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The physics content of the QGSJET-III Monte Carlo generator of high energy hadronic collisions is
described. In particular, a phenomenological implementation of higher twist corrections to hard parton
scattering processes is discussed in some detail. Additionally addressed is the treatment of the so-called
“color fluctuation” effects related to a decomposition of hadron wave functions into a number of Fock
states characterized by different spatial sizes and different parton densities. Selected model results
regarding the energy dependence of the total, elastic, and diffractive proton-proton cross sections are
presented.
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I. INTRODUCTION

Nowadays high energy experiments both in the collider
and cosmic ray (CR) fields imply an extensive use of
Monte Carlo (MC) generators of hadronic interactions. At
colliders, the primary goal of such generators is to describe
Standard Model backgrounds for new physics searches and
to confront novel theoretical ideas to experimental data. On
the other hand, in the CR field, MC models of high energy
interactions play an important role, when interpreting
experimental data. This is particularly so for investigations
of very high energy CRs, which are performed by indirect
methods: studying various characteristics of extensive air
showers (EAS)—huge nuclear-electromagnetic cascades
induced by interactions of primary CR particles in the
atmosphere of the Earth—and reconstructing the properties
of those particles, based on the measured EAS character-
istics. Such applications imply a number of requirements to
CR interaction models. Those should be able to provide a
reasonable description of collisions with nuclei of various
hadron species, primarily, of (anti)nucleons, pions, and
kaons, over a wide energy range: from fixed target energies
up to some 1012 GeV laboratory energy. Additionally, the
steeply falling down primary CR flux and the cascade
nature of extensive air showers enhance the importance of
forward secondary particle production. Last but not least,
given the scarcity of available experimental data regarding
such forward production and the lack of possibility to
retune MC generators, based on CR data, a substantial
predictive power is required from CR interaction models.

Over the past three decades, the QGSJET [1–3] and
QGSJET-II [4–6] MC generators proved to be very suc-
cessful regarding the analyses and interpretations of various
CR data, notably, from air shower experiments. In the
current work, we report a further development of the model
framework, related to taking into consideration the so-
called dynamical higher twist corrections to hard parton
scattering processes and to the implementation of “color
fluctuation” effects in high energy hadronic collisions.
While the treatment of secondary particle production and
the application of the model to calculations of EAS
characteristics will be discussed elsewhere [7], we con-
centrate here on the description of the model formalism,
providing also some selected results regarding the energy
dependence of the total, elastic, and diffractive proton-
proton cross sections.
The paper is organized as follows. InSec. II,wediscuss the

Reggeon field theory (RFT) approach to multiple scattering
in hadronic collisions. Section III is devoted to the treatment
of hard parton scattering within the RFT framework. In
Sec. IV, we address the implementation of color fluctuation
effects. The treatment of nonlinear interaction effects due to
Pomeron-Pomeron interactions is described in Sec. V.
Section VI is devoted to phenomenological implementation
of dynamical power corrections to hard parton scattering.
Themodel generalization to the case of nuclear collisions and
theMCrealization of the formalismare described in Sec.VII.
In Sec. VIII, we present and discuss selected model results.
Finally, we conclude in Sec. IX.

II. MULTIPLE SCATTERING IN THE
REGGEON FIELD THEORY

High energy hadronic collisions are predominantly
multiple scattering processes, being mediated by multiple
parton cascades developing between the interacting
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projectile and target hadrons (nuclei). While a perturbative
description of multiple scattering (so-called multiparton
interactions) is an actively developing field (see, e.g., [8]
for a review), the corresponding treatment in MC gener-
ators has to rely presently on the old RFT formalism [9].
Since the underlying, so to say “elementary,” parton

cascades develop, at least partly, in the nonperturbative
domain of low parton virtualities, where the notion of
partons can be used for a qualitative discussion only, one
is forced to rely on an effective macroscopic description for
such cascades—treating them as Pomeron exchanges.
The Pomeron exchange eikonal (the imaginary part1

of the corresponding amplitude) is usually chosen in the
form

χPhpðs; bÞ ¼
γhγpðs=s0ÞαPð0Þ−1

R2
h þ R2

p þ α0Pð0Þ lnðs=s0Þ

× exp

�
−

b2=4
R2
h þ R2

p þ α0Pð0Þ lnðs=s0Þ
�
; ð1Þ

where αPð0Þ and α0Pð0Þ are, respectively, the intercept and
the slope of the Pomeron Regge trajectory, γh is the residue
and R2

h the slope for the Pomeron coupling to hadron h, s
and b are, correspondingly, the center-of-mass (c.m.) energy
squared and impact parameter for the collision, and
s0 ≃ 1 GeV2—the hadronic mass scale.
Using the eikonal description for multiple Pomeron

emission vertices, one obtains the well-known simple
expressions for the total and elastic hadron-proton cross
sections:

σtothpðsÞ ¼ 2

Z
d2b

h
1 − e−χ

P
hpðs;bÞ

i
ð2Þ

σelppðsÞ ¼
Z

d2b
h
1 − e−χ

P
hpðs;bÞ

i
2
: ð3Þ

Moreover, considering unitarity cuts of the corresponding
elastic scattering diagrams shown schematically in Fig. 1
and applying the so-called Abramovskii-Gribov-Kancheli
(AGK) cutting rules [10], one is able to obtain partial cross
sections for various inelastic final states corresponding to
having precisely n “elementary” production processes (n
cut Pomerons):

σðnÞhp ðsÞ ¼
Z

d2b

h
2χPhpðs; bÞ

i
n

n!
e−2χ

P
hpðs;bÞ: ð4Þ

To describe secondary particle production, one assumes
that each cut Pomeron corresponds to a creation of a pair of
strings of color field, stretched between constituent partons

[(anti)quarks or (anti)diquarks] of the interacting hadrons
andmodels the breakup of those strings bymeans of suitable
string fragmentation procedures [11,12]. Importantly, the
corresponding parameters can be expressed via intercepts of
secondary Regge trajectories [13].

III. TREATING HARD SCATTERING
WITHIN THE RFT FRAMEWORK

While the original Gribov’s formulation of RFT relied
on the assumption that the bulk of hadron production is
characterized by small transverse momenta [9], pt ≲ 1 GeV,
the contribution of the so-called semihard processes corre-
sponding to parton cascades developing, at least partly, in the
high pt domain becomes increasingly important in the very
high energy limit. Indeed, the smallness of the corresponding
strong coupling, αsðp2

t Þ, in such cascades becomes compen-
sated by large collinear and infrared logarithms and by a high
parton density [14]. To treat such processes within the RFT
framework, the so-called “semihard Pomeron” approach has
been proposed [2,15–17] (see also [18] for a recent dis-
cussion). The underlying basic idea was to employ the
above-discussed phenomenological Pomeron description
for purely “soft” nonperturbative (parts of) parton cascades:
for parton virtualities jq2j < Q2

0, while treating parton evo-
lution in the perturbative jq2j > Q2

0 domain by means of
the Dokschitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
formalism [19–21], with Q2

0 being some chosen virtuality
cutoff for the perturbative quantum chromodynamics
(pQCD) to be applicable. This allowed one to develop a
Pomeron calculus, based on a “general Pomeron,” the latter
being a sum of the soft and semihard ones, as shown
symbolically in Fig. 2.
In particular, Eqs. (2)–(4) hold upon defining the eikonal

χPhp as a sum χPsoft
hp þ χPsh

hp , where χPsoft
hp is given by Eq. (1),

while for χPsh
hp one obtains [16,17]

χPsh
hp ðs; bÞ ¼

1

2

X
I;J

Z
d2b0

Z
dxþ

xþ
dx−

x−

× χPsoft
Ih

�
s0
xþ

; b0
�
χPsoft
Jp

�
s0
x−

; jb⃗ − b⃗0j
�

× σQCDIJ ðxþx−s;Q2
0; Q

2
0Þ: ð5Þ

FIG. 1. General multi-Pomeron contribution to hadron-hadron
scattering amplitude; elementary scattering processes (vertical
thick lines) are described as Pomeron exchanges.

