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The possibility that gauge theories with chiral symmetry breaking below the conformal window exhibit
an infrared fixed point is explored. With this assumption three aspects of pion physics are reproduced if the
quark mass anomalous dimension at the infrared fixed point is γ� ¼ 1. First, by matching the long-distance
scalar adjoint correlation function. Second, by perturbing the fixed point by a small quark mass, the
mq-dependence of the pion mass is reproduced by renormalization group arguments. Third, consistency of
the trace anomaly and the Feynman-Hellmann theorem, for small mq, imply the same result once more.
This suggests the following picture for the conformal window; close to its upper boundary γ� is zero and
grows as the number of fermions is reduced until its lower boundary γ� ¼ 1 is reached, where chiral
symmetry breaking sets in. Below, the strongly coupled gauge theory with γ� ¼ 1 is infrared dual to the free
theory of pions. A possible dilaton sector of the scenario will be addressed in a companion paper.
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I. INTRODUCTION

The idea that spontaneous chiral symmetry breaking in
the strong interaction induces scale spontaneous symmetry
breaking (SSB) predates QCD [1–6]. The goal of this paper
is to explore this idea within gauge theories, using parts of
chiral perturbation theory (χPT) [7–10] and the renormal-
ization group (RG). Whether this scenario corresponds to a
new phase [11], or an unexplored feature of QCD has to be
left open at this stage. The assumption of an infrared fixed
point (IRFP) is nonstandard. The main point of the paper
is that under this hypothesis aspects of pion physics are
reproduced consistently.
An IRFP and scale SSB is accompanied by a (pseudo)

Goldstone boson, known as the dilaton. Its features and
interactions are less transparent than that of the pion as
scale symmetry is only emergent in the IR. Since the results
presented here are seemingly independent of dilaton

aspects, its main discussion is postponed to a companion
paper [12].1 At the end of the paper, we briefly comment on
how the addition of a dilaton does not alter the results.
The starting assumption is that the massless degrees of

freedoms, to which we will refer to as IR-states, see the
world as a conformal field theory (CFT) in the deep IR.2

That is, the trace of the EMT on the IR states ϕIR

hϕIRðpÞjTρ
ρjϕ0

IRðpÞi → 0; ð1:1Þ

vanishes for zero momentum transfer.3 It is though rea-
sonable to assume that there exists a scheme for which
β� ¼ 0 if (1.1) holds. Amongst those degrees of freedom
are the vacuum, the pions resulting from chiral SSB and
possibly the dilaton [11,12]. Equation (1.1) may be
regarded as the minimal form by which IR conformality
manifests itself in the dilatation Ward identity. Technically
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1Possibly the most spectacular aspect of a dilaton is that massive hadrons, such as a nucleon, and a traceless energy momentum tensor
(EMT) hNjTρ

ρjNi ¼ 0 are compatible with each other. [11]. The dilaton restores the dilatation Ward identity just as the pion does for
chiral Ward identities. Another attractive feature is that the gauge theory contribution to the cosmological constant could be zero for
mq ¼ 0 [11]. It is worthwhile to mention that the dilaton under discussion is not a gravity-scalar, such as in string theory, nor an
accidentally light scalar but a genuine Goldstone resulting from SSB, e.g. [13] for a historical perspective. If QCD were to possess an
IRFP and a dilaton, there is consensus that it corresponds to the σ-meson, known as the f0ð500Þ in the Particle Data Group [14].

2See Appendix B for comments on scale versus conformal symmetry.
3This does not imply that any definition of a β-function assumes a zero in the IR as it is only the combination of β times the field

strength tensor which is RG-invariant cf. Sec. II C 1. This aspect has for example been emphasized in the review [15].

PHYSICAL REVIEW D 109, 034009 (2024)

2470-0010=2024=109(3)=034009(11) 034009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.034009&domain=pdf&date_stamp=2024-02-08
https://doi.org/10.1103/PhysRevD.109.034009
https://doi.org/10.1103/PhysRevD.109.034009
https://doi.org/10.1103/PhysRevD.109.034009
https://doi.org/10.1103/PhysRevD.109.034009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


this means that correlation functions in the deep IR, and
generally physical observables, are determined by the
scaling dimension hOðxÞOð0Þi ∝ ðx2Þ−ΔO . The quark mass
anomalous dimension γm, denoted by γ� ¼ γmjμ¼0 at the
IRFP, governs the scaling dimension of many important
operators. The central result of this paper is that with the
IRFP-assumption, this anomalous dimension must assume

