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In this work, we study the multibaryon configurations in a simple chromomagnetic model. We first
construct the wave function of the multibaryon states using the multiquark configuration. We consider all
possible quantum numbers assuming the spatial part of the wave function to be totally symmetric. Then, we
calculate the color-spin factors for tetrabaryons, pentabaryons, and hexabaryons in the flavor SU(3)

breaking case and discuss its physical application.
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I. INTRODUCTION

In the realm of nuclear physics, the study of baryons has
unveiled the intricate nature of the strong nuclear force that
binds atomic nuclei together. In the past, much of the study
on the interaction between baryons has focused on long
range interactions driven by pion exchange. However, the
interaction at a short distance could not be explained only
with pion exchange, and for this, other explanations, such
as vector meson exchange were needed.

Among them, one of the most representative studies is a
study examining the short-range part of baryon-baryon
interactions using the quark model [1,2]. Moreover, we
recently showed that the results of the quark model
incorporating color-spin interaction are quite consistent
with the results of the baryon-baryon interaction calculated
in lattice QCD in the short range [3.4].

When dealing with baryon-baryon interactions in the
quark model, the dibaryon configuration, which is a six-
quark configuration, is used. In particular, the task of
calculating the color-spin factors of a dibaryon when the
flavor SU(3) is broken has been studied frequently to
examine the possibility of stable dibaryon as an exotic
hadron. First, Silvestre-Brac and Leandri [5] calculated the
color-spin factors for all possible dibaryon states in the
flavor SU(3) symmetry broken case. To describe the flavor
symmetry broken effect, they introduced the following
strange quark mass parameter:

5=1-"x (1)
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where m,, and m are the constituent quark masses of u, d,
and s, respectively. In this work, we represent the color-spin
factors using this parameter.

Additionally, it has been studied to examine the possibil-
ity of dibaryons containing heavy flavors using the con-
stituent quark model [6—12]. If we only consider the s-wave
state, the spatial part of the wave function should be totally
symmetric. Then, more flavors increase the antisymmetry of
the flavor state, and according to the Pauli principle, the
remaining part of the wave function, which is the color-spin
coupling state, becomes more symmetric making color-spin
interaction attractive. Therefore, it is more likely that a
compact exotic hadron containing heavy quarks exists than
if it is composed of light quarks only. This can be seen as
another effect of color-spin interaction, which has a large
effect in a short range.

Meanwhile, the behavior of nucleons in nuclei cannot be
fully explained by two-body interactions alone. Three-body
forces play a crucial role in refining our understanding of
nuclear structure [13-15]. Just as one studied two-body
interaction using the dibaryon configuration, we have
studied to analyze three-body interaction using the tribaryon
configuration [16-18]. Although the intrinsic three-body
forces resulting from the color-spin interaction are canceled
in the flavor SU(3) symmetric case [17], these can survive
when the flavor symmetry is broken. Therefore, calculating
the color-spin factor in the flavor symmetry broken case will
be useful in studying the short range part of three-body
interaction.

Additionally, we can go further considering four-baryon
configuration. Tetrabaryon configuration may offer a unique
opportunity to investigate the realm of four-body forces at
short distances and their impact on nuclear dynamics. In this
work, we calculate the color-spin factor of the tetrabaryon,
pentabaryon, and hexabaryon in a simple chromomag-
netic model.

This paper is organized as follows. In Sec. II, we
introduce the color-spin interaction formula in the flavor
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SU(3) symmetric case. In Sec. III, we classify the possible
tetrabaryon states and represent the color-spin factors for
each case when the flavor SU(3) symmetry is broken.
Similarly, we represent the results for pentabaryons and
hexabaryons in Secs. IV and V. In Sec. VI, we discuss how
we can utilize the results in terms of physical point of view.
Finally, we summarize our work in Sec. VIL

II. COLOR-SPIN INTERACTION

In this work, we construct the wave function of tetra-
baryon, pentabaryon, and hexabaryon assuming that the
spatial part of the wave function to be totally symmetric.
Then, we calculate the color-spin factor of multibaryon
configurations using the following formula:

where A¢, m;, m, are, respectively, the color SU(3) Gell-
Mann matrices, the constituent quark mass of the ith quark,
and the constituent quark mass of u, d quarks.

