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Within the framework of large-momentum effective theory (LaMET), we propose a hard-collinear
factorization formula to extract the subleading-twist B-meson light-cone distribution amplitude (LCDA)
from the quasidistribution amplitude calculated on the lattice. The one-loop matching coefficient and an
integro-differential equation governing the evolution of the quasidistribution amplitude are derived.
Our results could be useful either in evaluating the subleading-twist B-meson LCDA on the lattice or in the

understanding the feasibility of LaMET on higher-twist distributions.
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I. INTRODUCTION

The light-cone distribution amplitudes (LCDAs) of the B
meson, which are the inherent parts of factorization theorems
for many exclusive B decay processes, are of great phenom-
enological interest and have been indispensable ingredients
for precision calculations of the B-meson decay observables
[1-4]. For example, the LCDAs of the B meson are helpful in
determining fundamental parameters in the flavor sector,
such as the Cabibbo-Kobayashi-Maskawa matrix, as well as
the CP asymmetries in rare B decays [5—7]. The semileptonic
decays, e.g., B —» #¢v and B - DZfv, serve as the golden
channels for the determinations of |V, | and |V, |; however,
the precision of theoretical prediction is limited by the
uncertainties of the LCDAs.

In heavy-quark effective theory (HQET), the leading-
twist LCDA of the B meson, which is denoted as c],’zg, gives
a dominant contribution in the heavy-quark expansion and,
hence, received considerable attention [8—11]. The higher-
twist distribution amplitudes give rise to power-suppressed
contributions to B decays in which energetic light particles
at final states exist. It is clear that the utility of the QCD

fCorresponding author: wei.wang @sjtu.edu.cn
ICOITesponding author: xuji_phy @zzu.edu.cn
iCorresponding author: zhaos@tju.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(3)/034001(10)

034001-1

factorization theorem depends on the possibility to estimate
the power corrections involving higher-twist DAs, and the
accuracy is not sufficient when considering only the
leading-power contributions [12-14].

Besides, the investigation of higher-twist distribution
amplitudes would be desirable and interesting by itself. For
example, the subleading-twist LCDA ¢ (w, ) governs the
leading-power contribution to B — D form factors [7], and
the knowledge of its anomalous dimension y_ is essential to
check certain correlation functions for B — z form factors
within soft-collinear effective theory [15].

The studies of the leading-twist B-meson LCDA
¢4 (w,u) such as asymptotic behaviors, renormalization
group equation (RGE), equations of motion, etc., have been
carried out for a relatively long time [16-23]. On the
other hand, the higher-twist DAs are attracting increasing
attention lately. It was pointed out that the structure of
subleading-twist DA is simpler than assumed [24,25]. It
evolves autonomously and does not mix with “genuine”
three-particle contributions. However, despite these impres-
sive achievements, our knowledge on LCDAs for the B
meson is relatively poor. We have not been able to depict
the leading- and subleading-twist DAs; since they encode
information of the nonperturbative strong interaction
dynamics from the soft-scale fluctuation, most of the recent
studies on the shapes of ¢} (o, 1) and ¢3(w, i) are model
dependent. Therefore, a significant task in heavy flavor
physics will be improving the accuracy of B-meson LCDAs
in a model-independent manner.

The LCDAs are presumably dominated by QCD inter-
actions at low momentum scale so that they cannot be
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calculated with perturbation theory. One must resort to
nonperturbative methods among which lattice QCD dis-
tinguishes itself due to being based on first principles and
its rapid development in recent years. The large mass of the
bottom quark makes it difficult to perform conventional
lattice simulations and, thus, necessitates the use of
effective field theories such as HQET in lattice simulations
[26-29]. However, performing the lattice calculation of
LCDAs directly is known to be impractical by the appear-
ance of nonlocal operators located on the light cone. The
development of the “lattice parton physics,” e.g., large-
momentum effective theory (LaMET) [30,31] and related
proposals such as pseudo-parton distribution functions
[32,33] and lattice cross sections [34], provides a practical
way to calculate distributions defined with light-cone
operators on the lattice. The essential strategy of LaMET
resides in the construction of an equal-time Euclidean
quantity that can be computed on the lattice and in the mean
time can be matched to the original LCDA by a factori-
zation formula in the large-momentum limit. The past few
years have witnessed fruitful results obtained in the frame
of LaMET, which indicates a bright future to systematically
compute a wide range of “parton observables” with
satisfactory uncertainties. For the recent progress, see
reviews [35-37], and references therein.

