n̄2⊥ðδl;l0−1 þ δl−1;l0 Þ
Z

dk3
2π

× fΦ1 þ 2ljqfBjΦ2g þ 4n̄2jqfBjlδl;l0
Z

dk3
2π

Φ2

�
;

ð3:18Þ

where n̄2k ¼ − q4⊥
q4 , n̄

2⊥ ¼ q2
3
q2⊥

Q4 , and n̄2 ¼ − q2⊥
q2 .

D. Form factor d4
Finally for the last form factor d4 [see Eqs. (2.12d) and

(2.9d)] the Yang-Mills contribution vanishes as

dYM
4 ¼ Δμν

4 Πg
μν ¼ 0; ð3:19Þ

and we are only left with the quark loop contribution, i.e.
d4 ¼ dm4 . Subsequently dm4 comes out to be

dm4 ¼ 1

2
Δμν

4 Πm
μν ¼−

X
f

g2jqfBj
2π

ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
X∞
l;l0¼0

ð−1Þlþl0

×

�
ðδl;l0 þδl−1;l0−1Þ

Z
dk3
2π

f2k3n̄2Φ3− ðn̄ · ūÞk

× ðΦ1þ2ljqfBjΦ2Þgþðn̄ · ūÞ⊥ðδl;l0−1þδl−1;l0 Þ
Z

dk3
2π

×fΦ1þ2ljqfBjΦ2g
�
; ð3:20Þ

where ðn̄ · ūÞk ¼ ðn̄ · ūÞ⊥ ¼ q0q3q
2⊥

q2Q2 .
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Here we have introduced a third frequency sum Φ3 as

Φ3 ¼ T
X
k0

k0
ðK2

k−m2
f − 2ljqfBjÞðR2

k−m2
f − 2l0jqfBjÞ

;

¼ T
X
k0

k0
ðk20−E2

k3
Þðr20−E2

r3Þ
;

¼−
X

s1;s2¼�1

s2
4Er3

�
1−nFðs1Ek3Þ−nFðs2Er3Þ

q0− s1Ek3 − s2Er3

�
: ð3:21Þ

Now that we have all the expressions for the individual
form factors dis, the construction of the effective HTL
gluon propagator DμνðQÞ involving quarks residing on any
arbitrary Landau levels seems complete [see Eq. (2.8)]. In
the next section we will proceed with the next steps, i.e. we
will compute the HQ scattering rate ΓðPÞ in a hot
magnetized medium, utilizing the HQ effective self-energy
ΣðPÞ.

IV. HQ SCATTERING RATE (Γ) IN A
MAGNETIZED MEDIUM

We start this section with the expression for the HQ
effective self-energy. Using Eqs. (2.5) and (2.8) in Eq. (2.4),
we can write down the HQ effective self-energy as

ΣðPÞ ¼ ig2
X∞
l¼0

ð−1Þl
Z

d4Q
ð2πÞ4

e−k
2⊥=jqfBj

K2
k −M2 − 2ljqfBj

×
X4
i¼1

J iΔ
μν
i γμDlðqfB;KÞγν; ð4:1Þ

which also makes it quite evident that we have chosen a
gaugewith vanishinggauge parameter, i.e. ξ ¼ 0 inEq. (2.8).
Now to evaluate the scattering rate using Eq. (2.3), one

needs to evaluate the imaginary part of ΣðPÞ and perform a
trace, i.e. Tr½ðPþMÞImΣðPÞ�. These two actions can
commute with each other. Hence we will first perform
the trace and then evaluate the imaginary part to obtain the
final expression for the HQ scattering rate in a magnetized
medium. From Eq. (4.1), one can write the trace as

Tr½ðPþMÞΣðPÞ�

¼ ig2
X∞
l¼0

ð−1Þl
Z

d4Q
ð2πÞ4

e−k
2⊥=jqfBj

K2
k −M2 − 2ljqfBj

×
X4
i¼1

J iTr½ðPþMÞΔμν
i γμDlðqfB;KÞγν�: ð4:2Þ

We can now proceed to evaluate the individual traces
Tr½ðPþMÞΔμν

i γμDlðqfB;KÞγν�. To this end, we will break
down each of the traces into two parts, i.e. q0 independent
Ais and q0 dependent Bis, i.e.

Tr½ðPþMÞΔμν
i γμDlðqfB;KÞγν� ¼ Ai þ Biðq0Þ: ð4:3Þ

The reason for this arrangement can be understood as
follows:
(1) We are eventually interested in the imaginary part of

ΣðPÞ. It has been explicitly shown in Ref. [2] for
eB ¼ 0 and in Ref. [34] for eB ≠ 0 that q0 depen-
dent terms will not contribute in the imaginary part
of ΣðPÞ.

(2) We will work on the small energy transfer limit of
HQ scattering, which essentially requires q0 → 0.
Within this limit, various form factors dis undergoes
further simplifications which we eventually use in
our numerical evaluation. These simplifications have
been explicitly discussed in Appendix C.

Hence we can safely neglect the q0 dependent pieces Bis to
proceed further into the calculation. Explicit evaluations of
the traces along with the expressions for Ais are given in
Appendix D.
To compute the sum over q0, we introduce the spectral

representations for the HQ and effective gluon propagators,
respectively, by using the following relations:

1

K2
k−M2−2ljqfBj

¼−
1

2E0
k
×
Z1=T
0

dτ0ek0τ0
h
ð1−nFðE0

kÞÞe−E
0
kτ

0
−nFðE0

kÞeE
0
kτ

0i
;

ð4:4Þ

J i ¼ −
Z1=T
0

dτeq0τ
Zþ∞

−∞

dωρiðω; qÞ½1þ nBðωÞ�e−ωτ: ð4:5Þ

For the spectral representation of theHQpropagator,wehave

used the dispersion relationE0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þM2 þ 2ljqfBj

q
. On

the other hand for the spectral representation of the effective
gluon propagator we have defined the spectral functions as

ρiðω; qÞ ¼
1

π
ImðJ ijq0¼ωþiϵÞ; ð4:6Þ

which extract the imaginary parts of the corresponding
coefficients J i. Explicit expressions of these spectral func-
tions are given in Appendix E.
Once we use Eqs. (4.3)–(4.5) in Eq. (4.2), the sum over

q0 can be evaluated from the combination of the integrals
over τ and τ0, using1

1Similar formulas have been used in our earlier work [34],
which contain typos of missing a factor of T.
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T
X
q0

eq0ðτ−τ0Þ ¼ δðτ − τ0Þ: ð4:7Þ

This subsequently yields

Tr½ðPþMÞΣðPÞ�

¼ ig2
X∞
l¼0

ð−1Þl
Z

d4Q
ð2πÞ4

e−k
2⊥=jqfBj

K2
k −M2 − 2njqfBj

X4
i¼1

J iAi

¼ −g2
X∞
n¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Zþ∞

−∞

dω½1þ nBðωÞ�
ρiðω; qÞ
2E0

k
AiP1; ð4:8Þ

where

P1 ¼
Z1=T
0

dτ0
Z1=T
0

dτep0τ
0−ωτδðτ − τ0Þ

×
h
ð1 − nFðE0

kÞÞe−E
0
kτ

0
− nFðE0

kÞeE
0
kτ

0i
;

¼ −
X
σ¼�1

σnFðσE0
kÞ

p0 þ σE0
k − ω

�
eðp0þσE0

k−ωÞ=T − 1
�
: ð4:9Þ

After this we can proceed to compute the discontinuity
by writing down the evaluation for the trace, now incor-
porating the imaginary part as