In the flavor SU(3) symmetric case, color-spin factor
H g can be easily calculated by the following formula:

Hes = cha o;
i<j
4
= n(n — 10) +§S(S+ 1) 4+4Cr +2Cc, (3)
4
4Cp =3 (T + p3+3p1 +3p2+ pip2), (4)

where Cy is the first kind of the Casimir operators of the
flavor SU(3), and p; is the number of columns containing i
boxes in a column in the Young diagram.

III. TETRABARYON CONFIGURATION

In this section, we calculate the color-spin factors of the
tetrabaryon, which is four-baryon configuration. Since the
color state of the tetrabaryon is singlet, which is [4,4,4], we
can determine the flavor-spin coupling state to be satisfied
by the Pauli exclusion principle as follows:

FS

Now, we can decompose the flavor-spin coupling state into
the possible flavor and spin states using Clebsh-Gordan
(CG) series [19],

3,3,3, 3]FS_[6’ 6] ®[6,6]5+[6,5,1]p ®[7,5]5+
6,4.2] ®[8,4]5+[6,4,2] - ®[6,6]5+[6,3,3] r ® [9, 3]s+
[6,3,3],®[7,5]s+[5.5.2]p ®[7,5]s+[5,4.3]  ® [8.4] s+
[5,4,3],®[7,5]s+[4,4,4] - ® [6,6].

There are seven possible flavor states for tetrabaryon
as follows. We indicate the possible spin states in the
parentheses:

1(S = 0) 8(5 =1,2) 10(5 = 1)
[ [ ] [ ]
10(S = 1,3) 27(5 = 0,2)
|
T 3B(s=1) 28(5=0)

We represent the color-spin factors of the tetrabaryon in
the flavor SU(3) symmetric case in Table 1. The results in
the flavor SU(3) broken case are represented in the
following subsections.

A. g2

When there are no strange quarks, there is only one
possible flavor which is 28. Also, in this case, the possible
isospin and spin are both zero.

TABLE I. The color-spin interaction factors of the tetrabaryon
for each flavor and spin in the flavor SU(3) symmetric case.
Blanks represent the Pauli blocking states.

- Zi<j Aidjo; - 0;
Flavor S=0 S=1 S=2 §=3
1 24
8 s 44
10 2
10 1%2 64
27 56 64
28 96
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I1=0

HCS - 96 (6)
B. ¢''5:{1,2,3.4,5,6,7,8,9,10,11}12

When there are strange quarks, the wave function must
be constructed so that light quarks and strange quarks each
satisfy the Pauli principle. So, in this case the wave function
should satisfy {1,2,3,4,5,6,7,8,9, 10, 11}, which means
it is antisymmetric for exchange between 11 quarks. Also,
among seven possible flavor states, only the flavor 35 and
28 states are possible for tetrabaryon with one strange
quark. And in this case, only the isospin % is allowed.

1
I=3;

In this case, there are two possible flavor and spin states
as follows:

~ 5= 1) 28(5 = 0)

For light quarks, the color-spin coupling state is
[2,2,2,2,2,1]. Since the color state of 11 quarks should
be antitriplet, which is [4,4,3], we can find a possible spin
state using the CG series.

S=1
2,2,2,2,2, 15 = [4,4,3]c ® [6,5]. The spin of light
quarks is % Now, we can determine the color-spin factor for
light quarks,

H™“ = 80. (7)

Then, we can determine the remaining color-spin factor
because we know the total color-spin factor,

224 166
Hes=—5+5 ®)

However, it should be noted that this method is valid when
there is only one possible state. If the multiplicity is two or

more, then we need to calculate the color-spin factor
starting from constructing the wave function.
S=0

Similar to § = 1 case, we can determine the color-spin
factor,

C. ¢"%2: {12345678910}{11,12}

When there are two or more strange quarks, we should
consider the symmetry between them too.