γ� ¼ 1: ð1:2Þ
This is inferred in three different ways, by matching the
pion low energy physics with the gauge theory. The value
(1.2) is then important in two respects: it marks the lower
boundary of the conformal window and it describes the
pion physics in the chirally broken phase in terms of the
strongly coupled IRFP of the gauge theory. Whereas
the former is compatible with previous work and lattice
Monte Carlo studies, as discussed in the conclusions, the
latter is a new perspective.
The main part of the paper consists of Sec. II where

γ� ¼ 1 (1.2) is derived from: a) a specific long-distance
correlator; b) the hyperscaling relation of the pion mass; and
c) the matching of the trace anomaly with the Feynman-
Hellmann theorem, given in Secs. II A, II B, and II C.
respectively. In Sec. III we comment on what happens when
a dilaton is added. The paper ends with a summary and
discussion in Sec. IV. Appendixes A, B, and C contain
conventions, related discussion of scale versus conformal
invariance and the soft-pion theorem in use.

II. CONSEQUENCES OF AN IRFP
FOR QCD-LIKE THEORIES

The conformal window is reviewed as this work builds on
it, and for further reading the reader is referred to [15–17].
The starting point is an asymptotically free gauge theory
with gauge group G, e.g. G ¼ SUðNcÞ, and Nf massless
quarks in a given representation of G. The point of study are
the IR phases of these gauge theories as a function ofNc, Nf

and the quark representation, cf. Fig. 1. The figure on the left

depicts the standard picture for nonsupersymmetric gauge
theories.4 The boundary in the ðNc; NfÞ plane of where
asymptotic freedom is lost is known and for Nf below the
boundary the theories admit a perturbative IRFP, the so-
called Caswell-Banks-Zaks FP [23,24]. This phase, shown
in green, continues until the coupling becomes strong
enough for chiral symmetry to break via the formation of
the quark condensate hq̄qi ≠ 0, marked in dark blue and
collectively referred to as QCD. This breaks the global flavor
symmetry SUðNfÞL ⊗ SUðNfÞR → SUðNfÞV, accompa-
nied byN2

f − 1massless pions as Goldstones and is believed
to cause quarks and gluons to confine into hadrons. The
exact boundary between the two phases is unknown and the
matter of intensive debates in the literature. All evidence
points towards a monotonically increasing γ�, cf. the list of
references in the conclusions. A large γ� is important for the
walking technicolor scenario, e.g. [16,25], and gave rise to
efforts to determine it from lattice Monte Carlo simulations,
e.g. [26–39] as reviewed in [15,17,40]. In [11] the conformal
dilaton was advocated as a third phase as shown in the
central figure and its domain and location should not be
taken literally. In this work we refer to this phase as the
conformal dilaton CD of QCD. It seemed reasonable to
assume that this phase lies in between the others as it is the
same for its properties. Clearly neither its existence nor its
location are certainties. At least, any of the three cases shown
in Fig. 1 are logical possibilities. This paper consists in
analyzing the IRFP scenario, or the CD-QCD phase. It
seems worthwhile to reemphasize that none of the results
obtained directly depend on the presence of a dilaton.

FIG. 1. Sketch of phase diagrams of gauge theories with quark matter as a function of the number of flavors Nf and colors Nc,
as described in the main text. “No AF” stands for no asymptotic freedom and its boundary is known from the Caswell-Banks-Zaks
analysis [23,24]. The lower dark green line marks the end of the conformal window and its precise location is unknown in the
nonsupersymmetric case. In the lower dark blue phase chiral symmetry is broken, hadrons confine and Nf ¼ 3 and Nc ¼ 3 represents
QCD. (left) Literature-standard conformal window scenario. (center) CD-QCD as a third phase as advertised in [11]. (right) QCD and
CD-QCD are one and the same. We emphasize again that boundaries other than the one of AF are unknown and are shown for illustrative
purposes only.

4The conformal window of supersymmetric theories is well-
understood due to the Seiberg dualities [18–21] and the exact
NSVZ β-function [22]. The lower boundary becomes a pertur-
bative FP in the dual theory. The value of γ� at which the
transition occurs is γ� ¼ 1, related to the unitarity bound of the
squark composite operator ΔQ̃Q ¼ 2 − γ� ≥ 1. The phases below
the conformal window are richer in that there is a phase with
confinement without chiral symmetry breaking. It is not believed
that this is repeated for nonsupersymmetric gauge theories.
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A. Deep-IR interpretation of the adjoint scalar
correlator (mq = 0)

For mq ¼ 0 the theory exhibits, the previously men-
tioned, scaling in correlation functions and this is what
we will exploit in this section. The scalar operator, with
JP ¼ 0þ quantum numbers