1The real part of the Pomeron amplitude can be neglected in
the high energy limit.
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Here σQCDIJ ðŝ; q21; q22Þ corresponds to the contribution of the
DGLAP parton “ladder,”with the ladder leg partons I and J
[(anti)quarks or gluons2] characterized by the virtualities q21
and q22, respectively:

σQCDIJ ðŝ; q21; q22Þ ¼ K
X
I0;J0

Z
dzþdz−

Z
dp2

t

× EQCD
II0 ðzþ; q21; μ2FÞEQCD

JJ0 ðz−; q22; μ2FÞ

×
dσ2→2

I0J0 ðzþz−ŝ; p2
t ; μRÞ

dp2
t

× Θðμ2F −max½q21; q22�Þ; ð6Þ

where dσ2→2
IJ =dp2

t is the Born parton cross section, pt being
the parton transverse momentum in the hard process, μF
and μR are the factorization and renormalization scales,
respectively (we use μF ¼ μR ¼ pt=2), and the factor
K ¼ 1.5 takes effectively into account higher order QCD
corrections. EQCD

II0 ðz; q2; μ2FÞ describes parton density evo-
lution from the scale q2 to μ2F, subject to the initial
condition EQCD

II0 ðz; q2; q2Þ ¼ δI
0
I δð1 − zÞ.

In turn, the eikonal χPsoft
Ih corresponding to a soft Pomeron

exchange between hadron h and parton I is obtained from
Eq. (1), neglecting the small slope of the Pomeron-parton
coupling R2

I ∼ 1=Q2
0 and replacing the vertex γp by a

parametrized Pomeron-parton vertex VP
I=h:

χPsoft
Ih ðŝ; bÞ ¼ γhVP

I=hðs0=ŝÞðŝ=s0ÞαPð0Þ−1
R2
h þ α0Pð0Þ lnðŝ=s0Þ

× exp
�
−

b2=4
R2
h þ α0Pð0Þ lnðŝ=s0Þ

�
: ð7Þ

We use3 [17]

VP
g=hðxÞ ¼ rg=Pð1 − wqgÞð1 − xÞβg=h × ð1þ xÞbh ð8Þ

VP
q=hðxÞ ¼ rg=Pwqg

Z
1

x
dzzαPð0Þ−1

× PqgðzÞð1 − x=zÞβg=hð1þ x=zÞbh ; ð9Þ

where Pqg is the usual Altarelli-Parisi splitting kernel for
three active flavors and the parameter rg=P characterizes
gluon density in the soft Pomeron in the low x limit, when
probed at the virtuality scale Q2

0. We use βg=p ¼ 4 and
βg=π ¼ βg=K ¼ 2, while the constants bh are fixed requiring
momentum conservation for parton distribution functions
(PDFs).
By construction, the eikonal χPsoft

Ih is related to the
generalized parton distribution (GPD) GI=h at the virtuality
scale Q2

0 [4,22]:

xGI=hðx; b;Q2
0Þ ¼ χPsoft

Ih ðs0=x; bÞ: ð10Þ

It is further noteworthy that the above-discussed semi-
hard Pomeron approach largely resembles the “heterotic
Pomeron” concept proposed in [23] (see also [24]). In
particular, the relatively large slope α0P of the soft Pomeron
gives rise to a rather fast transverse expansion of parton
“clouds.” On the other hand, the perturbative (jq2j > Q2

0)
parton evolution, being characterized by small transverse
displacements (≲1=Q0), leads to a quick rise of parton
density.

IV. TREATMENT OF COLOR FLUCTUATIONS

One of the drawbacks of the scheme discussed so far is
that it offers no room for inelastic diffraction. To overcome
that, one has to account for transitions of interacting
hadrons into various excited states, after each elementary
rescattering process (Pomeron exchange) [25]. This can be
conveniently done following the Good-Walker (GW)
approach [26] (see, e.g., [27] for a recent discussion):
assuming both the original hadron h and its excited states
h� to be represented by a superposition of eigenstates of the
scattering matrix:

jhi ¼
X
i

ffiffiffiffiffiffiffiffi
CðiÞ
h

q
jii ð11Þ

jh�i ¼
X
i

ffiffiffiffiffiffiffiffi
CðiÞ
h�

q
jii; ð12Þ

with CðiÞ
h , CðiÞ

h� being the corresponding partial weights

(
P

i C
ðiÞ
h ¼ P

i C
ðiÞ
h� ¼ 1).

In such an approach, one arrives to a trivial generaliza-
tion of Eqs. (2)–(4), averaging over different combinations
of GW Fock states:

FIG. 2. A general Pomeron (left-hand side) consists of the soft
and semihard ones—correspondingly the first and the second
contributions in the right-hand side.

2We shall not discuss explicitly the contribution of hard
interactions of valence quarks; see, e.g., [16] for the correspond-
ing details.

3The ansatz, Eqs. (8) and (9), differs from the one used in
[16,17] by the factor ð1þ xÞbh chosen to improve the large x
behavior of gluon PDFs. More sophisticated parametrizations
may generally be used for VP

I=h.
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σtothpðsÞ ¼ 2

Z
d2b

X
i;j

CðiÞ
h CðjÞ

p

h
1 − e−χ

P
hpðijÞðs;bÞ

i
ð13Þ

σelhpðsÞ ¼
Z

d2b

�X
i;j

CðiÞ
h CðjÞ

p

�
1 − e−χ

P
hpðijÞðs;bÞ

��2
ð14Þ

σðnÞhp ðsÞ ¼
Z

d2b
X
i;j

CðiÞ
h CðjÞ

p

×

h
2χPhpðijÞðs; bÞ

i
n

n!
exp

	
−2χPhpðijÞðs; bÞ



: ð15Þ

Here the eikonals χPhpðijÞ ¼ χPsoft
hpðijÞ þ χPsh

hpðijÞ correspond to

exchanges of both soft and semihard Pomerons between
GW states jii and jji of the projectile and the target,
respectively.
In turn, the inelastic cross section is now split into the

“absorptive” and diffractive parts:

σinelhp ðsÞ≡ σtothpðsÞ − σelhpðsÞ ¼ σabshp ðsÞ þ σdiffrhp ðsÞ; ð16Þ

with the former corresponding to any number (n ≥ 1) of cut
Pomeron exchanges,

σabshp ðsÞ ¼
X∞
n¼1

σðnÞhp ðsÞ

¼
Z

d2b
X
i;j

CðiÞ
h CðjÞ

p

h
1 − e−2χ

P
hpðijÞðs;bÞ

i
; ð17Þ

and the latter containing contributions of the projectile,
target, and double diffraction.4

The corresponding soft Pomeron exchange eikonal is
defined as

χPsoft
hpðijÞðs;bÞ¼

γhðiÞγpðjÞðs=s0ÞαPð0Þ−1
R2
hðiÞ þR2

pðjÞ þα0Pð0Þlnðs=s0Þ

×exp

�
−

b2=4
R2
hðiÞ þR2

pðjÞ þα0Pð0Þ lnðs=s0Þ
�
; ð18Þ

taking into consideration that different GW Fock states are
generally characterized by different sizes and different
couplings to the Pomeron. Moreover, it is quite reasonable
to assume that the coupling γhðiÞ is approximately propor-
tional to the transverse area of the state [11]:

γhðiÞ ¼ g0R2
hðiÞ; ð19Þ

using thus a universal parameter g0.

