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We calculate the pion scattering amplitude at nonzero temperature and nonzero μ5, the chemical
potential associated to chiral imbalance in a locally P-breaking scenario. The amplitude is calculated up to
next-to-leading order in Chiral Perturbation Theory and is unitarized with the Inverse Amplitude Method to
generate the poles of the f0ð500Þ and ρð770Þ resonances. Within the saturation approach, the thermal
f0ð500Þ pole allows to determine Tcðμ5Þ, the transition temperature for chiral symmetry restoration. Our
results confirm the growing behavior of Tcðμ5Þ found in previous works and, through a fit to lattice results,
we improve the uncertainty range of the low-energy constants associated to μ5 corrections in the chiral
Lagrangian. The results for the ρð770Þ pole are compatible with previous works regarding the dilepton
yield in heavy-ion collisions.
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I. INTRODUCTION

The possible generation of a phase characterized by local
parity breaking (LPB) in nuclear matter under extreme
conditions, in particular in high-energy heavy-ion colli-
sions (HICs), has been the subject of recent studies within
the so-called chiral magnetic effect (CME) [1–3] This LPB
phenomenon can be attributed to the difference between
the number densities of right- and left-handed chiral
fermions, the so-called chiral imbalance, which has moti-
vated the study of effective Lagrangians [4–13] and lattice
QCD [14–18] with a nonzero chemical potential para-
metrizing chiral imbalance.
The non-Abelian nature of the strong interaction gives

rise to a complicated vacuum. As a result, the vacuum
state can accommodate multiple topological sectors that
are separated by high-energy barriers. In the presence of a
hot medium, sphaleron transitions can connect these
configurations through quantum fluctuations of the vac-
uum state [19]. Actually, a topological charge may arise
in the fireball as a result of a HIC. Such charge can be

defined as the space integral of the Chern-Simons current,
as follows:

T5 ¼
Z
vol

d3x⃗JCS0 ðxÞ;

JCS0 ðxÞ ¼ g2

32π2
ϵνρσTr

�
Gν

∂
ρGσ − i

2

3
GνGρGσ

�
; ð1Þ

where the integration is over a given region within the
fireball volume.
Thus, introducing into the QCD Lagrangian a chemical

potential μCS in a gauge invariant way, i.e., adding
ΔL ¼ μCSΔT5, with

ΔT5 ¼ T5ðtfÞ − T5ð0Þ ¼
g2

32π2

Z
tf

0

dt
Z
vol

d3x⃗Ga
μνG̃

aμν;

ð2Þ
it would be possible to trigger the value of hΔT5i.
We can associate a nonzero topological charge with a

nontrivial quark axial charge Q5 integrating the Uð1Þ
anomaly relation over a finite-space volume

d
dt

ðQ5 − 2NfT5Þ ¼ 2i
Z
vol

d3x⃗ q̄Mγ5q;

Q5 ¼
Z
vol

d3x⃗ q̄ γ0γ5q: ð3Þ

Thus, using the well-known Atiyah-Singer index theorem,
which establishes a relationship between the topological
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charge of the gauge field and the right NR and left NL zero-
eigenstates of the Dirac operator we get

2NfT5 ¼ NL − NR: ð4Þ

For u and d quarks, the characteristic time of left- and
right-quark oscillations is of order 1=mq [11], i.e., signifi-
cantly larger than the typical duration of the fireball. This
observation suggests that, during the lifetime of the fireball,
the chiral charge Q5 associated with the light u and d
quarks may remain approximately constant in a typical
heavy-ion collision, since the oscillation can be neglected.
Therefore, for light u, d quarks for which both the L − R

oscillations and the mass terms in (3) are negligible [11],
one can assign, as customary, a constant axial chemical
potential μ5 in order to parametrize a source of parity
breaking or chiral imbalance, which couples in the QCD
Lagrangian to the timelike component of the Uð1ÞA
Abelian axial current, i.e.,

LQCD → LQCD þ μ5q̄γ5γ0q; ð5Þ

where μ5 ¼ μCS=ð2NfÞ.
Temperature effects with μ5 ≠ 0 introduce interesting

features. The physics behind this is pertinent since, as
explained above, one expects these LPB regions to be
formed within a heavy-ion collision environment where
medium effects such as temperature and baryon chemical
potential play a crucial role and might affect the very same
stability of such regions depending on the sector of the
QCD phase diagram covered during the fireball evolution.
Conversely, one may ask about the effect that LPB,
parametrized by μ5, may have on the phase diagram and
observables from HIC. In particular, the μ5-dependence of
the QCD transition of deconfinement and chiral symmetry
restoration. The latter has been actually the subject of
recent lattice studies [15,16] which show a slowly increas-
ing behavior of the transition temperature Tcðμ5Þ, consis-
tently with the Nambu-Jona-Lasinio (NJL) model [9,10]
and Chiral Perturbation Theory (ChPT) [13] effective
theory analyses, although in apparent contradiction with
the decreasing behavior found in previous works [4,5],
which may come from the NJL regularization procedure
[8]. An interesting suggestion in this context has been to
relate μ5 effects to the enhancement of the dilepton
production rate in HIC in the low invariant-mass region,
close to the ρð770Þmass, where μ5 ≠ 0would contribute to
the observed production enhancement [20–22].
In the recent work [13], the most general low-energy

effective Lagrangian at μ5 ≠ 0 has been derived within the
ChPT framework [23,24] including finite T effects. The
energy density was derived up to next-to-next-to-leading
order (NNLO), as well as relevant quantities derived from
it such as the quark condensate signaling chiral sym-
metry breaking, the chiral density and the topological

susceptibility. One of the conclusions of that work is that
new terms appear in the Lagrangian which therefore
generate new low-energy constants (LEC). The numerical
value of those constants were fixed in [13] to the lattice
results for Tcðμ5Þ, using the quark condensate, the topo-
logical susceptibility and the chiral density.
Here we will extend the analysis in [13] by calculating