Sa ¼ q̄Taq; ð2:1Þ

where Ta generates the flavor symmetry, is an example that
offers itself since it is not perturbed by a single Goldstone.
Consistency of the IRFP interpretation means that

hSaðxÞSað0ÞiCD−QCD ¼ hSaðxÞSað0ÞiχPT; for x2 → ∞;

ð2:2Þ

must hold, since they describe the same theory in the
deep-IR limit x2 → ∞. The next two sections are devoted to
this matching.5

1. The CD-QCD correlator in the deep IR

It is our assumption that QCD is described by an IRFP in
the deep IR, which in turn means that CFT methods apply
in that regime. In CFTs 2- and 3-point correlators [43–48]
are entirely governed by their scaling dimensions,
ΔO ¼ dO þ γO, which is the sum of the engineering
dimension and the anomalous dimension. Concretely, for
a Euclidean CFT

hOðxÞO†ð0ÞiCFT ∝ ðx2Þ−ΔO ; ð2:3Þ

where x2 ¼ x20 þ x21 þ x22 þ x23 and h…i denoting, here-
after, the vacuum expectation value. The behavior in (2.3)
should be mirrored by the correlation function (2.2) in the
deep IR. The only necessary ingredient is the scaling
dimension of Sa which is

ΔSa ¼ dSa − γ� ¼ 3 − γ�; ð2:4Þ

since dSa ¼ 3. Equation (2.4) follows from ΔSa ¼ ΔPa ,
which holds at least in perturbation theory since the γ5
can be commuted through the diagram for Pa ¼ q̄iγ5Taq
to recover Sa if mq ¼ 0 is assumed. In turn, ΔPa ¼ 3 − γm
follows from the Ward identity ∂

μhAa
μðxÞPbð0Þi ∝

δð4ÞðxÞδabhq̄qi and the fact that Aa
μ and mqq̄q and are

RG invariants. This is true for the former since it is a softly

conserved current and for the latter it follows for instance
from the quantum action principle for which the reader is
referred to [49], for a discussion in the perturbative context.
With (2.3) and (2.4), one concludes that

hSaðxÞSað0ÞiCD-QCD ∝ ðx2Þ−ð3−γ�Þ; x2 → ∞: ð2:5Þ

2. Leading-order chiral perturbation theory

In order to compute the correlator (2.2) in χPT, the QCD
operator Sa needs to be described in terms of pion fields.
This can be done by the source method [7–10], starting
from the leading-order (LO) mass Lagrangian

δLmq
¼ F2

πB0

2
Tr½MU† þUM†�; ð2:6Þ

where B0 ¼ −hq̄qi=F2
π and the quark mass matrix is

M ¼ mq1Nf
in our case. The operator Sa is obtained by

replacing M → TaJSa and differentiating the log of the
Euclidean generating functional Z with respect to the
source, hSaðxÞi ↔ δJSa ðxÞ lnZ,

SajLO ¼ −
F2
πB0

2
Tr½TaU† þ UTa�

∝ B0dabcπbπc þOð1=F2
πÞ; ð2:7Þ

where the Oð1=F2
πÞ terms are cutoff suppressed and thus

next-LO.6 The computation of the correlator in LO χPT is
now straightforward

hSaðxÞSað0ÞiχPT ∝ B2
0d

abcdabchπeðxÞπeð0Þi2 ∝ 1

x4
;

for x2 → ∞; ð2:8Þ

where as anticipated mq → 0 limit has been assumed.
Above hπeðxÞπeð0Þi ¼ 1

ð4πÞ2
1
x2, with e fixed, is the standard

Euclidean propagator for a massless scalar field πeðxÞ.
Thus the LO χPT is just given by a free field theory
computation as illustrated in Fig. 2.

3. IRFP matching and contemplation on γ� = 1
in the wider picture

The matching of CD-QCD and χPT, as in (2.2), with
(2.5) and (2.8) enforces

γ� ¼ 1; ð2:9Þ

which is the main result of this work.
5This correlator has been used in [41] to match χPT and the

spectral representation. It was deduced that the correction to
the Dirac eigenvalue density is ρðλÞ − ρð0Þ ¼ Cjλj, where C is
known and ρð0Þ ¼ −hq̄qi=π is the famous Banks-Casher
relation [42].

