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In this work, we propose that the odderon is a Regge spin-3 odd-glueball tensor. To demonstrate the
proposal, we study the pp and pp̄ elastic scattering by including the contributions of the spin-3 odderon
and spin-2 pomeron exchange in the processes. The phenomenological effective Lagrangian approach is
used to calculate the pp and pp̄ elastic scattering amplitudes at the tree level. Additionally, the Donnachie-
Landschoff ansatz of the odderon and pomeron propagators was used in further analysis. We fit the
theoretical results with the various experimental data of the pp and pp̄ scattering at the TeV scale to
determine the model parameters in the present work. By using the model parameters, the Chew-Frautschi
plot of the tensor odderon Regge trajectory is evaluated. As a result, the odderon spin-3 mass is predicted to
be 3.2 GeV. In addition, a phase rotation is applied to the amplitude of our model in order to satisfy the
geometric scaling at a very low t region. Moreover, the total cross section of our model is compatible with
the results from TOTEM and its extrapolation from D0 collaboration. It was found that the total cross
section also satisfies the Friossart bound at the Regge limit.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a modern theory of
strong interactions based on non-Abelian color SU(3)
quantum gauge field theory describing the interaction of
quarks and gluons. QCD is highly successful in explaining
hadronic structures and interactions at high energies
(momentum exchange) where the strong coupling is small
and perturbative quantum field theory is applied. However,
at a low energy regime, QCD is a strongly coupled theory
that we cannot use the standard perturbative theory. On the
other hand, hadron-hadron scattering in high center of mass
energy (

ffiffiffi
s

p
) but low momentum exchange (t) known as

soft-high energy regime or a Regge limit of s → ∞ and
s ⋙ t, the perturbative QCD is also inapplicable. Before
the birth of QCD, Regge theory is invented to describe the
hadron-hadron collisions by using analytical properties of

the scattering amplitudes [1] including a consideration
of the complex angular momentum [2]. In the Regge theory,
the amplitudes of the hadronic processes are scaled as sJ

where J is the spin of the exchange particles called
Reggeons with fixed relevant quantum numbers [3]. One
can write down the spin as a linear function of t as J ¼ αðtÞ
in the complex angular momentum plane and the linear
function αðtÞ ¼ α0 þ α0t is called a Regge trajectory. In
addition, the poles (Regge poles) correspond to the families
of the exchange particles with increasing spins along the
trajectories. As a result, the amplitudes of Regge theory are
represented in terms of a sum over all possible exchange
particles lying on the Regge trajectory. The cross sections of
various hadronic processes in the soft-high energy scattering
limit are successfully described by the Regge theory [4–7].
According to the experimental data of hadron-hadron

scattering in the Regge limit, the total cross sections
slowly grew up with the increase of s whereas the Regge
trajectories of all known mesons are not sufficient to explain
the experimental data. Then, a so-called pomeron was
introduced to address this problem [8,9]. The pomeron is
a Reggeon carrying all even charge transformations, vac-
uum quantum number, with the intercept of Regge trajec-
tory α0 ≈ 1. This yields the slow growth of the total cross
section at large s [10,11]. Various approaches are trying to
extract the information of the pomeron trajectory. The
typical values of the parameters of the pomeron trajectory
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from [12–14] are α0 ≈ 1.06–1.08 and α0 ≈ 0.025 GeV−2

[12–14]. The pomeron is generally considered as a bound
state of the gluons (glueball). On the other hand, the odd
charge-conjugation counterpart of the pomeron called
odderon has been proposed by Ref. [15]. Similar to the
pomeron, the odderon is considered as the glueball with
the odd number of gluon compositions. The odderon might
cause the different observables between pp and pp̄ due to
its charge-conjugation property, which is compatible with
the experiment. However, the nature and properties of the
pomeron and odderon are still unclear so far. A number of
approaches have been used to calculate the properties
(mass, spin, Regge trajectory etc.) of pomeron and odderon
as glueballs [16–47]. A study of pomeron and odderon
exchanges in pp and pp̄ elastic scatterings in the soft-high
energy regime has been extensively investigated in various
frameworks for instances, phenomenological approaches
[48–60], QCD inspired models [61–69], holographic QCD
or AdS=CFT correspondence [70–79].
Recently, however, TOTEM and D0 collaborations have

confirmed the existence of the odderon by comparing the
experimental data between pp (extrapolated from previous
several data) and pp̄ at 1.96 TeV [80,81]. This reveals the
contributions of the odderon in t-channel elastic scattering.
After the TOTEM and D0 collaborations claimed the
discovery of the odderon, several works were done to
investigate the properties and scattering processes of the
odderon [82–91].
Based on the discovery of the odderon and the relevant

literature on the field theoretical framework in Ref. [48],
we propose the odderon as a spin-3 tensor odd-glueball
within the standard field theoretical framework. We study
its consequences in pp and pp̄ elastic scatterings.
According to a constituent quark model, the odderon is
composed of a three-gluon, and the lightest trajectory of
the odderon is the spin-3, not the spin-1. This is because
the odderon begins with a JPC ¼ 3−− three-gluon L ¼ 0

state with a maximum spin of 3. Similarly, the two-gluon
bound state or pomeron starts with the swave, and the spin
and PC quantum number are assigned as JPC ¼ 2þþ

glueball. Furthermore, a combined lattice QCD calculation
and field theoretical Coulomb gauge QCD model con-
firmed that the odderon can be the oddball starting its
Regge trajectory with JPC ¼ 3−− [46]. Various theoretical
approaches have also shown that the pomeron is likely to
be the spin-2 tensor glueball instead of the scalar one
[48,49,52,53,63,68,70,73–76]. Then the lowest tensor
odderon in its Regge trajectory is spin-3 as explained
previously. However, the slope, intercept, and mass of the
odderon are not well understood.
In this work, we investigate the elastic scattering of pp

and pp̄ with the contributions of the odderon spin-3. The
effective Lagrangian of the spin-3 odderon with protons is

constructed by using a similar approach in Ref. [48].
Especially, a so-called Donnachie-Landschoff ansatz is
used to represent the odderon and pomeron propagators.
The contributions of the spin-2 pomeron exchange are also
included in the calculation where the effective Lagrangian
of pomeron and protons is taken from Ref. [48]. Then the
differential cross sections of the pp and pp̄ elastic scatter-
ing are calculated. After a careful statistical analysis, we fit
the parameters of our model with several relevant exper-
imental data at the TeV scale. All Feynman rules of our
model, such as vertices, propagators etc., can be computed
directly from the effective Lagrangians in the conventional
method of perturbative QFT. The aim of the present work is
to make a clear and systematic calculation in order to obtain
the amplitudes. The analysis is made with the intention of
compatibility with other field theoretical models.
The present work is organized as follows, in the Sec. II,

we set up our model for pp and pp̄ scattering with pomeron
spin-2 and odderon spin-3 exchanges. The amplitudes are
also computed as well. The observables will be calculated
and free parameters of our model will be fitted with the
relevant experimental data at the TeV scales in Sec. III.
In Sec. IV, we close this work by giving discussions and
conclusions.

II. FORMALISMS: MODEL SETUP
AND SCATTERING AMPLITUDES

A. Effective Lagrangians of the pp and pp̄ scattering
in spin-2 pomeron and spin-3 odderon exchange picture

In this section, we will set up the effective Lagrangians
of the pp and pp̄ scatterings. It is well known that the
pomeron exchange plays a major role in elastic proton-
proton scattering at high energy but low momentum
exchange regimes. For this work, we assume the pomeron
as spin-2 tensor particle and the Lagrangian is given
by [48,49]

LP ¼ −igPPμνGμ0ν0
μν ψ̄γμ0 ∂

↔

ν0ψ ; ð1Þ

where Pμν is symmetric spin-2 tensor field, ψ is Dirac

proton field, ψ̄ ∂

↔

μψ ≡ ð∂μψ̄Þψ − ψ̄∂μψ and the coupling
gP ¼ 3 × 1.87 GeV−1 as used in Ref. [48]. The totally

symmetric tensor Gμ0ν0
μν is defined by

Gμ0ν0
μν ¼ 1

2!

