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We investigate the properties of strangelets at finite temperature T, where an equivparticle model is
adopted with both the linear confinement and leading-order perturbative interactions accounted for using
density-dependent quark masses. The shell effects are examined by solving the Dirac equations for quarks
in the mean-field approximation, which diminish with temperature as the occupation probability of each
single-particle levels fixed by the Fermi-Dirac statistics, i.e., shell dampening. Consequently, instead of
decreasing with temperature, the surface tension extracted from a liquid-drop formula increases with T until
reaching its peak at T ≈ 20–40 MeV with vanishing shell corrections, where the formula roughly
reproduces the free energy per baryon of all strangelets. The curvature term, nevertheless, decreases with T
despite the presence of shell effects. The neutron and proton emission rates are fixed microscopically
according to the external nucleon gas densities that are in equilibrium with strangelets, which generally
increase with T (≲50 MeV) for stable strangelets but decrease for those that are unstable against nucleon
emission at T ¼ 0. The energy, free energy, entropy, charge-to-mass ratio, strangeness per baryon, and root-
mean-square radius of β-stable strangelets obtained with various parameter sets are presented as well. The
results indicated in this work are useful for understanding the products of binary compact star mergers and
heavy-ion collisions.

DOI: 10.1103/PhysRevD.109.034003

I. INTRODUCTION

At large enough densities, hadronic matter will under-
go a deconfinement phase transition and form quark
matter [1,2]. In 1971, Bodmer proposed the possible
existence of “collapsed nuclei” with mass number A> 1
and radii much smaller than ordinary nuclei [3]. Later on,
Witten suggested that strange quark matter (SQM) carry-
ing roughly equal numbers of u, d, and s quarks and a
small amount of electrons may be the ground state of
strongly interacting system [4]. If true, there must exist

various types of SQM objects, e.g., strangelets [5–10],
nuclearites [11,12], meteorlike compact ultradense ob-
jects [13], and strange stars [14–16]. Nevertheless, chiral
models suggest that SQM is unstable [17,18] and non-
strange quark matter (udQM) may be the true ground
state [19], indicating the possible existence of stable
udQM nuggets with A≳ 300 [19] and nonstrange quark
stars [20–27]. Additionally, instead of deconfined quark
matter, a solid state comprised of strangeons (quark-
clusters with three-light-flavor symmetry) may be more
stable [28–32], where small strangeon nuggets could
persist in our universe [33]. Such exotic objects are
expected to be formed in heavy-ion collisions [34], the
mergers of binary compact stars [35–40], type II supernova
explosions [41], the hadronization process of the early
universe [4], etc. Significant efforts were then devoted
to search for those objects, but with no conclusive evi-
dence [42,43]. It is thus essential for us to disentangle the
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properties of those exotic objects to finally prove or
disprove their existence.
As lattice QCD is plagued by the sign problem at finite

densities, we rely on effectivemodels to unveil the properties
of those exotic objects. For example, adopting MIT bag
model, Farhi and Jaffe have found that the surface tension has
a significant impact on the stability of strangelets [7]. Later
on, Berger and Jaffe proposed a mass formula for strangelets
and investigated their possible decay channels [8]. Small
strangelets are almost uniformly charged, while the charge
screening effects start to play a role for larger strangelets [44].
In particular, when the surface tension is below some critical
value, the surface of a quark star will fragment into a
crystalline crust made of charged strangelets or udQM
nuggets immersed in an electron gas [25,45,46]. For small
strangelets and udQM nuggets, it was shown that the
curvature contribution is sizable [47], where the multiple
reflection expansion method (MRE) was proposed to treat
the surface and curvature corrections analytically [48–50].
The shell effects in strangelets was addressed as well in the
framework of MIT bag model [50–54], which alters the
properties of small strangelets significantly.
Those investigations on strangelets and udQM nuggets

are generally carried out at vanishing temperatures, while
their creation and survival usually take place at large
temperatures. It is thus necessary to investigate the proper-
ties of those objects at finite temperatures, where various
studies were carried out. For example, the properties of
strangelets at finite temperatures were examined in the
framework of MIT bag model, where clear shell struc-
tures persist up to about T ¼ 10 MeV, as identified in
Refs. [55,56]. For quark nuggets in a color-flavor locked
state, a substantial quenching of the evaporation and
boiling processes was identified in the cosmological
quark-hadron transition [57]. Nevertheless, it is worth
mentioning that MIT bag model assumes an infinite wall
while lattice QCD suggests linear confinement for quarks,
leading to distinctive different surface density profiles and
consequently affecting various strangelets’ properties as
indicated in our previous study [58]. We thus adopt an
equivparticle model here to study the properties of strange-
lets, where both the linear confinement and leading-order
perturbative interactions can be accounted for using den-
sity-dependent quark masses [59–63]. Note that the proper-
ties of strangelets at finite temperatures were investigated in
the framework of equivparticle model with the interface
effects treated with the MRE method [60,64,65], where the
mass, radius, and strangeness per baryon are increasing
with temperature and charge-to-mass ratio decreasing with
temperature [65].
In this work, as was done in our previous study [58], we