6Generically, dabc ≠ 0 but for Nf ¼ 2 it vanishes;
dabcdabc ∝ N2

f − 4. This accidentality is of no special concern
to the argument made in this section.
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Let us try to put this result into perspective, before
rederiving it in two different ways. First it is noted that,
γ� ¼ 1 is considerably below the unitarity bound γ� ≤ 2,
which follows from Δq̄q ¼ 3 − γ� ≥ 1 [50]. The result
gives rise to the following picture. For γ� ¼ 0 or ΔSa ¼ 3
it corresponds to two free fermions, whereas for γ� ¼ 1 or
ΔSa ¼ 2 it describes two free scalar pions and finally for
γ� ¼ 2 or ΔSa ¼ 1, when reaching the unitarity bound, it is
equivalent to one free scalar particle [51]. The message
seems to be that for integer powers of the scaling dimen-
sion, the theory lends itself to a free particle interpretation,
cf. Fig. 3. Note that the gauge theories only seem to make
use of the [0, 1] range in γ�, which corresponds to only a
third of the allowed range −1 ≤ γ� ≤ 2 in the nonsuper-
symmetric case.

Of course, (2.8) cannot be viewed as novel from the
χPT-viewpoint as it is simply the LO analysis. However,
what is new is the way in which this is realized in the gauge
theory. The free pions are IR-dual to a gauge theory with a
strongly coupled IRFP; strongly coupled since the anoma-
lous dimension is large. These types of interpretations hold
in many EFT formulations of weakly coupled ultraviolet
Lagrangians, and may be regarded as the very purpose
of the EFT program when the microscopic formulation
is known.
This suggest the following picture for the conformal

window. At the upper end γ� ¼ 0 and then γ� increases as
Nf is lowered and when γ� ¼ 1 is reached chiral symmetry
is broken and confinement sets in. The anomalous dimen-
sion γ�, then remains one in the entire domain of the CD
phase. As mentioned in the introduction the latter could be
or not be identical to QCD itself. The result (2.9) is
consistent with N ¼ 1 supersymmetric gauge theories,
as mentioned previously.

B. Scaling of the pion mass implies γ� = 1 (mq ≠ 0)

In what follows the IRFP is perturbed by a nonvanishing
quark mass mq. Even though the quark mass is scheme
dependent, the physics can be analyzed by tracking powers
of the rescaled bare mass. This is the standard method
of hyperscaling extensively applied to the conformal
window [53–57] where hadrons appear when a quark mass
term is introduced.7 The difference in the scenario at hand is
that chiral symmetry is spontaneously broken, and this
introduces a natural cutoff scale Λ ¼ 4πFπ [59]. The quan-
tity Fπ ≈ 93 MeV in QCD is the pion decay constant and
the order parameter of chiral symmetry breaking [8–10].
We assume that the χPT cutoff Λ does not affect the LOmq

behavior of the pion mass, which is natural from the
viewpoint of χPT itself which is organized in a 1=Λ-
expansion. Under this assumption the behavior of the pion
mass is governed by hyperscaling due to the RG, in the
same way as in the conformal window. The result, perhaps
most cleanly derived in [54], is

m2
πjRG ∝ m

2
1þγ�
q ; ð2:10Þ

where γ� is the previously introduced mass anomalous
dimension at the FP. In QCD the linear behavior

m2
πjQCD ∝ mq; ð2:11Þ

is deducible in many ways such as from the GMOR
relation [60], derived in Appendix C 1 from a double

FIG. 3. Range of possible IRFP anomalous dimension γ�. As
emphasized in the main text, integer values seem to play a special
role. The value of γ� is bounded from above by the unitarity
bound γ� ≤ 2ð1Þ, Δq̄q ¼ 3 − γ� ≥ 1ðΔQ̄Q ¼ 2 − γ� ≥ 1Þ [50] in
QCD-like theories (N ¼ 1 SUSY). The lower bound γ� > −1
comes from the requirement of soft breaking such that the PCAC
is not spoiled [52]. The value γ� ¼ 0 corresponds to the trivial FP
at the upper end of the conformal window cf. Fig. 1. As the
number of flavors is lowered, γ� raises and as it reaches γ� ¼ 1,
chiral symmetry breaking sets in marking the lower end of the
conformal window. This is true in N ¼ 1, cf. footnote 4, and in
this paper this is conjectured to hold in QCD-like theories as well.
The peculiarity of N ¼ 1 is that the unitarity bound and the end
of the conformal window coalesce whereas this does not seem to
be the case in QCD-like theories.

FIG. 2. Adjoint scalar correlation function in χPT (2.8) which
behaves as 1=x4 for large distances.

7The idea is that for mq ≠ 0 the quarks decouple leaving
behind pure Yang-Mills which is known to confine [58]. Hence
there are hadrons and hadronic observables which however need
to vanish when mq → 0. The way this happens is dictated by the
RG [53,54,56].
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soft-pion theorem. Since Eq. (2.11) holds in QCD, we
assume it would in a CD-QCD phase as well. The dilaton
is not affecting the LO pion mass. Hence, equating
Eqs. (2.10) and (2.11) implies the central result in γ� ¼ 1
(2.9) once more.