The semihard Pomeron eikonal is generalized similarly:

χPsh
hpðijÞðs; bÞ ¼

1

2

X
I;J

Z
d2b0

Z
dxþ

xþ
dx−

x−

× χPsoft
IhðiÞ

�
s0
xþ

; b0
�
χPsoft
JpðjÞ

�
s0
x−

; jb⃗ − b⃗0j
�

× σQCDIJ ðxþx−s;Q2
0; Q

2
0Þ; ð20Þ

where the eikonal χPsoft
IhðiÞ corresponds to a soft Pomeron

exchange between parton I and GW state jii of hadron h:

χPsoft
IhðiÞðŝ; bÞ ¼

γhðiÞVP
I=hðiÞðs0=ŝÞðŝ=s0ÞαPð0Þ−1

R2
hðiÞ þ α0Pð0Þ lnðŝ=s0Þ

× exp

�
−

b2=4
R2
hðiÞ þ α0Pð0Þ lnðŝ=s0Þ

�
; ð21Þ

with VP
I=hðiÞ being defined by Eqs. (8) and (9), under the

replacement bh → bhðiÞ. Here we have an important feature:
assuming a universal gluon density rg=P in the soft
Pomeron in the low x limit, at the scale Q2

0, the momentum
conservation for PDFs for individual Fock states,

xfI=hðiÞðx;Q2
0Þ ¼

Z
d2bxGI=hðiÞðx; b;Q2

0Þ

¼
Z

d2bχPsoft
IhðiÞðs0=x; bÞ; ð22Þ

gives rise to different bhðiÞ for different states. Conse-
quently, partial PDFs fI=hðiÞ vary considerably from one
Fock state to another [28]: with smaller Fock states being
characterized by smaller (integrated) parton densities in the
low x limit but having harder PDF shapes.
It is noteworthy, however, that the above-discussed

approach is applicable, strictly speaking, to the treatment
of low mass diffraction only. Indeed, considering hadron h
transitions into multiparticle states h� of arbitrary mass, one
can no longer apply the decomposition, Eqs. (11) and (12),
based on a finite number of GW states5: with increasing
energy, larger and larger excited states will play an
important role.
In the following, we consider equal probabilities for

different GW states,CðiÞ
h ≡ 1=NGW, usingNGW ¼ 3 for any

hadron6 and choosing a loguniform distribution for R2
hðiÞ:

R2
hðiÞ ¼ R2

hð1Þd
i−1

NGW−1
h : ð23Þ

4See, e.g., [5] for the corresponding partial cross sections.

5In principle, one may consider a continuum of intermediate
multiparticle states, postulating some energy and mass depend-
ence for the decomposition in Eqs. (11) and (12).

6We verified explicitly that using a larger number of GW states
does not modify our results significantly.
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V. ENHANCED POMERON DIAGRAMS

The major feature inherited from the previous model
version, QGSJET-II [4,5], is a treatment of nonlinear
interaction effects, based on all-order resummation of the
underlyingPomeron-Pomeron interaction diagrams [29–31].
The simplest examples of such, so-called enhanced, graphs
are shown in Fig. 3, which correspond to rescattering of
intermediate partons in the elementary parton cascades off
the projectile [(a), (b), (f), and (g)] and the target [(c), (d), (f),
and (g)] hadrons or off each other [(e)]. Taking such diagrams
into consideration amounts to replace the eikonal χPhpðijÞ in
Eqs. (13)–(15) by χscrhpðijÞ ¼ χPhpðijÞ þ χenhhpðijÞ, where χenhhpðijÞ
corresponds to the summary contribution of all significant
irreducible enhanced Pomeron graphs exchanged between
GW Fock states jii and jji of the projectile and the target,
respectively.
Using eikonal vertices for the transition of m into n

Pomerons (mþ n ≥ 3) [32],

Gðm;nÞ ¼ Gγmþn
P ; ð24Þ

with the constant G being related to the triple-Pomeron
coupling r3P as G ¼ r3P=ð4πγ3PÞ, and neglecting the small
slope of the triple-Pomeron vertex R2

3P, one was able to
obtain χenhhpðijÞ in a relatively compact form [5,30,31]:

χenhhpðijÞðs; bÞ ¼ G
Z

Y−ξ

ξ
dy0

Z
d2b0

×
nh	

1 − e−χ
net
hðiÞjpðjÞ


	
1 − e−χ

net
pðjÞjhðiÞ



− χnethðiÞjpðjÞχ

net
pðjÞjhðiÞ

i
−
h
χnethðiÞjpðjÞ − χloophðiÞ

i

×
h
ð1 − e−χ

net
pðjÞjhðiÞ Þe−χnethðiÞjpðjÞ − χnetpðjÞjhðiÞ

i

þ χPpðjÞðy0; b0Þ
h
χloophðiÞ − χloopð1ÞhðiÞ

io
: ð25Þ

Here Y ¼ lnðs=s0Þ, ξ is the minimal rapidity “size” of
the Pomeron, and the omitted arguments of the eikonals
read χnethðiÞjpðjÞ ¼ χnethðiÞjpðjÞðY − y0; b⃗ − b⃗0jY; b⃗Þ, χnetpðjÞjhðiÞ ¼
χnetpðjÞjhðiÞðy0; b⃗0jY; b⃗Þ, χloophðiÞ ¼ χloophðiÞ ðY−y0; jb⃗− b⃗0jÞ, χloopð1ÞhðiÞ ¼
χloopð1ÞhðiÞ ðY − y0; jb⃗ − b⃗0jÞ.

The “net-fan” contributions χnethðiÞjpðjÞ are defined by a
recursive equation:

χnethðiÞjpðjÞðy0; b⃗0jY; b⃗Þ ¼ χloophðiÞ ðy0;b0ÞþG
Z

d2b00

×
Z

y0−ξ

ξ
dy00

	
1− e−χ

loopðy0−y00;jb⃗0−b⃗00jÞ


×

��
1− e−χ

net
hðiÞjpðjÞðy00;b⃗

00jY;b⃗Þ�

×expð−χnetpðjÞjhðiÞ
	
Y − y00; b⃗− b⃗00jY; b⃗Þ


− χnethðiÞjpðjÞðy00; b⃗00jY; b⃗Þ
�
; ð26Þ

where χloophðiÞ and χloopð1ÞhðiÞ correspond to general irreducible

two-point sequences of Pomerons and Pomeron loops,
exchanged between GW state jii of hadron h and a multi-
Pomeron vertex, while χloop and χloopð1Þ are contributions of
such sequences exchanged between two multi-Pomeron
vertices (see [5] for more details). Neglecting Pomeron

loop insertions, χloophðiÞ and χloopð1ÞhðiÞ reduce to the eikonal

χPhðiÞ ¼ χPsoft
hðiÞ þ χPsh

hðiÞ describing an exchange of a soft or

semihard Pomeron between the hadron h represented by its
GW state jii and a multi-Pomeron vertex. Here χPsoft

hðiÞ ðy; bÞ
is obtained from Eq. (18), for s ¼ s0ey, replacing the vertex
factor γpðjÞ by γP and R2

pðjÞ by R2
3P ≃ 0:

χPsoft
hðiÞ ðy; bÞ ¼

γhðiÞγPeðαPð0Þ−1Þy

R2
hðiÞ þ α0Pð0Þy

e
−b2=4

R2
hðiÞþα0

P
ð0Þy
: ð27Þ

In turn, χPsh
hðiÞðy; bÞ is obtained from Eq. (20), for s ¼ s0ey,

replacing χPsoft
JpðjÞ by χPsoft

JP , with

χPsoft
JP ðŝ; bÞ ¼ γPVP

J ðs0=ŝÞðŝ=s0ÞαPð0Þ−1
α0Pð0Þ lnðŝ=s0Þ

× exp

�
−

b2

4α0Pð0Þ lnðŝ=s0Þ
�
; ð28Þ

where VP
J is defined by Eqs. (8) and (9), for βg=h ¼ βg=π.