L e, es = ,>

2,2,2,2,1,1] o5 = [4.4.2]- ® [5.5]s + [4,3.3] - ® [6,4]s.

The possible flavor and spin states are as follows:

S
S S ,i )
27(5=0,2) 35(5=1)
S S
28(S = 0)
S=2
F =27
852
S=1
F=35
224 3256 862
H¢y=———-+—. 11
cs 3 3 + 3 (11)
S=0
F =28,27

In this case, we need to construct the wave function
of the multiquark state. We represent the detailed Young
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tableaux showing the position of strange quarks in the

Appendix.
96-326+1% 4, /2 s
Hes = 4 o 508 | (12) °151° Lsls |
—54/50 56 + 86 + 375 10(S = 1,3) 27(S =0,2)
I1=0 o0 ) s|s|s
S —
3RS =1) 28(5=0)
F=( ) o5 - (CIR i
’ ’ | s | F=10
Hcg = 64 — 165 4 852 (14)
2,2,2,2,2]c5 = [4,4,2]c ® [6,4]5 + [4.3,3]c ® [5,5]s- §=2
F=27
s ]
Heg = 64 — 165 4 852 (15)
s|s s | s=1
10(S = 1) 35(5 =1) _
F=35,10
S=1 24805 | 805 _4y3
o Hoee | 3 3 9 9 (16)
F =3510 s 455 152 _ 86 | 828 |
o 33T
2 6V25 _ 4V25°
H@_(%‘%*’% _195_ 95> (13) S=0
6V35 _ 4v/25° 2 ) —28
6B 43R 152 405 289 F=12827
D. ¢°s*: {1.2,3.4,5,6,7.8.9}{10.11,12} 96 — 485 4 42 _42
cs = 48 w8 | (17)
=3 —4 56 — 85 + 4%
=1
P L)
s F = ‘,), CS =
CS = s -
] S
2.2,2.2.1) g = [4.4. 1] ® [5.4] + [4.3.2] - ® [6.3]5+
2.2,2,1,1,1] o5 = [4.3.2] - ® [5. 4] + [3.3.3] - ® [6.3]s. [4,3,2]c ® [5.4]5 + [3.3.3]c ® [5.4];.
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S
S|S|S ’ S| S ’
8(5=1,2) T0(S = 1)
[5] s
S
S| S 7i
27(5 = 0,2) 35(5=1)
§$=2
F=2728
2 2
64—1285—}—4855 _% %
Hes = 165 _ 48 g4 525 428" (18)
=5 s -5 TS
S=1
F =35,10.8
241125 888 8547 _ap
3 3 9 3 9 9
— 85 _ 45° 152 _ 445 | 8287 85 _ 85°
Hes=1 -3-% 5 -5+% i
48% 8 85° 116 825°
-5 B e M it e
(19)
S=0
F=27
Hes = 56 — 206 + 1082, (20)

E. ¢%%: {12.3456.7.8}{9.10,11,12}
1=2

L LG

I
P

cS = (|

221,111 s =[4.2.2] - ® [4.4]5+[3.3.2] - ® [5.3]5.