Tr½ðPþMÞImΣðp0 þ iϵ; p⃗Þ�

¼ πg2
X∞
l¼0

ð−1Þlðe−E=T þ 1Þ
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Zþ∞

−∞

dω½1þ nBðωÞ�
ρiðω; qÞAi

2E0
k

×
X
σ¼�1

σnFðσE0
kÞδðEþ σE0

k − ωÞ: ð4:10Þ

Finally using Eq. (4.10) in Eq. (2.3), we can obtain the
scattering rate ΓðPÞ (for a particular HQ flavor) as

ΓðPÞ ¼ −
πg2

2E

X∞
l¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Zþ∞

−∞

dω½1þ nBðωÞ�
ρiðω; qÞAi

2E0
k

×
X
σ¼�1

σnFðσE0
kÞδðEþ σE0

k − ωÞ: ð4:11Þ

We can further simplify the expression for the scattering
rate a bit further using the scale hierarchyM ≫

ffiffiffiffiffiffi
eB

p
; T. As

E ∼ E0
k ∼M, so the delta function δðEþ E0

k − ωÞ cannot
contribute for ω ≤ T. Also, the Fermi-Dirac distribution
nFðE0

kÞ will be exponentially suppressed. These changes
subsequently simplify the expression of the scattering
rate as

ΓðPÞ ¼ πg2

2E

X∞
l¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Zþ∞

−∞

dω½1þ nBðωÞ�
ρiðω; qÞAi

2E0
k

δðE − E0
k − ωÞ:

ð4:12Þ
Equation (4.12) is the final expression for the HQ scattering
rate in a hot and arbitrarily magnetized medium that will be
used in the next section to write down the HQ momentum
diffusion coefficients.

V. HQ MOMENTUM DIFFUSION COEFFICIENTS
IN A MAGNETIZED MEDIUM

In this section wewrite down the final expressions for the
HQ momentum diffusion coefficients κis within the most
general scenario of a hot magnetized medium from
Eqs. (2.1) and (2.2) using the already computed scattering
rate in the previous section. Beyond the static limit of the
HQ we have considered two simple cases, HQ moving
parallel (case 1) or perpendicular (case 2) to the direction of
the magnetic field. Following we provide explicit expres-
sions for various HQ momentum diffusion coefficients
within these two cases, respectively.

A. Case 1: v kB
As the magnetic field is considered to be along the z

direction, for this case we only have a nonzero p3 whereas
p1 ¼ p2 ¼ 0, resulting E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þM2

p
. The scattering

rate is same as Eq. (4.12) with Ais replaced by

Að1Þ
i ¼ Aiðp1 ¼ p2 ¼ 0Þ. Explicit expressions for Að1Þ

i s
are given in Appendix D. Subsequently the transverse
momentum diffusion coefficient for this case will be given
using Eq. (2.1) as
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κTðp3Þ ¼
πg2T
8E

X∞
l¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×
Zþ∞

−∞

dω
ρiðω; qÞAð1Þ

i

ωE0
k

δðE − E0
k − ωÞ; ð5:1Þ

where we replace the factor ð1þ nBðωÞÞ with T
ω, owing to

the small energy transfer limit.
Similarly the longitudinal momentum diffusion coeffi-

cient will be given as

κLðp3Þ ¼
πg2T
4E

X∞
l¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 q

2
3e

−q2⊥=jqfBj

×
Zþ∞

−∞

dω
ρiðω; qÞAð1Þ

i

ωE0
k

δðE − E0
k − ωÞ: ð5:2Þ

B. Case 2: v⊥B

For this case we have nonzero p1 and/or p2

whereas p3 ¼ 0. Hence E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þM2

p
and E0

k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q23 þM2 þ 2ljqfBj

q
. The scattering rate expression in

Eq. (4.12) will again have modifications in Ais, which will

now be replaced by Að2Þ
i ¼ Aiðp3 ¼ 0Þ. Hence using

Eqs. (4.12) and (2.2), we can straightway write down the
expressions for the momentum diffusion coefficients as

κjðpÞ ¼
πg2T
4E

X∞
l¼0

ð−1Þl
X4
i¼1

Z
d3q
ð2πÞ3 q

2
je

−k2⊥=jqfBj

×
Zþ∞

−∞

dω
ρiðω; qÞAð2Þ

i

ωE0
k

δðω − Eþ E0
kÞ: ð5:3Þ

Again we have replaced ð1þ nBðωÞÞwith T
ω due to the small

energy transfer limit. Explicit expressions for Að2Þ
i are given

in Appendix D.

VI. RESULTS I: DISCUSSIONS
ON THE STATIC LIMIT

Before going into the estimations of the HQ momentum
diffusion coefficients beyond the static limit of the HQ, in
this section we will discuss the results considering the static
limit of the HQ. From our general expression given in
Sec. V, we can readily revert back to the static limit
considering the HQ momentum p⃗ (vis-á-vis velocity v⃗)
to be vanishing, i.e. E ≈M. Firstly we notice that without
the anisotropy generated by v⃗, v⃗⊥B⃗ case will have no
contribution in the static limit. There will be only one case
with B⃗ providing the anisotropic direction, which is

essentially the v⃗kB⃗ case with v → 0. The simplified
expressions for Ais within the static limit are given in
Appendix D, from where we can see that the only non-
vanishing contributions comes from A1 and A4. Out of
these two, A4 term eventually does not contribute because
of the vanishing of its associated spectral contribution ρ4
(see Appendix E). The reason for this is explained in
Appendix C which shows d4 ≈ 0 in the small energy
transfer limit. Hence incorporating all these factors we
can write down the expressions for κT and κL within the
static limit from Eqs. (5.1) and (5.2), as

κðsÞT ¼ πg2T
8M

X∞
l¼0

ð−1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2ljqfBj

q Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×

�
1

ω
ρðsÞ1 ðω; qÞAðsÞ

1

�
ω→0

; ð6:1Þ

κðsÞL ¼ πg2T
4M

X∞
l¼0

ð−1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2ljqfBj

q Z
d3q
ð2πÞ3 q

2
3e

−q2⊥=jqfBj

×

�
1

ω
ρðsÞ1 ðω; qÞAðsÞ

1

�
ω→0

: ð6:2Þ

Here AðsÞ
1 and ρðsÞ1 are the simplified expressions for A1

and ρ1 within the static and small energy transfer limit of
the HQ, given in Appendices D and E, respectively [see
Eqs. (D17) and (E13)]. Putting those in Eqs. (6.1) and (6.2)
we obtain

κðsÞT ¼
X∞
l¼0

ð−1Þlπg2TMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2ljqfBj

q Z
d3q
ð2πÞ3q

2⊥e−q
2⊥=jqfBj

×

"�1
qðmg

DÞ2þδðq3Þ
P

fδm
2
D;f

�
ðLlðξ⊥q Þ−Ll−1ðξ⊥q ÞÞ

2ðq2þðm0
DÞ2Þ2

#
;

ð6:3Þ

κðsÞL ¼
X∞
l¼0

ð−1Þl2πg2TMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2ljqfBj

q Z
d3q
ð2πÞ3 q

2
3e

−q2⊥=jqfBj

×

�ðmg
DÞ2ðLlðξ⊥q Þ − Ll−1ðξ⊥q ÞÞ
2qðq2 þ ðm0

DÞ2Þ2
�
; ð6:4Þ

where m0
D is the full magnetized medium modified QCD

Debye mass, which consists of the pure glue part mg
D and

the magnetic field modified correction δmD, given as

ðm0
DÞ2 ¼ ðmg

DÞ2 þ
X
f

δm2
D;f; ð6:5Þ

ðmg
DÞ2 ¼

Ncg2T2

3
; ð6:6Þ
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δm2
D;f ¼ −

g2jqfBj
4π2

X∞
l¼0

ð2 − δl;0Þ
Z

dk3
∂nFðEk3Þ
∂Ek3

;

¼ g2jqfBj
4π2T

X∞
l¼0

ð2 − δl;0Þ
Z

dk3nFð1 − nFÞ: ð6:7Þ

From Eqs. (6.3) and (6.4), one can also easily revert back
to the lowest Landau level limit by putting l ¼ 0 and see
that it matches with previous results within the same
limit [28].
Before moving further, let us briefly mention the static

limit result for vanishing magnetic field. In this case, since
there is no spatial anisotropy in the system, there will be a
single momentum diffusion coefficient κðsÞ. To provide an
expression for κðsÞ, we can start with the eB ¼ 0 expression
for the HQ scattering rate explored in Refs. [3,12,34], i.e.