The attempt to apply LaMET to the leading-twist B-meson
LCDA ¢, was presented in [38,39]. The ¢, was later
explored within the pseudodistribution approach [40]. In
the followup works, the inverse moment and nonperturbative
renormalization of quasidistributions were discussed [41,42].
It is natural to extend the previous works of ¢}, to ¢, which
is the main goal of the present work. Specifically, we will
define the quasidistribution that corresponds to ¢, derive
the matching relation and the evolution of the quasidistri-
bution amplitude, and explore the feasibilities for lattice
calculations.

The remainder of this paper is organized as follows. In
Sec. II, we present the definitions of the subleading-twist
(twist-3) LCDA ¢5(w, ) and quasidistribution amplitude
@5 (& 1). In Sec. 111, we calculate the one-loop corrections
of LCDA and quasidistribution amplitude as well as their
renormalization equations. In Sec. 1V, the factorization
formula and matching coefficient are exhibited, which are
the main results of this work. In Sec. V, we give a brief
outlook for lattice calculations for ¢z (@, u) in terms of the
results in this paper. The last section is the summary and
perspective on future works.

II. SUBLEADING-TWIST B-MESON (QUASI)
DISTRIBUTION AMPLITUDES

The B-meson LCDAs in coordinate space are defined
through the Lorentz decomposition of the renormalized
matrix elements of the nonlocal operator which contains an
effective heavy-quark field and a light-quark field separated
on the light cone:

(015 (4 )W (1., 0)hy(0)|B(v))
_ifp(w)M {1 + 1 { =

4

5\ 20 (n.u)

@ - B A )
+ ap

where W(nn,,0) = P{Explig, [J dxn, -A(xn,)|} is the
Wilson line connecting the light- and heavy-quark fields
that ensures gauge invariance, v, is the heavy-quark
velocity satisfying v?> = 1, |B(v)) is the B-meson state,
and f(u) is the static decay constant in HQET [43]. Here
and below, the notations for light-cone coordinates are

1 1
=—(1,0,0,1), _,=—=(1,0,0,-1). 2
n+/4 \/i( ) n/t \/§< ) ()

The functions ¢ (n,u) and ¢5 (i, u) are the two-particle
leading- and subleading-twist B-meson LCDAs, respec-
tively. The prefactor in Eq. (1) is chosen in such a way that,
in the case 7 = 0, one obtains

(01g(0)r7sh, (0)|B(v)) = if pMv* (3)

with the normalization conditions

bi(n=0,p) = ¢g(n=0,pu) = 1. (4)

This indicates

(01g(0)#t,.75h, (0)|B(v)) = if p(u)Mv*. (5)

If we plug I's, = [#,75]4, into the matrix element of the
nonlocal operator in Eq. (1),

(0lg(nn )i ysW(nn..,0)h,(0)[B(v))
= if ()M (n. p)v*. (6)

For convenience, hereafter we subsequently denote v+ =
n, -v and v~ = n_ - v. Therefore, we have

of (n.p)

1 -
=—=———0|g(nn )r ysW(nn,.,0)h,(0)|B(v)). (7
e VW O OB ()
Applying the Fourier transformation for g;ﬁg (n,u) leads to

the momentum-space distribution amplitude, which usually
appear in factorization formulas:

vt

by (0, 1) = / h dne™” gl (n. ). (8)

27 )

Unlike in QCD, the LCDA defined in HQET depends
on a dimensional argument ®; it has the meaning of the
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light-cone projection of the light-quark momentum in the
heavy-meson rest frame.