the pion-pion elastic scattering amplitude with the μ5 ≠ 0

Lagrangian, up to next-to-leading order (NLO), i.e.,Oðp4Þ,
within the ChPT framework and unitarizing it in order to
obtain the lightest resonant states f0ð500Þ=σ and ρð770Þ.
The NLO ChPT amplitude at T ¼ μ5 ¼ 0 was first derived
in [24] and its extension to nonzero temperature was
obtained in [25]. Here we will derive the NLO amplitude
at nonzero T and μ5. That ChPT amplitude will be unitari-
zed through the Inverse Amplitude Method (IAM) [26,27]
which will allow us to study the combined dependence
with T and μ5 of the light resonances f0ð500Þ and ρð770Þ
poles. In particular, from the f0ð500Þ thermal pole, follow-
ing a resonance saturation approach for the scalar suscep-
tibility [28,29], one of the main signals of chiral symmetry
restoration, we will obtain the transition temperature
Tcðμ5Þ, which will allow us to pin down the new LEC
by comparison with lattice predictions and to test the
robustness of previous theoretical analyses. On the other
hand, the results for the μ5 dependence of the ρð770Þ pole
will be useful to test the results about LPB in the dilepton
spectrum [20–22].
The paper is organized as follows. In Sec. II we calculate

the μ5 corrections to the ππ elastic scattering amplitude
within the ChPT framework including also its temperature
dependence and partial wave unitarization within the IAM.
The saturated approach allowing to obtain the scalar
susceptibility, and hence Tcðμ5Þ, from the f0ð500Þ pole,
will be discussed in Sec. III. In Sec. IV we present our
numerical results. First, we will discuss how to combine our
present approach with previous works in order to fit Tcðμ5Þ
to the lattice values and improve the new LEC determi-
nation. Second, we will provide numerical results for the μ5
dependence of phase shifts and resonance parameters.
Our conclusions are summarized in Sec. V.

II. THE CHIRAL PERTURBATION THEORY
ππ SCATTERING AMPLITUDE

AT NONZERO T AND μ5

To start with, we consider the most general ChPT meson
low-energy Lagrangian Leff ¼ L2 þ L4 þ � � �, taking into
account local parity-violating terms parametrized by an
axial chemical potential or chiral imbalance μ5, up to
Oðp4Þ order in the chiral expansion for two light flavors,
derived in [13].
The Oðp2Þ order Lagrangian L2 does not depend on the

chemical potential μ5, except for a constant term irrelevant
for our purposes here, so we are interested in the next order
Oðp4Þ Lagrangian, given by
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L4ðμ5Þ ¼ L4ðμ5 ¼ 0Þ þ κ1μ
2
5trð∂μU†

∂μUÞ
þ κ2μ

2
5trð∂0U†

∂
0UÞ þ κ3μ

2
5trðχ†U þU†χÞ

þ κ4μ
4
5; ð6Þ

where χ ¼ 2B0M with M the quark mass matrix

M ¼
�mu 0

0 md

�
,U ¼ eiΠ=F, withΠ the pion field matrix

in the charge basis,

Π ¼
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
; ð7Þ

and F,M2
0 ¼ B0ðmu þmdÞ are respectively the pion decay

constant Fπ and the squared massM2
π to leading order (LO)

in the chiral expansion. The κi are undetermined new
LEC, which are finite since all Oðp4Þ loop corrections
are μ5-independent. Here, we will work in the isospin
limit mu ¼ md.
As in previous analyses at finite temperature [25,30–33],

the scattering amplitude T is defined by connecting the
four-point Green function with the T-matrix element
through the Lehman-Symanzik-Zimmerman (LSZ) reduc-
tion formula, which extracts the residue of the Green
function at the poles given by the dispersion relation of
the external legs [34]. In doing so, one has to take into
account the modification of the free-particle dispersion
relation due to self-interactions, which introduce additional
T and μ5 corrections as we detail below.
As customary, we parametrize the T-matrix element for

πaπb → πcπd scattering once isospin and crossing sym-
metry are taken into account, as

T abcd ¼ AðS;T;UÞδabδcd þ AðT;S;UÞδacδbd
þ AðU;T;SÞδadδbc;

where S ¼ Pa þ Pb ¼ ðS0; S⃗Þ, T ¼ Pa − Pc ¼ ðT0; T⃗Þ
and U ¼ Pa − Pd ¼ ðU0; U⃗Þ are generalized Mandelstam

variables while s ¼ S2; t ¼ T2; u ¼ U2 are the usual ones.
In this way, we take into account that both μ5 and
temperature effects break Lorentz covariance. In the above
equation, AðS;T;UÞ is the T-matrix element corresponding
to the πþπ− → π0π0 process, which we can express as a
perturbative series in powers A ¼ A2 þ A4 þ � � �, where An
is the amplitude of OðpnÞ. As we commented in the
introduction, in this work we are interested in the NLO,
i.e., up to Oðp4Þ.
The corresponding Feynman diagrams contributing to

that order are displayed in Fig. 1, where diagram 1(a) is the
Oðp2Þ contribution to the amplitude coming from L2 at tree
level. The remaining diagrams provide the Oðp4Þ correc-
tion. Thus, diagram 1(b) comes from L4 at tree-level,
diagram 1(c) is the one-loop tadpole correction coming
from theOðp2Þ six-pion vertex, Figs. 1(d) and 1(e) account
for the renormalization of the external legs at this order and
therefore give rise to the modification of the dispersion
relation, while Figs. 1(f)–1(h) correspond, respectively, to
the S, T, U channels of the one-loop contributions with two
Oðp2Þ four-pion vertices.
On the one hand, the μ5 corrections to the amplitude

come from the following sources:
(i) The Oðp4Þ tree-level order amplitude from the four-

pion terms in the Lagrangian (6), corresponding to
the topology of Fig. 1(b);

(ii) The correction coming from the Oðp4Þ dispersion
relation modification arising from the two-pion
fields in (6), represented by Figs. 1(d) and 1(e),
which only affects the LO Oðp2Þ amplitude since
the corrections to the free dispersion relation are
of Oðp4Þ;

(iii) The Oðp4Þ correction coming from the residue of
the LSZ formula application, as discussed below.