ΓeB¼0 ¼ 2πg2
Z

d3q
ð2πÞ3

Zþ∞

−∞

dω½1þ nBðωÞ�δðω − v⃗ · q⃗Þ

× ½ρLðω; qÞ þ ρTðω; qÞðv2 − ðv⃗ · q̂Þ2Þ�: ð6:8Þ

Considering the static limit of the HQ and small energy
transfer, we further simplify the HQ scattering rate as

ΓðsÞ
eB¼0 ¼ 2πg2T

Z
d3q
ð2πÞ3

�
1

ω
ρLðω; qÞ

�
ω→0

;

¼ 2πg2T
Z

d3q
ð2πÞ3

� 1
2qm

2
D

ðq2 þm2
DÞ2

�
; ð6:9Þ

where we have used the expression of the HTL longitudinal
spectral function ρL [3,12,58,59], according to our defi-
nition of spectral function [i.e. Eq. (4.6)]. Hence the
momentum diffusion coefficient κ for eB ¼ 0 and within
the static limit can be straightaway expressed as

κðsÞ ¼ 2πg2T
Z

d3q
ð2πÞ3

�
qm2

D

2ðq2 þm2
DÞ2

�
: ð6:10Þ

In Fig. 3 we show our most general static limit results for

magnetized medium, by varying the ratio κðsÞL=T=κ
ðsÞ with

respect to the external magnetic field, with κðsÞ being the
zero magnetic field value of the single momentum diffusion
coefficient. Evaluation of κðsÞ has been done using a
temperature dependent UV cutoff qmax, which will be
discussed later. We chose two relatively higher temper-
atures, i.e. T ¼ 0.4 and T ¼ 0.6 GeV, to respect the HTL
approximation applied throughout the calculation. It can be
noticed from the plots that for lower values of eB, the rate
of increase for the values of both longitudinal (solid curves)
and transverse (dashed curves) momentum diffusion coef-
ficients have been relatively larger than that for higher
values of eB. This trend is more visible for charm quarks
(red curves), which also results in a crossover between the
charm and bottom quark (blue) curves. The values of κL
dominate the values of κT for both static charm and bottom
quarks, throughout the range of magnetic field presented in
the plots of Fig. 3. Finally, with the increase in temperature,
the overall value of the ratio decreases, as expected because
of the competing scales eB and T.
Next we discuss an alternate procedure to incorporate the

effect of the magnetic field in the HQ scattering rate and

FIG. 3. The magnetized medium modified exact results (κ) has been scaled with respect to the eB ¼ 0 result (κ0), variation of which
with respect to eB has been shown for longitudinal (solid lines) and transverse (dashed lines) HQ momentum diffusion coefficients
within the static limit of both charm (red curves) and bottom (blue curves) quarks. Comparison has been done for two different values of
temperatures, i.e. T ¼ 0.4 GeV (left panel) and T ¼ 0.6 GeV (right panel). Charm and bottom quark massesM are specified in the text.
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HQ momentum diffusion coefficients. In this method, all
the medium effects are channeled through the medium
modified Debye screening mass. Since we have already
discussed the static limit scattering rate for eB ¼ 0, to
incorporate the magnetic field effect within the HQ
scattering rate, we can straightaway plug the magnetic
field modified Debye mass m0

DðeB; TÞ in Eq. (6.9), and
write down the corresponding momentum diffusion coef-
ficients (again considering B⃗ ¼ Bẑ), as

κðsÞ
0

T ¼ πg2T
Z

d3q
ð2πÞ3

�
q2⊥ðm0

DÞ2
2qðq2 þ ðm0

DÞ2Þ2
�
; ð6:11Þ

κðsÞ
0

L ¼ 2πg2T
Z

d3q
ð2πÞ3

�
q23ðm0

DÞ2
2qðq2 þ ðm0

DÞ2Þ2
�
: ð6:12Þ

We are finally in a position to both qualitatively and
quantitatively compare these two alternate procedure. One
can immediately notice the structural similarities between
κs and κ0s. To make this similarity more prominent to our

readers, let us explicitly write down the LLL case for κðsÞL , a
further simplified expression from Eq. (6.4), which reads as

κðsÞL jLLL ¼ 2πg2T
Z

d3q
ð2πÞ3 e

−q2⊥=jqfBj
�

q23ðmg
DÞ2

2qðq2 þ ðm0
DÞ2Þ2

�
:

ð6:13Þ

One can immediately notice the striking similarities
between the HQ momentum diffusion coefficients pre-
sented in Eqs. (6.12) and (6.13).
But looks can be deceiving. When one carefully com-

pares between Eqs. (6.11)–(6.12) and (6.3)–(6.4), (6.13),

the significant differences between the two results can be
observed, which we list down below.
(1) First and foremost, the structural anisotropy in

presence of the magnetic field is not captured in
Eqs. (6.11)–(6.12), which basically means they
produce similar values for κL and κT at a particular
value of the temperature and the magnetic field. But
as the exact results [Eqs. (6.3)–(6.4)] suggest, this is
not the case. We explain this issue further in the
following point.

(2) From Eq. (6.4) one can see that the quark loop
contributions for κL coming from different Landau
levels eventually vanish within the static limit
because of the factor δðq3Þ, i.e. vanishing longi-
tudinal momentum transfer. This is physically re-
lated to the corresponding kinematics constrained by
the HTL approximation which neglects the quark
mass in leading order. The only non vanishing
contribution to κL comes from the scatterings of
the hard thermal gluons. These physical subtleties
have not been captured in Eq. (6.12), when one just
assumes the modification solely through the De-
bye mass.

(3) Considering the modifications of the HQ propagator
in a magnetized medium provide us with the factor
e−q

2⊥=jqfBj, because of which we do not require any
hard UV momentum cutoff for the q integration in
the exact procedure. On the other hand, medium
modified Debye mass does not provide such soft UV
momentum cutoff and one has to put an upper limit
qmax to get a finite value out of the mediating gluon
momenta integration. In Ref. [12], the authors have
estimated this value of qmax, comparing their results
with QCD kinetic calculation. Similar estimations

FIG. 4. Variation of the ratio between the Debye mass approximated results (κ0) and the exact results (κ) with respect to eB has been
shown for longitudinal (solid lines) and transverse (dashed lines) HQ momentum diffusion coefficients within the static limit of both
charm (red curves) and bottom (blue curves) quarks. Comparison has been done for two different values of temperatures i.e. T ¼
0.4 GeV (left panel) and T ¼ 0.6 GeV (right panel). Charm and bottom quark masses M are specified in the text.
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of qmax can be tried in magnetized medium through a
fitting procedure, comparing the results between κ
and κ0.

(4) There is no explicit HQ mass dependence in the
expressions of the Debye mass approximated mo-
mentum diffusion coefficients, as opposed to the
exact expressions for arbitrary Landau levels.