The leading-twist LCDA in momentum-space can be
expressed as the ratio of the nonlocal and local matrix
elements in Egs. (5) and (7), respectively:

I
(0lg(nn. )i ysW (nn., 0)h, (0)| B(v))
(01g(0)rt 4 y5h, (0)[B(v))

©)

Similarly, if Ty, =
LCDA

[1i_ys]g,> One has the subleading-twist

+oodn .
¢§(w7ﬂ)_v+/ N ity

e 27T

(01g(nn.y )ri_ysW(nn..,0)h,(0)|B(v))
(0(0)r1_ysh, (0)|B(v)) '

(10)

Equations (9) and (10) provide expressions for the two-
particle B-meson LCDAs. We will focus on the subleading-
twist LCDA ¢ (@, u) in this work.

Next, we need to identify a quasidistribution amplitude
which is both calculable on the lattice and feasible for
extracting the LCDA. Based on the construction idea in
Ref. [30], the following definition of B-meson quasidis-
tribution amplitude is employed:

+oo dr . -
Pp(E.p) = vz/ €T

o 27
(0lg(zn.)(r' = r*)rsW(zn:, 0)h,(0)|B(v))
(01g(0)(y" = 7*)rsh,(0)|B(v)) '

(11)

Here, y' =y -n, and y* =y - n, with n,, = (1,0,0,0) and
n,, = (0,0,0,1). It is readily seen that ¢j(&, i) is con-
structed by the spatial correlation function of two (effec-
tive) quark fields with »* =n,-v. We will work in a
Lorentz boosted frame of the B meson in which v™ > v~
and set v,, = 0. Unlike ¢p5(w, ) in Eq. (10), which is
invariant under a boost along the z direction, the quasidis-
tribution amplitude changes dynamically under such a
boost, which is encoded in its nontrivial dependence on
the heavy-quark velocity.

Besides, it is worth noting that the choice of Lorentz
structure I in the definition Eq. (11) is not unique; one can
use different I" as long as the factorization formula between
quasidistribution amplitude and LCDA holds. However, in
a practice lattice simulation, different choices will lead to
different complexity, which has been discussed in [44].

III. ONE-LOOP CALCULATION AND
RENORMALIZATION GROUP EQUATION

A. Preliminaries

To examine the factorization formula and determine the
matching coefficient, we replace the B-meson state with a
heavy b quark plus an off-shell light quark and perturba-
tively calculate the radiative corrections of subleading-twist
LCDA and quasidistribution amplitude in this section.
Please note this replacement of hadron state into its lowest
Fock state actually ignores the three-particle B-meson
LCDAs. We carry out the calculation by utilizing the
off-shellness of the light quark as an IR regulator; and
the dimensional regularization with modified minimum
subtraction scheme (MS) is implied.

We take the off-shellness of the initial light quark

K2 =2ktk™ — k2 (12)

and set the space-time dimension d = 4 — 2¢. The Feynman
diagrams at the one-loop level are shown in Fig. 1. The
distribution amplitudes of the Fock state can be expanded in
series of a.

Take the subleading-twist LCDA, for instance, and
define

0+ (’1) = Z](']”+)”—Y5W(’1n+’ O)hv(o)’
0+ (O) = Z](O)}’i_}@hv(()). (13)
(a) (b)
LR EEEER
(©) (d)

FIG. 1. Feynman diagrams for the LCDA and quasidistribution
amplitude of the B meson. The effective HQET bottom quark is
represented by the double line; the Wilson line is indicated by the
dashed line.
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Therefore, up to the one-loop level, ¢ (w,u) in Eq. (10) can be expressed as