On the other hand, the corrections at finite temperature T
come from the loop diagrams in Figs. 1(c)–1(h) and are
independent of μ5 as they are the Oðp2Þ vertices in those
diagrams.

FIG. 1. Diagrams contributing to pion scattering in ChPT up to Oðp4Þ.
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We can therefore write the T and μ5 dependent ChPT
Oðp4Þ amplitude as follows:

AðS;T;U;T; μ5Þ ¼ A2ðs; t; uÞ þ A4;treeðs; t; uÞ
þ A4;loopðS;T;U;TÞ
þ δA4;treeðS;T;U; μ5Þ
þ δA4;drðS;T;U; μ5Þ
þ δA4;LSZðS;T;U; μ5Þ; ð8Þ

where A2 is the Oðp2Þ tree-level contribution correspond-
ing to Fig. 1(a). Note that the contribution of the loops
is independent of μ5 at the order considered here since the
μ5 correction to the interaction vertices starts at Oðp4Þ.
Therefore, at this order we can import the T-dependent
corrections to the amplitude in A4;loopðS;T;U;TÞ directly
from the calculation in [25]. We will calculate below the
new μ5-dependent contributions δA4 to the amplitude.

A. Tree-level contributions

This contribution can be extracted directly from the
Oðp4Þ Lagrangian in (6). We get

δA4;treeðS;T;U; μ5Þ ¼
1

3F2
½3κ̃1sþM2

0ðκ̃3 − 4κ̃1Þ
þ κ̃2ð2S20 − T2

0 −U2
0Þ� ð9Þ

with κ̃i ¼ 4κiμ
2
5

F2 . Note that the S0, T0, U0 terms above come
from the separation of the timelike and spacelike compo-
nents in the Lagrangian derivatives, as a result of the loss of
Lorentz covariance.

B. Dispersion relation correction

At the order we are considering, including the contri-
butions of diagrams in Figs. 1(d) and 1(e) is equivalent to
consider for the external legs the Oðp4Þ renormalized pion
propagator,

Gπðp2; p2
0Þ ¼

iZπðTÞ
p2 −M2

πðTÞ þ κ̃1p2 þ κ̃2p2
0 − κ̃3M2

0

; ð10Þ

where M2
πðTÞ ¼ M2

0½1þ δπðTÞ� and Zπ ¼ 1þ δZðTÞ are,
respectively, the pion-mass squared and wave function
renormalization at NLO for μ5 ¼ 0, and the T-dependence
coming from the tadpole diagram in Fig. 1(d). Those
corrections have been included in the finite-T calculation
of the scattering amplitude in [25] and are μ5-independent.
The κ̃i terms in (10) come from the μ5-dependent two-pion
field contributions in (6), also included in Fig. 1(e).
The pole of (10) yields the μ5-dependent modification of

the pion dispersion relation at this order,

p2 ¼ M2
πðTÞ − κ̃2p2

0 − ðκ̃1 − κ̃3ÞM2
0 ð11Þ

as already obtained in [13], where the consequences of the
μ5 corrections for the pole and screening masses, as well as
the modification of the pion velocity were analyzed in
detail.
Since the μ5 modifications to the dispersion relation

in (11) areOðp4Þ, as it is the differenceM2
πðTÞ −M2

0, when
setting the external legs on shell it only affects the LO
amplitude. Thus, let us consider the tree-level contribution
A2 in Fig. 1(a) off the mass shell, i.e., without specifying
the dispersion relation for the external legs, which is
given by

A2;off-shell ¼
3s −

P
4
i¼1 p

2
i þM2

0

3F2
ð12Þ

which to leading order, i.e., p2
i ¼ M2

0 reduces to the well-
known Weinberg’s low-energy theorem

A2ðsÞ ¼
s −M2

0

F2
ð13Þ

Replacing then the dispersion relation (11) in (12) gives
rise to the following Oðp4Þ μ5-dependent correction to the
amplitude:

δA4;drðS;T;U; μ5Þ ¼
1

3F2
½κ̃2ðS20 þ T2

0 þ U2
0Þ

þ 4ðκ̃1 − κ̃3ÞM2
0�: ð14Þ

C. LSZ residue

As explained above, including properly the dressed
external lines as given in Figs. 1(d) and 1(e), amounts to
consider scattering of pions with the modified dispersion
relation (11). According to the LSZ formalism, we must
then amputate those dressed external legs by multiplying
the 4-point Green function by the adequate momentum
function removing the pole for each leg and extracting the
corresponding residue.
One must therefore repeat the standard LSZ derivation

[34] considering asymptotic external fields satisfying a
generic dispersion relation p2

0 ¼ fðjp⃗j2Þ, which in our
present case (11) corresponds at this order to

fðjp⃗j2Þ ¼ jp⃗j2 þM2
πðTÞ − κ̃2jp⃗j2 þ ðκ̃3 − κ̃1 − κ̃2ÞM2

0:

ð15Þ

Defining as customary the corresponding asymptotic
field operator in terms of creation and annihilation oper-
ators, now with the modified dispersion relation, i.e., for an
asymptotic scalar field
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φðxÞ ¼
Z

d3k⃗
ð2πÞ32k0

½aðkÞe−ikx þ a†ðkÞeikx�; ð16Þ

satisfying k20 ¼ fðjk⃗j2Þ, one can follow the same steps as
in [34] and check that in the end one has just to modify the
standard LSZ amputation prescription as