In Fig. 4, we have shown further quantitative compar-
isons between the results generated from the exact
procedure κ and the Debye mass approximated procedure
κ0. For evaluating UV finite values of κ0, we have adopted
a similar form of qmax, as in Ref. [12], just replacing the
temperature dependent one-loop running coupling gðTÞ
by the magnetized medium modified gðT; eBÞ [56,60–62],
i.e. qmax ¼ 3.1TgðT; eBÞ1=3. For evaluating the magnetic
field induced correction of the Debye mass also we have
used gðT; eBÞ, instead of gðTÞ [34]. Figure 4 shows the
variation of the ratio κ0=κwith respect to magnetic field for
two different values of temperature, T ¼ 0.4 and 0.6 GeV.
For both the longitudinal and transverse components of
charm/bottom quark, the basic feature is similar, the
Debye mass approximated results underestimate the
exact results for larger values of eB and overestimate
them for smaller values of eB. Both the effects are more
prominent in the case of bottom quarks, because of their
heavier mass (Mb ¼ 4.18 GeV) compare to charm quark
(Mc ¼ 1.27 GeV). Also one can notice that the values of
the ratio of transverse components (κ0T=κT) are larger than
that of the longitudinal components (κ0L=κL) throughout
the range of eB considered, which is compatible with the
observation from Fig. 3 where κL curves dominate over κT.
Even without the quark contribution, this dominance of κL
over κT is hardly surprising because of the dominant
gluonic contribution in the t-channel scatterings consid-
ered in the present study.

VII. RESULTS II: ESTIMATIONS
BEYOND THE STATIC LIMIT

In the previous section we have thoroughly analyzed our
results within the static limit by scaling them with respect to
the eB ¼ 0 result (Fig. 3) and results from an approximated
alternate procedure (Fig. 4). In this section we show our
estimated results for longitudinal and transverse momen-
tum diffusion coefficients going beyond the static limit, but
keeping ourselves confined within the limit of small energy
transfer. Before discussing the results shown in this section,
let us point out some necessary information about the
parameters chosen for the current study.
(1) The form factors dis for the gluon two-point

correlation function have been explicitly evaluated
in Sec. III. Within the limit of small energy transfer,
dis have further simplified expressions, discussed in
Appendix C. Those simplified dis have been further
used to evaluate the spectral functions depicted in
Appendix E.

(2) The other factors Ais, originating from the Dirac
trace of the scattering rate are already q0 indepen-
dent, as explained in Sec. IV, do not encounter
further simplifications in the small energy transfer
limit. Although for the two cases considered in the
current study, i.e. v⃗kB⃗ and v⃗⊥B⃗, Ais obtain specific
forms because of different vanishing components of
HQ momentum p. Such forms of Ais have been
explicitly given in Appendix D.

(3) As alsomentioned in the previous section for the static
limit results, here also we use two kinds of one-loop
running couplings, i.e. gðTÞ and gðT; eBÞ. For the
pure-glue contributions we use the normal temper-
ature dependent coupling gðTÞ whereas for the
magnetized quark contributions we use the magnetic
field modified running coupling gðT; eBÞ from
Refs. [56,60–62].

(4) The values of the charm and bottom quark masses are
taken to be Mc ¼ 1.27 GeV and Mb ¼ 4.18 GeV,
respectively. Maintaining the scale hierarchy
M ≥ p ≫ T, we have considered the value of the
HQ momentum to be p ¼ 1 GeV and taken temper-
ature values T ¼ 0.4 and 0.6 GeV which also respect
the applied HTL approximation. This in turn means
that the v⃗kB⃗ case corresponds to p3 ¼ 1 GeV and
v⃗⊥B⃗ case corresponds top⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
¼ 1 GeV

where for numerical simplicity we have chosen
p2 ¼ 0 and p1 ¼ 1 GeV.

(5) For the v⃗kB⃗ case, the exponential factor e
−

q2⊥
jqfBj acts as

a natural regulator for cutting off the UV divergences
appearing from the q integration, which also applies

to our static limit results κðsÞL=T . On the other hand for

the v⃗⊥B⃗ case we have a more general factor

e
−ðp⊥−q⊥Þ2

jqfBj which is plagued by the huge value of
the HQ momentum p ≈ 1 GeV. Hence for this case
obtaining UV-finite values require choosing a
medium dependent cutoff similar to qmaxðT; eBÞ ¼
3.1TgðT; eBÞ1=3 chosen for the alternate procedure
in Sec. VI.

(6) In the following results we have shown the variation
of the momentum diffusion coefficients with respect
to the external magnetic field. It showcases our
flexibility of choosing any values of the magnetic
field owing to the generality of our calculation. Due
to the restrictions given on the lower values of
temperature by HTL approximation, we refrain from
showing the temperature variation throughout a
certain range and instead opt to show different fixed
values of temperature. Of course the effect of the
magnetic field is more prominently reflected on the
respective observable when varied with respect to eB
instead of T.

We are now in a position to describe the results. Let us
start with the v⃗kB⃗ case, within which the variation of the
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longitudinal and transverse momentum diffusion coeffi-
cients with external magnetic field are shown in Fig. 5 for
two different fixed values of T, i.e. 0.4 and 0.6 GeV. The
coefficients are scaled with their eB ¼ 0 values separately
evaluated using the eB ¼ 0 scattering rate given in
Eq. (6.8). A similar trend like the static limit can be noticed
here, for higher values of eB, the rate of change of κL=T
becomes rather flat, specially for the charm quarks (red
curves). Interestingly for the charm quarks, κT (dashed
curves) dominates over κL (solid curves) throughout the eB

range considered, in accordance with the trend observed in
Ref. [30]. On the other hand for bottom quarks (blue
curves), κL is larger than κT until a certain higher value of
eB, after which we can notice a crossover. These crossover
reflects the behaviors of three competing scales M, T, and
eB. A much higher value of M for the bottom quarks
requires a much higher value of eB to have similar
behaviours of κL=T for the charm quarks. A higher value
of T demands even more eBwhich is evident from the right
panel of Fig. 5, where no crossover is present but one can

FIG. 5. v⃗kB⃗ case: variation of the longitudinal (solid curves) and transverse (dashed curves) momentum diffusion coefficients for
charm (red curves) and bottom (blue curves) quarks with external magnetic field for two different values of temperatures, i.e.
T ¼ 0.4 GeV (left panel) and T ¼ 0.6 GeV (right panel). The magnetized momentum diffusion coefficients are scaled with respect to
their eB ¼ 0 counterparts. Charm and bottom quark masses M are specified in the text and HQ momentum p is taken to be 1 GeV.

FIG. 6. v⃗⊥B⃗ case: variation of the transverse components κ1 (solid curves), κ2 (dashed curves) and longitudinal component κ3 (dotted
curves) of the momentum diffusion coefficient for charm (left panel) and bottom (right panel) quarks with external magnetic field for a
fixed value of temperature, i.e. T ¼ 0.4 GeV. The magnetized momentum diffusion coefficients are scaled with respect to their eB ¼ 0
counterparts. Charm and bottom quark masses M are specified in the text and HQ momentum p is taken to be 1 GeV.
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notice the converging trend of the bottom quark curves
which predict a crossover at an even higher value of eB,
than the values presented.
Figure 6 describes the results from the other case, i.e.

v⃗⊥B⃗. At eB ¼ 0, no such case can exist and hence we
scaled the values of κj with T3 here. Transverse compo-
nents κ1 (solid curves) and κ2 (dashed curves) dominates
over the longitudinal component κ3 (dotted curves) for both
charm and bottom quarks, whereas κ1 is larger than κ2
because of the specific choice of p⊥ considered. Although
in this case, no saturating behaviors can be noticed for any
of the momentum diffusion coefficients at higher values of
eB unlike the previous cases. Instead the rate of change of
the momentum diffusion coefficients evidently increase
with increasing values of eB. Also the values of momentum
diffusion coefficients for the bottom quarks (right panel)
are an order of magnitude lower than that for the charm
quakrs (left panel).
Combining the results from the two different cases, one

can observe that for lower values of eB the effect of the
external magnetic field on various momentum diffusion
coefficients is higher when the HQ moves along the
direction of the magnetic field with considerably high
momentum. This effect saturates when we increase the
value of eB. On the other hand when the HQ moves in
the perpendicular direction of the external magnetic field,
the effect of the magnetic field on the momentum diffusion
coefficients increases with increasing values of eB.