C. Trace anomaly and Feynman-Hellmann
theorem ðmq ≠ 0Þ

The goal of this section is to show that the trace anomaly
and the Feynman-Hellmann theorem are compatible if
γ� ¼ 1 for an IRFP upon applying the formula

2m2
π ¼ hπaðpÞjTρ

ρjπaðpÞi; a fixed: ð2:12Þ

The validity of (2.12) when a dilaton is added will be
commented on in Sec. III.

1. The Tρ
ρ-anomaly and renormalization group

invariant combinations

The part relevant to physical matrix elements of the trace
anomaly reads8

Tρ
ρjphys ¼

β

2g
G2 þ

X
q

mqð1þ γmÞq̄q; ð2:13Þ

where all quantities including the composite operators are
renormalized.
An important aspect is that mq̄q is an RG invariant as

mentioned previously. Since Tρ
ρ is an RG invariant, the

following two combinations:

O1 ¼
β

2g
G2 þ

X
q

γmmqq̄q; O2 ¼
X
q

mqq̄q; ð2:14Þ

are RG invariants, or equally so, with δγ ≡ γm − γ�

O0
1 ¼

β

2g
G2 þ δγ

X
q

mqq̄q; O0
2 ¼ ð1þ γ�Þ

X
q

mqq̄q;

ð2:15Þ

since the FP value γ� is an RG invariant. Using (2.12)
to (2.13), the OðmqÞ contribution then follows

2m2
π ¼ ð1þ γ�Þ

X
q

mqhπjq̄qjπi þOðm2
qÞ; ð2:16Þ

The statement of (2.16) is that O0
2 is the leading operator in

the quark mass and that O0
1 must be suppressed.9 Some

more insight into this matter is provided in Sec. II C 3
through the final matching.

2. The T0
0 =H viewpoint: Feynman-Hellmann theorem

The Feynman-Hellmann theorem [67,68] offers a way to
obtain the LO quark mass dependence directly from the
Hamiltonian δHm ¼ P

q mqq̄q by differentiation in mq.
It is technically convenient to use states, hπ̂ðp0Þjπ̂ðpÞi ¼
ð2πÞ3δð3Þðp⃗ − p⃗0Þ, which are normalized in nonrelativistic
manner. One can switch to the usual states by jπi ¼
jπ̂i ffiffiffiffiffiffiffiffi

2Eπ
p

after the mq differentiation. The Feynman-
Hellmann formula implies

∂lnmq
Eπ ¼

X
q

mqhπ̂jq̄qjπ̂i þOðm2
qÞ; ð2:17Þ

where Eπ ¼ hπ̂jHjπ̂i, V ↔ ð2πÞ3δð3Þð0Þ and
∂mq

hπ̂ðp0Þjπ̂ðpÞi ¼ 0 have been used. Switching back to

standard pion states jπi and using ∂mq
E2
π ¼ ∂mq

m2
π , which

follows from the mq independence of the 3-momentum p⃗,
one obtains

∂lnmq
2m2

π ¼ 2
X
q

mqhπjq̄qjπi þOðm2
qÞ: ð2:18Þ

Further assuming m2
π ¼ OðmqÞ then gives10

2m2
π ¼ 2

X
q

mqhπjq̄qjπi þOðm2
qÞ; ð2:19Þ

the formula linear in the quark mass. The formula (2.19) in
itself is not new and has been used and derived in the
literature frequently e.g. [70,71]. The correctness of (2.19)
is verified in Appendix C 1 by reproducing the GMOR
relation [60]. This is important as an incorrect numerical
prefactor, by matching to the trace anomaly below, would
give an incorrect γ�.

3. Matching the two mass formulas

The two mass formulas, (2.16) and (2.19), are, once
more, compatible with each other if and only if γ� ¼ 1. We

8The trace anomaly was first observed in correlation func-
tions [61–63] and subsequently worked out in detail [49,64–66]
including equation of motions and BRST exact terms arising
upon gauge fixing.

9From the viewpoint of χPT the relative corrections are of
order Oðmq lnmqÞ, e.g. [9,10], and thus it is possible that the RG
analysis on its own does not reveal the true next-to-LO behavior.
This is not relevant for the point we are making but worthwhile to
investigate further.