(a) (b) (c) (d) (e) (f) (g)

FIG. 3. Simplest examples of enhanced Pomeron diagrams.
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In contrast to [4,5], where γP was treated as an adjustable
parameter, here we make a specific choice:

γP ¼ r3P=ðαPð0Þ − 1Þ: ð29Þ

Taking into account the “renormalization” of the soft
Pomeron in the “dense” (high s, small b) limit [32], this
pushes it into the “critical” regime in such a limit (see [33]
for a recent discussion): with the renormalized Pomeron
intercept

αðrenÞP ð0Þ ¼ αPð0Þ − r3P=γP ¼ 1: ð30Þ

In turn, this leads to a “saturation” of both partial gluon and
sea (anti)quark GPDs Gscr

I=hðiÞ and of the corresponding total
GPDs,

Gscr
I=hðx; b;Q2

0Þ ¼
X
i

CðiÞ
h Gscr

I=hðiÞðx; b;Q2
0Þ; ð31Þ

at the virtuality scale Q2
0, in the low x and small b limit, for

any hadron h [34].
Here, taking into account absorptive corrections due to

enhanced Pomeron diagrams, Gscr
I=hðiÞ are defined as7 [4,22]

xGscr
I=hðiÞðx;b;Q2

0Þ¼ χPsoft
IhðiÞðs0=x;bÞþG

Z
d2b0

×
Z

− lnx

ξ
dy0

�
χPsoft
IP ðs0e−y0=x; jb⃗− b⃗0jÞ

×
h
χloophðiÞ ðy0;b0Þ−χloopð1ÞhðiÞ ðy0;b0Þ

i
þχloopI ð− lnx−y0; jb⃗− b⃗0jÞ

×
h
1−e−χ

fan
hðiÞðy0;b0Þ−χfanhðiÞðy0;b0Þ

i�
: ð32Þ

Here χfanhðiÞ is a solution of the “fan” diagram equation

[cf. Eq. (26)]:

χfanhðiÞðy0; b0Þ ¼ χloophðiÞ ðy0; b0Þ þ G
Z

d2b00

×
Z

y0−ξ

ξ
dy00

h
1 − e−χ

loopðy0−y00;jb⃗0−b⃗00jÞ
i

×
h
1 − e−χ

fan
hðiÞðy00;b00Þ − χfanhðiÞðy00; b00Þ

i
; ð33Þ

while χloopI is defined as

χloopI ðy0; b0Þ ¼ χPsoft
IP ðs0ey0 ; b0Þ þ G

Z
d2b00

×
Z

y0−ξ

ξ
dy00χPsoft

IP ðs0ey0−y00 ; jb⃗0 − b⃗00jÞ

×
h
1 − e−χ

loopðy00;b00Þ − χloopð1Þðy00; b00Þ
i
: ð34Þ

Applying the AGK cutting rules [10], one was able to
obtain the complete set of unitarity cuts of elastic scatter-
ing diagrams for hadron-hadron collisions, corresponding
to the above-discussed resummation scheme, explicitly
verifying the s-channel unitarity of the approach, and to
derive positive-definite partial cross sections for all the
various configurations of final states, including diffractive
ones [30,31]. In turn, those allowed one to develop a MC
procedure for generating such configurations both for
hadron-proton and for hadron-nucleus (nucleus-nucleus)
scattering events [5].
As discussed in [4,22], an important feature of the

described approach is a consistency with the collinear facto-
rization of pQCD: by virtue of the AGK cancellations [10],
the inclusive parton jet production cross section is defined by
the usual factorization ansatz:

dσjethpðs;ptÞ
dp2

t
¼ K

Z
dxþdx−

X
I;J

fscrI=hðxþ;μ2FÞ

× fscrJ=pðx−;μ2FÞ
2dσ2→2

IJ ðxþx−s;p2
t ;μRÞ

dp2
t

: ð35Þ

Here the PDFs fscrI=h, with the absorptive corrections taken
into account, are expressed via the partial GPDs Gscr

I=hðiÞ,
Eq. (32), evolving the latter from Q2

0 to μ2F:

fscrI=hðx; μ2FÞ ¼
X
i

CðiÞ
h

Z
d2b

X
I0

Z
1

x

dz
z

× EQCD
I0I ðz;Q2

0; μ
2
FÞGscr

I0=hðiÞðx=z; b;Q2
0Þ: ð36Þ

VI. DYNAMICAL POWER CORRECTIONS
TO HARD SCATTERING

As mentioned in Sec. V, an important feature of the
above-discussed approach is the consistency with the
collinear factorization of pQCD: the inclusive jet cross
section is defined by Eq. (35). However, this creates an
unpleasant sensitivity of the model predictions to the choice
of the “infrared” cutoffQ2

0: since dσ
jet
hpðs; ptÞ=dp2

t explodes
in the small pt limit. For example, in case of the QGSJET-II
model, a reasonable consistency with collider measure-
ments is reached for a rather high value of that cutoff,Q2

0 ¼
3 GeV2 [5]. On the other hand, one may expect the pQCD
approach to remain applicable for parton virtualities as
small as ∼1 GeV2. It is thus natural to ask ourselves

7In [4,22], a simplified expression for Gscr
I=hðiÞ had been

provided, neglecting Pomeron loop contributions.
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whether there exists a perturbative mechanism capable of
damping the jet production at small pt.
To address this question, it is useful to remind oneself

that the collinear factorization of pQCD is established at the
leading twist level [35,36], i.e., neglecting the so-called
higher twist (HT) corrections suppressed by powers of the
relevant hard scale. One may thus expect that those are such
power corrections which should provide the desirable
suppression of low pt jet production.
Unfortunately, it is hardly possible at the present stage to

treat HT effects in hadronic collisions in a systematic way,
especially, regarding their potential implementation in MC
event generators: in particular, since this involves a sig-
nificant number of unknown multiparton correlators and
the corresponding HT contributions are not generally
positive definite, excluding thereby a probabilistic inter-
pretation [37–39]. Therefore, we adopt here a phenomeno-
logical approach [34,40], concentrating on a particular class
of dynamical power corrections to parton scattering proc-
esses, corresponding to coherent multiple rescattering
of s-channel partons on virtual soft [characterized by
small light cone (LC) momentum fractions, xg ∼ 0] gluon
pairs [41–43]. Such contributions have been shown to
provide dominant nuclear size-enhanced power corrections
to the low x and low Q2 behavior of structure functions
(SFs) in deep inelastic scattering (DIS) on nuclear targets
[41,42] and to the suppression of jet pt spectra in high
energy proton scattering on heavy nuclei, for moderately
small pt [43].

A. Resummed A-enhanced
power corrections [41–43]

Regarding HT corrections to nuclear SFs, the dominant
A-enhanced contributions, in the small Bjorken x limit,
were shown to come from diagrams of the kind depicted in
Fig. 4 (left), corresponding to a rescattering of the struck
quark on soft, pairwise singlet, virtual gluon pairs [41,42].
The perturbative hard part of the graph is characterized by a
specific structure of the s-channel quark propagators: with
the gluon fields in a pair being separated by the so-called
“contact” term, implying no propagation along the LC
coordinate [44]; propagators which separate such gluon
pairs from the quark field and from each other are
represented, on the other hand, by pole terms correspond-
ing to a propagation over considerable LC distances. It is
such a prescription which gives rise to the nuclear enhance-
ment: in the low x limit, the struck quark from one nucleon
in the nucleus propagates over large distances ∝ 1=ðxpþÞ,
pþ being the LC-plus (LCþ) momentum of the nucleon,
scattering coherently on many correlated soft gluon pairs
from other nucleons [41,42]. Upon the full all-order
resummation of such contributions (in the LC Aþ ¼ 0
gauge), one obtained the HT correction to the nuclear

transverse structure function FðAÞ
T [cf. Eq. (8) in [41] ]:

δHTF
ðAÞ
T ðx;Q2Þ ¼

X
q

e2q
2

X
n≥1

1

n!