VIII. SUMMARY

In the present study we have studied HQ momentum
diffusion coefficients in magnetized medium. We have
considered the most general cases in both the fronts:
(a) arbitrary values of the external magnetic field and
(b) going beyond the static limit of the HQ to consider a
finite HQ velocity. As far as we know, this is the first
calculation which attempts to study the HQ dynamics with
arbitrary values of the external magnetic field, i.e. incor-
porates the contributions from higher Landau levels. Hence
the novelty of this work mainly lies in the calculation part,
summarized in Sec. II and subsequently performed in
Secs. III, IV along with the various appendices.
We have also discussed an alternate procedure, usually

employed in evaluating other HQ observable in a magnet-
ized medium, which assumes the whole medium effect
within the Debye screening mass and accordingly replace it
with the magnetized medium modified one. By comparing
the results from this approximated procedure with our exact
results within the static limit of the HQ, we clearly identify
the shortcomings of this alternate procedure and emphasize
the importance of employing the general structure of the
gluon two-point correlation functions in a hot and arbi-
trarily magnetized medium. Both within and beyond (when
we consider the HQ to be moving along the direction of the

external magnetic field) the static limit we notice similar
pattern in the eB dependence of the momentum diffusion
coefficients, i.e. the eB dependence is rapidly increasing for
lower values of eB, whereas it becomes saturated (more so
for charm quarks) for relatively higher values of eB. An
opposite trend is observed for the case when the HQ is
moving in a perpendicular direction with respect to the
external magnetic field, where increasing eB dictates more
changes in the momentum diffusion coefficients. Soft gluon
scattering (which are dominant within the t channel at
leading order of strong coupling) governed longitudinal
diffusion coefficient dominates over the transverse diffu-
sion coefficient within the static limit of HQ and an
opposite trend is observed going beyond the static limit.
Competing behaviour of various scales involved, i.e.M, p,
eB, and T, gets well reflected in our results.
At this point wemust alsomention that the present work is

also not completely free from limitations, most of which are
being carried over from the limitations of HTL approxima-
tion, e.g. assuming the quarks in various Landau levels to be
mass less renders into vanishing quark contribution to the
longitudinal momentum diffusion coefficient. At the cost of
providing completely analytic, gauge independent, simpli-
fied expressions there are further scale restrictions appearing
because of the HTL approximation, as discussed in Sec. I.
But apart from the HTL generated limitations, there is
another important issue of the UV cutoff qmax. For
eB ¼ 0, several studies have shown that the UV cutoff is
not necessarywhenone includes the hard contributions along
with the soft contribution in the scattering rate. Inmost of the
caseswith finite eB, the exponential factor e−q

2⊥=jqfBj acts as a
natural UV cutoff. But for the case of HQ moving with
sufficiently high transverse momentum the exponential
factor is not enough and we need further assurances in the
form of a medium dependent qmaxðT; eBÞ. In the present
work, thisqmaxðT; eBÞhas been chosen bychoosing a similar
form as the eB ¼ 0 case evaluated in Ref. [12] by comparing
with the full result. But this choice of qmax is not completely
accurate and requires further modifications. One of the way
of modifying this qmax is also discussed in the present work,
which requires exact comparison between two alternate
procedures within the HQ static limit and extracting the
qmax by appropriate fitting procedure.But the ultimatewayof
eradicating this qmax dependence would be proper inclusion
of the hard contributions [2,3], which leaves the door open
for potential future investigations. The present study creates
other avenues to proceed too, e.g. examining the HQ in-
mediumevolution using aLangevin transport code (e.g. [63])
and their consequences on the experimental observable such
as directed and elliptic flow of the open heavy flavormesons.
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APPENDIX A: TRACE FOR ONE-LOOP
GLUON SELF-ENERGY

Here we note down the explicit expressions for the
individual terms ðTiÞμν, given in Eq. (3.5).

T1 ¼ LlLl0Tr
	
γμKkð1 − iγ1γ2ÞγνRkð1 − iγ1γ2Þ



;

¼ 8LlLl0 ðKk
μR

k
ν þ Kk

νR
k
μ − gkμνðK · RÞkÞ; ðA1Þ

T2 ¼ Ll−1Ll0−1Tr
	
γμKkð1þ iγ1γ2ÞγνRkð1þ iγ1γ2Þ



;

¼ 8Ll−1Ll0−1ðKk
μR

k
ν þKk

νR
k
μ − gkμνðK ·RÞkÞ; ðA2Þ

T3 ¼ −LlLl0−1Tr
	
γμKkð1 − iγ1γ2ÞγνRkð1þ iγ1γ2Þ



;

¼ −8LlLl0−1ðg⊥μν þ iðg2μg1ν − g1μg2νÞÞðK · RÞk; ðA3Þ

T4 ¼ −Ll−1Ll0Tr
	
γμKkð1þ iγ1γ2ÞγνRkð1 − iγ1γ2Þ



;

¼ −8Ll−1Ll0 ðg⊥μν − iðg2μg1ν − g1μg2νÞÞðK · RÞk; ðA4Þ

T5 ¼ 16L1
l−1L

1
l0−1Tr

	
γμK⊥γνR⊥�;

¼ 64L1
l−1L

1
l0−1ðK⊥

μ R⊥
ν þ K⊥

ν R⊥
μ þ gμνðk · rÞ⊥Þ; ðA5Þ

T6 ¼ −4LlL1
l0−1Tr

	
γμKkð1 − iγ1γ2ÞγνR⊥



;

¼ −16LlL1
l0−1

	
Kk

μR⊥
ν þ Kk

νR⊥
μ − ir1ðKk

μg2ν − Kk
νg2μÞ

− ir2ðKk
νg1μ − Kk

μg1νÞ


; ðA6Þ

T7 ¼ 4Ll−1L1
l0−1Tr

	
γμKkð1þ iγ1γ2ÞγνK⊥



;

¼ 16Ll−1L1
l0−1

	
Kk

μR⊥
ν þKk

νR⊥
μ þ ir1ðKk

μg2ν −Kk
νg2μÞ

þ ir2ðKk
νg1μ −Kk

μg1νÞ


; ðA7Þ

T8 ¼ −4L1
l−1Ll0Tr

	
γμK⊥γνRkð1 − iγ1γ2Þ



;

¼ −16L1
l−1Ll0

	
K⊥

ν R
k
μ þ K⊥

μ R
k
ν þ ik1ðRk

μg2ν − Rk
νg2μÞ

þ ik2ðRk
νg1μ − Rk

μg1νÞ


; ðA8Þ

T9 ¼ 4L1
l−1Ll0−1Tr

	
γμK⊥γνRkð1þ iγ1γ2Þ



;

¼ 16L1
l−1Ll0−1

	
K⊥

ν R
k
μ þ K⊥

μ R
k
ν − ik1ðRk

μg2ν − Rk
νg2μÞ

− ik2ðRk
νg1μ − Rk

μg1νÞ


: ðA9Þ

Here for brevity we have written Llðξ⊥k Þ and Ll0 ðξ⊥r Þ as Ll
andLl0 etc. Also the terms ðg2μg1ν − g1μg2νÞ can bewritten in
terms of the electromagnetic field tensor Fμν [64].