�
gμ

0
μ gν

0
ν þ gμ

0
ν gν

0
μ

�
: ð2Þ

The corresponding vertex function of the pomeron-proton-
proton coupling is given by
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iΓP
μνðq; q0Þ ¼ −igPG

μ0ν0
μν γμ0 ðq0ν0 þ qν0 Þ; ð3Þ

where q and q0 are the incoming and outgoing proton/
antiproton momenta, respectively.
For the spin-3 odderon exchange interaction, the effec-

tive Lagrangian reads

LO ¼ −
gO
M̃0

OμνρGμ0ν0ρ0
μνρ ψ̄γμ0 ∂

↔

ν0 ∂
↔

ρ0ψ ; ð4Þ

where Oμνρ is the spin-3 tensor field that is totally
symmetric under the interchanges of the Lorentz indices,
i.e., Oμνρ ¼ Oνρμ ¼ Oρμν ¼ Oμρν ¼ Oνμρ ¼ Oρνμ. In order
to obtain the effective Lagrangian in Eq. (4), in addition, we
have followed the construction of the higher spin field
coupling to the nucleons in Ref. [48] by adding the twist-2
operator as shown in Appendix B of Ref. [48] and all
detailed discussions therein. Moreover, the coupling gO
is a free parameter in this work and it carries the same
mass dimension as introduced for gP. The M̃0 is the mass
parameter set at M̃0 ¼ 1 GeV. In the latter, we will see that
this parameter is absent in the scattering amplitude and
introduced only for proper mass dimension. The totally
symmetric tensor Gμ0ν0ρ0

μνρ is used to ensure that the lower
indices ðμ; ν; ρÞ of the vertex functions, ΓO

μνρ is totally
symmetric tensor. It is defined by

Gμ0ν0ρ0
μνρ ¼ 1

3!

�
gμ

0
μ gν

0
ν g

ρ0
ρ þ gμ

0
ν gν

0
ρ g

ρ0
μ þ gμ

0
ρ gν

0
μ g

ρ0
ν þ gμ

0
ν gν

0
μ g

ρ0
ρ

þ gμ
0

μ gν
0
ρ g

ρ0
ν þ gμ

0
ρ gν

0
ν g

ρ0
μ

�
: ð5Þ

According to the Lagrangian in Eq. (4), we can write the
Feynman rules for the vertex function for LO as

iΓO
μνρðq; q0Þ ¼ −i

gO
M̃0

Gμ0ν0ρ0
μνρ γμ0 ðq0ν0 þ qν0 Þðq0ρ0 þ qρ0 Þ; ð6Þ

where q and q0 represent the incoming and outgoing
momenta of the proton/antiproton of the vertex functions.

B. Scattering amplitudes of the pp and pp̄
elastic scattering

Next step, we will calculate the amplitudes for the
elastic pp and pp̄ scattering processes under the external
momentum specifications as pðq1Þpðq2Þ → pðq3Þpðq4Þ
and p̄ðq1Þpðq2Þ → p̄ðq3Þpðq4Þ for pp and pp̄ elastic
scattering processes, respectively. In addition, we assume
that the elastic pp and pp̄ scatterings are mainly domi-
nated by the pomeron and odderon exchanges since other
mesons and Reggeons exchange contributions are negli-
gibly small in these processes at TeV scale.
By using the standard method in QFT [92], the elastic pp

scattering amplitude of the pomeron exchange is given by

iMpp
P ¼ hpðq3Þpðq4Þj∶T exp

�
i
Z

LPðxÞd4x
�
∶jpðq1Þpðq2Þi;

¼ −ig2PG
μ0
1
ν0
1

μ1ν1 ūðq3Þγμ01ðq3;ν01 þ q1;ν0
1
Þuðq1ÞiΔμ1ν1;μ2ν2

P ðs; tÞ
× G

μ0
2
ν0
2

μ2ν2 ūðq4Þγμ02ðq4;ν02 þ q2;ν0
2
Þuðq2ÞFPðtÞ2; ð7Þ

and the elastic pp̄ scattering amplitude of the pomeron exchange is given by

iMpp̄
P ¼ hp̄ðq3Þpðq4Þj∶T exp

�
i
Z

LPðxÞd4x
�
∶jp̄ðq1Þpðq2Þi;

¼ −ig2PG
μ0
1
ν0
1

μ1ν1 v̄ðq1Þγμ01ðq1;ν01 þ q3;ν0
1
Þvðq3ÞiΔμ1ν1;μ2ν2

P ðs; tÞ
× G

μ0
2
ν0
2

μ2ν2 ūðq4Þγμ02ðq4;ν02 þ q2;ν0
2
Þuðq2ÞFPðtÞ2: ð8Þ

For the propagator of the spin-2 pomeron Δμν;μ0ν0
P , we

employ from Ref. [48] and it takes the following form:

iΔμν;ρσ
P ðs;tÞ¼ 1

4s

�
gμρgνσþgμσgνρ−

1

2
gμνgρσ

�
ð−iα0PsÞαPðtÞ−1;

ð9Þ

with the conventional linear pomeron trajectory [48,49]

αPðtÞ ¼ 1þ ϵP þ α0Pt; ð10Þ

ϵP ¼ 0.0808; and α0P ¼ 0.25 GeV−2; ð11Þ

where the terms, 1þ ϵP and α0P represent the vertical
interception and slope of the pomeron trajectory, respec-
tively. This formulation of the spin-2 pomeron propagator
is an alternative approach to studying soft high energy
hadronic collisions. This formalism can be reproduced in
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several experimental data. In addition, the pomeron propa-
gator with the Donnachie-Landschoff ansatz in Eq. (9) is
proposed by Heidelberg group [48]. Finally, the pomeron-
pp=pp̄ coupling form factor reads

FPðtÞ¼
�
1−

t
4m2

p

μp
μN

��
1−

t
4m2

p

�
−1
�
1−

t
m2

D

�
−2
;

μN ¼ e
2mp

;
μp
μN

¼ 2.7928; m2
D ¼ 0.71GeV2: ð12Þ

This form factor is the standard Dirac form factor of proton
and it is widely used to study the pp and pp̄ scattering. See
more details discussions and its consequences of the form
factor in Eq. (12) in chapter two of Ref. [93].
We turn to consider the elastic pp and pp̄ scattering

amplitudes for the spin-3 odderon exchange contribution.
Having used the same manner, the pp scattering amplitude
is calculated and one finds

iMpp
O ¼ hpðq3Þpðq4Þj∶T exp

�
i
Z

LOðxÞd4x
�
∶jpðq1Þpðq2Þi;

¼ −
g2O
M̃2

0

Gμ1ν1ρ1
μνρ ūðq3Þγμ1 ðq3;ν1 þ q1;ν1Þðq3;ρ1 þ q1;ρ1Þ uðq1ÞiΔμνρ;μ0ν0ρ0

O ðs; tÞ

× Gμ2ν2ρ2
μ0ν0ρ0 ūðq4Þγμ2 ðq4;ν2 þ q2;ν2Þ ðq4;ρ2 þ q2;ρ2Þ uðq2ÞFOðtÞ2; ð13Þ

while the amplitude of the pp̄ scattering with the odderon exchange reads

iMpp̄
O ¼ hp̄ðq3Þpðq4Þj∶T exp

�
i
Z

LOðxÞd4x
�
∶jp̄ðq1Þpðq2Þi;

¼ −
g2O
M̃2

0

Gμ1ν1ρ1
μνρ v̄ðq1Þγμ1 ðq1;ν1 þ q3;ν1Þ ðq1;ρ1 þ q3;ρ1Þ vðq3ÞiΔμνρ;μ0ν0ρ0

O ðs; tÞ

× Gμ2ν2ρ2
μ0ν0ρ0 ūðq4Þ γμ2 ðq4;ν2 þ q2;ν2Þ ðq4;ρ2 þ q2;ρ2Þ uðq2ÞFOðtÞ2: ð14Þ

In addition, we have modified the proton form factor in
Eq. (12) for the odderon coupling to pp by adding new
three free parameters, A, B, and C as

FOðtÞ ¼
�
1−

At
4m2

p

μp
μN

��
1−

Bt
4m2

p

�
−1
�
1−

Ct
m2

D

�
−2
: ð15Þ

The Δμ1ν1ρ1;μ2ν2ρ2
O ðs; tÞ term is the propagator of the spin-3

particle in momentum space. By analogy to the spin-2
tensor pomeron proposed by [48], we introduce the spin-3
tensor odderon propagator with the Donnachie-Lanschoff
parametrization and it reads

iΔμνλ;ρστ
O ðs; tÞ ¼ −i

M̃2
0

6s2

�X
C

gμρðgνσgλτ þ gντgλσÞ

−
1

2

X
C

gμνgλρgστ
�
ð−iα0OsÞαOðtÞ−1; ð16Þ

αOðtÞ ¼ 1þ ϵO þ α0Ot; ð17Þ

where
P

C stands for the sum over all distinct combinations
of the Lorentz indices (μνλ) and (ρστ), for instance,

X
C

gμνgλρgστ ¼ gμνgλρgστ þ gμνgλσgρτ þ gμνgλτgρσ

þ gμλgνρgστ þ gμλgνσgρτ þ gμλgντgρσ

þ gνλgμρgστ þ gνλgμσgρτ þ gνλgμτgρσ: ð18Þ

The mass parameter M̃0 is a free parameter in this work and
it is introduced in order to correct the mass dimension of the
odderon propagator. In addition, we consider the param-
eters ϵO and α0O as free parameters. However, the condition
ϵO < ϵP is imposed due to the fact from the experimental
data that the total cross sections of both pp and pp̄ are
identical at very high energies. In the other words, the
pomeron exchange contributions for elastic pp and pp̄
scattering at the Regge limit always dominate over odd-
eron. Moreover, the tensor structure of the spin-3 odderon
propagator has been constructed in Ref. [94]. We close this
section by giving the definitions of the four-momentum
conservation, the on-shell mass of the particles, and the
Mandelstam variables as
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q1 þ q2 ¼ q3 þ q4; q21 ¼ q22 ¼ q23 ¼ q24 ¼ m2
p; sþ tþ u ¼ 4m2

p;

s ¼ ðq1 þ q2Þ2 ¼ ðq3 þ q4Þ2; t ¼ ðq3 − q1Þ2 ¼ ðq4 − q2Þ2; u ¼ ðq4 − q1Þ2 ¼ ðq3 − q2Þ2: ð19Þ

In the next section, we will provide the analytical expres-
sions of the differential cross section for the pp and pp̄
elastic scattering with pomeron and odderon exchanges and
fit the model parameters with the experimental data of the
pp and pp̄ elastic scatterings at TeV scale.