27

565

S=1

224 1285 56682
i il Bl 2
cs=73 3 + 3 (22)
S=0
F = 28,27

2
96— 645+ 22 4, f2p

4 242
—5\@3

Hes = (23)

56 — 245 4 22

P

CS = (

2,2,2,1,1] g
[4,2,2],®[5,3
3,32, ®[4,4

S
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| S=2
s s|s F =278
S|S|S ’ S| S ’
8(5=12  10(S=1) 64-2 3 e f35
[ L] -] fles = )
15 \/%5 44— B 4 563
S
s|s|s ’ s|s ’ S=
10(§=1,3) 27(5=0,2) F =10,10,8,35.
s | In this case, the calculation is a bit tricky. In most cases, we
s | s can calculate the color-spin factors using the CG coeffi-
S cients of S,, where n is the number of nonstrange quarks.
= __ The reason why this is possible is because the values of the
35(5=1) color-spin factor are different for each flavor. So, we can get
the flavor eigenstates by diagonalization. However, in this
§=3 case flavor 10 and 10 have the same color-spin factors, so
- we cannot distinguish which state is 10 and which state is
F=10 10. And in fact, what we can obtain through diagonalization
is the mixing of the two states. Therefore, in this case, we
1285 5667 should construct the wave function using the CG coeffi-
Heg =64 ———+ —— (24) . . e ==
3 3 cients of S;,, which clearly distinguish 10 and 10.
|
152 _ 3045 | 5065 2V5 85 _ 48 16V25 | 426
3T T —578 3727 o toar
_& 2 152 _ 3045 | 5148 8\/_6 4\/_52 _4/10 52
Hes = 85 4;52 38\/’5 :\_/’52 116 18—:3_6 512 82\;5 52 (26)
37 + ERC R 570
4/28 4 8 2
_f+ f _%52 2_\7f 24 _ 5125 4 5200
§=0 s | s|s]
F = 27 > ’
S|1S8S|S|S S|S|S S| S
1(S=0) 8(S=1,2) 27(5=0,2)
566°
Heg =56 —400 + R (27)
S=2
=0 F=278
2565 29252 8V65 _ 4 /2
64 — 2560 4 20008 _ 865 _ 4 \@52
cs = (28)
_S_V&S_é\ﬁgz 44 — 1648 | 968
F:( 7)’ CS—( 5 5V3 5 5
S=1
F=8
2.2.2.2]¢cs = [4.4]c ® [4.4]s + [4.3. 1] ® [5.3] + 5
[4,2,2]c ® 6,25 + [4,2,2] ® [4,4]5+[3,3,2]c ® 116 926 566
Heg = -— . (29)
5,3 3 33
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S=0
F=271
595 &
; _(56—485+T -5 )
s = & 2 )
v 24 — 166 + 196

F. q’s%: {123.4567}{89.10,11,12}

5
I=35

Ny iy )

V)
V)
V)
V)

5 S|S|[s|S]|S
S —
- 3B(S=1) 28(5 =0)
S=1
F=35
224 1765
Hpeo=""_"""1328.
cs 3 3 +
§=0
F=28

_3
I=35

(30)
S S S S S
S| S ’ S| S ’
10(S=1) 27(5 = 0,2)
s |
S S S
LS|
35(5 =1)
§=2
F=27
Heg = 64 — 646 + 328%. (33)
S=1
F =35,10
856
o 224 _ 6880 4 3747 — By “
R I s e
S=0
F=27
Heg = 56 — 605 + 3282 (35)
(31) P
CS = (
(32) —
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2.2.1.1,1]cs=[4.3]®[4.3]s+[4.2.1]c ® [5.2]s+
[4,2,1],® [4,3]s+(3,3,1]c ® [5,2]s+[3,3,1] - ® [4.3] s+
3.2.2]®[6.1]5+[3.2.2]- ®[5.2]+[3.2.2] - ® [4.3]5
s [s]s]
S
S|S|S ’ S| S| S ’
8(5 =1,2) 10(S =1,3)
s|s]
S
S| S
27(5 =0,2)
S=3
F=10
2086
Hes = 64 === 4326, (36)
§S=2
F =278
64 — 3882 4 3252 — 16
HCS — ( 3 5 ) (37)
—1% 44 — T2 4 3247
S=1
F=10,8
152 - %0 + 3287 — 850
Hes = 8v/56 116 _ 4726 2 ) (38)
—5 3 -7 326
S=0
F =27
Hes = 56 — 728 + 326°. (39)