�
4π2αsx
3Q2

�
n dn

dnx
TðnÞ
q gg…|ffl{zffl}

n

ðxÞ;

ð37Þ

where eq is the fractional charge of (anti)quark q and the

multiparton correlators TðnÞ
qgg… are defined as

TðnÞ
q gg…|ffl{zffl}

n

ðxÞ ¼
Z

dy−

4π
eip

þxy−hAjψ̄ð0Þγþ

×
Yn
i¼1

�Z
pþdy−giΘðy−giÞF̂2ðy−giÞ

�
ψðy−ÞjAi;

ð38Þ

with

F̂2ðy−g Þ ¼
Z

dỹ−g
2πpþ Fþαðy−g ÞFþ

α ðỹ−g ÞΘðy−g − ỹ−g Þ: ð39Þ

Here y−, y−gi are LC-minus (LC−) coordinates of the fields
and Fþ

α is the projection of the gluon field tensor on the
LCþ direction.
Likewise, in case of nucleus-proton scattering, the

dominant A-enhanced HT corrections to jet production
cross section arise from the diagrams of Fig. 4 (right),
corresponding to a rescattering of the nuclear parton (quark
or gluon), participating in the hard scattering, on such soft
gluon pairs, with the same structure of s-channel propa-
gators along the struck parton line8 [43]. Resumming such
contributions to all orders, one obtained [43]

δHT

dσjetpAðs; ptÞ
dp2

t
¼

Z
dxþdx−

×
X
I;J

fJ=pðx−; μ2FÞ
X
n≥1

1

n!

�
−CIπ

2αsxþ

t̂

�
n

×
dn

dnx

�
TðnÞ
I gg…|ffl{zffl}

n

ðxþÞ 2dσ
2→2
IJ

dp2
t

�
; ð40Þ

with Cqðq̄Þ ¼ CF ¼ 4=3, Cg ¼ CA ¼ 3, and t̂ ¼ q2 being
the momentum transfer squared for parton-parton scatter-

ing. In addition to TðnÞ
qgg… defined by Eqs. (38) and (39),

Eq. (40) involves multigluon correlators TðnÞ
ggg…:

8Alternative configurations of the hard scattering part of the
graph contain contact terms leading to a loss of the A enhance-
ment [43].
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TðnÞ
g gg…|ffl{zffl}

n

ðxÞ ¼
Z

dy−

2πxpþ eip
þxy−hAjFþβð0Þ

×
Yn
i¼1

�Z
pþdy−giΘðy−giÞF̂2ðy−giÞ

�
Fþ
β ðy−ÞjAi:

ð41Þ
Further, one proposed a model for the multiparton

correlators TðnÞ
Igg…, I ¼ q, g: assuming that the dominant

contributions to Eqs. (37) and (40) arise from a rescattering
of the struck nuclear parton on gluon pairs belonging to
different nucleons and performing the corresponding fac-
torization [41]:

hAjÔ0

Yn
i¼1

ÔijAi ∝ hpjÔ0jpi
Yn
i¼1

hpjÔijpi: ð42Þ

This allowed one to obtain closed compact results for FðAÞ
T

and dσjetpA=dp
2
t , the power corrections being accounted for:

FðAÞ
T ðx;Q2Þ ≃ A

X
q

e2q
2

× fq=pðxþ xCqξ
2ðA1=3 − 1Þ=Q2; Q2Þ ð43Þ

dσjetpAðs; ptÞ
dp2

t
≃ A

Z
dxþdx−

×
X
I;J

fI=p

�
xþ −

xþCIξ
2ðA1=3 − 1Þ
t̂

; μ2F

�

× fJ=pðx−; μ2FÞ
2dσ2→2

IJ

dp2
t

; ð44Þ

where ξ2 ∝ hpjF̂2jpi ∝ limx→0 xfg=p defines the charac-
teristic scale of the HT corrections.

B. Phenomenological implementation
in QGSJET-III

Since we are going to extrapolate the treatment of [43] to
the case of hadron-proton scattering, we need a different
approach for modeling the corresponding multiparton

correlators. Starting with the quark-gluon correlator Tð1Þ
qg ,

a closer look at Eq. (38) reveals that it formally coincides,

up to a factor, with the quark-gluon 2GPD Fð2Þ
qg multiplied

by the gluon LC momentum fraction xg, in the limit xg → 0

and for zero transverse separation between the two partons,
Δ⃗ ¼ 0 (see, e.g., [8] for the corresponding definitions), and

similarly for Tð1Þ
gg in Eq. (41). This motivated us to employ a

probabilistic treatment for Tð1Þ
qg and Tð1Þ

gg , interpreting them

as ∝ xgF
ð2Þ
qg jΔ⃗¼0

and ∝ xgF
ð2Þ
gg jΔ⃗¼0

, respectively, and to
proceed in a similar way with all the other correlators

TðnÞ
Igg… involving larger numbers of soft gluons.
Here we have to make additional assumptions concern-

ing the relevant virtuality scales and gluon momentum
fractions in the corresponding multiparton GPDs, e.g., for

Q2
q; Q2

g, and xg in Fð2Þ
qg ðx; xg; Q2

q; Q2
g; Δ⃗Þ. While the natural

choice for Q2
q is the factorization scale μ2F for the hard

process, one usually considers soft gluons to be purely
nonperturbative ones, with Q2

g ∼ Λ2
QCD (e.g., [45]). Instead,

we set Q2
g equal to our separation scale Q2

0, in order to
describe the GPDs by soft Pomeron asymptotics, plus
absorptive corrections, Eq. (32).
Finally, assuming a finite virtuality for the soft

gluons implies that they have nonzero LC� momentum
fractions x�g ,

jq2gj ∼ xþg x−g s: ð45Þ

In the factorization procedure which led to Eqs. (37)
and (40), one neglected LC− momentum components for
projectile partons (similarly neglecting LCþ momenta of
target partons) and considered the limit xg → 0 for the soft
gluons involved in the process. Here, taking into account the
finite virtuality of such gluons, Eq. (45), and the fact that
these gluons belong to the projectile proton (for the case of
rescattering on the projectile soft gluons), their LC− momen-
tum fractions should be much smaller than the LC− fraction
of the target parton participating in the hard process:

x−g ∼
jq2gj
xþg s

≪ x−: ð46Þ

x p

x x| |
k k k1 2 3

...

A

q

q

x p

x x| |
k kk1 2 3

...

A

p

FIG. 4. Example diagrams for dominant A-enhanced power corrections to nuclear DIS (left) and to jet production in proton-nucleus
scattering (right). Propagators marked by crosses and vertical dashes correspond to pole and contact terms, respectively.

SERGEY OSTAPCHENKO PHYS. REV. D 109, 034002 (2024)

034002-8



Since we expect a rather weak xg dependence for xgF
ð2Þ
qg and

xgF
ð2Þ
gg in the small xg limit at the low virtuality scale

Q2
g ¼ Q2

0, we set

xg ¼
Q2

0

x−s
: ð47Þ

Using these additional assumptions, we obtain the
leading power correction to the inclusive parton jet pro-
duction cross section as [cf. Eq. (40)]

δð1ÞHT

dσjethpðs; ptÞ
dp2

t

¼ K
Z

dxþdx−
X
I;J

fscrJ=pðx−; μ2FÞ

×
KHTCIπ

2αsðμ2RÞxþ
jt̂j

2dσ2→2
IJ ðŝ; p2

t ; μRÞ
dp2

t

× xþg F
ð2Þ
Ig=hðxþ; xþg ; μ2F; Q2

0; Δ⃗ ¼ 0⃗Þ
���
xþg ¼

Q2
0

x−s

; ð48Þ

where ŝ ¼ xþx−s and, in view of the numerous brute force
assumptions made, we introduced an adjustable parameter
KHT which controls the magnitude of the HT corrections in
our approach.
Including also higher power corrections, accounting

for the GW decomposition of hadron wave functions,
and expressing multiparton GPDs via single parton ones
(thereby neglecting parton-parton correlations at the Q2