III. RESULTS AND DISCUSSIONS

A. Differential cross section formulas

In this subsection, we will provide the analytical for-
mulae of the differential cross section with respect to the t
variable and then the model parameters in the present work
will be determined by fitting with all available experimental
data of the pp and pp̄ elastic scatterings at TeV level. The
differential cross section of the pp and pp̄ scattering is
given by [49],

dσpp=pp̄

dt
¼ 1

16πsðs −m2
pÞ

1

4

X
spin

jMpp=pp̄j2: ð20Þ

First of all, let us briefly discuss the definitions of the
scattering amplitudes of pp and pp̄ in the pomeron and
odderon exchange picture. Considering the amplitude
Mabðs; tÞ of an elastic scattering for the aþ b → aþ b
process in s channel. While the corresponding elastic
scattering by crossing to the u channel as aþ b̄ → aþ b̄
with the amplitude Mab̄ðu; tÞ. According to the crossing
symmetry of the scattering amplitudes, they are symmetric
under interchange between the Mandelstam variables, s
and u, as

Mab̄ðs; t; uÞ ¼ Mabðu; t; sÞ: ð21Þ

Moreover, the amplitude M� is defined from Mab=ab̄ as

M�ðs; tÞ ¼
1

2
ðMabðs; tÞ �Mab̄ðs; tÞÞ: ð22Þ

Interchange s → u, one finds that the amplitude Mþ is
invariant under the crossing symmetry whereas the ampli-
tude M− changes the relative sign. We therefore call Mþ
andM− as even and odd under the crossing symmetry. As
a result, one observes that the Mþ and M− correspond to
the even and odd under charge conjugation, respectively.
Since the interchange s → u is equivalent to charge
conjugation transformation (C), i.e., changing particle-
particle scattering to particle-antiparticle scattering. We
therefore identify Mþ and M− as pomeron (MP with
C ¼ þ1) and odderon (MO with C ¼ −1) exchange
amplitudes, respectively.
As discussed above, we can define the total amplitude of

the elastic pp and pp̄ processes with pomeron and odderon
exchange diagrams at the tree level as follow

Mpp ¼ Mpp
P −Mpp

O ; ð23Þ

Mpp̄ ¼ Mpp̄
P þMpp̄

O : ð24Þ

The absolute square amplitudes of Mpp and Mpp̄,
averaged over unpolarized initial spin states of incoming
particles, are given by

X
spin

jMppj2 ¼
X
spin

ðjMpp
P j2 − jMpp

P Mpp�
O j − jMpp�

P Mpp
O j þ jMpp

O j2Þ; ð25Þ

and
X
spin

jMpp̄j2 ¼
X
spin

ðjMpp̄
P j2 þ jMpp̄�

P Mpp̄
O j þ jMpp̄

P Mpp̄�
O j þ jMpp̄

O j2Þ: ð26Þ

The explicit forms of the absolute square amplitudes with an average sum over initial states can be calculated in the
following forms:

X
spin

jMpp
P j2 ¼ Tr

h
ð=q3 þmpÞγμ0

1
ðq3;ν0

1
þ q1;ν0

1
Þð=q1 þmpÞγμ0

3
ðq3;ν0

3
þ q1;ν0

3
Þ

× ð=q4 þmpÞγμ0
2
ðq4;ν0

2
þ q2;ν0

2
Þð=q2 þmpÞγμ0

4
ðq4;ν0

4
þ q2;ν0

4
Þ
i

× g4PG
μ0
1
ν0
1

μ1ν1 G
μ0
3
ν0
3

μ3ν3 G
μ0
2
ν0
2

μ2ν2 G
μ0
4
ν0
4

μ4ν4 Δ
μ1ν1;μ2ν2
P ðs; tÞΔμ3ν3;μ4ν4

P ðs; tÞFPðtÞ4

≈
16g4P

h
1 − t

4m2
p

μp
μN

i
4

h
1 − t

m2
p

i
4
h
1 − t

m2
D

i
8
s2ðα0PsÞ2ϵPþ2α0Pt; ð27Þ
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X
spin

jMpp
O j2 ¼ Tr

h
ð=q3 þmpÞγμ1ðq3;ν1 þ q1;ν1Þðq3;ρ1 þ q1;ρ1Þð=q1 þmpÞγμ̄3ðq3;ν̄3 þ q1;ν̄3Þðq3;ρ̄3 þ q1;ρ̄3Þ

× ð=q4 þmpÞγμ2ðq4;ν2 þ q2;ν2Þðq4;ρ2 þ q2;ρ2Þð=q2 þmpÞγμ̄4ðq4;ν̄4 þ q2;ν̄4Þðq4;ρ̄4 þ q2;ρ̄4Þ
i

×
g4O
M̃4

0

Gμ1ν1ρ1
μνρ Gμ̄3ν̄3ρ̄3

μ̄ ν̄ ρ̄ Gμ2ν2ρ2
μ0ν0ρ0 G

μ̄4ν̄4ρ̄4
μ̄0ν̄0ρ̄0 Δ

μνρ;μ0ν0ρ0
O ðs; tÞΔμ̄ ν̄ ρ̄;μ̄0ν̄0ρ̄0

O ðs; tÞFOðtÞ4

≈
64g4O

h
1 − At

4m2
p

μp
μN

i
4

9
h
1 − Bt

m2
p

i
4
h
1 − Ct

m2
D

i
8
s2ðα0OsÞ2ϵOþ2α0Ot; ð28Þ

X
spin

jMpp
P Mpp�

O j ¼ Tr
h
ð=q3 þmpÞγμ0

1
ðq3;ν0

1
þ q1;ν0

1
Þð=q1 þmpÞγμ̄3ðq3;ν̄3 þ q1;ν̄3Þðq3;ρ̄3 þ q1;ρ̄3Þ

× ð=q4 þmpÞγμ0
2
ðq4;ν0

2
þ q2;ν0

2
Þð=q2 þmpÞγμ̄4ðq4;ν̄4 þ q2;ν̄4Þðq4;ρ̄4 þ q2;ρ̄4Þ

i
×
g2Pg

2
O

M̃2
0

G
μ0
1
ν0
1

μ1ν1G
μ̄3ν̄3ρ̄3
μ̄ ν̄ ρ̄ G

μ0
2
ν0
2

μ2ν2G
μ̄4ν̄4ρ̄4
μ̄0ν̄0ρ̄0 Δ

μ1ν1;μ2ν2
P ðs; tÞΔμ̄ ν̄ ρ̄;μ̄0ν̄0ρ̄0

O ðs; tÞFPðtÞ2FOðtÞ2

≈
32g2Pg

2
O

h
1 − t

4m2
p

μp
μN

i
2
h
1 − At

4m2
p

μp
μN

i
2

9
h
1 − t

m2
p

i
2
h
1 − t

m2
D

i
4
h
1 − Bt

m2
p

i
2
h
1 − Ct

m2
D

i
4
s2ð−iα0PsÞϵPþα0Ptðiα0OsÞϵOþα0Ot; ð29Þ

X
spin

jMpp̄
P j2 ¼ Tr

h
ð=q1 −mpÞγμ0

1
ðq3;ν0

1
þ q1;ν0

1
Þð=q3 −mpÞγμ0

3
ðq3;ν0

3
þ q1;ν0

3
Þ

× ð=q4 þmpÞγμ0
2
ðq4;ν0

2
þ q2;ν0

2
Þð=q2 þmpÞγμ0

4
ðq4;ν0

4
þ q2;ν0

4
Þ
i

× g4PG
μ0
1
ν0
1

μ1ν1G
μ0
3
ν0
3

μ3ν3G
μ0
2
ν0
2

μ2ν2G
μ0
4
ν0
4

μ4ν4Δ
μ1ν1;μ2ν2
P ðs; tÞΔμ3ν3;μ4ν4

P ðs; tÞFPðtÞ4

≈
16g4P

h
1 − t

4m2
p

μp
μN

i
4

h
1 − t

m2
p

i
4
h
1 − t

m2
D

i
8
s2ðα0PsÞ2ϵPþ2α0Pt; ð30Þ

X
spin

jMpp̄
O j2 ¼ Tr

h
ð=q1 −mpÞγμ1ðq3;ν1 þ q1;ν1Þðq3;ρ1 þ q1;ρ1Þð=q3 −mpÞγμ̄3ðq3;ν̄3 þ q1;ν̄3Þðq3;ρ̄3 þ q1;ρ̄3Þ