10The use of the Feynman-Hellmann theorem and its derivative
is crucial. If one were to use the Hamiltonian, written schemati-
cally as H ¼ E⃗2 þ B⃗2 þP

q mqq̄q, then applying the states

would result in 2Eπ ¼ hπjE⃗2 þ B⃗2jπi þ hπjPq mqq̄qjπi, where
the momentum dependence of Eπ has to reside in the electro-
magnetic E⃗2 þ B⃗2 matrix element, cf. [69] for related discussions.
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consider this an important result since the assumption is
weaker than in Sec. II B.11 In that section we assumed that
the renormalization behavior (hyperscaling), in the pion
sector at LO in the quark mass, is unaffected by the
presence of the χPT cutoff Λ ¼ 4πFπ . Here we merely
assumed that the β- and δγ-terms can be neglected in the
vicinity of the FP. As the RG scale μ can be made arbitrarily
small seems a lesser assumption and thus more satisfying in
our view. Since β� ¼ 0 and γ� ¼ 1 are formally correct in
that it matches the Feynman-Hellmann expression this also
provides indirect justification for the earlier statement that
the operator hπjO0

1jπi is suppressed.
It seems worthwhile to point out that independent

of whether there is an IRFP or not, hπjO1jπi ¼
hπjO2jπi þOðm2

qÞ. This is the case since both (2.13)
and (2.19) derive from first principles and are not related
to any of the specific FP assumptions made in this paper. In
more familiar notation the relation reads

hπj β
2g

G2þ
X
q

mqγmq̄qjπi ¼ hπj
X
q

mqq̄qjπiþOðm2
qÞ;

ð2:20Þ

assures that the trace anomaly and Feynman-Hellmann
derivation of the LO pion mass are consistent with each
other. The solution for an IRFP β → β� ¼ 0 and γm →
γ� ¼ 1 is a straightforward one. Other solutions, not related
to an IRFP, demand a specific interplay between the β- and
γ-term. This is though perfectly possible since O1 in (2.14)
is an RG invariant.

III. BRIEF COMMENTS ON THE ADDITION
OF A DILATON

The results obtained did not make use of the presence of
a dilaton. Conversely, if pion physics can be interpreted by
an IRFP then this suggests that a dilaton could be present
and it is a valid question whether the latter would impact on
any of the results obtained. Let us refer for practical reasons
to the dilaton as the lightest state in the JPC ¼ 0þþ flavor
singlet channel. If the dilaton remains massive in the limit
where the explicit symmetry breaking is removed,mq → 0,
then it can simply be integrated out in the deep IR and
everything remains the same. If on the other hand it
becomes massless in that limit then a closer inspection
is needed. We proceed case by case:

(i) For the long-distance correlator in Sec. II A there
would be no relevant changes. The dilaton would
alter the correlation function at Oð1=x6Þ which is

subleading with respect to 1=x4 behavior as in (2.8). Its
quantum numbers do not allow a 1=x4-contribution.
Hence the conclusions remain unchanged.

(ii) The hyperscaling argument of Sec. II B is also
unaltered but it implies in turn m2

D ∝ mq in the
same way as it does for the pion.

(iii) The matching of the trace anomaly and the Feynman-
Hellmann theorem in Sec. II C is more subtle and
requires some care. In the case of a massless dilaton
the standard formula 2m2

ϕ ¼ hϕjTρ
ρjϕi, where ϕ is a

physical state, cannot be used because of the dilaton
pole [11]. However, in the case of the pion (2.12)
holds since the effect of the dilaton pole for massless
states, such as the pion, is undone by its coupling to
pions. Concretely,

hπaðp0ÞjTμνjπaðpÞi ⊃ cðqμqν − q2ημνÞ
gDππ

q2 −m2
D
;

q≡ p − p0; ð3:1Þ

where c ¼ const × FD and gDππ is given by
[3,12,72,73]

gDππ ¼
1

FD

�
q2 þ ð1 − γ�Þm2

π þOðm2
qÞ
�
; ð3:2Þ

where FD is the dilaton decay constant as defined
in [11]. The q2 dependence originates from the pion
kinetic term to which the dilaton couples. Taking the
trace in (3.1) and the limit q2 → 0 we learn that this
term does not contribute. The pion and the dilaton
are both massive due to mq ≠ 0, which would be
enforced in a systematic EFT approach. The behav-
ior for massive hadrons is qualitatively different
since gDϕϕ ∝ m2

ϕ=FD ¼ OðΛÞ, here for a scalar ϕ,
does not vanish any limit. It is precisely this behavior
that gives rise to the vanishing of the trace of the
EMT for a massless dilaton [11].

A further point of concern is that the dilaton could
alter the evaluation of the matrix element hπajq̄qjπai
in Appendix C 1. The dilaton contribution to this
matrix element is analogous to (3.1) is ∝ gDππ=
ðq2 −m2

DÞ [without the ðqμqν − q2ημνÞ prefactor].
Assuming γ� → 1 and q2 → 0we learn that this term
does not contribute. In coming to this conclusion it
is important to use mD ≠ 0 (due to mq ≠ 0) and
γ� ¼ 1. The latter is legitimate since it has already
been concluded by equating (2.16) and (2.19).