��Yn
i¼1

½−q2 þM2
π�
�
Gðq1;…; qnÞ

�
OS

→

��Yn
i¼1

½−ðq0i Þ2 þ fðjq⃗j2Þ�
�
Gðq1;…; qnÞ

�
OS

ð17Þ

for n external legs, with G the n-point connected Green
function with all momenta set as incoming and where “OS”
means the mass shell condition ðq0i Þ2 ¼ fðjqi!j2Þ.
Therefore, in our case, from (17) and (15), we are left

with the following correction factor with respect to the
μ5 ¼ 0 case, coming from the amputation of the external
legs, at the order we are considering here:

q2 −M2
πðTÞ þ κ̃2jq⃗j2 − ðκ̃3 − κ̃1 − κ̃2ÞM2

0

q2 −M2
πðTÞ þ eκ1q2 þ eκ2q20 − eκ3M2

0

¼ ð1 − κ̃1 − κ̃2Þ½q2 −M2
πðTÞ� þ eκ1q2 þ eκ2q20 − eκ3M2

0

q2 −M2
πðTÞ þ eκ1q2 þ eκ2q20 − eκ3M2

πðTÞ
þOðp6Þ

¼ 1 − κ̃1 − κ̃2 þOðp6Þ ð18Þ

being q a particular external four-momentum. As in the
dispersion relation modification, the above correction
affects at this order only the LO amplitude in (13), giving
rise to the following Oðp4Þ correction:

δA4;LSZðS;T;U; μ5Þ ¼ −4ðκ̃1 þ κ̃2Þ
s −M2

0

F2
; ð19Þ

where the factor of 4 comes from the four external legs.
Therefore, collecting the results in (9), (14), and (19), the

total amplitude is given by

AðS;T;U;T; μ5Þ ¼ AðS;T;U;T; μ5 ¼ 0Þ

þ 4μ25
3F4

f−3ð3κ1 þ 4κ2Þsþ 3κ2S20

þ 3½4ðκ1 þ κ2Þ − κ3�M2
0g: ð20Þ

Note that, although for simplicity we have expressed the
amplitude in terms of M0; F, for numerical purposes we
will express those parameters in terms of the physical ones
Mπ ≃ 140 MeV and Fπ ≃ 93 MeV using the T ¼ μ5 ¼ 0
one-loop expressions in [24] relating the physical Mπ and
Fπ with M0; F.

D. Partial waves, unitarity, and resonance poles

As we mentioned above, we are going to use the IAM to
unitarize the amplitude in order to study poles in the
complex plane associated to resonances. The IAM at T ¼
μ5 ¼ 0 has proven to be a very useful method to unitarize
meson scattering partial waves tIJ of well-defined isospin I
and total angular momentum J [26,27] which in many cases
allows to extend the ChPT applicability range and in
addition it generates resonances in the proper channels
as poles in the appropriate Riemann sheets in the s-complex
plane. In particular, for ππ scattering, it describes the poles
corresponding to the f0ð500Þ=σ in the I ¼ J ¼ 0 channel
and the ρð770Þ for I ¼ J ¼ 1.
The extension of this method to nonzero T has allowed to

describe successfully the thermal poles of the f0ð500Þ and
ρð770Þ for ππ scattering [35] as well as the K�

0ð700Þ and
K�ð890Þ for πK scattering [33,36]. A very interesting
feature in that context is that the thermal pole of the
f0ð500Þ, within a saturation approach, describes the scalar
susceptibility and hence the transition temperature Tc
consistently with lattice results [29]. We will be more
specific about that in Sec. III. Similar conclusions hold for
the K�

0ð700Þ and the I ¼ 1=2 scalar susceptibility, which
involves also Uð1ÞA restoration [36].
At μ5 ≠ 0 and T ≠ 0, we define the partial waves

following the standard conventions [25,27] i.e., the isospin
projection reads

T0ðS;T;U;T; μ5Þ ¼ 3AðS;T;U;T; μ5Þ þ AðT;S;U;T; μ5Þ
þ AðU;T;S;T; μ5Þ;

T1ðS;T;U;T; μ5Þ ¼ AðT;S;U;T; μ5Þ − AðU;T;S;T; μ5Þ;
T2ðS;T;U;T; μ5Þ ¼ AðT;S;U;T; μ5Þ þ AðU;T;S;T; μ5Þ;

ð21Þ

after which one can set the center-of-mass conditions
to construct the projection into IJ partial waves for ππ
scattering,

tIJðs;T;μ5Þ ¼
1

64π

Z
1

−1
dxPJðxÞTI½S0 ¼

ffiffiffi
s

p
; S⃗ ¼ 0⃗;

T0 ¼ 0; jT⃗j2 ¼ −tðs; xÞ;U0 ¼ 0; jU⃗j2 ¼ −uðs; xÞ�
ð22Þ

where PJ is the Jth Legendre polynomial and

tðs; xÞ ¼ −
sσ2ðsÞ

2
ð1 − xÞ; uðs; xÞ ¼ −

sσ2ðsÞ
2

ð1þ xÞ
ð23Þ

with σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π
s

q
the phase space of two identical

particles of mass Mπ.
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From (20), the μ5 corrections to the lowest angular-
momentum perturbative ChPT partial waves read,

Δt00 ¼ −
μ25

8πF4
½κ01sþ κ02M

2
0�; ð24Þ

Δt11 ¼ −
μ25

24πF4
ðs − 4M2

0Þκ03; ð25Þ

Δt20 ¼ μ25
8πF4

½κ04s − 2M2
0κ

0
5�; ð26Þ

with the following combinations of κi constants

κ01 ¼ 6κ1þ 5κ2; κ02 ¼−8κ1 − 4κ2þ 5κ3; κ03 ¼ 3κ1þ 4κ2;

κ04 ¼ 3κ1þ 4κ2; κ05 ¼ 2κ1þ 4κ2þ κ3: ð27Þ

Note that the I ¼ J ¼ 1 channel depends only on one κi
combination, unlike the scalar partial waves, since it
vanishes at the two-pion threshold due to its vector nature
and therefore the s and −4M2

0 coefficients coincide.
The ChPT partial waves satisfy the unitarity conditions

only perturbatively, i.e., if we write t ¼ t2 þ t4 þ � � � for a
given IJ, we have