investigate the properties of strangelets in mean-field
approximation (MFA). Instead of adopting MRE method,
we directly solve the Dirac equations and obtain the single
particle levels for quarks. The calculation is carried out

self-consistently with the mean fields and quark wave
functions obtained in an iterative manner, where the
occupation probability of each single particle level follows
Fermi-Dirac distribution at given temperature. Then we fix
the neutron and proton emission rates according to the
densities of external neutron and proton gases in equilib-
rium with the strangelet [66].
This paper is organized as follows. In Sec. II we present

the theoretical framework of our study, where the Lagrange
density of equivparticle model with density dependent
quark masses is given in Sec. II A, the properties of
strangelets in MFA are obtained in Sec. II B, and neutron
and proton emission rates are fixed in Sec. II C. The
numeric result on the properties strangelets at finite temper-
ature are presented in Sec. III. Finally, our conclusion is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Lagrangian density

The Lagrangian density of the equivparticle model can
be given as

L ¼
X

i¼u;d;s

ψ̄ i½iγμ∂μ −mi − eqiγμAμ�ψ i −
1

4
AμνAμν; ð1Þ

where ψ i represents the Dirac spinor of quark flavor i, mi
the mass, qi the charge (qu ¼ 2e=3 and qd ¼ qs ¼ −e=3),
and Aμ the photon field with the field tensor

Aμν ¼ ∂μAν − ∂νAμ: ð2Þ

In the equivparticle model, the strong interactions among
quarks are treatedwith density and/or temperature-dependent
quark masses, where quarks can be regarded as quasifree
particles. The mass of quark i is usually fixed by

mi ¼ mi0 þmIðnb; TÞ; ð3Þ

where nb ¼
P

i¼u;d;s ni=3 is the baryon number density
with ni ¼ hψ̄ iγ

0ψ ii being the number density of quark i, T
the temperature, and mu0 ¼ 2.2 MeV, md0 ¼ 4.7 MeV,
and ms0 ¼ 96.0 MeV the current quark masses [67]. The
original quark mass scaling was derived from MIT bag
model [68–70], which is given by

mI ¼
B
3nb

ð4Þ

with B being the bag constant. Considering the contribu-
tions of linear confinement and in-medium chiral conden-
sates, an inversely cubic scaling was proposed [71], i.e.,

mI ¼
Dffiffiffiffiffi
nb3

p ; ð5Þ
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where the confinement parameter D is connected to the
string tension of linear confinement and vacuum chiral
condensates. By adding one more term to Eq. (5), the one-
gluon-exchange interaction or lead-order perturbation inter-
action can be considered [62,63], i.e.,

mI ¼
Dffiffiffiffiffi
nb3

p þ C
ffiffiffiffiffi
nb3

p
: ð6Þ

Depending on the sign ofC, the second term corresponds to
the contribution from one-gluon-exchange interaction
(C < 0) [62] or leading-order perturbative interaction
(C > 0) [63]. To accommodate the deconfinement phase
transition at high temperatures, this mass scaling was later
extended and became temperature dependent [72], i.e.,

mI ¼
Dffiffiffiffiffi
nb3

p
�
1þ 8T

Λ
e−

Λ
T

�
−1

þ C
ffiffiffiffiffi
nb3

p �
1þ 8T

Λ
e−

Λ
T

�
; ð7Þ

where Λ ¼ 280 MeV is a temperature scale parameter
corresponding to the critical temperature Tc ≈ 175 MeV
[60]. As strangelets will not exist at large temperatures at
T ≳ Tc and the variation of mI with respect to temperature
is generally small at T ≲ Tc, we thus neglect the temper-
ature dependence of quark masses and simply adopt Eq. (6)
in this work.

B. Strangelets in MFA

Based on the Lagrangian density indicated in Eq. (1)
with the quark mass scaling in Eq. (6), the Dirac equations
for quarks and Klein-Gordon equation for photons are
obtained via a standard variational procedure. For spheri-
cally symmetric strangelets, the Dirac spinor of quarks can
be expanded as

ψnκmðrÞ ¼
1

r

�
iGnκðrÞ

FnκðrÞσ · r̂

�
Yl
jmðθ;ϕÞ; ð8Þ

where GnκðrÞ=r and FnκðrÞ=r are the radial wave func-
tions for the upper and lower components, and Yl

jmðθ;ϕÞ
the spinor spherical harmonics. The quantum number
κ is defined by the angular momenta ðl; jÞ as κ ¼
ð−1Þjþlþ1=2ðjþ 1=2Þ with j ¼ l� 1

2
.