We infer from our considerations that the addition of a
(massless) dilaton does not alter the results.

IV. SUMMARY AND CONCLUSIONS

In this work we have offered an interpretation of low-
energy pion physics in terms of a strongly coupled infrared

11In the setting of the conformal window, with quark mass
deformation (cf. [56] and footnote 7), both approaches lead to
m2

ϕ ∝ ðmqÞ2=ð1þγ�Þ where ϕ stands for any hadron. The situation
is though different in the case at hand because of the cutoff scale
mentioned above.
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fixed point of a QCD-like gauge theory. Colloquially
speaking, this means that the infrared states such as the
pions experience the world as a conformal field theory in
the deep infrared. Comparing observables in the conformal
or renormalization group picture with standard pion physics
we deduced in three ways that the quark-mass anomalous
dimension takes on the value γ� ¼ 1, at the fixed point.
Namely:

(i) By requiring consistency between the leading order
χPT and the CFT interpretation of the adjoint scalar
correlator hSaðxÞSað0Þi in Sec. II A;

(ii) by renormalization group arguments and assuming
that the χPT cutoffΛ ¼ 4πFπ does not affect leading
quark-mass behavior of the pion in Sec. II B;

(iii) by requiring consistency between the trace anomaly
and the Feynman-Hellmann theorem in Sec. II C.12

These arguments are largely independent and thus any of
the three could have served as a starting point for the paper.
Perhaps, the third point is the strongest as it only relies
on the near fixed point behavior. The important point is,
though, that by assuming an infrared fixed point we were
able to derive internally consistent results. This is no
substitute for a proof. In fact there are at least the three
possibilities shown in Fig. 1. The scenario is not realized in
any gauge theory (left), it is realized in some area outside
the conformal window (center) or it is identical to the
standard QCD-type theories (right). Alternatively, it is
conceivable that the matching with pion physics and the
fixed-point viewpoint are only valid at the lower edge of the
conformal window suggesting that the transition is smooth.
It could be that fixed point scenario is related to the
presence of a massless dilaton. We cannot answer these
question in any definite form but to reemphasize that the
goal of this paper was to explore the consequences of
assuming an infrared fixed point.
The smooth matching of pion physics with the conformal

window led us to conjecture that γ� ¼ 1 marks the end of
the conformal window. The value γ� ¼ 1 as the end of the
conformal window is consistent with lattice Monte Carlo
computations [15,17,40], in particular the dilaton-EFT
fits in [74,75], perturbative computations [76,77], gap
equations [78–80], walking technicolor phenomenology
[16,25,81], holographic approaches [82,83] and N ¼ 1
supersymmetry [18–20]. However, these works do not
interpret the pion physics below the boundary by an infra-
red fixed point, which is the main point of our work. From a
certain perspective our work is more closely related to the
pre-QCD work [1–6] or its revival a decade ago [72,84].
The difference to these papers is that there is a definite
statement about the scaling of the most important operators.
Another way to look at the proposal is to notice that

QCD in the deep infrared is described by the free-field

theory of pions and is thus scale invariant.13 This makes the
fixed-point interpretation look natural, and is indeed
assumed in the context of the a-theorem, e.g. [85]. The
χPT gauge-theory matching can be seen as infrared duality
of weak and strong coupling theories, cf. Sec. II A 3, which
are often the motivation for an effective-field theory
program. That these types of dualities are more funda-
mental, might be related to the Seiberg dualities [18–20],
which in turn gave new motivation to the fascinating idea of
hidden local symmetry, e.g. [86–88].
There are other factors supporting the infrared-fixed

point picture; dense nuclear interactions [89–91] or the
Goldstone improvement [73].14 An indirect hint is coming
from the fact that lattice gauge theories close to the
conformal window [e.g. Nf ¼ 8 and SUð3Þ gauge group]
can be fitted with a dilaton EFT for γ� ≈ 1 [75,94]. In view
of this fact understanding the origin of such an EFT and
finding the correct picture invites further investigations
e.g. [12,74,75,95]. Or, the addition of the dilaton sector
to be discussed in [12] will offer other ways to test the
scenario. As mentioned earlier the dilaton candidate in
QCD is the broad f0ð500Þmeson. Importantly, if the Higgs
sector is to be replaced by a gauge theory then its dilaton
can take on the role of a Higgs which is hard to distinguish
from the Standard Model one. This has been appreciated
since a long timewithin the gauge theory setting e.g. [96] or
without a specific ultraviolet completion e.g. [97,98]. Our
work strengthens this case considerably and identifies in
S ¼ q̄q the presumably most relevant operator as its scaling
dimension assumes Δq̄q ¼ 2 as a consequence of γ� ¼ 1.
A further advantage of gauge theories for a dilaton sector is
that they can be explored with analytic tools and lattice
Monte Carlo simulations serving as a laboratory to further
ideas in a concrete setting.
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APPENDIX A: CONVENTIONS