Imt2ðs;T; μ5Þ ¼ 0; Imt4ðs;T; μ5Þ ¼ σTðs;TÞt22ðs;T; μ5Þ;
ðs ≥ 4M2

πÞ; ð28Þ

where σTðs;TÞ ¼ σðsÞ½1þ 2nBð
ffiffiffi
s

p
;TÞ� with nBðx;TÞ ¼

½ex=T − 1�−1 the Bose-Einstein distribution function, is the
so called thermal phase space, which accounts for scatter-
ing processes inside the thermal bath [25,33]. Recall that t2
is independent of T and μ5, and the μ5 contributions to t4
are real for real s. Therefore, they do not affect the thermal-
perturbative unitarity relation (28), which is the perturba-
tive version of the unitarity relation for partial waves,

ImtIJðs;T; μ5Þ ¼ σTðs;TÞjtIJðs;T; μ5Þj2 ðs ≥ 4M2
πÞ;
ð29Þ

which can also be written in terms of the inverse amplitude
as Imð1=tIJÞ ¼ −σT .
Unitarization methods aim to construct amplitudes

satisfying exactly unitarity, which in particular allows to
generate dynamically physical resonances. The difference
between the various methods lies in the approximation
performed for Reð1=tÞ. We will follow here the IAM, for
which Reð1=tÞ is approximated by the ChPT amplitude to
fourth order. Other approaches for Reð1=tÞ are known to
produce compatible results for the resonance poles [37].
For instance, the so-called chiral unitary (CU) approach
includes only the contribution of the s-channel loop
[Fig. 1(f)] [38] and has been used at T ≠ 0 both for ππ
[29] and πK [36] scattering. The qualitative behavior

obtained for the corresponding thermal poles is quite
similar, although in the ππ case the IAM allows for a
much accurate description of lattice results for the scalar
susceptibility, as explained below.
Including the μ5 dependence, the unitarized IAM ampli-

tude is given for each partial wave by

tUðs;T; μ5Þ ¼
½t2ðsÞ�2

t2ðsÞ − t4ðs;T; μ5Þ
: ð30Þ

We will use the above IAM formula to generate the
f0ð500Þ and ρð770Þ resonances in the I ¼ J ¼ 0 and I ¼
J ¼ 1 respectively, which appear as poles in the second
Riemann sheet of the amplitude in the s complex plane
across the unitarity cut s ≥ 4M2

π. As customary, we para-
metrize the pole position as sp ¼ ðMp − iΓp=2Þ2 so that
Mp, Γp would correspond to the mass and width for the
case of narrow resonances Γp ≪ Mp as in the ρ case.
As mentioned above, at the order we are considering

here, μ5 appears as a correction to t4 not affecting the
perturbative-unitarity relation (28). Higher-order μ5 cor-
rections could yield nontrivial corrections through the
modification of vertices and/or the dispersion relation,
but since the distribution functions of pions in the thermal
bath is not affected by μ5, and neither are then the relevant
scattering processes inside the thermal bath [33], the
unitarity relation (29) should keep the same structure.

III. THE SCALAR SUSCEPTIBILITY
AND THE μ5 DEPENDENCE

OF THE TRANSITION TEMPERATURE

A key observable signaling chiral symmetry restoration
is the light scalar susceptibility

χSðT; μ5Þ ¼ −
∂

∂m
hqqilðT; μ5Þ

¼
Z
T
dx½hq̄lqlðxÞq̄lqlð0Þi − hq̄qi2l ðT; μ5Þ� ð31Þ

with hq̄qil ¼ hūuþ d̄di the light quark condensate. The
susceptibility χS develops a peak at the transition temper-
ature in the crossover regime that should get stronger as the
light u, d quark masses decrease, becoming divergent in the
light chiral limit if the transition is of second order [39–47].
That quantity has, by definition, the quantum numbers of

the vacuum, i.e., those of the I ¼ J ¼ 0 f0ð500Þ state. In
fact, it has been shown that it is a very good approximation
to saturate the light scalar susceptibility with the f0ð500Þ
thermal resonance near the transition [28,29] which yields a
peak for χSðTÞ fully compatible with lattice results. Such a
saturation approach reads in our present case,

χSðT; μ5Þ
χSð0; μ5Þ

¼ M2
Sð0; μ5Þ

M2
SðT; μ5Þ

; ð32Þ
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where we have included the μ5 dependence and
M2

SðT;μ5Þ ¼ Re½spðT;μ5Þ� ¼M2
pðT;μ5Þ− Γ2

pðT;μ5Þ=4 be-
haves as the thermal mass of the f0ð500Þ. Note that χS
scales as the inverse of the squared mass of the lightest
scalar state, since it is nothing but the q̄q correlator at
vanishing four-momentum, according to (31).
The previous approach will allow us to obtain the

dependence Tcðμ5Þ as the position of the χS peak, and
compare it with lattice results and with the previous
work [13] where it was determined from the vanishing
point of the light quark condensate hq̄qilðT; μ5Þ, calculated
from the ChPT free energy. We emphasize that determining
Tc from the thermal f0ð500Þ saturated unitarized approach
is closer to the lattice results and to the QCD transition
since the dominant degree of freedom for that observable
near the transition is indeed the thermal f0ð500Þ [29].
Actually, as we recall in detail in Sec. IV, at μ5 ¼ 0 this
approach not only provides the expected peak behavior
consistently with lattice data, but the value of Tc obtained
using the same LEC describing T ¼ 0 physics is remark-
ably close to the lattice determinations. Conversely, the
ChPT quark condensate only describes the qualitative
chiral restoring decreasing behavior, but the value of Tc
obtained merely with the pion component lies well above
the lattice one and actually one needs to include many
heavier hadrons to reduce that value to the expected
one [48]. Nevertheless, it was shown in [13] that the ratio
Tcðμ5Þ=Tcð0Þ of lattice results can be very reasonably
described just with the ChPT expressions for the quark
condensate, yielding a decent determination at least of the
κi combination surviving in the chiral limit. More details
will be provided in Sec. IVA.