0

scale),

FðnÞ
I gg…|ffl{zffl}

n

=hðiÞðx; xg1 ;…; Q2; Q2
g1 ;…; Δ⃗g1 ;…Þ

≃
Z

d2bIGscr
I=hðiÞðx; bI; Q2Þ

×
Yn
i¼1

Gscr
g=hðiÞðxgi ; jb⃗I þ Δ⃗gi j; Q2

giÞ; ð49Þ

considering rescatterings on soft gluon pairs both from
the projectile and from the target (taking into account that
those become significant in different parts of the kinematic
space), we finally get

dσjethpðs;ptÞ
dp2

t
≃
Z

d2b

�
K
Z

d2b0
X
i;j

CðiÞ
h CðjÞ

p

×
Z

dxþdx−
X
I;J

Gscr
I=hðiÞðxþþ x̃þ;b0;μ2FÞ

×Gscr
J=pðjÞðx−þ x̃−; jb⃗− b⃗0j;μ2FÞ

2dσ2→2
IJ

dp2
t

�
; ð50Þ

where

x̃þ ¼ xþ
KHTCIπ

2αsðμ2RÞ
jt̂j xþg Gscr

g=hðiÞðxþg ;b0;Q2
0Þ
���
xþg ¼

Q2
0

x−s

ð51Þ

x̃− ¼ x−
KHTCJπ

2αsðμ2RÞ
jt̂j x−g Gscr

g=pðjÞðx−g ; jb⃗− b⃗0j;Q2
0Þ
���
x−g ¼

Q2
0

xþs

:

ð52Þ

Like in the original approach of Refs. [41–43], the effect
of the considered HT corrections amounts to a shift of the
LC� momentum fractions of the active partons I and J,
participating in the hard scattering. However, in our case,
due to the assumed model for multiparton correlators, the
magnitude of these shifts x̃�, Eqs. (51) and (52), depends
on the collision kinematics. Consequently, the overall
strength of the HT corrections varies with the energy
and impact parameter of the collision, increasing in the
dense (high s, small b) limit.
Modifications similar to Eq. (50) apply to all the eikonals

describing semihard Pomeron exchanges. For example,
χPsh
hpðijÞ, Eq. (20), now takes the form

χPsh
hpðijÞðs; bÞ ¼

K
2

X
I;J

Z
d2b0

Z
dxþdx−

×
Z

dp2
t GI=hðiÞðxþ þ x̃þ; b0; μ2FÞ

×GJ=pðjÞðx− þ x̃−; jb⃗ − b⃗0j; μ2FÞ

×
dσ2→2

IJ ðŝ; p2
t ; μRÞ

dp2
t

ΘðμF −Q0Þ; ð53Þ

with x̃� as in Eqs. (51) and (52), and with GI=hðiÞ being
defined neglecting absorptive corrections [cf. Eq. (22)]:

GI=hðiÞðx;b;μ2FÞ¼
X
I0

Z
1

x
dz

×EQCD
I0I ðz;Q2

0;μ
2
FÞχPsoft

IhðiÞðs0z=x;bÞ=x: ð54Þ

Neglecting the HT corrections, i.e., setting KHT ¼ 0,
Eqs. (35) and (20) are recovered from Eqs. (50) and (53),
respectively.
In turn, for the proton structure function FðpÞ

2 we obtain,
using the same assumptions,

FðpÞ
2 ðx;Q2Þ ≃ x

X
q

e2q

Z
d2b

X
i

CðiÞ
p

× Gscr
q=pðiÞðxþ x̃; b; Q2Þ; ð55Þ

with
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x̃ ¼ 4KHTπ
2αsðQ2Þx
3Q2

xgGscr
g=pðiÞðxg; b;Q2

0Þ
���
xg¼

xQ2
0

Q2

: ð56Þ

At this point, we have to provide some arguments to
support our extrapolation of the treatment of [43] to the
case of hadron-proton scattering. In particular, here we
cannot use the A-enhancement argument to neglect other
potential HT contributions characterized by a different
structure of the hard scattering part, compared to the one
in Fig. 5 (left), considered so far. To this end, let us remind
ourselves that the Lorentz contraction acts differently on
partons of different momenta, in a fast-moving parton cloud
of a hadron. While fast (large x) partons are confined to a
narrow “pancake” in the longitudinal direction, the abun-
dant small x gluons are spread over longitudinal distances
∝ 1=ðxpþÞ. For the diagram in Fig. 5 (left), corresponding
to the approach of [43], the struck low-x quark propagates
over large distances ∝ 1=ðxþpþÞ comparable to the longi-
tudinal size of the gluon cloud and, thus, may scatter
coherently on many correlated soft gluon pairs. In contrast,
considering, for example, an alternative configuration
depicted in Fig. 5 (right), the first gluon is separated from
the quark by the contact propagator, which implies there is
a very small distance between the quark and the gluon in
the LC− direction. Hence, only a very small portion of the
gluon content of the proton can be involved in that type of
interaction, with the corresponding contribution being a
subdominant one.

VII. NUCLEAR COLLISIONS
AND MONTE CARLO IMPLEMENTATION

The generalization of the model for the treatment of
hadron-nucleus and nucleus-nucleus collisions is performed
without introducing any additional adjustable parameters,
similarly to the case of the QGSJET-II model [5]. The only
additional input is nucleon densities for nuclear ground
states, chosen according to the corresponding experimental
measurements9 [46].

As discussed in [5], in case of hA and AA collisions,
enhanced Pomeron diagrams account for rescattering of
intermediate partons off different nucleons from the pro-
jectile or/and from the target, i.e., multi-Pomeron vertices
generally couple together sequences of Pomerons and
Pomeron loops connected to different nucleons. This gives
rise to a dynamical treatment of the corresponding absorp-
tive corrections: the strength of such nonlinear effects
increases with the collision energy, with the size of the
colliding nuclei, and with the “centrality” of the collision.
The very same tendencies hold also for the HT effects

discussed in Sec. VI, for hA and AA collisions. Indeed, the
multiparton correlators, Eqs. (38) and (41), involve in those
cases soft gluons emitted by different nucleons. Describing
such correlators by multiparton GPDs, the HT corrections
rise in the low x and small b limits, increasing also with the
size of the nuclei.
The MC procedure for generating individual inelastic

scattering events is almost identical to the one of the
QGSJET-II model [5]: starting from sampling the impact
parameter for a collision, according to the respective
interaction profile, and proceeding to specifying a “macro-
configuration” of the event, i.e., defining the structure of
the corresponding cut Pomeron “net,” based on partial cross
sections for such macroconfigurations. This is followed by
sharing the energy-momentum between all elementary
parton cascades (cut Pomerons) and choosing, with the
appropriate weight, whether a particular cut Pomeron
involves a purely soft (jq2j < Q2

0) parton evolution or
corresponds to a semihard parton cascade. In the latter
case, one generates explicitly the initial and final state
parton emission, treating the respective t- and s-channel
parton cascades, using the DGLAP formalism.
More specifically, the initial (t-channel) parton emission

is modeled using a forward evolution algorithm, based on
an integral representation of the DGLAP equations. For any
parton (sub)ladder of mass squared ŝ, with the ladder “leg”
partons I and J, characterized by virtualities q21 and q22,
respectively (q21 ¼ q22 ¼ Q2

0 for first partons in a particular
perturbative cascade), one considers a successive emission
of a parton from any of the ladder “ends,” according to the
probability (see, e.g., [16] for more details):

fI0 ðz; q2Þ ∝
αsðq2Þ
2πq2

PI0IðzÞΔS
I ðq21; q2Þ

× σQCDI0J ðzŝ; q2; q22ÞΘð1 − ε − zÞΘðq2 − q21Þ
× Θðzŝ=16 −max½q2; q22�Þ; ð57Þ

with I0, z, and q2 being, respectively, the type, LC (plus or
minus) momentum fraction, and virtuality of the new
t-channel parton. PI0I are the usual (unregularized)
Altarelli-Parisi splitting kernels, σQCDI0J is the contribution
of the remaining subladder, defined by Eq. (6), and
ΔS

I ðq21; q2Þ is the so-called Sudakov form factor defining

FIG. 5. Left: the structure of the hard “blob” in Fig. 4 (right), for
leading power corrections discussed in the text, for the case of
hard scattering of quarks of different flavors. Right: an alternative
leading power correction to the qq0 hard scattering, which
provides a subleading contribution in the high energy limit.