(. u) = vt +°°@eim+q (0[O, ()b (k)™ + (0|0 (n)|pg(k))!"
R - o LR TN OIS
- / e @eiwm[<0|0+(f7)lbé(k)>(°> (010 (n)bg (k)™
o 27 (010..(0)[bg(k))® ~ (0]0..(0)[bg (k)
{010, (n)bg (k)" (0]0..(0)[bg (k)"
1010-.(0) b7 k)™ (0/0- [ )] ~ =) )
[
Here, the superscript (0) indicates. the result at tree level and 0.(r) = q(tn.)(y' — r*)ysW(zn,, 0)h,(0),
(I)O(f?geostligf h(zirrllz,l(c)p(;lzaio;r)eccatllr(lnl;é organized as follows: 0.(0) = g(0)(r" = r*)rsh,(0). (18)
$5(0.1) = §5 (@) + ¢35 () + O(a2). (15) ~ Therefore, we have
By comparing Eqgs. (14) and (15), one can identify that (p_(o)(é) — /+°°ﬂeig;ﬁr, <0|Oz(7)|bé(k)>(0)
v dn o (010, ()IbaR)® B ~ 2 000"
-(0) — ot oo_neia)b*n noq —
Py ()= /_w 2" " 010, ) bai)® oen 1
= 8(w = k), (16) oo dr (0|0.(z)|bg (k)
(&u) =127 . e’ - )
L [ 010, () ba(k) O [ _ (oo Oty
Pl = 2 010, 0)ba(k)® (010.(1)b3(k))* (010, (0)|bq (k)"
— ) (0) o
<O|O+( )|b (k)>0) <0‘0+( )|bq(k)> (1) <0|Oz(0>|b61(k)> <0|0z(0)|b (k)> 0
(010, (0)63 (k)@ (0[O (0) 63(K)) 20)
(17)

where k = k™ /vt = k?%/v*. The general discussions of
one-loop correction above are also applicable to the
quasidistribution amplitude. In analogy with Eq. (13),
define

B. One-loop results for distribution amplitudes

We now list the results of one-loop corrections for
subleading-twist LCDA and quasidistribution amplitude
diagram by diagram. First, consider the amplitude of the
light-quark sail diagram for LCDA in Fig. 1(a):

—%{(1n2—1)<1

The plus distribution is defined by

{F(wj()}ea =

w ﬂzl}z :| A
(m_;)zl o) (0 O<w<k
others
2 ) 2 -
In— In“2 -2 —k). 21
+nk>+n +]2}5( k) (1)
- - 20
F@j%ﬁ@—m/ dtF (. 1), (22)
0

An advantage of introducing this plus function is that it allows one to implement both the ultraviolet and infrared
subtractions for the perturbative matching procedure simultaneously.
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The contribution of Fig. 1(a) to quasidistribution amplitude is

1 A =<
[ (R +2emE)| £<0
~(a) CaCr ) [ 0 (e 7 e 5
(7 £ =
i (F-2em )| ® £k
a,Cr |1 u? 4k v 7’ ~
+ ix [g+lnvz2§2+2(1_ln2) In 2 +2—? 5(&—k). (23)

Here, we assign v* = (¢°,0,0, %) with v»*> = 1 and v° > 1.
Second, we list the amplitude of the heavy-quark sail diagram for LCDA in Fig. 1(b):

|:1L+Llnﬂf,~)2:|® (l)>]~é

¢ (w.p) = _a;CF { co-k ok (o—k
7 1o others
a,Cr | 1 1w 1, > =
e P N N O ) 24
2 [262 22 gl ot gy 0@ =K 24)

It is worth noting that the dashed line in Fig. 1(b) is a lightlike Wilson line; the heavy-quark propagator can be regarded as a
timelike Wilson line. The vertex correction to a timelike-lightlike cusp on Wilson line is known to have 1/e?> UV divergence
at one loop, as shown in Eq. (24). This is different from the case in light-meson LCDAs, since the heavy b quark here is
treated in HQET, which modifies the divergence structure of the loop integrals.