Adopting mean-field approximation and substituting
Eq. (8) into Dirac equation, the one-dimensional radial
Dirac equation can then be easily obtained by integrating
the angular part, i.e.,

 
ViV þ ViS − d

dr þ κ
r

d
dr þ κ

r ViV − ViS

!�
Ginκ

Finκ

�
¼ εinκ

�
Ginκ

Finκ

�
; ð9Þ

Here εinκ is the single particle energy of quark i, the mean-
field scalar and vector potentials of quarks are as follows

ViS ¼ mi0 þmIðnbÞ; ð10Þ

ViV ¼ VV þ eqiA0: ð11Þ

Note that we have added current mass of quarks to the scalar
potential VS ¼ mIðnbÞ in Eq. (10). In the vector potentials
we have VV ¼ 1

3
dmI
dnb

P
i¼u;d;s n

s
i , which arises due to the

density-dependence of quarkmasses and is essential to meet
the requirement of thermodynamic self-consistency [58,63].
The Klein-Gordon equation for photons is given by

−∇2A0 ¼ ench: ð12Þ

where nch ¼
P

i qini is the charge density with
qu ¼ 2=3; qd ¼ −1=3, and qs ¼ −1=3.
Once we fix the single particle energies for quarks, their

occupation probability is then determined by the Fermi-
Dirac distribution, i.e.,

finκ ¼ ½1þ eðεinκ−μiÞ=T �−1; ð13Þ

where μi represents the chemical potential of quark favor i
and we consider only the β-equilibrated cases with

μu ¼ μd ¼ μs ¼ μb=3: ð14Þ

Note that we have adopted the no-sea approximation and
neglected any contributions from antiquarks, which is
justified here since the adopted temperatures are small.
As neutrinos can leave the system freely and electrons has
little impact on the properties of strangelets with radii R≲
40 fm [73], the contribution of neutrinos and electrons are
neglected by taking their chemical potentials equal to zero.
The scalar and vector densities for quarks at finite temper-
atures can then be obtained with

nsiðrÞ ¼
X
n;κ

3jκjfinκ
2πr2

½jGinκðrÞj2 − jFinκðrÞj2�; ð15aÞ

niðrÞ ¼
X
n;κ

3jκjfinκ
2πr2

½jGinκðrÞj2 þ jFinκðrÞj2�; ð15bÞ

where the degeneracy factor 3ð2jþ 1Þ ¼ 6jκj of each
single particle levels is considered. The quark numbers
Niði ¼ u; d; sÞ are obtained by integrating the density niðrÞ
in coordinate space as

Ni ¼
Z

4πr2niðrÞdr: ð16Þ

At a fixed total baryon number A, our calculation is then
carried out by varying the chemical potential μb so that
3A ¼ Nu þ Nd þ Ns. The total mass and free energy of the
strangelet can finally be obtained as
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M ¼
X
i;n;κ

6jκjfinκεinκ −
Z

12πr2nbVVdr − EC; ð17Þ

F ¼
X
i;n;κ

6jκjfinκ
n
μi − T ln

h
1þ e−ðεinκ−μiÞ=T

io

−
Z

12πr2nbVVdr − EC; ð18Þ

where the Coulomb energy is determined by

EC ¼ 2π

Z
r2nchðrÞeA0ðrÞdr: ð19Þ

The entropy is then fixed according to basic thermody-
namic relation, i.e.,

S ¼ M − F
T

: ð20Þ

At fixed baryon number A, temperature T, and param-
eters C and D, the Dirac Eq. (9), mean field potentials in
Eqs. (10) and (11), Klein-Gordon Eq. (12), and density
profiles in Eq. (15) are solved iteratively inside a box with
the grid width less than 0.005 fm. Note that in our
calculation we have introduced cutoffs on the quantum
numbers n ≤ nmax and jκj ≤ κmax, which are fixed by the
criterion 6jκjfinκ ≤ 10−6.

C. Neutron and proton emission rates

With the strangelet’s properties fixed in Sec. II B, the
neutron and proton emission widths can then be estimated
by examine the external neutron and proton gas densities
that are in equilibrium with the strangelet, which are
obtained with the usual formulas for nuclear reaction rates
in the theory of nucleosynthesis [66,74], i.e.,

Γp;n ¼ np;nhσp;nvp;ni: ð21Þ

Here σp;n is the neutron and proton capture cross sections of
the strangelet, and hσp;nvp;ni represents a statistical average
over the states in the external gas with vp;n being the
velocities of protons and neutrons.
The particle number densities of neutron and proton

gases outside the hot strangelet can be derived as

np;n ¼
1

π2

Z
∞

0

½1þ eð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p;n

p
−μbÞ=T �−1p2dp; ð22Þ

where the chemical potential μb is fixed by Eq. (14) as the
strangelet is in thermodynamic equilibrium with the
nucleon gas. Note that we have neglected the contributions
of antinucleons as the temperatures considered here are
relatively small.