9For light nuclei, with mass number A ≤ 10, Gaussian dis-
tributions are used, while densities of heavier nuclei are described
by three parameter Wood-Saxon distributions.
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the probability for no parton emission in the virtuality
range ½q21; q2�:

ΔS
qðq21; q2Þ ¼ exp

�
−
Z

q2

q2
1

dq̃2

q̃2

Z
1−ε

0

dz

×
αsðq̃2Þ
2π

PqqðzÞ
�

ð58Þ

ΔS
gðq21; q2Þ ¼ exp

�
−
Z

q2

q2
1

dq̃2

q̃2

Z
1−ε

ε
dz

×
αsðq̃2Þ
2π

�
1

2
PggðzÞ þ NfPqgðzÞ

��
: ð59Þ

Here ε is a small enough technical “resolution” parameter
(we use ε ¼ 10−2), Nf ¼ 3 is the number of active quark
flavors, and the last Θ function in Eq. (57) is to assure that
the remaining ladder is massive enough to allow for a
parton-parton scattering with p2

t =4 > max½q2; q22� (for our
choice of the factorization scale, μF ¼ pt=2).
Here comes an important difference, compared to the

corresponding treatment of [5]. The generation of macro-
configurations of collisions and the energy-momentum
sharing procedure are quite similar to the ones of [5], with
the only difference that the respective “general Pomeron”
eikonals now contain HT corrections to hard scattering
processes, as discussed in Sec. VI. On the other hand, when
treating the t-channel parton evolution, a two step pro-
cedure is adopted. First, the corresponding parton emission
pattern is generated based on the standard DGLAP evo-
lution, as described above, the HT corrections being
neglected. Next, the obtained parton configuration is
accepted with the probability defined by the ratio of the
corresponding partial cross sections taking the HT correc-
tions into account (i.e., accounting for the kinematics-
dependent shift of LC� momentum fractions of active
partons) or neglecting them. Otherwise, the configuration is
rejected and the procedure is repeated. In other words, the
HT corrections to the hard scattering pattern are accounted
for via a rejection procedure. For brevity, we omit here the
corresponding technical details.
In turn, the modeling of the final (s-channel) parton

emission follows closely the procedure described in [47],
imposing the final transverse momentum cutoff
p2
t;cut ðfÞ ¼ 0.15. In particular, one assures angular ordering

of sequential s-channel subcascades, resulting from color
coherence effects [48,49].
As the final step, one considers a formation of strings

of color field, stretched between constituent partons of
the interacting hadrons (nuclei) or/and between the final
s-channel partons resulting from the above-discussed
treatment of perturbative parton cascades, following the
directions of the corresponding color flows. The breakup
and hadronization of such strings is modeled by means

of a string fragmentation procedure, to be discussed
elsewhere [7]. Here two important comments are in order.
First, the color connections between final partons are
defined based on the 1=Nc approximation (Nc being the
number of colors): following the directions of the color and
“anticolor” flows [50]. For each s-channel gluon emission,
there are two alternative ways (taken with equal proba-
bilities) to continue such flows, such that a diagram with n
s-channel gluons can produce up to 2n possible patterns for
the string configuration (see [18] for a recent detailed
discussion). Second, in the hadronization procedure of
the QGSJET-III model, inherited from the original
QGSJET [3], one considers a nonperturbative splitting
of final gluons into quark-antiquark pairs, with the strings
having such (anti)quarks at the ends, without gluon “kink”
perturbations. Such an approach is generally inferior in
quality, compared to more advanced “kinky string” hadro-
nization procedures [50,51] employed in the PYTHIA [52]
and EPOS [53] MC generators, notably, regarding high pt
production of relatively heavy hadrons.

VIII. SELECTED RESULTS AND DISCUSSION

The parameters of the model have been fixed using
experimental data on total, elastic, and diffractive hadron-
proton cross sections, on the proton SF F2, and on
secondary hadron production in hp and hA collisions,10

the corresponding values being compiled in Table I. As one
can see in the Table, replacing the projectile proton by pion
or kaon, subject to a change are only the parameters
describing the transverse sizes of GW Fock states of the
hadrons.
In Fig. 6, we compare the calculated energy dependence

of the total σtotpp and elastic σelpp proton-proton cross sections
to accelerator data. Additionally, we show by dashed lines
the corresponding results obtained neglecting the HT
corrections, i.e., setting KHT ¼ 0, while keeping all the
other parameters unchanged. In turn, dotted lines corre-
spond to the case of all nonlinear effects being neglected,
i.e., setting also the triple-Pomeron coupling r3P ¼ 0. It is
easy to see that the highest impact on the

ffiffiffi
s

p
dependence

of σtot=elpp is due to absorptive corrections generated by
enhanced Pomeron diagrams. On the other hand, the
considered HT corrections also affect somewhat the calcu-
lated σtot=elpp at sufficiently high energies.
Even such a moderate effect on σtot=elpp may seem some-

what surprising since the HT corrections apply to hard
scattering processes only. Such processes can be expected
to dominate relatively central (small b) collisions of
hadrons, while having a weak impact on the large b
behavior of the scattering amplitude. In that regard, it is

10A comparison with experimental data on secondary hadron
production and a discussion of model parameters related to the
hadronization procedure will be presented elsewhere [7].
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useful to remind oneself that in the semihard Pomeron
scheme employed here, hard parton scattering is preceded
by a long enough “soft preevolution” [16,17], as discussed
in Sec. III. With increasing energy, such soft parton
evolution covers a larger rapidity interval and the corre-
sponding transverse diffusion gives rise to a substantial
widening of the transverse profile for semihard scattering
processes. This is illustrated in Fig. 7, where the transverse
profile for the absorptive part of the inelastic cross section,
d2σabspp=d2b, for pp collisions at

ffiffiffi
s

p ¼ 102, 103, and
104 GeV is plotted, together with partial contributions of
purely soft (i.e., with only soft Pomerons being cut) or
semihard (with some “real” parton cascades entering the
perturbative, jq2j > Q2

0, domain) particle production.
Additionally shown by dash-dotted lines is the semihard
contribution calculated without the HT corrections, i.e.,
setting KHT ¼ 0. As it is easy to see in the figure, not only
the normalization of the profile for semihard interactions
rises with energy but also its width increases, correspond-
ing to such interactions happening at larger and larger
impact parameters. Further noteworthy is the strong damp-
ing of purely soft production processes at small b and largeffiffiffi
s

p
, caused by absorptive corrections due to virtual semi-

hard scattering processes11—see the dotted lines in Fig. 7.
What may also seem surprising are the relatively similar

shapes of the semihard scattering profiles calculated with
and without the HT corrections: dashed and dash-dotted
lines in Fig. 7. Here we remind ourselves that those
corrections involve soft gluon GPDs Gg=pðx; b;Q2

0Þ at
small x. Since those GPDs are described by soft
Pomeron asymptotics (plus the relevant absorptive correc-
tions), cf. Eqs. (31) and (32), the corresponding significant
transverse diffusion gives rise to a rather large slope for
these GPDs, in the low x limit, which exceeds the one for
the semihard scattering itself. As a consequence, these HT
corrections mainly reduce the normalization of the semi-
hard interaction profile, without modifying significantly
its shape.
In relation to the model treatment of color fluctuations, it

is worth comparing the same profiles as in Fig. 7, for partial
contributions of different combinations of GW Fock states
jii and jji of the projectile and target protons, respectively,
as plotted in Fig. 8. The first thing to notice is the quick

energy rise of the relative importance of smaller size GW
states: both due to increasing opaqueness of the corre-
sponding profiles at small b and due to a fast transverse
broadening of these profiles. The two effects are due to,
respectively, the low x rise of the (initially small at large x)
parton densities and due to the quick transverse expansion
of the (initially compact) parton “clouds” of small size GW
states. Second, the damping of purely soft hadron produc-
tion is substantially stronger for larger size GW states,
owing to their larger (integrated) parton densities.
Likewise, the HT corrections to the calculated transverse
profiles are more significant for larger GW Fock states:
because of larger soft gluon densities of those states.
In Fig. 9, we compare the calculated proton SF FðpÞ

2 ,
Eq. (55), to the corresponding HERA data, plotting also the
results obtained either by suppressing the corresponding
HT corrections (setting KHT ¼ 0) or by neglecting all
nonlinear effects (setting also r3P ¼ 0). As one can see
in the figure, the considered power corrections have a
significant impact on the calculated proton SF F2 at
relatively small values of Q2, with the effect vanishing
for sufficiently high Q2. Clearly, these data constrain
considerably the magnitude of the HT corrections in the
model, i.e., the value of the parameter KHT. On the other
hand, a much more serious effect is due to the taming of the
low x rise of proton PDFs, caused by absorptive corrections

TABLE I. Model parameters.