The Minkowski metric ημν reads diagð1;−1;−1;−1Þ.
The Lagrangian of the gauge theory is given by

L ¼ −
1

4
G2 þ

X
q

mqq̄ðiD −mqÞq; ðA1Þ

where G2 ¼ GA
μνGAμν is the field strength tensor and A the

adjoint index of the gauge group. The Nf quark flavors are
assumed to be degenerate in mass. The beta function is
defined by β ¼ d

d ln μ g and the mass anomalous dimension is

given by γm ¼ − d
d ln μ lnmq. Quantities at the FP are

designated by a star e.g. γ� ¼ γmjμ¼0 (1.2). QED is omitted
even though the massless photon is definitely an IR degree
of freedom but it does not change the picture considerably
as it is weakly coupled in the IR. The SUðNÞ flavor
symmetry generators Ta are normalized as TaTb ¼
1

2Nc
δab1Nc

þ 1
2
dabcTc þ i

2
fabcTc, Tr½TaTb� ¼ 1

2
δab and

f=dabc are the totally anti/symmetric tensors.

APPENDIX B: CONFORMAL VERSUS SCALE
INVARIANCE

Scale and conformal invariance are not distinguished in
this work as it is widely believed that the former implies the
latter for theories like QCD (and most nonexotic d ¼ 4
theories) cf. Ref. [99] for a review. A scale invariant theory
is one where Tρ

ρ ¼ ∂ · V such that JDμ ¼ xνTμν − Vμ is
conserved. Since the scaling dimension of the trace of the
EMT is d, the one of the virial current has to be d − 1which
is highly nongeneric as it, usually, requires the protection of
a symmetry.

APPENDIX C: SOFT-PION THEOREM

Since the soft-pion theorem is important in the main text,
we reproduce its form from the textbook [8]

hπaðqÞβjOð0Þjαi ¼ −
i
Fπ

hβj½Qa
5;Oð0Þ�jαi þ lim

q→0
iq · Ra;

ðC1Þ
where the square brackets denote the commutator. Above α
and β are other physical states and Ra is the so-called
remainder

Ra
μ ¼ −

i
Fπ

Z
ddxeiq·xhβjTJa5μðxÞOð0Þjαi; ðC2Þ

which vanishes unless there are intermediate states degen-
erate with either α or β.15 Equation (C1) is straightforward
to derive from correlation functions using a dispersive
representation.

1. The GMOR-relation from double soft-pion theorem

In Sec. II C 3 it was concluded that the trace anomaly and
the Feynman-Hellmann theorem imply γ� ¼ 1 but this
relies in particular that the prefactor in Eq. (2.19) is correct.
This can be verified by making the link to the celebrated
GMOR-relation [60] of QCD. The procedure is to apply the
soft theorem, summarized above, twice to eliminate the
pions. Applying it once results in

m2
π ¼

X
q

mqhπajq̄qjπai ¼
−mq

Fπ
h0ji½Qa

5; q̄1Nf
q�jπai

¼ 2mq

Fπ
h0jPajπai; ðC3Þ

where Pa ¼ q̄iγ5Taq as previously, and
P

q q̄q → q̄1Nf
q

as it is a more suitable notation to evaluate the commutator.
The remainder (C2) can be omitted since it is zero. This is
not obvious when a dilaton is present as commented on in
Sec. III. Applying the soft theorem to (C3) once more,
using dabchq̄Tcqi ¼ 0, one gets

h0jPbjπai ¼ −
1

Fπ
h0ji½Qa

5; P
b�j0i ¼ −

1

Fπ
hq̄qiδab; ðC4Þ

which combines into

m2
πF2

π ¼ −2mqhq̄qi; ðC5Þ

the GMOR-relation [8–10,60]. This completes the task of
this appendix.

15We have checked that it vanishes in the cases at hand and will
therefore not discuss it any further. A case where the remainder is
relevant is the matrix element hNaπbðqÞjJcμjN�di. The jNa0 i is
degenerate and one can use the Callan-Treiman relation, due to
the chiral Ward identity, to infer limq→0 qμhNajJb5μjNdi ≠ 0,
implying the nonvanishing of the remainder.
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