IV. NUMERICAL RESULTS

A. Tcðμ5Þ and fits of κi to lattice

As mentioned above, the undetermined new LEC κi
appearing in the Oðp4Þμ5 ≠ 0 Lagrangian (6) were fitted
in [13] to lattice measurements. In particular, to the
available lattice data for Tcðμ5Þ in [15] and to the chiral
charge density ρ5 and topological susceptibility χtop in [18].
Regarding Tc, the fit in [13] was performed with the

NNLO ChPT quark condensate hq̄qil, which depends on
the combinations κa ¼ 2κ1 − κ2 and κb ¼ κ1 þ κ2 − κ3,
where κb is the constant multiplying M2

π in hq̄qil. Even
though the lattice results correspond to a high value of the
pion mass, the fit in [13] for the ratio Tcðμ5Þ=Tcð0Þ with

the quark condensate up to μ5 ¼ 475 MeV yields a quite
reasonable χ2=d:o:f: ≃ 1.4, reproducing consistently the
increasing Tcðμ5Þ behavior. Actually, such fits are almost
insensitive to κb and in fact one gets a very good fit with the
chiral limit expressions, showing little dependence on the
pion mass for that ratio and providing a good determination
for κa ¼ ð2.3� 0.4Þ× 10−3, with a reasonably small uncer-
tainty given the small number of lattice points available.
On the other hand, κ3 can be fitted independently from

the ratio χtopðμ5Þ=χtopð0Þ, which at this order in ChPT
depends solely on that constant. Although in that case
χ2=dof ≃ 1.1 for the best fit is still quite good, the obtained
κ3 ¼ ð0.5� 0.9Þ × 10−3 shows a larger uncertainty. Since
κ1;2;3 do not enter any other lattice observable at that order,
their individual determination involved large uncertainties
with the analysis performed in [13]. In Table I we provide
the estimate given in [13] for the individual κ1;2;3 values
combining all the information obtained from the fits in
that paper.
Our present analysis provides new interesting possibil-

ities for determining the κ1;2;3 constants from lattice results.
Thus, on the one hand, as commented, the prediction for
Tcðμ5Þ from the peak of the saturated scalar susceptibility is
much more reliable as a truly transition temperature than
the prediction from the ChPT quark condensate, as con-
firmed by the numerical values for Tc given below. Besides,
note that in the lattice works [15,16] Tcðμ5Þ is determined
precisely from the peak of the scalar susceptibility. On the
other hand, Δt00 in (24) and hence Tc depend on the
combinations κ01 and κ02 in (27), which are different from
κa;b appearing in the quark condensate. Thus, a fit of those
combinations combined with the analysis in [13] should
allow for a better individual determination of κ1;2;3.
The pion scattering amplitude and poles depend in

addition on the LEC l̄1;2;3;4 of the μ5 ¼ 0 Lagrangian
in [24]. We will take here the values of l̄1;2 LEC fitted
in [49] to scattering data, namely l̄1 ¼ −0.1� 0.2, l̄2 ¼
5.8� 0.2. For l̄3 we take the estimate l̄3 ¼ 3.4� 0.8 in [50]
for the sake of an easier comparison with the results in [13],
where l̄3 was fixed to that value and it was the only one
of the l̄i showing up in the fits. That l̄3 value is fully
compatible with the value used in [49], which is not fitted
but taken directly from [24]. For l̄4 we take l̄4 ¼ 4.4� 0.9,
the same value as in [49] and [24] whose central value
coincides with the estimate in [50].
With the above l̄i set, we obtain for the peak position of

the saturated scalar susceptibility (32), Tcð0Þ¼158.5MeV,

TABLE I. Numerical values of the κi parameters with the fit discussed in the main text. We also display for
comparison the estimated values obtained in [13].

κ1 × 104 κ2 × 104 κ3 × 104 χ2=d:o:f:

This work (combined fit) 9.4þ1.1
−1.3 −4.5þ1.5

−1.4 3.6þ9.1
−8.7 1.37

Estimate in [13] from Tc and χtop fits 8� 10 −5� 10 3� 10 1.4 (Tc), 1.1 (χtop)
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which, as advanced, is remarkably close to the lattice
prediction Tc ¼ 156� 1.5 MeV [46], the uncertaintites of
the LEC yielding compatibility with lattice results [29].
As a first analysis, we have fitted only the critical

temperature obtained using the saturated scalar susceptibil-
ity leaving κ01 and κ02 as fit parameters. We have considered
the lattice points provided in [15] for the critical temper-
ature ratio. In the physical limit, the sensitivity of the fit to
κ01 turns out to be much stronger than to the constant
proportional to the pion mass, i.e., κ02. Indeed, trying to fit
the lattice data, one can see that the error in κ02 is very large.
In that sense, the behavior of our present theoretical result is
similar to that in [13] based on the quark condensate and
one could think of fitting the lattice points with the chiral
limit result only, as in that work.
However, there is an important qualitative difference

between the two approaches regarding the chiral limit.
The ChPT quark condensate merely reduces its value in
that limit, and consequently Tc is also reduced, but the
qualitative form of the curve is similar and, as mentioned,
the ratio Tcðμ5Þ=Tcð0Þ is almost unaffected. In fact, since it
is based on the ChPT perturbative approach, it does not
reproduce the expected inflection point at Tc in the physical
limit. However, the susceptibility approach we are discus-
sing here, based on thermal scattering, resembles more
accurately the expected shape, i.e., a peak at Tc in the
physical limit, turning into a divergence in the chiral limit at
Tchiral
c ðμ5 ¼ 0Þ ¼ 125.5 MeV, also quite close to the lattice

predictions [44]. Such strong qualitative change in the
chiral limit is expected to show somehow in the sensitivity
of the fit. This is indeed the case; if we perform the fit in
the chiral limit we obtain κ01 ¼ ð7.7� 0.8Þ × 10−3 and a
χ2=dof ¼ 3.90, where the uncertainty corresponds to the
95% confidence level of the fit. This result is compatible
with κ01 ¼ ð2.3� 7.8Þ × 10−3 estimated from κ1;2;3 in [13]
because of the large error in κi. However, the mean values
are quite far from each other. Thus, we conclude that
although the dependence with κ01 is larger than with κ