The statistical average hσp;nvp;ni can be calculated with

hσivii ¼
R
∞
0 σiðεiÞfðεiÞviðεiÞ ffiffiffiffi

εi
p

dεiR
∞
0 fðεiÞ

ffiffiffi
ε

p
dεi

; ð23Þ

where fðεiÞ represents the Fermi-Dirac distribution in
Eq. (13) with the discretized single particle energy εinκ
replaced by the continuum one εi and chemical potential μi
by μb −mi. Note that the kinetic energy is connected to the
velocity vi of nucleons with εi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

p
−mi ≈

miv2i =2, which gives

viðεiÞ ¼
ffiffiffiffiffiffi
2εi
mi

s
: ð24Þ

Since neutron is an electrically neutral particle, we can
simply adopt the geometrical cross section, i.e.,

σn ¼ πR2; ð25Þ

whereR is the radius of the corresponding strangelet and we
take its value at vanishing quark densities, i.e., boundary of
the box. For the capture cross section of protons, the
Coulomb interaction cannot be neglected [39,75]. Then
we adopt theHill-Wheeler formula [76] and assume a typical
Coulomb barrier width ω0 ¼ 4 MeV for nuclear reaction,
i.e.,

σpðεpÞ ¼
R2ω0

2εp
ln

�
1þ exp

�
2πðεp − εCÞ

ω0

��
: ð26Þ

The Coulomb barrier height is fixed at the Box boundary
with εC ¼ αZ=R, where α ¼ 1=137.036 is the fine structure
constant and Z the charge number carried by the strangelet.

III. RESULTS AND DISCUSSIONS

Based on the formulas presented in Sec. II B, the
properties of β-stable strangelets are then obtained at
fixed baryon number A, temperature T, and parameter
set ðC; ffiffiffiffi

D
p Þ. Our previous investigations have revealed the

properties of strangelets and udQM nuggets at vanishing
temperatures [25,58,77], which are sensitive to the
strengths of confinementD and perturbationC interactions.
In this work, we thus focus on the effects of finite
temperature on the properties of strangelets.
In Fig. 1 we present the density profiles of u, d, s quarks

for strangelets at baryon number A ¼ 10 and temperatures
T ¼ 1–80 MeV, where the parameter set C ¼ −0.5 andffiffiffiffi
D

p ¼ 180 MeV is adopted. As temperature increases, the
densities of u, d, s quarks decrease considerably at
T ≳ 20 MeV. At T ≲ 20 MeV, the shell effects play
important roles, where the densities of u and d quarks
are increasing with T while that of s quarks is decreasing.
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This is mainly attributed to the decreasing strangeness per
baryon fs ¼ Ns=A of the β-stable strangelet as T increases,
which is illustrated in Fig. 7. In fact, as indicated in Table I,
the corresponding densities of SQM in the bulk limit
fixed at vanishing pressures decrease with T even at
T ≲ 20 MeV, which should be the case for strangelets at
A ≫ 10. Note that if we adopt parameter sets predicting
small bulk densities, e.g., C ¼ 0.7 and

ffiffiffiffi
D

p ¼ 129 MeV or
140 MeV in Table I, the bulk density of s quarks may
increase with temperature. In the vicinity of quark-vacuum
interface, the density distribution becomes more diffused as
temperature increases. The variations in the density profiles
of u and d quarks generally have similar trends as temper-
ature increases, while the density of s quarks varies more
significantly.
Figure 2 illustrates the charge nch ¼ ð2nu − nd − nsÞ=3

and baryon nb ¼ ðnu þ nd þ nsÞ=3 density profiles of the
strangelets corresponding to Fig. 1. As temperature
increases, the baryon number density inside the strangelet
decreases and becomes more diffused in the surface region.
Similar trend is observed for baryon number density n0 in
the bulk limit as indicated in Table I, while the exact value
is much smaller than that of the strangelets except for the
case at T ¼ 80 MeV. At small temperatures, the charge
density is negative at the center and increases as we move to
the surface until reaching its peak at r ≈ 1.25 fm, then

decreases and finally tends to zero. As temperature
increases, the variation of charge density becomes more
smooth and positive, which is mainly attributed to the
variations of the density profiles of s quarks as indicated
in Fig. 1.
Based on the density profiles indicated in Figs. 1 and 2,