The contribution of Fig. 1(b) to quasidistribution amplitude is

1 (1_ 2 s 7
_ a,Cr 2 (t-ma +ln(k_§)z)}@ ek

—(b)
pg (&) = 3
4n [ﬁ (g +1Indv? + 1n—(§f§()2)]® £k
aCr l—l—lni In4 22—f—lln24 o T 5(&—k) (25)
an |\ Mapmga) MY T T ’

Figure 1(c) is the one-loop correction to the Wilson line’s self-energy, which is determined by the direction of the Wilson
line. This amplitude for LCDA is proportional to n2 = 0 and, thus, gives zero contribution. For quasidistribution amplitude,
it reads

aSCF 1 ﬂz ~
€

Finally, the contribution of box diagram in Fig. 1(d) for LCDA is

} . )
[§%+ 0 (1—1n_k—;)+%1n@fm)w]® O<w<k

—(d) _C(SCF B
5" (0. 1) == {ﬁ(l—lnﬁ)]@ o>k
0 others
a,Cr 1 u? . 3 n° =
B2y (S ) 11— Lig(=2) = 2122 + X | S(w — ). 2
-2 (L) 4 1-Lia(2) 22+ T o - ) @)
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Notice that there is UV-divergent piece in Eq. (27), which is different from the situation in leading-twist LCDA. This would
result in a different anomalous dimension for subleading-twist LCDA; we will discuss this issue later.

For quasidistribution amplitude, Fig. 1(d) yields

g (0~ ind) + Tin(ar) - )|

E<0

0<&é<k

E>k

C ]}2 22 In22 2 5
+BEE (102 = 1) In" o 4 1+ Lig(=2) + —==— 3In3 + 41n2 + | 5(6 — F). (28)
2n —k 2 6
|
In the above results, the subleading-twist LCDA is  y_(w, ', )

nonzero only in the physical region @ > 0, while the dZ_(w, @, )
quasidistribution amplitude has nonzero support in all =- / d&);’”zﬂ(d),w’ M) —rrd(w— o).
region —oco < ¢ < +o0. Recall that we have used the dlnp
off-shellness of light quark —k? as IR regulator; this (31)

logarithmic IR singularity would cancel between quasidis-
tribution amplitude and LCDA, leaving the matching
coefficient independent on —k?, as it should be. We will
see this point clearly in the next section.

C. Renormalization group equation

Having the one-loop results in Egs. (21)—(28), we can
derive integro-differential equations governing the evolu-
tion of subleading-twist LCDA and quasidistribution
amplitude. One of the reasons for the importance of
RGE is that it gives insight in the expected behavior of
the DAs at large and small momenta, which is important for
the status of factorization theorems for B-meson decays.
Besides, a thorough understanding of scale dependence of
quasidistribution amplitude would help its future simula-
tions on the lattice.

We take O (w) to denote the Fourier transformation of
the bilocal HQET operator O (5) in Eq. (13) and write
down the relation between bare and renormalized operators
as follows:

O™ (w, u) = /da)’Z_(w, @', 1) ('),  (29)

where Z9 (@, ®') = 8(w — @') at lowest order. In the MS
scheme, the renormalization constant Z_(w,®’,u) is
defined so as to subtract the ultraviolet divergences in
the matrix element of the bare operator. The subleading-
twist LCDA obeys the evolution equation

T dilon) == [ doty_ (.o )z, (30)

with the anomalous dimension

Here, y5 is the anomalous dimension of the static decay
constant f(u) in HQET.

One can tell from Eq. (30) that the renormalization
properties of ¢g(w,u) are similar to the leading-twist
LCDA; it evolves without mixing with other light-cone
quantities. The reason is that we have ignored the mass of
the light quark in the B meson which allows for chiral
symmetry. y_(w, @', i) can be read off the UV-divergent
terms in Eqgs. (21), (24), and (27):

y_(w, 0, p) :aS—CF{<4lng—2>5(a)—a)’)

4n
-l
—4 W} (32)

This result repeats the RGE derived in Ref. [24].

The case of quasidistribution amplitude is analogous to
the subleading-twist LCDA; we now write down the
relation between bare and renormalized operators:

01 (&) = / (6.8 )0 (&).  (33)

The renormalization constant Z, (&, &', u) can be expanded
in series of a;:

7.8 u) =20 E) + 2V (EE u) + Od),  (34)
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where ZZ (5 &) = 6(E—¢&) at lowest order. According to
the UV-divergent terms in Egs. (23), (25), (26), and (28),
we obtain

Cr(1[0E-¢) o0& -
e

11 ,
- (%—I—Elnm) 2)5(5—5)}.