0
2, it is

crucial to consider the mass of the pion, and thus the
constant κ02, to accurately determine the critical temperature
and fit the selected lattice points in the approach based on
the saturated scalar susceptibility. As we show below, doing
so we will obtain a better fit and a better agreement between
the present results and those in [13].
Therefore, in order to reduce the error of the κ02 constant

and to incorporate further lattice results, we will perform a
combined fit with κ1;2;3 as fit parameters and where the fitted
observables will be, on the one hand, Tcðμ5Þ=Tcð0Þwith the
two methods already discussed, i.e., the ChPT condensate
from [13] and the scalar susceptibility obtained here, and, on
the other hand, the topological susceptibility χtop, with the
lattice results in [18] fittedwith the theoretical ChPTanalysis
in [13]. We have used the full Mπ ≠ 0 ChPT expression in
[13] for the condensate and we have checked that using the
chiral limit expression instead does not alter significatively

the obtained κi parameters nor their uncertaintites, as
expected from our previous comments. Furthermore, we
have assumed that the fitted datasets are uncorrelated.
The result of such combined fit is showed in Table I,

where we provide the κi and their uncertainties for a
95% confidence level. The error contours obtained are
shown in Figs. 2 and 3 we display the results of the fit for
the Tc ratio and χtop. Lattice points are perfectly compatible
with both Tc determinations and confirm the growing
behavior of Tcðμ5Þ. In fact, we have checked that Tcðμ5Þ
also grows within the same range when using the present Tc
determination but with the central κi values in [13]. As
mentioned, the Tc determination is quite different in both
approaches. Namely,TChPTq̄q

c ð0Þ ¼ 301 MeVandT latt
c ð0Þ ¼

195.8 MeV for the lattice work we are considering [15],
which, due to the higher pionmass, is notably higher than the
standard value measured in the physical limit [46]. The error
band of the topological susceptibility is similar to that
reported in [13], since the uncertainty of κ3 obtained from
our present fit is indeed of the same order as their value, as it
can be seen in Table I.
To calculate the error contours, the variables κ1;2;3 have

been marginally integrated. That is, from the χ2ðκ1; κ2; κ3Þ,
we calculate the marginal χ2ðκ1; κ2Þ, χ2ðκ2; κ3Þ, χ2ðκ1; κ3Þ
functions. The χ2ðκ1; κ2Þ is the one we now minimize and
use to obtain the error contours drawn in the plot of κ2
versus κ1 in Fig. 2. Similarly χ2ðκ1; κ3Þ and χ2ðκ2; κ3Þ are
used to find the contours in the ðκ3; κ1Þ and ðκ3; κ2Þ planes.
As a result of this fit, it can be seen in Fig. 2 that the κ1;2;3

FIG. 2. Error contours for the fit discussed in the main text. The
black lines show the ‘best-fit’ locations and the contours
correspond to the 68% (red dashed line) and 95% (blue full
line) confidence levels.
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constants are correlated and the linear combinations
κ2 − 1.2κ1, κ3 − 7.4κ1, and κ3 þ 6.3κ2 are uncorrelated.
Finally, let us comment that, as discussed in [13], certain

physical conditions impose some sign restrictions on the κi
parameters. Thus, from the NLO ChPT dispersion relation
(11) one infers, on the one hand, that to ensure that the pion

velocity remains below the speed of light for any value of
μ5, κ2 must be negative. On the other hand, the combination
κ1 − κ3 must be positive to make sure that the squared pion
mass at NLO remains positive for all values of μ5, i.e., that
pions do not become tachyonic. The fit value we have
obtained here for κ2, provided in Table I remains negative

FIG. 4. μ5 dependence of the perturbative phase shifts δIJ for IJ ¼ 00, 11, 20 at T ¼ 0 MeV and T ¼ 150 MeV.

FIG. 3. Combined fit of Tcðμ5Þ=Tcð0Þ (left) determined from the NNLO ChPT quark condensate [13] and the present analysis using
the saturated scalar susceptibility, and the topological susceptibility (right) with the ChPT result [13]. We also show the lattice results
from [15,18] and their uncertainties. All the results are plotted with the κi set corresponding to our present combined fit, given in Table I.

PION SCATTERING, LIGHT RESONANCES, AND CHIRAL … PHYS. REV. D 109, 034011 (2024)

034011-9



within uncertainties, while the central value of κ1 − κ3 ∼
ð6� 9Þ × 10−4 is positive, although the larger κ3 uncer-
tainty affects the sign of that combination. Additional
lattice data for the topological susceptibility would be
needed to achieve a smaller uncertainty, since this is the
observable most sensitive to κ3, as explained.

B. Phase shifts, resonances, and the scalar susceptibility

Here, we present our results for different observables,
using the values of κi obtained in the fit performed in
Sec. IVA and provided in Table I. The uncertainty bands in
the different observables coming from those of κi in Table I,
grow with μ25. Thus, the upper value considered here μ5 ¼
475 MeV sets a natural applicability limit of our approach,
since for that value the uncertainty bands start to overlap
with the μ5 ¼ 0 curves.
The scattering phase shifts δIJ in different channels for

μ5 ¼ 0 MeV; 300 MeV, and 475 MeV, are displayed in
Fig. 4 for the perturbative amplitude and in Fig. 5 for the
unitarized one in the resonant channels, where we appre-
ciate the typical Breit-Wigner shape in the I ¼ J ¼ 1
around the ρ mass. In both cases we represent the results
for T ¼ 0 MeV and T ¼ 150 MeV. It is noteworthy that
each channel retains its respective attractive or repulsive
nature with μ5 ≠ 0 and the absolute value of all the phase

shifts is reduced as μ5 increases. Such reduction goes in the
opposite direction as the temperature effects [25]. We also
see that the μ5 variation in the vector-isovector channel is
quite small.
Our results for the pole parameters as a function of μ5 for