the corresponding scalar and vector potentials are obtained
with Eqs. (10) and (11), which are presented in Fig. 3. As
the effects of quark confinement are considered self-
consistently in our mass scaling in Eq. (6), as illustrated
in Fig. 3, the mean-field potentials become infinitely large
in the vicinity of the quark-vacuum interface. As indicated
in Figs. 1 and 2, the densities of strangelets decrease
with temperature and strangelets become larger in size.
Consequently, the depth of scalar potential Vs becomes
shallower at higher temperatures, while the variation of the
vector potential Vv is smaller except that the position of
infinite potential increases with the strangelet’s size.
Finally, at large enough temperatures, the densities become
too small and the strangelet’s size grows drastically. The
mean fields then approach to the bulk limit, indicating the
nonexistence of strangelets at larger temperatures.
In Fig. 4, we present the chemical potential, energy and

free energy per baryon for β-stable strangelets as functions
of baryon number A at different temperatures, where the
parameter set C ¼ −0.5 and

ffiffiffiffi
D

p ¼ 180 MeV is adopted.
The chemical potential, energy and free energy per baryon
are generally decreasing with A and approaching to the
bulk values indicated in Table I, i.e., μb → F0=A, M=A →
ðTS0 þ F0Þ=A, and F=A → F0=A, which are fixed by
treating quark matter at vanishing pressure while fulfilling
both charge neutrality condition nch ¼ 0 and β-stability
condition μd ¼ μs. According to the Fermi-Dirac
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FIG. 1. Density profiles of u, d, s quarks for strangelets at
baryon number A ¼ 10 and various temperatures, where the
parameter set C ¼ −0.5 and
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p ¼ 180 MeV is adopted.
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distribution indicated in Eq. (13), quarks tend to occupy
higher energy states as temperature increases, so that the
energy per baryon increases with T, while the free energy
per baryon and chemical potential decrease. This is also
consistent with the trends in their bulk values in Table I. At
a given temperature, the variation of strangelets’ properties
with respect to the adopted parameters C and D is consi-
stent with our previous study at vanishing temperature [58],
where both the confinement and perturbation interactions
destabilize the strangelets. For cold strangelets with small
baryon numbers, the chemical potential, energy and free
energy per baryon fluctuate with A, which is attributed to
the shell effects [58]. Nevertheless, at larger temperatures,
the shell effects are dampened so that μb, M=A, and F=A
varies smoothly with A. We should also mention that at
small baryon numbers with A≲ 10, the center-of-mass

correction and one-gluon-exchange interactions become
important [78], where the energy and free energy per
baryon for β-stable strangelets are expected to be reduced.
In the extreme case of A ¼ 1 and T ¼ 0, the (free) energy
per baryon should correspond to the mass of nucleons [79].
The free energy per baryon in Fig. 4 can be fitted by a

liquid-drop type formula [54], i.e.,

FLD

A
¼ F0

A
þ αS

A
1
3

þ αC
A

2
3

: ð27Þ

Here F0=A is the free energy per baryon in the bulk limit as
indicated in Table I, while the fitted parameters αS and αC
are presented as well. Note that during fitting we have
subtracted the contribution of Coulomb energy EC to better
illustrate the effects of strong interaction on the interface

TABLE I. Bulk properties of SQM at zero external pressure, interface properties obtained using the fitted liquid-drop parameters, and
emission rates per unit surface area for large strangelets obtained at various temperatures and parameter sets.

Parameters Bulk properties Interface properties Emission rates

C
ffiffiffiffi
D

p
MeV T MeV n0 fm−3 fs F0=A MeV S0=A αS MeV αC MeV σ MeV=fm2 λ MeV=fm

Γn=4πR2

MeV=fm2

Γp=4πR2

MeV=fm2

−0.5 180 1 0.38 0.70 902 0.11 34 371 3.7 17.3 2.0 × 10−19 7.9 × 10−30

−0.5 180 5 0.38 0.70 900 0.57 45 337 4.9 15.6 1.8 × 10−5 1.3 × 10−7

−0.5 180 10 0.37 0.70 895 1.15 55 298 5.9 13.7 0.0013 1.1 × 10−4

−0.5 180 20 0.36 0.69 877 2.30 82 230 8.6 10.5 0.022 0.0063
−0.5 180 30 0.34 0.69 846 3.47 103 170 10.4 7.60 0.051 0.022
−0.5 180 40 0.31 0.68 802 4.70 125 110 11.8 4.77 0.062 0.033
−0.5 180 50 0.29 0.68 746 5.84 123 83 11.2 3.53 0.073 0.043
−0.5 180 60 0.26 0.69 676 7.07 116 63 9.8 4.75 0.064 0.041
−0.5 180 70 0.22 0.69 589 8.47 110 44 8.3 1.69 0.044 0.030
−0.5 180 80 0.19 0.70 488 9.85 100 30 6.8 1.10 0.031 0.023
−0.5 180 90 0.16 0.71 367 11.5 90 22 5.5 0.75 0.021 0.016