G. ¢%5: {1.2.34,5,6}{7.8.9.10,11,12}

In this case, the flavor and color-spin coupling state of
strange quarks is as follows:

[s]sls[s]s]s].®

[ o [ [ [ ] ]

CS

To satisfy the Pauli principle, decomposition of
[1,1,1,1,1, 1] for strange quarks should be as follows:

s|s
s|s|s

s|ls| ®
s|s|s
S

s|1s,

Therefore, the color-spin factor of strange quarks is
determined regardless of the isospin of light quarks,

HYg = 48. (40)
Additionally, we can find out that the color state of light
quarks is also singlet because the color state of strange

quarks is singlet. In the same way, the spin of total quarks is
determined from the spin of light quarks.

I1=3

Hcg = 96 — 966 + 485, (41)
I1=2

Vo)
»
»
»

5(S =1)

224

I=1

s|s]

Heg = 64 — 965 + 4852 (43)
S=0
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I1=0 A. ¢'%3

According to possible flavor states of the pentabaryon, it
should contain at least three strange quarks.

s|s]s]
I=0
S|S|S
10(S =1,3)
S=3
F=10 s|s|s
T0(5 = )
Hcg = 64 — 9665 + 4857. (45)
S=1 . S= %
152 ) 2
Hes == = 965 + 485°. (46) Hcs =104 — 165 + 85°. (50)
B. q11s4
IV. PENTABARYON CONFIGURATION 1=1
Now, let us consider the pentabaryon configuration
which is composed of five baryons. Since the color state
of the pentabaryon is singlet, which is [5,5,5], we can |
determine the flavor-spin coupling state satisfying the Pauli S
exclusion principle as follows: s|s|s ls|s|s|s
T0(S = %) 8(5 = 1)
® (47) §=3
F=10
FS
128 56
_ , , Heg = 104 — ——6 + =& (51)
w, we can decompose the flavor-spin coupling state into the 3 3
possible flavor and spin states as follows: g1
-2
[3,3,3,3,3]ps = [6,6,3]p ® [9,6]5 + [6,5,4] ® [8,7]s. F=38
There are two possible flavor states for the pentabaryon,
80 56
3 3
) C. '
1_(5 = %) 8(5 = %) I=1
The color-spin factors for each state in the flavor
symmetric case are as follows: ‘
10(5=3) 5|8 s
Hes = 104 (48) s|s|s Is|s|s|s
L 10(8 = 3) 8(S = 13)
Y= — g8, (49) 2 ’

034012-9
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F=1

208

Heg = 104 — =+ 328°.

5=1

160

HCS == 88 —Té+3252

I1=0

Q0
—~
nn
Il
N[ =
~—

9]
1}
N~

Hes — 88 — 646 4 328,
D. ¢°s¢

— 3
I=3

[u=y
o

—
n
Il

[NJ[SH

Hes = 104 — 965 + 4852,

I=%
s
S
s|s|s|s
85— 1

s=1

(53)

V. HEXABARYON CONFIGURATION

(57)

We can also consider the hexabaryon configuration

(54) which is composed of six baryons. Since the color state
of the hexabaryon is singlet, which is [6,6,6], we can
determine the flavor-spin coupling state satisfying the Pauli

exclusion principle as follows:

FS

Now, we can decompose the flavor-spin coupling state into
the possible flavor and spin states as follows:

(55) 3,3.3.3,3.,3] 5 = [6.6.6]; ® [9.9]5.