T ¼ 0 are displayed in Fig. 6. The uncertainty bands
corresponding to those of the κi in Table I are showed,
confirming, as mentioned above, that our results are
predictive for low and moderate values of μ5. It is worth
pointing out that in general, we expect a much softer
dependence with the fourth-order LEC for the pole in the
I ¼ J ¼ 0 channel than in the I ¼ J ¼ 1 one [37]. That
explains the narrower uncertainty bands for the f0ð500Þ=σ
in Fig. 6 even though the I ¼ J ¼ 1 amplitude depends
only on one single κi combination, as given in (25).
The results for the combined T and μ5 corrections for the

pole parameters are showed in Fig. 7. Our conclusion is that
both the mass and width pole parameters Mp, Γp increase
with μ5 for both channels and for all temperatures.
For the f0ð500Þ case, the effect is numerically more

significant for Γp, while for Mp the μ5 increase tends to
vanish as the temperature approaches the transition region.
The latter can be understood as a chiral restoring behavior.
Namely, MpðTÞ is expected to decrease rapidly with T
driven by chiral symmetry restoration, reaching the two-
pion threshold while the f0ð500Þ scalar mass M2

S, where

FIG. 5. μ5 dependence of the unitarized phase shifts δIJ for IJ ¼ 00, 11 at T ¼ 0 MeV and 150 MeV.
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FIG. 7. Temperature evolution of the mass and width of the f0ð500Þ and ρð770Þ resonances for μ5 ¼ 0 MeV, 300 MeV, and 475 MeV.

FIG. 6. Corrections to the Mp and Γp parameters of the f0ð500Þ and ρð770Þ resonances due to μ5 at T ¼ 0 MeV.
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bothMp and Γp enter, tends to become degenerate with the
pion mass [47]. Thus, the increase ofMσ

p with μ5 at any T is
consistent with the increase of Tcðμ5Þ, while the curves
converging as T increases indicates that the dropping effect
of Mσ

pðTÞ towards threshold driven by chiral restoration is
stronger than the μ5 increase. Such behavior is almost
unaffected by the μ5 corrections to the pion mass, which,
with the values of κi in Table I are of the order of a few
percent, both for the pole and screening pion masses
derived from the dispersion relation [13].
As for the ρ channel, the dominant μ5 effect is the

increase of the mass, while the width increase is softer,
contrary to the T effect, as seen in Fig. 7. Regarding the
connection with the dilepton spectrum, the combined effect
of T and μ5 corrections near the transition temperature
would be then a displacement (mass increase) and widen-
ing of the dilepton yield around the ρ mass region. This is
qualitatively in agreement with the analysis in [22] within
the NJL model, where for vanishing three-momenta of the
dilepton pair, which corresponds to the case of the ρ at
rest with the thermal bath that we are considering here, for
μ5 ≠ 0 the unitarity cut contribution to dileptons is dis-
placed to a higher invariant mass than for μ5 ¼ 0.
Finally, in Fig. 8 we plot the f0ð500Þ saturated scalar

susceptibility temperature dependence for μ5 ¼ 0 MeV;
300 MeV; 475 MeV. Apart from the shift of the peak
position corresponding to the increasing of Tc, χS is
significantly larger with increasing μ5, notably around
Tc. This qualitative behavior is confirmed by the lattice
analysis in [15] although the higher pion mass used in
those simulations does not allow for a direct comparison
with the result in Fig. 8.

V. CONCLUSIONS

We have calculated ππ scattering to one loop in chiral
perturbation theory at nonzero temperature and nonzero

chiral imbalance chemical potential μ5. The ChPT ampli-
tude has been unitarized within the inverse amplitude
method, which allows to generate dynamically the light
resonances f0ð500Þ=σ and ρð770Þ and study the modifi-
cation of their spectral properties with T and μ5.
From the f0ð500Þ pole, using the saturation approach

followed in previous works, we have calculated the scalar
susceptibility χSðT; μ5Þ. For the μ5 range considered in this
work, χS develops a peak which signals chiral symmetry
restoration at Tcðμ5Þ, consistently with μ5 ¼ 0 lattice
determinations.
Firstly, our present calculation of the ratio Tcðμ5Þ=Tcð0Þ

from χS allows to improve the determination of the low-
energy constants κi of the μ5 ≠ 0 Lagrangian. That ratio is
actually pretty insensitive to the pion mass, which makes it
a suitable quantity to compare with our theoretical pre-
dictions. Actually, in [13], the same ratio was used to fit the
κi combinations appearing in the quark condensate. Since
the combinations appearing in χS, coming from pion
scattering, are different from those in the quark condensate,
we have been actually able to reduce the uncertainties by
fitting lattice points for Tcðμ5Þ=Tcð0Þ and the topological
susceptibility. An important difference of the Tcðμ5Þ
determination from our present analysis with respect to
that from the quark condensate in [13] is that the chiral
limit expressions alone are not enough to fit accurately the
lattice results, since the behavior of the susceptibility in that
limit is qualitatively very different from the massive case,
corresponding to a divergence near Tc.
Secondly, for the κi values obtained in our main fit,

both the critical temperature and the scalar susceptibility
increase with μ5, in agreement with the lattice results and
consistently with the analysis in [13].
Finally, our results for the phase shifts for those κi show a

reduction with μ5 for the three channels IJ ¼ 00, 11, 20,
while the resonance pole parameters Mp, Γp increase with
μ5 for all temperatures, showing a behavior compatible with
chiral restoration in the IJ ¼ 00 case and with previous
analysis on dilepton production in the IJ ¼ 11 one.
In summary, our present work advances on the knowl-

edge of the properties of light hadron matter within a
chirally asymmetric environment, providing useful results
regarding the physics of locally P-breaking QCD in heavy-
ion collisions.
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