0 156 1 0.24 0.52 913 0.15 87 178 6.9 7.09 8.9 × 10−16 1.5 × 10−28

0 156 5 0.24 0.52 911 0.74 90 159 7.2 6.34 9.4 × 10−5 2.3 × 10−7

0 156 10 0.24 0.52 905 1.47 102 117 8.1 4.67 0.0049 2.5 × 10−4

0 156 20 0.22 0.51 881 2.98 113 86 8.5 3.33 0.026 0.0057
0 156 30 0.20 0.51 841 4.47 121 57 8.6 2.12 0.043 0.016

0.4 129 1 0.11 0.18 852 0.21 57 143 2.7 4.38 9.8 × 10−44 1.4 × 10−57

0.4 129 5 0.11 0.19 849 1.05 53 156 2.5 4.80 2.1 × 10−10 3.2 × 10−13

0.4 129 10 0.11 0.21 841 2.05 66 115 3.1 3.54 5.7 × 10−6 2.4 × 10−7

0.4 129 20 0.10 0.26 808 4.04 83 75 3.7 2.22 6.6 × 10−4 1.5 × 10−4

0.4 129 30 0.09 0.33 755 5.95 91 35 3.8 1.01 0.0028 0.0011

0.7 129 1 0.10 0.06 920 0.23 44 183 2.0 5.43 3.7 × 10−12 5.0 × 10−26

0.7 129 5 0.10 0.08 917 1.12 57 135 2.5 4.02 3.7 × 10−4 6.0 × 10−7

0.7 129 10 0.10 0.12 908 2.19 65 114 2.9 3.40 0.0069 3.0 × 10−4

0.7 129 20 0.09 0.19 872 4.36 83 68 3.4 1.95 0.019 0.0044
0.7 129 30 0.07 0.25 814 6.74 88 39 3.1 1.04 0.013 0.0052

0.7 140 1 0.13 0.13 997 0.22 52 192 2.8 6.24 2.0 0.31
0.7 140 5 0.13 0.14 994 1.06 62 157 3.3 5.09 1.9 0.32
0.7 140 10 0.13 0.18 985 2.07 75 118 4.0 3.85 1.7 0.33
0.7 140 20 0.12 0.24 952 4.05 93 73 4.7 2.30 0.78 0.22
0.7 140 30 0.10 0.29 898 6.12 99 44 4.4 1.32 0.25 0.10
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effects. The deviations of the free energy from the fitted
values ΔF ¼ F − EC − FLD are then presented in the
bottom panel of Fig. 4, where the shell effects can be
identified easily. To better illustrate the shell structures, in
Fig. 5 we present the single-particle levels for u, d, s quarks
in the strangelet at A ¼ 10 and T ¼ 10 MeV, where the
parameter set C ¼ −0.5 and

ffiffiffiffi
D

p ¼ 180 MeV is adopted.
Various magic numbers (6; 24; 60; 96;…) with large shell
gaps can be identified for u, d, s quarks, which resembles
the magic numbers (2; 8; 20; 28;…) of finite nuclei. Note
that the magic numbers atNi > 24may be altered for larger
strangelets or if we adopt different parameter sets [77],
while the magic numbers 6 and 24 for quarks seem robust
despite the variations in the adopted parameters.
Consequently, as indicated in Fig. 4, the strangelets at
A ¼ 4, 6, and 18 are found to be more stable than others,
which correspond to the quark numbers (Nu, Nd, Ns):
(6, 6, 0), (6, 6, 6), and (24, 24, 6). As baryon number A
increases, the shell corrections to the energy and free
energy per baryon eventually become insignificant.
Similarly, if we adopt larger temperatures, quarks start to
occupy more single-particle states above the Fermi energy
as illustrated in Fig. 5, which smears out the fluctuations
caused by the large shell gaps, i.e., shell dampening.
Based on the energy and free energy per baryon

indicated in Fig. 4, the entropy per baryon can be obtained
with Eq. (20), which are presented in Fig. 6 as functions of
baryon number for β-stable strangelets. It is found that S=A
generally decreases with A and approaches to its bulk limit
S0=A in Table I, which is indicated with the dashed
horizontal lines. Evidently, the entropy per baryon
approaches faster to its bulk limit than energy and free
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energy per baryon, where at A ≥ 4 the value of S=A is
already close to S0=A. Slight fluctuations caused by shell
effects is also identified while the amplitude decreases with
temperature due to shell dampening. The entropy per
baryon increases quickly with T, which is also the case
for the bulk limit indicated Table I. The dependence of S=A
on the adopted parameter sets were investigated in Ref. [65]
and can also be identified in Table I, where perturbative
interaction reduces the entropy per baryon and confinement
interaction does the opposite.
The strangeness per baryon, charge-to-mass ratio, and