APPENDIX B: CONTRACTIONS AND
SIMPLIFICATIONS REQUIRED FOR THE
EVALUATION OF THE FORM FACTORS

1. Form factor dm1
For dm1 , i.e. the contribution from the quark loop, below

we note down the contractions coming from the ðTiÞμν part:

Δμν
1 ðT1 þ T2Þ ¼

8

ū2
ðLlLl0 þ Ll−1Ll0−1Þ

× ½2ðū · KÞkðū · RÞk − ū2kðK · RÞk�; ðB1Þ

Δμν
1 ðT3 þ T4Þ ¼

8ū2⊥
ū2

ðLlLl0−1 þ Ll−1Ll0 ÞðK · RÞk; ðB2Þ

Δμν
1 T5 ¼

64

ū2
L1
l−1L

1
l0−1

× ½2ðū · kÞ⊥ðū · rÞ⊥ þ ū2ðk · rÞ⊥�; ðB3Þ

Δμν
1 ðT6 þ T7Þ ¼

32

ū2
ðLlL1

l0−1 − Ll−1L1
l0−1Þ

× ½ðū · KÞkðū · rÞ⊥�; ðB4Þ

Δμν
1 ðT8 þ T9Þ ¼

32

ū2
ðL1

l−1Ll0 − L1
l−1Ll0−1Þ

× ½ðū · kÞ⊥ðū · RÞk�: ðB5Þ

Now within the HTL approximation we can neglect the
soft external momenta Q in the numerator and approximate
K ≈ R. These approximations further simplify theΔμν

1 Tμν as

Δμν
1 Tμν ≈

8

ū2
ðLlLl0 þ Ll−1Ll0−1Þð2k20 − ū2kK

2
kÞ

þ 8ū2⊥
ū2

ðLlLl0−1 þ Ll−1Ll0 ÞK2
k

þ 64L1
l−1L

1
l0−1k

2⊥: ðB6Þ

HTL approximation also allows us to simplify the
perpendicular momentum integration using the following
identities

Z
d2k⊥
ð2πÞ2 exp

�
−

2k2⊥
jqfBj

�
Llðξ⊥k ÞLl0 ðξ⊥k Þ ¼

jqfBj
8π

δl;l0 ; ðB7Þ

Z
d2k⊥
ð2πÞ2 exp

�
−

2k2⊥
jqfBj

�
k2⊥L1

l ðξ⊥k ÞL1
l0 ðξ⊥k Þ

¼ jqfBj2
16π

ðlþ 1Þδlþ1;l0þ1: ðB8Þ

Incorporating all these we can finally write down the
expression for dm1 , as given in Eq. (3.9).
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2. Form factor dm2
For the contribution dm2 , we again list down the con-

tractions Δμν
2 ðTiÞμν first:

Δμν
2 ðT1 þ T2 þ T6 þ T7 þ T8 þ T9Þ ¼ 0; ðB9Þ

Δμν
2 ðT3 þ T4Þ ¼ −8ðLlLl0−1 þ Ll−1Ll0 ÞðK · RÞk; ðB10Þ

Δμν
2 T5 ¼ 64L1

l−1L
1
l0−1

�
2
ðq · kÞ⊥ðq · rÞ⊥

q2⊥
− ðq · rÞ⊥

�
:

ðB11Þ

So, within the HTL approximation, we can write down
the final contraction as

Δμν
2 Tμν ≈ −8ðLlLl0−1 þ Ll−1Ll0 ÞK2

k − 64L1
l−1L

1
l0−1k

2⊥:

ðB12Þ

Using similar techniques for the perpendicular momen-
tum integration and the frequency sums Φ1, Φ2 we can
readily obtain the final expression for dm2 , as given
in Eq. (3.15).

3. Form factor dm3
For dm3 , first we note down the contractions coming from

the ðTiÞμν part:

Δμν
3 ðT1 þ T2Þ ¼

8

n̄2
ðLlLl0 þLl−1Ll0−1Þ

× ½2ðn̄ ·KÞkðn̄ ·RÞk − n̄2kðK ·RÞk�; ðB13Þ

Δμν
3 ðT3 þ T4Þ ¼

8n̄2⊥
n̄2

ðLlLl0−1 þ Ll−1Ll0 ÞðK · RÞk; ðB14Þ

Δμν
3 T5 ¼

64

n̄2
L1
l−1L

1
l0−1½2ðn̄ · kÞ⊥ðn̄ · rÞ⊥ þ n̄2ðk · rÞ⊥�;

ðB15Þ

Δμν
3 ðT6 þ T7Þ ¼

32

n̄2
ðLlL1

l0−1 − Ll−1L1
l0−1Þ½ðn̄ · KÞkðn̄ · rÞ⊥�;

ðB16Þ

Δμν
3 ðT8 þ T9Þ ¼

32

n̄2
ðL1

l−1Ll0 − L1
l−1Ll0−1Þ½ðn̄ · kÞ⊥ðn̄ · RÞk�:

ðB17Þ

Now within the HTL approximation further simplifica-
tions yields

Δμν
3 Tμν ≈ −

8n̄2k
n̄2

ðLlLl0 þ Ll−1Ll0−1Þð2k23 þ K2
kÞ

þ 8n̄2⊥
n̄2

ðLlLl0−1 þ Ll−1Ll0 ÞK2
k

þ 64L1
l−1L

1
l0−1k

2⊥: ðB18Þ

Subsequently after performing the perpendicular
momentum integration and in terms of the frequency sums
we can write down the final expression of dm3 as Eq. (3.18).

4. Form factor d4
Finally for dm4 , again we start with listing the

contractions:

Δμν
4 ðT1 þ T2Þ ¼

16ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðLlLl0 þ Ll−1Ll0−1Þ

× ½ðū · KÞkðn̄ · RÞk þ ðn̄ · KÞkðū · RÞk
− ðn̄ · ūÞkðK · RÞk�; ðB19Þ

Δμν
4 ðT3 þ T4Þ ¼

16ðn̄ · ūÞ⊥ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðLlLl0−1 þ Ll−1Ll0 ÞðK · RÞk;

ðB20Þ

Δμν
4 T5 ¼

128ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p L1
l−1L

1
l0−1½ðū · kÞ⊥ðn̄ · rÞ⊥

þ ðn̄ · kÞ⊥ðū · rÞ⊥ þ ðn̄ · ūÞðk · rÞ⊥�; ðB21Þ

Δμν
4 ðT6 þ T7Þ ¼

32ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðLlL1
l0−1 − Ll−1L1

l0−1Þ

× ½ðū · KÞkðn̄ · rÞ⊥ þ ðn̄ · KÞkðū · rÞ⊥�;
ðB22Þ

Δμν
4 ðT8 þ T9Þ ¼

32ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðL1
l−1Ll0 − L1

l−1Ll0−1Þ

× ½ðū · kÞ⊥ðn̄ · RÞk þ ðn̄ · kÞ⊥ðū · RÞk�:
ðB23Þ

Within the HTL approximation, the simplified version of
the contraction can be expressed as

Δμν
4 Tμν ≈

16ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðLlLl0 þLl−1Ll0−1Þð2k0k3n̄2

− ðn̄ · ūÞkK2
kÞ þ

16ðn̄ · ūÞ⊥ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ðLlLl0−1 þLl−1Ll0 ÞK2
k:

ðB24Þ

After performing the perpendicular momentum integra-
tion, the final expression of dm4 can be written as given
in Eq. (3.20).
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APPENDIX C: SMALL ENERGY TRANSFER
LIMIT AND FURTHER SIMPLIFICATIONS OF

FORM FACTORS

In the limit of small energy transfer, we can assume
q0 → 0, which results in further simplifications of the form
factors. In this limit we can assume ū2 ¼ ū2k ¼ 1 and