The quasidistribution amplitude obeys the evolution
equation

(35)

———p(&.p) =

A T dgy (& & W n).  (36)

dlnpy

with the anomalous dimension

v.(&.8 )

/dgdz (&)

Y Z(EE ) —yrd(E-E). (37)

Substituting Eq. (35) into Eq. (37), one has

ree ) = 20 {4 2ol - )
E-¢)_oig-9
= =S

The result in Eq. (38) gives the scale behavior of the
quasidistribution amplitude. As we have mentioned before,
the quasidistribution amplitude changes dynamically under
the boost of heavy-quark velocity.

IV. HARD-COLLINEAR
FACTORIZATION FORMULA

We now proceed to determine the perturbative matching
coefficient entering the hard-collinear factorization formula
|

H(§7 w, vz’ ,Lt) = 5<§ - 60)

1
+ m <3w—2§—3a)ln

1 2

aYCF 1
: —(3-1
+ dr {[w—f( n

for quasidistribution amplitude. Following the construction
in Ref. [39], the factorization formula is
QCD)
¢

(39)

95 1) :A doH (&, w,v%, p)dz (o, /4)4_(9(

With the spirit of LaMET, one can expect the IR physics of
quasidistribution and subleading-twist LCDA are the same.
The difference in the UV behavior between these two
quantities is denoted by the matching coefficient H.
Because QCD is asymptotic-free, this difference is pertur-
batively calculable, as only the high-momentum modes
matter. This property makes it possible to extract light-cone
parton physics from quasiquantities.

Based on the calculations in Sec. III and the factorization
formula in Eq. (39), the matching coefficient H is then
determined by the difference between the momentum-space
quasidistribution amplitude and the subleading-twist LCDA.
We expand them in series of @, up to the one-loop level:

o) = 03°() + 95" (Ep) + O(@?),
A ; (@) + 5" (0.1) + O(@?),
H(E o, v5,p) = HO(E ) + HD (& o, 0% p)
+ O(a?). (40)

With the tree-level results of ¢ and @5, one can immedi-
ately get

O 0) =56 - ).

Substituting the expressions above into Eq. (39), the one-
loop result of matching coefficient can be expressed as

(41)

HO(E o, 0% )|, or = 05 (En) =5 (@) s (42)

With the one-loop correction (p,}m(é, u) and (/5,_3(1)(0),#)
calculated in Sec. III, one can obtain the hard matching
coefficient

HZ 52

e | (L

B 2 2

N e P S P

_2 4111252 4UZ2§2

[ H
e (e

P emE o
4Uz2(a) _ 5)2 + 1 (a) _ 5)2) @9(5)9( 5)
£ Y
g w)2> f)pE-a)

2
61n3+51n4—|—%]5(§—w)}. (43)
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The logarithmic IR singularities In(—k?) cancel between
the quasidistribution amplitude and the subleading-twist
LCDA, leaving the obtained H independent on the IR
regulator as expected. Equation (43) presents one of the
main results of this work.

It is well known that there is a Wandzura-Wilczek (WW)
relation between the leading- and subleading-twist B-meson
LCDAs if we neglect the three-particle contribution. When
the separation between the quark and the antiquark fields in
Eq. (1) is not restricted on the light cone, there also exists a
relation, which has been discussed in [45]. Similarly, we can
establish a WW-type relation between the leading- and
subleading-twist quasidistribution amplitudes.