ratio of root-mean-square radius to baryon number can be
obtained with

fs ¼ Ns=A; ð28Þ

fz ¼ Z=A ¼ ð2Nu − Nd − NsÞ=3A; ð29Þ

r0 ¼
�Z

4πr4nbdr

�
1=2

=A5=6; ð30Þ

which are then presented in Fig. 7. Generally speaking, the
charge-to-mass ratio and ratio of root-mean-square radius
to baryon number decrease with A and eventually approach
to their bulk values (fz ¼ 0 and r0 ≈ 0.48=n1=30 ), while the
strangeness per baryon increases with A and approaches to
its bulk value (fs ≈ 0.7) as indicated in Table I. Due to shell
effects, the strangeness per baryon and charge-to-mass ratio
fluctuates with the sequential occupation of lowest energy
levels at small T and eventually become smooth at larger A
or T. Note that the shells have opposite effects on fz and fs,
where fz suddenly drops if s-quark shell is occupied with a
sudden increase of fs. This will also alter the radii of
strangelets, where a sudden decrease in r0 is observed if fs
increases. As temperature increases, the shell effects are
dampened with fz, fs and r0 vary more smoothly with A.

For the parameter sets adopted here with C ¼ −0.5 andffiffiffiffi
D

p ¼ 180 MeV, fz and fs are generally insensitive to the
temperature effects other than shell dampening. This is very
different from the cases predicting small saturation den-
sities, where fs increases with T, e.g., adopting the
parameters C ¼ 0.4, 0.7 and

ffiffiffiffi
D

p ¼ 129, 140 MeV as
indicated in Table I. Meanwhile, as illustrated in Figs. 1
and 2, the density profiles in strangelets become more
dilute as temperature increases, leading to larger r0
in Fig. 7.
Using the fitted parameters αS and αC of the liquid-drop

type formula in Eq. (27), the surface tension and curvature
term of SQM can then be extracted with

σ ¼ αS

�
n20
36π

�
1=3

; ð31Þ

λ ¼ αC

�
n0

384π2

�
1=3

; ð32Þ

which are presented in Table I. To better illustrate the
variations of surface tension and curvature term of SQM
with respect to temperature, in Fig. 8 we plot the obtained
values for σ and λ as functions of temperature, where the
parameters αS and αC are fixed employing all the numerical
results in Fig. 4. As indicated by the black squares, the
curvature term λ decreases monotonically with temper-
ature, while the surface tension increases with T until

1 10 100 1000
0

2

4

6

8
T=5 MeV
T=10 MeV
T=50 MeV

S
/A

A

C = -0.5, �D=180 MeV

FIG. 6. Entropy per baryon as functions of baryon number for
β-stable strangelets obtained at various temperatures. The dashed
horizontal lines correspond to the bulk values S0=A indicated in
Table I.
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reaching its peak at T ≈ 40 MeV. Such type of behavior is
also observed if we adopt other parameter sets as indicated in
Table I. Nevertheless, the increment of the surface tension at
T ≲ 40 MeV is exactly the opposite of what we have
expected, where previous investigations typically suggest
that σ decreases with T, e.g., those in Refs. [80–82]. The
reason for such type of behaviors in σ is mainly attributed to
the shell effects, where as temperature increases the free
energy per baryon increase quickly for small strangelets due
to shell dampening. In fact, to show this more explicitly, we
have refitted the parameter αS using only the numerical
results of large strangelets with A ≥ 100 and kept αC
unchanged, where the obtained surface tension is plotted
as red solid circles in Fig. 8. Evidently, due to the diminished
shell effects in large strangelets, the surface tension
increases slightly and then drops quickly at T ≳ 40 MeV.
In this work, we are more interested in describing the

properties of all strangelets that may be created in binary
compact star mergers and heavy-ion collisions, thus the
numerical results for small strangelets are included as well
during fitting, where the corresponding values are pre-
sented in Table I. By modifying the parameters C and D,
our previous study has shown positive correlation between
σ (λ) and the density of a strangelet in the bulk limit [77].
Similar trend is also observed here, where σ and λ increase
with D and decrease with C at a fixed T. If we consider
additional interactions that lead to density derivative terms
in the Lagrangian density, the values for σ and λ will be
altered [25]. This is nevertheless beyond the scope of our
current study and should be investigated in our future
works. Note that the surface tension may increase with
temperature for SQM at a fixed density or chemical