× ð=q4 þmpÞγμ2ðq4;ν2 þ q2;ν2Þðq4;ρ2 þ q2;ρ2Þð=q2 þmpÞγμ̄4ðq4;ν̄4 þ q2;ν̄4Þðq4;ρ̄4 þ q2;ρ̄4Þ
i

×
g4O
M̃4

0

Gμ1ν1ρ1
μνρ Gμ̄3ν̄3ρ̄3

μ̄ ν̄ ρ̄ Gμ2ν2ρ2
μ0ν0ρ0 G

μ̄4ν̄4ρ̄4
μ̄0ν̄0ρ̄0 Δ

μνρ;μ0ν0ρ0
O ðs; tÞΔμ̄ ν̄ ρ̄;μ̄0ν̄0ρ̄0

O ðs; tÞFOðtÞ4

≈
64g4O

h
1 − At

4m2
p

μp
μN

i
4

9
h
1 − Bt

m2
p

i
4
h
1 − Ct

m2
D

i
8
s2ðα0OsÞ2ϵOþ2α0Ot; ð31Þ
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X
spin

jMpp̄
P Mpp̄�

O j2 ¼ Tr
h
ð=q1 −mpÞγμ0

1
ðq3;ν0

1
þ q1;ν0

1
Þð=q3 −mpÞγμ̄3ðq3;ν̄3 þ q1;ν̄3Þðq3;ρ̄3 þ q1;ρ̄3Þ

× ð=q4 þmpÞγμ0
2
ðq4;ν0

2
þ q2;ν0

2
Þð=q2 þmpÞγμ̄4ðq4;ν̄4 þ q2;ν̄4Þðq4;ρ̄4 þ q2;ρ̄4Þ

i
×
g2Pg

2
O

M̃2
0

G
μ0
1
ν0
1

μ1ν1G
μ̄3ν̄3ρ̄3
μ̄ ν̄ ρ̄ G

μ0
2
ν0
2

μ2ν2G
μ̄4ν̄4ρ̄4
μ̄0ν̄0ρ̄0 Δ

μ1ν1;μ2ν2
P ðs; tÞΔμ̄ ν̄ ρ̄;μ̄0ν̄0ρ̄0

O ðs; tÞFPðtÞ2FOðtÞ2

≈
32g2Pg

2
O

h
1 − t

4m2
p

μp
μN

i
2
h
1 − At

4m2
p

μp
μN

i
2

9
h
1 − t

m2
p

i
2
h
1 − t

m2
D

i
4
h
1 − Bt

m2
p

i
2
h
1 − Ct

m2
D

i
4
s2ð−iα0PsÞϵPþα0Ptðiα0OsÞϵOþα0Ot; ð32Þ

where the Regge limit, s ⋙ t; m2
p has been applied for the approximations to obtain the final results. Here we have used the

following normalizations and sum over spin of the spinors as

ūrðp;mpÞusðp;mpÞ ¼ 2mpδrs;
X
r

urðp;mpÞūrðp;mpÞ ¼ =pþmp;

v̄rðp;mpÞvsðp;mpÞ ¼ −2mpδrs;
X
r

vrðp;mpÞv̄rðp;mpÞ ¼ =p −mp; ð33Þ

where r and s are spin indices of the spinors. As results, we
note that

P
spin jMpp

X j2 ¼Pspin jMpp̄
X j2 with X ¼ P;O.

Next, we will present the scalar amplitudes of the
pomeron and odderon exchanges as AP and AO, respec-
tively. Having used the results in Eqs. (27) and (28), they
are written as

APðs; tÞ ¼ 4g2PF
2
Pðs; tÞð−isα0PÞα0PtþϵPs; ð34Þ

AOðs; tÞ ¼
8

3
g2OF

2
Oðs; tÞð−isα0OÞα

0
OtþϵOs; ð35Þ

where F 2
Oðs; tÞ and F 2

Oðs; tÞ are defined by Eqs. (12)
and (15), respectively. Here the amplitude of the pp
scattering is given by

Appðs; tÞ ¼ APðs; tÞ −AOðs; tÞ: ð36Þ

According to the optical theorem, one can write the total
cross section formula as

σpptot ¼
1

s
ImAppðs; 0Þ ¼ 1

s
Im½APðs; 0Þ −AOðs; 0Þ�

¼ Im

�
4g2Pð−iα0PsÞϵP −

8

3
g2Oð−iα0OsÞϵO

�
: ð37Þ

In the following subsection, we will use the total cross
section in Eq. (37) to compare with the data from the
TOTEM collaboration at the TeV scale after the model
parameters are chosen.

B. Parameters fitting and discussion

In this section, we perform curve fitting of the model
parameters with experimental data. As mentioned in Sec. II,
we have six free parameters, i.e., the odderon-pp coupling
constant gO, ϵO, α0O and the modified odderon-pp form-
factor parameters A, B, and C. The observed value for
differential cross sections of pp and pp̄ scattering,
dσobs=dt, come from various experiments with the center
of mass energy ranging from 1.8 TeV [95] for pp̄, 1.96 TeV
[81] for pp and [80] for pp̄, 2.76 TeV [96] with 13σ and
4.3σ, and 7 TeV [97] and 13 TeV [98] for pp scattering.
Since we are interested in the small −t limit, we only use
the observed data with the linear relation between the
differential cross section and the momentum exchange
because the effect of the pomeron and odderon is highly
manifested in the linear regime of the differential cross
section. We define χ2 function as

χ2ðαiÞ ¼
XN
j¼1

 
dσ
dt ðαiÞmodel

j − dσ
dt
obs
j

dσ
dt
obs
j

!
2

; ð38Þ

where αi are six parameters ðgO; ϵO; α0O; A; B; CÞ and
j ¼ 1;…; N is the index of the data points associated with
the momentum exchange, −t. In order to obtain the best fit
parameters, we minimize χ2 functions using IMINUIT

[99,100]. The results are shown in the Table I. Note that
the errors are calculated using the Hessian matrix where
more details will be provided in the Appendix.
The central values of gO, α00, ϵO, A, B, and C are

consistent among various datasets. The odderon mass can
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be calculated from its Regge trajectory at the pole, t ¼ m2
O

with αOðm2
OÞ ¼ J ¼ 3 as

mOðJ ¼ 3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J − 1 − ϵO

α00

s 				
J¼3

; ð39Þ

which is consistent due to its dependency on ϵO and α00.
The quality of parameter fitting can be determined using

the minimized χ2 per degree of freedom. Among the
available datasets, the best parameters with sufficient
statistics come from the pp-TOTEM 13 TeV data.
However, using this particular data alone leads to an
overfitting problem; i.e., these parameters lead to unsat-
isfying fits with pp̄ datasets. We, therefore, take a more
global analysis using the combined χ2 function of all
available datasets. We then use the parameter fitting from
the combined dataset as the representation of our model.
The model differential cross sections comparing with
experimental data are shown in Fig. 1. We have provided
the statistical error analysis in detail in the Appendix.
By using the Eq. (39) with the best-fit parameters, ϵO and

α00 from the combined dataset, one can determine the
masses of the odderons with J ¼ 3, 5, 7 as shown below,

mOðJPC ¼ 3−−Þ ¼ 3.201� 0.609 GeV;

mOðJPC ¼ 5−−Þ ¼ 4.563� 0.868 GeV;

mOðJPC ¼ 7−−Þ ¼ 5.603� 1.066 GeV: ð40Þ

We note that the lowest mass (pole position) of the tensor
odderon with spin-3 is around 3 GeV. In addition, the Chew-
Frautschi plot of the odderon Regge trajectory is depicted in
Fig. 2. The odderon mass results in the present work are
consistent with Ref. [52]. In that work, the authors consid-
ered the odderons as the oddballs in the double pole Regge

model with spin-3, -5, and -7. Then, the masses of the
odderon are extracted from the experimental data. According
to the literature review, we found that the theoretical
estimation such as SU(3) lattice QCD for isotropic and
anisotropic cases [24,25,45], Wilson loop approach [30],
vacuum correlation method in QCD [28,29], QCD sum
rules [21,82,83], relativistic many body framework [46]
give the ranges of odderon masses as 3.5–4.5 GeV for
spin-3, 5.0–5.5 GeV for spin-5, and 6.0–6.5 GeV for spin-
7. We note that the theoretical model estimations in the
literature of the odderon masses are a bit heavier than the
mass estimations from the data in this work by about
0.3 GeV. However, the spin-3 odderon mass from the double
pole Regge model gives mDP