V. PERSPECTIVES FOR LATTICE
CALCULATIONS

One essential step in accessing the subleading-twist
LCDA is to perform the lattice simulation for the quasidis-
tribution amplitude in the moving B-meson frame with
v* > 1. Although the lattice simulation of B-meson quasi-
distribution amplitude has not been implemented, it is
instructive to understand the characteristic feature of
@5(&E, ;) with nonperturbative models of ¢5(&, p).
Different from the LCDAs of light mesons, which can be
expanded in terms of Gegenbauer polynomials, the LCDAs
of B mesons are more difficult to model. We start with two
phenomenological models of ¢5 (&, u):

1
D) = e, (44)

B

2 wp [ONY 1
" s = — | — 1; —_——
¢B,H(a} lu) ﬂﬂ«B (wz +//l2+arc anﬂ 2

+M {Im {Liz (£> } - arctan91n9}> .
r H HoH

(45)

Here, the reference values of the logarithmic inverse moment
Ag =350 MeV and o3 = 1.4 as well as p = 1.5 GeV are
taken [46,47]. The construction of subleading-twist LCDA
¢51(w) in Eq. (44) is similar in spirit to the simple leading-
twist DA proposed in Ref. [1], and Eq. (45) shows a more
complicated model of ¢ (@, u). Taking advantage of these
phenomenological models and the matching coefficient in
Eq. (43), the hard-collinear factorization formula implies the
shapes of quasidistribution amplitudes which are displayed
in Fig. 2. It is clear that ¢ (&, ) develops a radiative tail at
large momentum ¢ irrespective to the choice of models for
¢z (w, u). This property was also observed in the study of
leading-twist LCDA [39]. In addition, the shapes of quasi-
distribution amplitude are close to the LCDA, which indi-
cates the good convergence of perturbation theory.

It should be stressed here that in this work our major
objective is to explore the opportunity of accessing the

»
A
3 s
Ny LCDA
----- quasi DA (vZ = 5)
2F .
EAY = = quasi DA (v* =10)
!
P
0 Q""'#
BTy T ———
-0.5 0.0 0.5 1.0 1.5 2.0
w (GeV)
4
l\‘
A
st W, LCDA
----- quasi DA (vZ = 5)
2F j ----- - quasi DA (vZ = 10)
]
1 ';,
e
0 S
N._::— _________
1L M M M :-'-'—rv;#‘_
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
w (GeV)

FIG. 2. The shapes of the B-meson quasidistribution amplitude
@5(E = w, u = 1.5 GeV) with two different values of v*, obtained
from the hard-collinear factorization theorem and the two non-
perturbative models ¢z | (upper panel) and ¢ (lower panel).

subleading-twist B-meson distribution amplitude by sim-
ulating the quasidistribution amplitude on the lattice.
Therefore, a dedicated lattice calculation of the proposed
quasidistribution amplitude is urgently called for. To
accomplish this goal, improved methodologies to control
both statistical and systematic uncertainties are needed, as
well as further development of computing techniques and
resources.

VI. CONCLUSION

Within the framework of LaMET, we propose a factori-
zation formula to extract the subleading-twist B-meson
LCDA from the quasidistribution amplitude and explore its
properties. The one-loop matching coefficient which con-
nects these two quantities is derived. These results enable
us to further study the simulation of quasidistribution
amplitude on the lattice. In comparison with the previous
model constructions, our analysis supplies a guideline for
understanding the B-meson LCDAs without relying on
specific model and offers a new strategy for systematic and
detailed studies of ¢3(w,u). This would present a step
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forward toward understanding the patterns of subleading
corrections and ultimately allow people to increase the
accuracy of QCD predictions for heavy-meson decays
significantly.

Let us conclude by mentioning a couple of further
directions to be addressed in future work. First, to further
increase the accuracy of our results, the yet unavailable
higher-order perturbative correction to the matching coef-
ficient is required. Second, inspecting the nontrivial rela-
tions between the two-particle and three-particle B-meson
LCDAs due to the QCD equations of motion by taking
advantage of the forthcoming results from the current
strategy is also of substantial significance. Third, one
can expand this approach to other physical quantities, such

as the LCDA of heavy baryons and doubly heavy baryons,
etc. In view of the rapid development of LaMET, it may not
be unplausible to expect more important progress in the
near future.
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