ū2⊥ ¼ ðn̄ · ūÞk ¼ ðn̄ · ūÞ⊥ ¼ 0. Below we write down the
final expressions of dis within small energy transfer limit,
which has been used further in our computation of spectral
functions. We also absorb the extra sum over Landau levels
using the Kronecker delta functions.

d1 ¼
Ncg2T2

3
½1 − T Q� −

X
f

g2jqfBj
2π

X∞
l¼0

×

�
ð2 − δl;0Þ

Z
dk3
2π

fΦ1 þ 2ðk23 þ 2ljqfBjÞΦ2jl0¼lg
�
;

ðC1Þ

d2 ¼
Ncg2T2

6
T Q þ

X
f

g2jqfBj
2π

X∞
l¼1

�
ð−1Þ

×
Z

dk3
2π

f2Φ1 þ 2ljqfBjðΦ2jl0¼lþ1 þΦ2jl0¼l−1Þg

þ4jqfBjl
Z

dk3
2π

Φ2jl0¼l

�
; ðC2Þ

d3 ¼
Ncg2T2

6
T Q −

X
f

g2jqfBj
2πn̄2

X∞
l¼0

�
−n̄2kð2− δl;0Þ

×
Z

dk3
2π

fΦ1 þ ð2k23 þ 2ljqfBjÞΦ2jl0¼lg− ð1− δl;0Þn̄2⊥

×
Z

dk3
2π

f2Φ1 þ 2ljqfBjðΦ2jl0¼lþ1 þΦ2jl0¼l−1Þg

þ4n̄2jqfBjl
Z

dk3
2π

Φ2jl0¼l

�
; ðC3Þ

d4 ¼ −
X
f

g2jqfBj
2π

ffiffiffiffiffi
n̄2

p
X∞
l¼0

�
2n̄2ð2 − δl;0Þ

Z
dk3
2π

k3Φ3jl0¼l

�
:

ðC4Þ

We can further simplify the frequency sumΦis within the
limit of small energy transfer and employing the specific
conditions between the Landau levels l and l0. We deal with
them one by one. First of all, at l ¼ l0, we can approximate

Er3 ≈ Ek3 − q3 and hence nFðEr3Þ ≈ nFðEk3Þ − q3
∂nFðEk3

Þ
∂Ek3

.

Subsequently we can simplify the frequency sums as

Φ2jl0¼l ¼ −
X

s1;s2¼�1

s1s2
4E2

k3

�
1 − nFðs1Ek3Þ − nFðs2Er3Þ

q0 − s1Ek3 − s2Er3

�
;

¼ −
nFðEk3Þ
2E3

k3

−
q3
4E2

k3

∂nFðEk3Þ
∂Ek3

×

�
1

q0 − q3
−

1

q0 þ q3

�
; ðC5Þ

Φ3jl0¼l ¼ −
X

s1;s2¼�1

s2
4Ek3

�
1 − nFðs1Ek3Þ − nFðs2Er3Þ

q0 − s1Ek3 − s2Er3

�
;

¼ −
q3
4Ek3

∂nFðEk3Þ
∂Ek3

�
1

q0 − q3
þ 1

q0 þ q3

�
: ðC6Þ

Moreover one can clearly notice that in the limit of
small energy transfer, i.e. q0 → 0,Φ3jl0¼l ≈ 0, which in turn
suggests d4 ≈ 0. Other relevant frequency sums, i.e.
Φ2jl0¼lþ1;Φ2jl0¼l−1, will not go through further simplifica-
tion process and can be expressed by simply replacing
l0 ¼ l� 1, respectively, within Er3 in Eq. (3.11).

APPENDIX D: EVALUATION OF Ais

In this section we will evaluate the individual traces
posed in Eq. (4.3). First we will obtain the most general
expressions for Ais and then discuss the special cases one
by one. We provide the result for each of the traces as
follows (K ¼ P −Q):

Tr½ðPþMÞΔμν
1 γμDlðqfB;KÞγν�

¼ 4

ū2
½2ðū · KÞkðū · PÞ − ū2ððK · PÞk −M2Þ�

× ðLlðξ⊥k Þ − Ll−1ðξ⊥k ÞÞ þ
16

ū2
½2ðū · kÞ⊥ðū · PÞ

− ū2ðk · pÞ⊥�L1
l−1ðξ⊥k Þ

¼ A1 þ B1ðq0Þ; ðD1Þ

Tr½ðPþMÞΔμν
2 γμDlðqfB;KÞγν�

¼ 4½M2 − ðK · PÞk�ðLlðξ⊥k Þ − Ll−1ðξ⊥k ÞÞ

− 16

�
2
ðq · kÞ⊥ðq · pÞ⊥

q2⊥
− ðk · pÞ⊥

�
L1
l−1ðξ⊥k Þ

¼ A2 þ B2ðq0Þ; ðD2Þ

Tr½ðPþMÞΔμν
3 γμDlðqfB;KÞγν�

¼ 4

n̄2
½2ðn̄ · KÞkðn̄ · PÞ − n̄2ððK · PÞk −M2Þ�

× ðLlðξ⊥k Þ − Ll−1ðξ⊥k ÞÞ þ
16

n̄2
½2ðn̄ · kÞ⊥ðn̄ · PÞ

− n̄2ðk · pÞ⊥�L1
l−1ðξ⊥k Þ;

¼ A3 þ B3ðq0Þ ðD3Þ
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Tr½ðPþMÞΔμν
4 γμDlðqfB;KÞγν�

¼ 4ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ½ðū ·KÞkðn̄ ·PÞ þ ðn̄ ·KÞkðū ·PÞ

− 2ðn̄ · ūÞððK ·PÞk −M2Þ�ðLlðξ⊥k Þ−Ll−1ðξ⊥k ÞÞ

þ 32ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ½ðn̄ ·KÞ⊥ðū ·PÞ þ ðū ·KÞ⊥ðn̄ ·PÞ�L1
l−1ðξ⊥k Þ

¼ A4 þB4ðq0Þ: ðD4Þ

From Eqs. (D1)–(D4), we can subsequently extract the
q0 independent Ais, given as

A1 ¼
4

ū2
½2p2

0 þ ū2ðM2 − P2
k − p3q3Þ�ðLl − Ll−1Þ

− 16ðk · pÞ⊥L1
l−1; ðD5Þ

A2 ¼ 4ðM2 − P2
k − p3q3ÞðLl − Ll−1Þ

− 16

�
2
ðq · pÞ2⊥

q2⊥
− ðq · pÞ⊥ − p2⊥

�
L1
l−1; ðD6Þ

A3 ¼ 4

�
2k3q3
q2

ðp⃗ · q⃗Þ þM2 − p2
0 − p3k3

�
ðLl − Ll−1Þ

þ 16

n̄2

�
2
q3ðq · kÞ⊥

q2

�
q3ðp⃗ · q⃗Þ

q2
− p3

�

þ n̄2ððp · qÞ⊥ − p2⊥Þ
�
L1
l−1; ðD7Þ

A4 ¼
4p0ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
��

−p3 þ
q3
q2

ðp⃗ · q⃗Þ
�
þ k3n̄2

�
ðLl − Ll−1Þ

þ 32ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p p0q3
q2

ðq · kÞ⊥L1
l−1: ðD8Þ

1. Case 1: v⃗kB⃗
For this case, we have p1 ¼ p2 ¼ 0 and incorporating

the small energy transfer limit of ω → 0, Ais will have the
following form:

Að1Þ
1 ¼ 4½p2

0 þM2 þ p2
3 − p3q3�ðLl − Ll−1Þ; ðD9Þ

Að1Þ
2 ¼ 4ðM2 − p2

0 þ p2
3 − p3q3ÞðLl − Ll−1Þ; ðD10Þ

Að1Þ
3 ¼ 4½k3p3ð2n̄2 þ 1Þ þM2 − p2

0�ðLl − Ll−1Þ
þ 32p3q3n̄2L1

l−1; ðD11Þ

Að1Þ
4 ¼ 4p0ffiffiffiffiffi

n̄2
p ½ð2p3 − q3Þn̄2�ðLl − Ll−1Þ

þ 32ffiffiffiffiffi
n̄2

p p0q3
q2

q2⊥L1
l−1: ðD12Þ

2. Case 2: v⃗⊥B⃗

For this case, we have p3 ¼ 0 and incorporating the
small energy transfer limit of ω → 0, Ais will have the
following form:

Að2Þ
1 ¼ 4ðp2

0 þM2ÞðLl − Ll−1Þ − 16ðk · pÞ⊥L1
l−1; ðD13Þ

Að2Þ
2 ¼ 4ðM2 − p2

0ÞðLl − Ll−1Þ

− 16

�
2
ðq · pÞ2⊥

q2⊥
− ðq · pÞ⊥ − p2⊥

�
L1
l−1; ðD14Þ

Að2Þ
3 ¼ 4

�
−
2q23
q2

ðp ·qÞ⊥þM2−p2
0

�
ðLl−Ll−1Þ

þ16

n̄2

�
2
q23ðq ·kÞ⊥ðp ·qÞ⊥

q4
þ n̄2ððp ·qÞ⊥−p2⊥Þ

�
L1
l−1;

ðD15Þ

Að2Þ
4 ¼ 4p0ffiffiffiffiffi

n̄2
p

�
q3
q2

ðp · qÞ⊥ − q3n̄2
�
ðLl − Ll−1Þ

þ 32ffiffiffiffiffi
n̄2

p p0q3
q2

ðq · kÞ⊥L1
l−1: ðD16Þ

3. Static limit

Within the static limit, we have v → 0, hence p1 ¼ p2 ¼
p3 ¼ 0 and p0 ≈M. So, within static limit Ais take the
following form:

AðsÞ
1 ¼ 8M2ðLl − Ll−1Þ; ðD17Þ

AðsÞ
2 ¼ 0; ðD18Þ

AðsÞ
3 ¼ 0; ðD19Þ

AðsÞ
4 ¼ −

4Mq3n̄2ffiffiffiffiffi
n̄2

p ðLl − Ll−1 þ 8L1
l−1Þ: ðD20Þ

APPENDIX E: SPECTRAL FUNCTIONS ρis

Here we list down the explicit expressions for the
spectral functions within the limit of small energy transfer.

ρ1ðω; qÞ ¼
1

π
ImðJ 1jq0¼ωþiϵÞ

¼ 1

πD
½Id1ðI2

d3
þR2

d3
þQ4 − 2Q2Rd3Þ�; ðE1Þ

ρ2ðω; qÞ ¼
1

π
ImðJ 2jq0¼ωþiϵÞ

¼ 1

π

�
Id2

I2
d2
− ðQ2 −Rd2Þ2

�
; ðE2Þ
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ρ3ðω; qÞ ¼
1

π
ImðJ 3jq0¼ωþiϵÞ

¼ 1

πD
½Id3ðI2

d1
þR2

d1
þQ4 − 2Q2Rd1Þ�; ðE3Þ

ρ4ðω; qÞ ¼
1

π
ImðJ 4jq0¼ωþiϵÞ ¼ 0; ðE4Þ

where the denominator D is expressed as

D ¼ ½ð−Id1Q
2 −Id3Q

2 þId3Rd1 þId1Rd3Þ2
þ ð−Id1Id3 þ ðQ2 −Rd1ÞðQ2 −Rd3ÞÞ2�: ðE5Þ

Here Idi andRdi , respectively, depict the imaginary and
real parts of dis, which we discuss below. The imaginary
parts will contribute primarily from T Qs and the frequency
sum Φ2 and Φ3. Respective imaginary parts are given by

IðT QÞ




q0→ωþiϵ

¼ −
πω

2q
; ðE6aÞ

IðΦ2Þ




q0→ωþiϵ

¼
X

s1;s2¼�1

1 − nFðs1Ek3Þ − nFðs2Er3Þ
4s1s2Ek3Er3

× πδðω − s1Ek3 − s2Er3Þ; ðE6bÞ

IðΦ3Þ




q0→ωþiϵ

¼
X

s1;s2¼�1

1 − nFðs1Ek3Þ − nFðs2Er3Þ
4s2Er3

× πδðω − s1Ek3 − s2Er3Þ; ðE6cÞ

where we have used the identity

I

�
1

xþ iϵ

�
¼ −πδðxÞ: ðE7Þ

So, the imaginary parts of dis can be obtained by
replacing T Q, Φ2, and Φ3 in Eqs. (C1)–(C4) with their
respective imaginary parts from Eq. (E6). Similarly the real
parts of di can be obtained by using the respective principal
values.
Let us now specifically discuss the static limit expression

for ½1ω ρðsÞ1 ðω; qÞ�ω→0
. First we write down the expression

for Id1 :

Id1 ¼
Ncg2T2

3

πω

2q
−
X
f

g2jqfBj
2π2

X∞
l¼0

ð2 − δl;0Þ

×
Z

dk3E2
k3
IðΦ2Þjl0¼l; ðE8Þ

with

IðΦ2Þjl0¼l ¼
πω

4E2
k3

∂nFðEk3Þ
∂Ek3

δðω − q3Þ; ðE9Þ

where we have restricted ourselves for ω > 0 case only.
Subsequently looking at the expression of ρ1 in Eq. (E1),
we can combine the factor 1

ω with Id1 to write down

1

ω
Id1





ω→0

¼ Ncg2T2

3

π

2q
−
X
f

g2jqfBj
4π2

X∞
l¼0

ð2 − δl;0Þ

×
π

2
δðq3Þ

Z
dk3

∂nFðEk3Þ
∂Ek3

: ðE10Þ

Recalling the expressions for the pure glue part mg
D and

magnetic field dependent correction δmD of the QCD
Debye mass, we can readily see that 1

ωId1 jω→0 can be
expressed in terms of those Debye mass as

1

ω
Id1





ω→0

¼ ðmg
DÞ2

π

2q
þ π

2
δðq3Þ

X
f

δm2
D;f; ðE11Þ

where

ðmg
DÞ2 ¼

Ncg2T2

3
;

δm2
D;f ¼ −

g2jqfBj
4π2

X∞
l¼0

ð2 − δl;0Þ
Z

dk3
∂nFðEk3Þ
∂Ek3

;

¼ g2jqfBj
4π2T

X∞
l¼0

ð2 − δl;0Þ
Z

dk3nFð1 − nFÞ:

Next we proceed to evaluate Rd1 in the static limit. From
Eqs. (C1), (C5), and using the expressions for the Debye
masses mentioned above, one can arrive in a straightfor-
ward way to the following expression:

Rd1





q0→0

¼ ðmg
DÞ2 þ

X
f

δm2
D;f ¼ ðm0

DÞ2; ðE12Þ

where m0
D now denotes the magnetized medium modified

full QCD Debye mass. Looking at the rest of the terms, we
do not explicitly write down Id3 here, but it can also be
seen that, at ω → 0 limit, it vanishes. Eventually the

expression of ½1ω ρðsÞ1 ðω; qÞ�ω→0
can be simplified as

�
1

ω
ρðsÞ1 ðω; qÞ

�
ω→0

¼ 1

π

1
ωId1




ω→0

ðq2 þRd1




ω→0

Þ2 : ðE13Þ
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