There is one possible flavor state for the hexabaryon,

The color-spin factor for this state in the flavor sym-

metric case is as follows:

HCS = 144

A. q12s6

(59)

For the flavor singlet of the hexabaryon, it should contain

(56)  six strange quarks.
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Hes = 144 — 965 + 4857, (60)

VI. DISCUSSION

So far, we have calculated the color-spin factor of the
multibaryon configuration for the case when the flavor
SU(3) symmetry is broken. Here, we discuss how these
results can be applied from a physical point of view. When
we consider a nucleon and a delta isobar, we can expect
that the color-spin factor for threshold of dibaryon, which
is composed of these two baryons, is zero for spin one case
because H g are —8 and 8 for each case. Therefore, we can
naively estimate that the color-spin factor for the lowest
threshold of multibaryon is approximately near zero if the
total spin is not large. But as we can see in Eq. (3), the first
term in color-spin factor becomes positive when the
number of quarks is more than 10. And the other factors
are positive, so we can conclude that we should not expect
a compact bound state of multibaryon configuration only
using the color-spin interaction when the baryon number is
more than 3. Even if the flavor SU(3) symmetry breaking
effect is taken into account, the effect of changing is not
significant.

However, we should note that the dibaryon configuration
is useful not only to investigate the stability of exotic
hadrons, but also to study the short range part of baryon-
baryon interactions [3.4]. Likewise, we can utilize this
multibaryon configuration to study three or more many-
body interactions for dense nuclear matter. Just as it is
important to consider three-body interactions in dense
matter, much higher-density nuclear matter such as neutron
stars will need to include more many-body interactions.
One thing to note is that just as the internal structure was
considered when calculating the three-body intrinsic force
[17], when calculating the many-body force of four or more
baryons, it is necessary to accurately know the internal
structure of the multibaryon configuration, so additional
research is needed.

VII. SUMMARY

In this work, we calculated the matrix elements of
color-spin factors of the multibaryon configurations,
which are tetrabaryons, pentabaryons, and hexabaryons
in the flavor SU(3) symmetry broken case. First, we
constructed the wave function of the multibaryon states
assuming the spatial part to be totally symmetric. Since
the color state of the multibaryon should be singlet, we
could determine the remaining part of the wave function,
which is the flavor-spin coupling state satisfying the
Pauli exclusion principle. Then, using the CG series we
decomposed the flavor-spin coupling state into flavor and
spin states, respectively. And then, we calculated the
color-spin factors using the CG coefficients of S,,, where
n is the number of nonstrange quarks, except the ¢%s*(I =
1,S=1) case.

As our previous work showed [3], color-spin interaction
could be the critical ingredient when we study the short
range part of the baryon-baryon interaction. In dense
nuclear matter, three-body and even four-body interactions
can be more important. Therefore, the color-spin factors
calculated in this work may be useful when studying
extremely high density nuclear matter.

However, it should be noted that in this work, we
assumed the spatial part of the wave function to be totally
symmetric. In this case, the six-baryon is the maximum
multibaryon state we can construct to be satisfied by the
Pauli exclusion principle. Moreover, since it is important to
consider the angular momentum in three-body or larger
systems, follow-up research considering the nonsymmetric
orbital state is necessary.
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APPENDIX A: ¢"s2(I=1,5=0)

In the following sections, we represent how strange quarks occupy their places in color and spin states for the cases when
there are two or more multiplicities. Note that the color-spin coupling state of strange quarks should be antisymmetric.

6]

L cs
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()
S ® 5| s — 7
s
: (&)
APPENDIX B: q10s2 (I=0,S=1)
(D
) e
s|s 5 s
cs
(@)
1. 19 |HHE
s S
c
cs
APPENDIX C: q9s3(1=%,S=1)
(D
5| ® S|S| -
s|s|. S s -
: cs
(2
: 5]
s| ® 5 —
s |, S18 s -
L] cs
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APPENDIX D: ¢°s3(I= 3 ,5=0)

(D
s| ® 5 —
S| S
S| S - —
I cs
()
S
s| ® —
S| S| S
: N
L cs
APPENDIX E: ¢’s3(I=1 §=2)
(D
. [T |HHE
s|s 5 S
L CcSs
(@)
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