αPð0Þ
α0Pð0Þ
GeV−2

Q2
0

GeV2

r3P
GeV−1 KHT rg=P wqg ξ βp βπ g0 dp dπ dK

R2
pð1Þ

GeV−2

R2
πð1Þ

GeV−2

R2
Kð1Þ

GeV−2
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FIG. 6. Calculated energy dependence of the total and elastic
pp cross sections—solid lines. The results obtained omitting the
HT corrections or neglecting all nonlinear effects are shown by
dashed and dotted lines, respectively. The experimental data
(points) are from Refs. [54,55].

11Roughly speaking, the corresponding damping factor can be
interpreted as the probability to have no semihard production at
the respective b values.
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due to enhanced Pomeron graphs. To discuss the latter in
more detail, it is worth considering the x dependence of the
gluon GPD Gg=pðx; b;Q2

0Þ, calculated with and without
such corrections, for different b values [34,56], as plotted in
Fig. 10. Here one clearly sees the strong b dependence of
nonlinear effects due to Pomeron-Pomeron interactions:
while being moderate at large b, such corrections damp
strongly the low x rise of the gluon GPD in the b → 0 limit,
causing a saturation of the gluon density.
It is worth considering also the same dependence

for partial gluon GPDs of different GW Fock states,
Gg=pðiÞðx; b;Q2

0Þ, as plotted in Fig. 11. Here we observe
the strongest impact of nonlinear effects on the low x
behavior of the partial GPDs of the largest Fock states: as a
consequence of their largest soft parton densities.
In Fig. 12, we compare the calculated differential elastic

cross section dσelpp=dt to experimental measurements.
While the agreement with the data is satisfactory for small
values of jtj, where the bulk of the contribution to σelpp
comes from, this is not the case for larger jtj≳ 0.2.
Generally, a better description of the observed t dependence

of dσelpp=dt requires a more sophisticated choice for the
proton form factor (see, e.g., [58]), compared to the simple
Gaussian ansatz used in the current work. Moreover, for
relatively large jtj, the simple GW decomposition of the
proton wave function, with t-independent partial weights
and profiles of GW Fock states, becomes invalid [59].
Since the presented model aims at describing the bulk of
general hadronic and nuclear scattering processes, such
potential developments are beyond the scope of the
current study.
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Additionally, in Fig. 13, we compare to experimental
data the calculated

ffiffiffi
s

p
dependence of the elastic scattering

slope Bel
pp ¼ d ln dσelpp=dtjt¼0

, which quantifies the energy
dependence of the average squared impact parameter hb2i
for pp collisions. Clearly, the model fails to reproduce the
rather large values of Bel

pp, reported by the TOTEM and
ATLAS collaborations at LHC energies. On the one side,
this may be related to additional physics mechanisms
missing in the model, like the pion loop contributions to
the Pomeron Regge trajectory [65] (see [66] for a recent
discussion). On the other hand, it may indicate a certain
deficiency of the treatment of color fluctuations in the

model: as one can see in Fig. 13, the increasing relative
importance of smaller size GW states slows down the
energy rise of Bel

pp at
ffiffiffi
s

p ≳ 1 TeV.
Let us now come to the model predictions for the

inelastic diffraction. In view of a certain tension between
different LHC results on the cross section for high mass
diffraction, discussed previously in [70,71], of significant
importance is the recent measurement by the ATLAS
experiment of the differential single diffractive (SD) cross
section, dσSDpp=dt, at

ffiffiffi
s

p ¼ 8 TeV, using the Roman Pot
technique [72]. Comparing in Fig. 14 the calculated12

dσSDpp=dt, for the experimental event selection 10−4 < ξ ¼
M2

X=s < 10−1.6, MX being the diffractive state mass, with
the ATLAS data, we observe a rather good agreement for
the obtained t dependence, while the magnitude of the
calculated cross section (1.4 mb) is ∼25% below the
measured value, 1.88� 0.15 mb.13

Finally, to illustrate the impact of the considered HT
effects on secondary hadron production, we compare in
Fig. 15 the pt dependence of the (mini)jet production cross
section, dσjetppðs; ptÞ=dp2

t , at
ffiffiffi
s

p ¼ 102, 103, and 104 GeV,
as calculated with and without the HT corrections, i.e.,
using Eqs. (50) and (35), respectively. It is easy to see that

such corrections reduce dσjetppðs; ptÞ=dp2
t considerably in

the small pt limit, with the suppression becoming more and
more significant at higher energies. On the other hand, as
expected, the effect vanishes for sufficiently high pt.
Additionally, in Fig. 16, we consider contributions of
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12The calculation involves a Fourier transform to impact
parameter space, in order to account for all the relevant absorptive
corrections (see, e.g., [73]).

13Taking into account that an additional ∼40% contribution to
the measured cross section, for the selected ξ-range, comes from
nondiffractive production [7] (so-called random rapidity gaps
[74]), the total SD-like event rate predicted actually exceeds the
measurement by ∼20%.
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different impact parameters to these jet spectra, i.e., we plot
d3σjetppðs; ptÞ=dp2

t =d2b defined by the expression in the
curly brackets in Eq. (50). The impact of the considered
HT corrections on low pt (mini)jet production becomes
maximal for b ≃ 0, while decreasing slowly with the
increase of b.

IX. CONCLUSIONS

We presented here a new model for high energy hadronic
scattering, QGSJET-III, discussing in some detail its under-
lying theoretical mechanisms. In particular, considerable
attention has been devoted to a phenomenological treatment
of dynamical power corrections to hard parton scattering
processes, based on the approach of Refs. [41,43]: with the
respective contributions being related to coherent rescatter-
ing of s-channel partons on soft gluon pairs emitted by the
colliding hadrons (nuclei). Modeling the corresponding
multiparton correlators as multiparton GPDs, we developed
a dynamical scheme: with the strength of the HT effects
increasing both in the very high energy and small impact
parameter limits.
Additionally, we discussed in some detail the model

implementation of color fluctuation effects: based on a
decomposition of hadron wave functions in a number of
GW Fock states characterized by different transverse sizes
and different parton densities.

Selected model results regarding the energy dependence
of the total and elastic proton-proton cross sections, the x
dependence of the proton SF F2, the x and b dependence of
the gluon GPD Gg=pðx; b;Q2

0Þ, and the t dependence of
single-diffractive pp cross section have been presented and
the impact of various nonlinear corrections to the inter-
action dynamics has been investigated. Overall, the most
important feature of the model is the microscopic treatment
of nonlinear effects due to Pomeron-Pomeron interactions,
which is inherited from the previous model version,
QGSJET-II. On the other hand, the developed phenom-
enological treatment of HTeffects serves the principal goal:
taming the steep rise of the (mini)jet production in the small
pt limit, thereby reducing considerably the sensitivity of
the model results to the choice of the infrared cutoff Q2

0, as
discussed previously in [34].
The description of secondary hadron production and

applications of the model to modeling the development of
CR-induced extensive air showers will be discussed else-
where [7].
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