O ¼ 3.001 GeV [52] which is
lighter than our work. From the results in Table I, the
odderon trajectory slope, α0O ¼ 0.189 GeV−2, and the pom-
eron slope, α0P ¼ 0.25 GeV−2, coming from Donnachie-
Landschoff fit [13,14] are compatible with approximation
α0O ≈ α0P.
On the other hand, we obtain ϵO ¼ 0.0620 ≪ 1. As a

result, the best-fit value of α0O and ϵO in this work
correspond to the assumptions in Ref. [48] that α0O ≈ α0P
and ϵO ≤ ϵPð¼ 0.0808Þ, which we use for fixing the
parameters α0O and ϵO due to the lack of data used to
constrain at that moment.
It is important to discuss the ability of our spin-3 odderon

model to explain the measured small value of the ρ
parameter [101], by considering the interference of the
real part with the Coulomb interaction at very small t. The ρ
parameter is defined by

ρðs; tÞ ¼ Re½Appðs; tÞ�
Im½Appðs; tÞ� ; ð41Þ

where theAppðs; tÞ is given by Eq. (36). In order to explain
the amplitudes of our model in the near-forward angle

TABLE I. Summary of best fit parameters for each dataset.

Description χ2 d:o:f gO α0O ϵO

1.80 TeV pp̄ [95] 0.076 49 9.346ð�0.563Þ 0.188ð�0.040Þ 0.055ð�0.009Þ
1.96 TeV pp̄ [80], pp [81] 0.516 17 14.927ð�1.754Þ 0.158ð�0.036Þ 0.064ð�0.018Þ
2.76 TeV pp [96] (13σ) 0.036 12 25.114ð�3.574Þ 0.199ð�0.042Þ 0.070ð�0.020Þ
7.00 TeV pp [97] 0.048 83 9.888ð�0.468Þ 0.200ð�0.047Þ 0.060ð�0.006Þ
13.0 TeV pp [98] 0.009 150 9.725ð�0.346Þ 0.200ð�0.024Þ 0.063ð�0.004Þ
Averages 13.800ð�1.112Þ 0.189ð�0.038Þ 0.062ð�0.011Þ
Description A B C mO

1.80 TeV pp̄ [95] −1.340ð�0.193Þ 0.242ð�0.262Þ 0.436ð�0.117Þ 3.213ð�0.611Þ
1.96 TeV pp̄ [80], pp [81] −0.855ð�0.195Þ 1.448ð�0.394Þ 1.044ð�0.151Þ 3.497ð�0.884Þ
2.76 TeV pp [96] (13σ) −1.430ð�0.167Þ 7.730ð�1.374Þ 0.064ð�0.113Þ 3.112ð�0.773Þ
7.00 TeV pp [97] −2.388ð�0.265Þ −0.060ð�0.312Þ 0.469ð�0.144Þ 3.116ð�0.519Þ
13.0 TeV pp [98] −2.342ð�0.145Þ −0.087ð�0.175Þ 0.455ð�0.082Þ 3.113ð�0.291Þ
Averages −1.671ð�0.221Þ 1.855ð� − 2.121Þ 0.493ð�0.264Þ 3.201ð�0.609Þ
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region of Re½Appðs; tÞ�, we follow the argument presented
in Ref. [102]. We first discuss Martin’s assumption
[103,104] that is used to explain the so-called geometric
scaling of the real part of the nuclear amplitude, Aðs; tÞ, in
the near-forward direction of pp elastic scattering. It has
been shown in Refs. [102,103] that

Re½Aðs;TÞ�¼ρðs;TÞIm½Aðs;TÞ�þT
d
dT

Im½Aðs;TÞ�; ð42Þ

where we defined T ≡ −t. We note that the imaginary part
of the nuclear amplitude, is zero at T ¼ TI , i.e.,

Im½Aðs; TIÞ� ¼ 0. Integrating Eq. (42), one findsZ
TI

0

Re½Aðs;TÞ�dT¼ρðs;TÞT Im½Aðs;TÞ�jT¼TI
T¼0 ¼0: ð43Þ

The expression above implies that the imaginary part of
Im½Aðs; 0Þ� > 0, which means that the real part of the
nuclear amplitude must change sign between T ¼ 0 and
T ¼ TI . This leads to

Re½Aðs; TRÞ� ¼ 0; where 0 < TR < TI: ð44Þ

FIG. 1. The best fit plots of the differential cross section of the pp (blue plots) and pp̄ (green plots) vs the model results with the
parameters from the combined dataset fit.
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In order to obtain a nuclear amplitude that is compatible
with experimental data for Coulomb-nuclear interference
region, the nuclear amplitude should demonstrate geo-
metric scaling. When we apply the amplitude provided by
our model in Eq. (36) in combination with the fitted
parameters shown in Table I, we notice that the numerical
outcomes of the real and imaginary parts of Eq. (36) do not
satisfy the geometric scaling condition. According to this

condition, both real and imaginary parts should be positive
at small T. Specifically in our model, the imaginary part
begins from a positive value at t ¼ 0, whereas the real part
starts from a negative value. Therefore, to satisfy the
geometric scaling, the amplitude in Eq. (36) requires a
phase rotation (for example, the Berger-Phillips model was
modified in Ref. [102]). To obtain the correct geometric
scaling of our nuclear amplitude based on Martin’s
assumption, we apply the phase factor to the original
amplitude in Eq. (36). The resulting amplitude is denoted
by Ãppðs; tÞ and it reads

Ãppðs; tÞ ¼ eiΦðs;tÞAppðs; tÞ
¼ −Re½Appðs; tÞ� þ i Im½Appðs; tÞ�; ð45Þ

where the phase Φðs; tÞ is given by

Φðs; tÞ ¼ 2 πc1 − i ln

�
iIm½Appðs; tÞ� − Re½Appðs; tÞ�
iIm½Appðs; tÞ� þ Re½Appðs; tÞ�

�
;

ð46Þ

where c1 ∈Z is an arbitrary constant that is proportional to
the initial values of the amplitude. We note that the factor
eΦðs;tÞ changes the relative sign of the real part of the
amplitude in Eq. (36). The numerical results of the real and
imaginary parts of the modified amplitude, Ãpp given in
Eq. (45) and the ρ parameter are depicted in Fig. 3. As a
result, the real and imaginary parts start from positive and
the real part changes the relative sign before the imaginary
part for both

ffiffiffi
s

p ¼ 7 and 13 TeV as shown in Fig. 3(a).
Furthermore, the ρ parameter for

ffiffiffi
s

p ¼ 7 and 13 TeV start

FIG. 3. In the left panel, the real part starts from positive and falls to zero before the imaginary part, which satisfies the geometric
scaling from Martin’s assumption for low −t region. In the right panel, the plots of the ρ parameter for

ffiffiffi
s

p ¼ 7 and 13 TeV have similar
shapes and are qualitatively compatible with the analysis done in Ref. [102].

FIG. 2. The Chew-Frautschi plot of the odderon Regge trajec-
tory is depicted by using the α0O ¼ 0.189 GeV−2 and ϵO ¼ 0.062
from combined data set fitting in Table I. The masses of the
odderon with spin-3, -5, and -7 including the error of the fitting
parameter estimations with red dots are given by Eq. (40).
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from the positive and change the relative sign to the
negative around −t ≈ 0.12 GeV2. Interestingly, our results
correspond to conclusion of Ref. [102] that the real part of
the nuclear amplitude equal to zero at −t ≈ 0.12 GeV2. In
order to reproduce the experimental data from the ρ
parameter at 13 TeV given by LHC [101], our model
requires a more detailed modification of the amplitude.
However, we have postponed this task to future work.
We close this section by considering the total cross

section of the pp in our model. The relevant parameters
from the combined dataset are substituted to the total cross
section formula in Eq. (37). Then, we plot the total cross
section as a function of center of mass energy (

ffiffiffi
s

p
) as shown

in Fig. 4(a) and we found that our model of the odderon as
Regge oddball spin-3 is compatible with the TOTEM data
for pp scattering at the TeV regime. In particular, the
extrapolation of TOTEM data for the pp total cross section
at 1.96 TeV is also laid within the error band of our
model. It should be noted that the large error band in the
predicted total cross section is due to the uncertainty of
the parameter ϵO. This parameter appears as the power of
the center of mass energy square, s, in Eq. (37), and its
uncertainty is approximately 20%, as shown in Table I. We
have also separated the contributions of the pure spin-2
pomeron and spin-3 odderon for the total cross section in
Fig. 4(a). Furthermore, it is worth comparing our model’s
prediction of the total cross section to that of the model
in Ref. [48], which utilized gP ¼ gO ¼ 3 × 1.78 GeV−1,

αP ¼ αO ¼ 0.25 GeV−2 and ϵP ¼ ϵO ¼ 0.0808. In Fig. 4(b),
we found that our spin-3 odderon and spin-1 odderon model
Ref. [48] are qualitatively indistinguishable when compared
to the experimental data of the pp total cross section. This
means the spin average observable cannot determine which
model is better. However, it is possible to differentiate
between the contribution of spin-3 odderon and spin-1
odderon using the helicity amplitude formalism. Using the
best fit parameters ϵP ¼ 0.0808 and ϵO ¼ 0.0620, in addi-
tion, the total cross section of the present work in Eq. (37)
has been checked numerically and it also corresponds to a
Froissart bound, i.e., σpptot ≤ ðln sÞ2 at s → ∞ limit.