potential [83–86], which is nonetheless different from
our current scenario since we focus on strangelets at
vanishing external pressure. In fact, as indicated in
Table I, the density and chemical potential of a strangelet
in the bulk limit decrease with temperature, making the
trends of surface tension deviate from that of SQM at fixed
densities or chemical potentials [83–86]. Additionally, the
obtained values for σ and λ are typically smaller than
previous estimations, e.g., those from bag model predic-
tions [85,87]. The reasons for this are twofold: first, we
have adopted linear confinement with density dependent
quark masses while bag model introduces an infinite wall,
resulting in a smoother surface density profile and smaller
σ and λ [58]; second, shell effects reduce the masses of
small strangelets so that σ obtained by fitting to a liquid-
drop type formula decreases as indicated in Fig. 8.
Based on the obtained chemical potentials for β-stable

strangelets, the proton and neutron emission rates can then
be fixed with Eq. (21). As an example, in Fig. 9 we present
the neutron emission rates for β-stable strangelets adopting
two different parameter sets, where C ¼ −0.5 and

ffiffiffiffi
D

p ¼
180 MeV predicts stable strangelets while C ¼ 0.7 andffiffiffiffi
D

p ¼ 140 MeV predicts unstable ones. Consequently, the
strangelets obtained with C ¼ 0.7 and

ffiffiffiffi
D

p ¼ 140 MeV are
unstable against neutron emission with large decay rates,
which are decreasing with temperature. This is essentially
different from the cases obtained with C ¼ −0.5 andffiffiffiffi
D

p ¼ 180 MeV, where the neutron emission rates are
small and increasing with T at T ≲ 50 MeV. The reason for
such variation is mainly due to the evolution of chemical
potential, where for unstable strangelets μb > mn and μb
eventually decreases as temperature increases. Due to shell
effects, the chemical potential fluctuates with A so that the
emission rates also fluctuate, leading to extreme stable
strangelets that might function as waiting points during the
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decay of large strangelets and finally persist in binary
compact star mergers or heavy-ion collisions. At larger
temperatures, such fluctuations in nucleon emission rates
vanish due to shell dampening. In general, the neutron or
proton emission rates per unit surface area of strangelets
decrease with A and eventually approach to their bulk
values indicated in Table I, which are obtained using the
bulk chemical potential μb ¼ F0=A and Coulomb barrier
εC ¼ μd − μs according to the properties of SQM at zero
external pressure. Note that the neutron or proton emission
rates at A≲ 10 are almost the same while at larger A the
proton emission rates decrease faster than that of neutron,
which finally approach to the bulk limit illustrated in
Table I. At larger temperatures, the neutron and proton
emission rates per unit area may decrease further, which is
attributed to the fast decrease of the chemical potential.

IV. CONCLUSION

We study the properties of strangelets at finite temper-
ature T in an equivparticle model with both the linear
confinement and leading-order perturbative interactions
accounted for using density-dependent quark masses.
The energy, free energy, entropy, charge-to-mass ratio,
strangeness per baryon, and ratio of root-mean-square
radius to baryon number for β-stable strangelets are
obtained with various parameter sets. Adopting mean-field
and no-sea approximation, the Dirac equations for quarks
inside a strangelet are solved iteratively with the mean
fields fixed by the corresponding density profiles. Various
magic numbers (6; 24; 60; 96;…) with large shell gaps are
identified for u, d, s quarks, where strangelets at baryon
number A ¼ 4, 6, and 18 are found to be more stable than
others. As temperature increases, the shell corrections
diminish and eventually become insignificant as higher

energy states are being occupied by quarks, i.e., shell
dampening. Consequently, instead of decreasing with
temperature, the surface tension extracted from a liquid-
drop formula fitted to the free energies of strangelets at
A ≥ 1 increases with T until reaching its peak at T ≈
20–40 MeV with vanishing shell corrections, while the
curvature term decreases with T monotonically. Based on
the obtained properties of strangelets, the neutron and
proton emission rates can then be fixed according to the
usual formulas for nuclear reaction rates in the theory of
nucleosynthesis, where the external nucleon gas densities
in equilibrium with the strangelets and their capture cross
sections are adopted. The obtained emission rates for stable
strangelets are generally increasing with T until reaching
their peaks at T ≈ 20–50 MeV, while for unstable ones the
emission rates decrease monotonically with T. In fact, the
emission rates are deeply connected to the chemical
potential of strangelets, which fluctuates due to shell
corrections so there exist strangelets that are extremely
stable against neutron or proton emissions. Consequently,
those strangelets might function as waiting points during
the decay of large strangelets and finally persist in binary
compact star mergers and heavy-ion collisions, which may
potentially be observed.
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