IV. CONCLUSIONS

In this work, we considered the odderon as the Regge
oddball spin-3. The existence of odderon can be observed in
a study of the difference between pp and pp̄ elastic
scattering. We, therefore, investigate pp and pp̄ scattering
at the Regge limit by including the pomeron and odderon
exchanges in the present work. The effective Lagrangians of
the processes are constructed and the standard perturbative
QFT method is used to calculate the relevant observables in
this work. The pomeron and odderon are identified as the
Regge tensor glueballs and oddballs with spin-2 and -3,
respectively. We have employed the Donnachie-Landschoff
ansatz for the pomeron propagator and the Regge trajectory
with the electromagnetic type of the pomeron-pp form
factor. Furthermore, we also modified the electromagnetic

FIG. 4. The left panel plot in Eq. (37) shows the total cross section of the pp scattering with exchanges of pomeron spin-2 and odderon
spin-3 and the separate contribution to the total cross section from the spin-2 pomeron and the spin-3 odderon. We used the averaged
fitted parameters from the combined data set in Table I, and our model is in agreement with the TOTEM pp results at the TeV region.
Our model also matches the extrapolation of the TOTEM data at 1.96 TeV for the pp scattering, and all data points are within the
prediction band of our model. Additionally, we compared our model with the one in Ref. [48] on the right panel, and we found that the
total cross section from the average values of the fitted parameters in our model is lower than the data, whereas the spin-2 pomeron and
spin-1 odderon are higher than the data. See the main text for further discussion.
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type of the odderon-pp by introducing three additional free
parameters. There are six free parameters of the model in
this work ðgO; ϵO; α0O; A; B; CÞ. Having performed a careful
statistical analysis, all free parameters have been fixed by
fitting with all combined data of the pp and pp̄ differential
cross sections at the TeV regime see results in Table I. After
fixing the free parameters in the present work, the masses of
the odderon spin-3 and their excited states for spin-5 and -7
are estimated from its Regge trajectory by using the best fit
of the combined data set. Considering the best-fit results in
Table I, the oddereon Regge trajectory parameters are found
to be α0O ¼ 0.189� 0.038 and ϵO ¼ 0.062� 0.011. These
results are compatible with the assumptions in Ref. [48] that
used to estimate those two parameters as α0O ≈ α0P and
ϵO ≤ ϵP. As a result, we found that the tensor odderon
masses are heavier than the phenomenological approach by
using the double pole Regge model extracted from the
experimental data [52]. On the other hand, the odderon
masses in this work are lighter than other theoretical model
calculations in the literature for all odderons along their
trajectory by about 0.3 GeV. In addition, the geometric
scaling in Coulomb-nuclear interference region can be
demonstrated by applying the phase rotation to the ampli-
tude of our model. Having used the best-fit parameters, the
total cross sections also agree with the TOTEM data in the
TeV regime and its extrapolation from D0 of the pp
scattering at 1.96 TeV. The odderon spin-3 contribution
also provided the amplitude in Regge limit that satisfied the
Froissart bound. However, we compare the spin-3 odderon
model and the spin-1 odderon model in the literature and
showed that both models are equally likely to explain the
total cross section data. The helicity amplitude could
be a good framework to distinguish those two models.
According to our findings in this work, the tensor Regge
oddball spin-3 particle is a plausible candidate for the
odderon. Further studies to confirm our conclusion are
needed to investigate other scattering processes such as
polarized proton-proton scattering and photoproduction
process. We plan to do this in the forthcoming work.
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APPENDIX: ERROR ANALYSIS

We provide the detail of the error estimation method in
this section. The errors for parameter fitting in this analysis
are handling outside the IMINUIT package due to inaccuracy
of the results. The errors shown in Table I are therefore
improved by the following. Consider the Taylor expansion
around the minimum of the χ2 function,

χ2ðαiÞ ≈ χ2ðαmin
i Þ þ 1

2
ðαi − αmin

i Þ2 ∂χ
2

∂αi

				
αi¼αmin

i

þOððαi − αmin
i Þ3Þ: ðA1Þ

We can approximate the error of parameter estimation, σi,
using the width of parabolic function defined as

1

σ2i
¼ 1

2

∂χ2

∂αi

				
αi¼αmin

i

; ðA2Þ

which is also the diagonal component of the Hessian
matrix. The second derivative of the χ2 function is obtained
via the finite difference method

∂χ2

∂αi

				
αi¼αmin

i

≈
χ2ðamin

i þΔaiÞþ χ2ðamin
i −ΔaiÞ− 2χ2ðamin

i Þ
Δa2i

;

ðA3Þ

where Δai is chosen to be sufficiently small compared to
the value of the error. The validity of the approximation is
then confirmed by the comparison between the parabolic
functions and the real χ2 function shown in Fig. 5. One can
see that both functions agree very well within the range of
error estimations.

JINGLE B. MAGALLANES et al. PHYS. REV. D 109, 034007 (2024)

034007-12



[1] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, The Analytic S-Matrix (Cambridge
University Press, Cambridge, England, 1966).

[2] V. N. Gribov, The Theory of Complex Angular Momenta:
Gribov Lectures on Theoretical Physics, CambridgeMono-
graphs on Mathematical Physics (Cambridge University
Press, Cambridge, England, 2007).

[3] P. D. B. Collins, An Introduction to Regge Theory and
High-Energy Physics, Cambridge Monographs on Math-
ematical Physics (Cambridge University Press, Cambridge,
UK, 2009).

[4] R. J. Eden, Rep. Prog. Phys. 34, 995 (1971).
[5] P. D. B. Collins, Phys. Rep. 1, 103 (1971).
[6] C. B. Chiu, Annu. Rev. Nucl. Part. Sci. 22, 255 (1972).

FIG. 5. The comparison plots between the parabolic function using χ2 ¼ χmin þ ðαi−αmin
i Þ2

σ2
(orange line) and the real χ2 function (blue

line). The combined dataset of 1.96 GeV (pp; pp̄) is used to obtain the parameter fit in these plots. Each panel represents the variation of
the χ2 function in each particular direction of the parameter space.

ODDERON AS A REGGE SPIN-3 ODDBALL IN pp AND … PHYS. REV. D 109, 034007 (2024)

034007-13

https://doi.org/10.1088/0034-4885/34/3/304
https://doi.org/10.1016/0370-1573(71)90007-X
https://doi.org/10.1146/annurev.ns.22.120172.001351


[7] A. C. Irving and R. P. Worden, Phys. Rep. 34, 117 (1977).
[8] G. F. Chew and S. C. Frautschi, Phys. Rev. Lett. 7, 394

(1961).
[9] V. N. Gribov, JETP Lett. 41, 667 (1961).

[10] S. Donnachie, H. G. Dosch, O. Nachtmann, and P.
Landshoff, Pomeron Physics and QCD (Cambridge
University Press, Cambridge, England, 2004), Vol. 19.

[11] J. R. Forshaw and D. A. Ross, Quantum Chromodynamics
and the Pomeron, Cambridge Lecture Notes in Physics
Vol. 9 (Cambridge University Press, Cambridge, England,
2022).

[12] P. D. B. Collins, F. D. Gault, and A. D. Martin, Nucl. Phys.
B80, 135 (1974).

[13] A. Donnachie and P. V. Landshoff, Nucl. Phys. B244, 322
(1984).

[14] A. Donnachie and P. V. Landshoff, Phys. Lett. B 296, 227
(1992).

[15] L. Lukaszuk and B. Nicolescu, Lett. Nuovo Cimento 8,
405 (1973).

[16] S. V. Akkelin and E. S. Martynov, Sov. J. Nucl. Phys. 53,
1007 (1991).

[17] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys.
JETP 45, 199 (1977).

[18] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822
(1978).

[19] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys.
JETP 44, 443 (1976).

[20] L. N. Lipatov, Phys. Lett. B 251, 284 (1990).
[21] S. Narison, Z. Phys. C 26, 209 (1984).
[22] S. Narison, Nucl. Phys. B509, 312 (1998).
[23] L. Tang and C.-F. Qiao, Nucl. Phys. B904, 282 (2016).
[24] H. B. Meyer and M. J. Teper, Phys. Lett. B 605, 344

(2005).
[25] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60,

034509 (1999).
[26] W. Ochs, J. Phys. G 40, 043001 (2013).
[27] S. R. Cotanch, I. J. General, and P. Wang, Eur. Phys. J. A

31, 656 (2007).
[28] A. B. Kaidalov and Y. A. Simonov, Phys. Lett. B 636, 101

(2006).
[29] A. B. Kaidalov and Y. A. Simonov, Phys. Lett. B 477, 163

(2000).
[30] A. B. Kaidalov and Y. A. Simonov, Phys. At. Nucl. 63,

1428 (2000).
[31] F. J. Llanes-Estrada, S. R. Cotanch, P. J. de A. Bicudo,

J. E. F. T. Ribeiro, and A. P. Szczepaniak, Nucl. Phys.
A710, 45 (2002).

[32] R. C. Brower, J. Polchinski, M. J. Strassler, and C.-I. Tan,
J. High Energy Phys. 12 (2007) 005.

[33] R. C. Brower, M. Djuric, and C.-I. Tan, J. High Energy
Phys. 07 (2009) 063.

[34] H. Boschi-Filho and N. R. F. Braga, Eur. Phys. J. C 32, 529
(2004).

[35] H. Boschi-Filho, N. R. F. Braga, and H. L. Carrion, Phys.
Rev. D 73, 047901 (2006).

[36] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, Phys.
Lett. B 652, 73 (2007).

[37] D. Li and M. Huang, J. High Energy Phys. 11 (2013) 088.
[38] R. C. Brower, M. S. Costa, M. Djurić, T. Raben, and C.-I.

Tan, J. High Energy Phys. 02 (2015) 104.

[39] A. Ballon-Bayona, R. Carcassés Quevedo, M. S. Costa,
and M. Djurić, Phys. Rev. D 93, 035005 (2016).

[40] E. Folco Capossoli and H. Boschi-Filho, Phys. Lett. B 753,
419 (2016).

[41] E. Folco Capossoli, D. Li, and H. Boschi-Filho, Phys. Lett.
B 760, 101 (2016).

[42] A. Dymarsky and D. Melnikov, J. High Energy Phys. 11
(2022) 164.

[43] H. B. Meyer, D.Phil. Thesis, University of Oxford, 2004.
[44] E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago,

C. Richards, and E. Rinaldi, J. High Energy Phys. 10
(2012) 170.

[45] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[46] F. J. Llanes-Estrada, P. Bicudo, and S. R. Cotanch, Phys.

Rev. Lett. 96, 081601 (2006).
[47] V. Mathieu, N. Kochelev, and V. Vento, Int. J. Mod. Phys.

E 18, 1 (2009).
[48] C. Ewerz, M. Maniatis, and O. Nachtmann, Ann. Phys.

(Amsterdam) 342, 31 (2014).
[49] C. Ewerz, P. Lebiedowicz, O. Nachtmann, and A. Szczurek,

Phys. Lett. B 763, 382 (2016).
[50] R. J. M. Covolan, J. Montanha, and K. A. Goulianos, Phys.

Lett. B 389, 176 (1996).
[51] M. M. Block and F. Halzen, Phys. Rev. D 86, 051504

(2012).
[52] I. Szanyi, L. Jenkovszky, R. Schicker, and V. Svintozelskyi,

Nucl. Phys. A998, 121728 (2020).
[53] L. Jenkovszky, Symmetry 12, 1784 (2020).
[54] W. Broniowski, L. Jenkovszky, E. Ruiz Arriola, and

I. Szanyi, Phys. Rev. D 98, 074012 (2018).
[55] T. Csorgo and I. Szanyi, Eur. Phys. J. C 81, 611

(2021).
[56] T. Csörgő, T. Novak, R. Pasechnik, A. Ster, and I. Szanyi,

Eur. Phys. J. C 81, 180 (2021).
[57] T. Csörgő, R. Pasechnik, and A. Ster, Eur. Phys. J. C 79, 62

(2019).
[58] A. Ster, L. Jenkovszky, and T. Csorgo, Phys. Rev. D 91,

074018 (2015).
[59] M. M. Block and R. N. Cahn, Rev. Mod. Phys. 57, 563

(1985).
[60] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Phys. Lett.

B 780, 352 (2018).
[61] F. Halzen, G. I. Krein, and A. A. Natale, Phys. Rev. D 47,

295 (1993).
[62] A. Donnachie and P. V. Landshoff, Phys. Lett. 123B, 345

(1983).
[63] W.-X. Ma, A. W. Thomas, P.-N. Shen, and L.-J. Zhou,

Commun. Theor. Phys. 36, 577 (2001).
[64] Z.-H. Hu, L.-J. Zhou, W.-X. Ma, J. Zhang, and J.-F. Liu,

Commun. Theor. Phys. 38, 65 (2002).
[65] X.-R. He, L.-J. Zhou, and W.-X. Ma, Commun. Theor.

Phys. 39, 78 (2003).
[66] Z.-H. Hu, L.-J. Zhou, and W.-X. Ma, Commun. Theor.

Phys. 49, 729 (2008).
[67] L.-J. Zhou, Z.-H. Hu, and W.-X. Ma, Commun. Theor.

Phys. 45, 1069 (2006).
[68] J. Lu, L.-J. Zhou, and Z.-J. Fang, Chin. Phys. C 44, 024105

(2020).
[69] J. Bartels, L. N. Lipatov, and G. P. Vacca, Phys. Lett. B

477, 178 (2000).

JINGLE B. MAGALLANES et al. PHYS. REV. D 109, 034007 (2024)

034007-14

https://doi.org/10.1016/0370-1573(77)90010-2
https://doi.org/10.1103/PhysRevLett.7.394
https://doi.org/10.1103/PhysRevLett.7.394
https://doi.org/10.1016/0550-3213(74)90291-0
https://doi.org/10.1016/0550-3213(74)90291-0
https://doi.org/10.1016/0550-3213(84)90315-8
https://doi.org/10.1016/0550-3213(84)90315-8
https://doi.org/10.1016/0370-2693(92)90832-O
https://doi.org/10.1016/0370-2693(92)90832-O
https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02824484
https://doi.org/10.1016/0370-2693(92)90454-C
https://doi.org/10.1016/0370-2693(92)90454-C
https://doi.org/10.1016/0370-2693(90)90937-2
https://doi.org/10.1007/BF01421756
https://doi.org/10.1016/S0550-3213(97)00562-2
https://doi.org/10.1016/j.nuclphysb.2016.01.017
https://doi.org/10.1016/j.physletb.2004.11.036
https://doi.org/10.1016/j.physletb.2004.11.036
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1088/0954-3899/40/4/043001
https://doi.org/10.1140/epja/i2006-10234-2
https://doi.org/10.1140/epja/i2006-10234-2
https://doi.org/10.1016/j.physletb.2006.03.032
https://doi.org/10.1016/j.physletb.2006.03.032
https://doi.org/10.1016/S0370-2693(00)00202-1
https://doi.org/10.1016/S0370-2693(00)00202-1
https://doi.org/10.1134/1.1307465
https://doi.org/10.1134/1.1307465
https://doi.org/10.1016/S0375-9474(02)01090-4
https://doi.org/10.1016/S0375-9474(02)01090-4
https://doi.org/10.1088/1126-6708/2007/12/005
https://doi.org/10.1088/1126-6708/2009/07/063
https://doi.org/10.1088/1126-6708/2009/07/063
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1103/PhysRevD.73.047901
https://doi.org/10.1103/PhysRevD.73.047901
https://doi.org/10.1016/j.physletb.2007.06.072
https://doi.org/10.1016/j.physletb.2007.06.072
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1007/JHEP02(2015)104
https://doi.org/10.1103/PhysRevD.93.035005
https://doi.org/10.1016/j.physletb.2015.12.034
https://doi.org/10.1016/j.physletb.2015.12.034
https://doi.org/10.1016/j.physletb.2016.06.049
https://doi.org/10.1016/j.physletb.2016.06.049
https://doi.org/10.1007/JHEP11(2022)164
https://doi.org/10.1007/JHEP11(2022)164
https://doi.org/10.1007/JHEP10(2012)170
https://doi.org/10.1007/JHEP10(2012)170
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevLett.96.081601
https://doi.org/10.1103/PhysRevLett.96.081601
https://doi.org/10.1142/S0218301309012124
https://doi.org/10.1142/S0218301309012124
https://doi.org/10.1016/j.aop.2013.12.001
https://doi.org/10.1016/j.aop.2013.12.001
https://doi.org/10.1016/j.physletb.2016.10.064
https://doi.org/10.1016/S0370-2693(96)01362-7
https://doi.org/10.1016/S0370-2693(96)01362-7
https://doi.org/10.1103/PhysRevD.86.051504
https://doi.org/10.1103/PhysRevD.86.051504
https://doi.org/10.1016/j.nuclphysa.2020.121728
https://doi.org/10.3390/sym12111784
https://doi.org/10.1103/PhysRevD.98.074012
https://doi.org/10.1140/epjc/s10052-021-09381-5
https://doi.org/10.1140/epjc/s10052-021-09381-5
https://doi.org/10.1140/epjc/s10052-021-08867-6
https://doi.org/10.1140/epjc/s10052-019-6588-8
https://doi.org/10.1140/epjc/s10052-019-6588-8
https://doi.org/10.1103/PhysRevD.91.074018
https://doi.org/10.1103/PhysRevD.91.074018
https://doi.org/10.1103/RevModPhys.57.563
https://doi.org/10.1103/RevModPhys.57.563
https://doi.org/10.1016/j.physletb.2018.03.025
https://doi.org/10.1016/j.physletb.2018.03.025
https://doi.org/10.1103/PhysRevD.47.295
https://doi.org/10.1103/PhysRevD.47.295
https://doi.org/10.1088/0253-6102/36/5/577
https://doi.org/10.1088/0253-6102/38/1/65
https://doi.org/10.1088/0253-6102/39/1/78
https://doi.org/10.1088/0253-6102/39/1/78
https://doi.org/10.1088/0253-6102/49/3/43
https://doi.org/10.1088/0253-6102/49/3/43
https://doi.org/10.1088/0253-6102/45/6/022
https://doi.org/10.1088/0253-6102/45/6/022
https://doi.org/10.1088/1674-1137/44/2/024105
https://doi.org/10.1088/1674-1137/44/2/024105
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/S0370-2693(00)00221-5


[70] S. K. Domokos, J. A. Harvey, and N. Mann, Phys. Rev. D
80, 126015 (2009).

[71] S. K. Domokos, J. A. Harvey, and N. Mann, Phys. Rev. D
82, 106007 (2010).

[72] E. Avsar, Y. Hatta, and T. Matsuo, J. High Energy Phys. 03
(2010) 037.

[73] Z. Hu, B. Maddock, and N. Mann, J. High Energy Phys. 08
(2018) 093.

[74] W. Xie, A. Watanabe, and M. Huang, J. High Energy Phys.
10 (2019) 053.

[75] P. Burikham and D. Samart, Eur. Phys. J. C 79, 452
(2019).

[76] Z. Liu, W. Xie, and A. Watanabe, Phys. Rev. D 107,
014018 (2023).

[77] Z. Liu, W. Xie, F. Sun, S. Li, and A. Watanabe, Phys. Rev.
D 106, 054025 (2022).

[78] A. Ballon-Bayona, R. Carcassés Quevedo, and M. S.
Costa, J. High Energy Phys. 08 (2017) 085.

[79] I. Iatrakis, A. Ramamurti, and E. Shuryak, Phys. Rev. D
94, 045005 (2016).

[80] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 86,
012009 (2012).

[81] V. M. Abazov et al. (TOTEM, D0 Collaborations), Phys.
Rev. Lett. 127, 062003 (2021).

[82] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 104,
094050 (2021).

[83] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 103,
L091503 (2021).

[84] L. Zhang, C. Chen, Y. Chen, and M. Huang, Phys. Rev. D
105, 026020 (2022).

[85] N. Bence, A. Lengyel, Z. Tarics, E. Martynov, and G.
Tersimonov, Eur. Phys. J. A 57, 265 (2021).

[86] E. F. Capossoli, J. P. M. Graça, and H. Boschi-Filho, Phys.
Rev. D 105, 026026 (2022).

[87] P. Lebiedowicz, SciPost Phys. Proc. 6, 010 (2022).

[88] C. Baldenegro, C. Royon, and A. M. Stasto, Phys. Lett. B
830, 137141 (2022).

[89] Z.-F. Cui, D. Binosi, C. D. Roberts, S. M. Schmidt, and
D. N. Triantafyllopoulos, Phys. Lett. B 839, 137826
(2023).

[90] P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Phys.
Rev. D 106, 034023 (2022).

[91] C. Bonanno, M. D’Elia, B. Lucini, and D. Vadacchino,
Proc. Sci. LATTICE2022 (2023) 392.

[92] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, USA,
1995).

[93] F. Close, S. Donnachie, and G. Shaw, eds., Electromag-
netic Interactions and Hadronic Structure (Cambridge
University Press, Cambridge, England, 2009), Vol. 25.

[94] F. A. Berends and J. C. J. M. van Reisen, Nucl. Phys.
B164, 286 (1980).

[95] C. Avila et al. (E811 Collaboration), Phys. Lett. B 445, 419
(1999).

[96] G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C
80, 91 (2020).

[97] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.
101, 21002 (2013).

[98] G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C
79, 103 (2019).

[99] H. Dembinski et al. (2020), 10.5281/zenodo.3949207.
[100] F. James and M. Roos, Comput. Phys. Commun. 10, 343

(1975).
[101] G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C

79, 785 (2019).
[102] G. Pancheri, S. Pacetti, and Y. Srivastava, Phys. Rev. D 99,

034014 (2019).
[103] A. Martin, Lett. Nuovo Cimento 7, 811 (1973).
[104] A. Martin, Phys. Lett. B 404, 137 (1997).
[105] www.e-science.in.th.

ODDERON AS A REGGE SPIN-3 ODDBALL IN pp AND … PHYS. REV. D 109, 034007 (2024)

034007-15

https://doi.org/10.1103/PhysRevD.80.126015
https://doi.org/10.1103/PhysRevD.80.126015
https://doi.org/10.1103/PhysRevD.82.106007
https://doi.org/10.1103/PhysRevD.82.106007
https://doi.org/10.1007/JHEP03(2010)037
https://doi.org/10.1007/JHEP03(2010)037
https://doi.org/10.1007/JHEP08(2018)093
https://doi.org/10.1007/JHEP08(2018)093
https://doi.org/10.1007/JHEP10(2019)053
https://doi.org/10.1007/JHEP10(2019)053
https://doi.org/10.1140/epjc/s10052-019-6957-3
https://doi.org/10.1140/epjc/s10052-019-6957-3
https://doi.org/10.1103/PhysRevD.107.014018
https://doi.org/10.1103/PhysRevD.107.014018
https://doi.org/10.1103/PhysRevD.106.054025
https://doi.org/10.1103/PhysRevD.106.054025
https://doi.org/10.1007/JHEP08(2017)085
https://doi.org/10.1103/PhysRevD.94.045005
https://doi.org/10.1103/PhysRevD.94.045005
https://doi.org/10.1103/PhysRevD.86.012009
https://doi.org/10.1103/PhysRevD.86.012009
https://doi.org/10.1103/PhysRevLett.127.062003
https://doi.org/10.1103/PhysRevLett.127.062003
https://doi.org/10.1103/PhysRevD.104.094050
https://doi.org/10.1103/PhysRevD.104.094050
https://doi.org/10.1103/PhysRevD.103.L091503
https://doi.org/10.1103/PhysRevD.103.L091503
https://doi.org/10.1103/PhysRevD.105.026020
https://doi.org/10.1103/PhysRevD.105.026020
https://doi.org/10.1140/epja/s10050-021-00563-z
https://doi.org/10.1103/PhysRevD.105.026026
https://doi.org/10.1103/PhysRevD.105.026026
https://doi.org/10.21468/SciPostPhysProc.6.010
https://doi.org/10.1016/j.physletb.2022.137141
https://doi.org/10.1016/j.physletb.2022.137141
https://doi.org/10.1016/j.physletb.2023.137826
https://doi.org/10.1016/j.physletb.2023.137826
https://doi.org/10.1103/PhysRevD.106.034023
https://doi.org/10.1103/PhysRevD.106.034023
https://doi.org/10.22323/1.430.0392
https://doi.org/10.1016/0550-3213(80)90512-X
https://doi.org/10.1016/0550-3213(80)90512-X
https://doi.org/10.1016/S0370-2693(98)01421-X
https://doi.org/10.1016/S0370-2693(98)01421-X
https://doi.org/10.1140/epjc/s10052-020-7654-y
https://doi.org/10.1140/epjc/s10052-020-7654-y
https://doi.org/10.1209/0295-5075/101/21002
https://doi.org/10.1209/0295-5075/101/21002
https://doi.org/10.1140/epjc/s10052-019-6567-0
https://doi.org/10.1140/epjc/s10052-019-6567-0
https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1140/epjc/s10052-019-7223-4
https://doi.org/10.1140/epjc/s10052-019-7223-4
https://doi.org/10.1103/PhysRevD.99.034014
https://doi.org/10.1103/PhysRevD.99.034014
https://doi.org/10.1007/BF02725393
https://doi.org/10.1016/S0370-2693(97)00510-8
https://www.e-science.in.th
https://www.e-science.in.th
https://www.e-science.in.th
https://www.e-science.in.th

