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Determination of the D — zx ratio of penguin over tree diagrams
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We study the penguin over tree ratio in D — zz decays. This ratio can serve as a probe for rescattering
effects. Assuming the Standard Model and in the isospin limit, we derive expressions that relate both the
magnitude and the phase of this ratio to direct CP asymmetries and branching fractions. We find that the
current data suggest that rescattering is large. A dedicated experimental analysis with current and future
data will be able to significantly reduce the errors on these determinations, and enable us to check if indeed

there is significant rescattering in D — zz decays.
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I. INTRODUCTION

After the discovery of charm CP violation through the
measurement of the difference of CP asymmetries of
singly-Cabibbo suppressed (SCS) decays [1], the recent
first evidence of CP violation in a single decay channel,
D° — zt7~ [2], showed hints for an enhanced AU = 1
contribution to the subleading amplitude [3]. These new
developments make searches for charm CP violation in
additional channels particularly interesting in order to
probe the effects of nonperturbative QCD and physics
beyond the Standard Model (BSM) [4].

CP violation in SCS charm decays has been studied for a
long time, especially in the context of U-spin and SU(3)
symmetry [5-18]. SU(3) breaking effects have also been
modeled accounting for final-state interactions [19,20] or in
the context of the factorization-assisted topological-ampli-
tude approach [21,22]. Flavor-symmetry methods have been
applied to D mixing, too, see Refs. [23—-25]. Note that in this
case a treatment within the heavy quark expansion is
consistent with the data due to large theory uncertainties [26].

In this letter, we study CP violation in D — zz decays.
The decay amplitudes of D — 7z decays can be written as
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where f denotes the respective final state and 4, are the
combinations of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements
A =VeaVuas A=V, Vup. (2)
A'Z and A'l’: are the CKM-leading and -subleading ampli-
tudes, respectively. In the parametrization of decay ampli-
tudes in Eq. (1) we use the convention that AZ and A{:
contain strong phases only.
The key quantity we focus on in this letter is the

magnitude of the ratio of CKM-subleading over CKM-
leading amplitudes

r = |Al/Al. (3)

This ratio is also known as “penguin over tree ratio.” Note

that the short distance contributions to the amplitudes A{: are
very small due to the very effective GIM suppression and we
neglect them throughout this letter. The CKM-subleading

amplitude A{:, to which we refer as penguin, thus contains
only the long distance effects, also known as rescattering.

As we explain in more detail below, in the limit of no
final state rescattering / = 0. Thus, a measurement of »/
can serve as a probe of rescattering effects in D — zx
decays.

The question of the size of the rescattering is a hint to a
deeper question about QCD: can we treat QCD as perturba-
tive at the charm scale? If it is perturbative, rescattering
should be small, thatis / < 1. Non-perturbative effects will
result in 7/ > 1. Thus, a clear way to probe that ratio is
called for.

Although there are some first conceptual ideas on
the lattice [27] there is at this time no reliable way to
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calculate /. The available theory estimates for this ratio
vary depending on the employed methodology. Light cone
sum rule (LCSR) calculations [28,29] find this ratio to be
O(0.1). Estimates allowing for larger nonperturbative
effects such as large rescattering or nearby resonances
result in 7/ ~ O(1) [30-33], see also Refs. [5,34]. Studies
employing coupled dispersion relations and rescattering
data can be found in Ref. [35-37]. While Ref. [35] explains
the charm CP violation data within the Standard Model
(SM), Ref. [36] finds that this not possible. Reference [37]
finds enhanced charm CP violation to be marginally
consistent with rescattering effects.

Although the estimates for 7/ come with a large theory
uncertainty, its sensitivity to both rescattering effects and
BSM physics [4,38—44] makes it crucial to find clean
ways to extract it from experimental data. A common key
assumption employed in the literature in order to be able to
compare the CP asymmetry data to the SM at all is that the
relative strong phase between CKM-subleading and CKM-

leading amplitudes
Al
6f =arg <A?> (4)

d

is O(1) [33]. It has been pointed out in the literature that
strong phases corresponding to 8/ can be obtained via the
measurements of time-dependent CP violation or quantum-
correlated charm decays [3,33,45-50]. Additionally, it has
been shown that the analogous strong phase in multibody
decays can be determined from a fit to the CP violating
time-integrated Dalitz plot [51]. However, even with recent
experimental and methodological advances there exist no
measurements yet of these strong phases, neither in two-
body [52,53], nor in three-body [54-57] decays.

In this letter, we assume the SM and show that isospin
symmetry allows the determination of the relative strong
phase between CKM-subleading and CKM-leading D —
zr decays from direct CP asymmetries and branching
ratios only. This enables at the same time also the extraction
of the magnitude of the “penguin over tree” ratio r/.

The isospin construction proved very fruitful for the
analysis of B — nzr decays [58-65]. Also in the case of
B-decays it was found that the penguin over tree ratio as
well as the relevant strong phase can be extracted from
direct CP asymmetries and branching ratios, see, for
example, Egs. (7)—(9) and Egs. (110)—(114) in Ref. [61]
and the numerical results in Refs. [66,67].

Isospin symmetry has been applied to D — 7z decays in
Refs. [37,48,49,68-71]. Note that the hierarchies of the
interfering amplitudes in the D and B systems are very
different from each other. Nevertheless, both systems have
exactly the same group-theoretical structure under isospin,
which implies that the two systems have the same sum rules
at the amplitude level [72]. Thus we expect that similar
1sospin relations should hold at the level of observables as

well. However, when deriving the implications for the
observables, different approximations are used.

Below, after introducing our notation and approxima-
tions, we derive new isospin relations that allow the
extraction of the ratio of CKM-subleading over CKM-
leading amplitudes for D° — 77z~ and D° — 7°72°. We
study the numerical implications of current data and show
the prospects of future more precise determinations of the
penguin over tree ratio with future LHCb and Belle II data.
Afterward, we conclude.

II. NOTATION

Regarding Eq. (1) we remark that we use a parametriza-
tion slightly different from the one frequently used for
amplitudes of D-decays in the literature, see for example
Ref. [15]. In our case the CKM-leading contribution
is accompanied by the CKM-factor —4; and not
Asa = (A4 — A4)/2. This choice ensures that the CKM-
subleading part A'Z only contains contributions with isospin
AI = 1/2. In general, the parametrization with the CKM-
factor 4, is a convenient choice when studying U-spin,
while a parametrization with 4, is better suited for the
isospin analysis of D — zz. For brevity, we introduce the
following notation for the decay amplitudes
AT = AT AT = A0 AT S 410 (5)
For the relative strong phases of CKM-leading and CKM-
subleading amplitudes we write

A+ 400
5T =arg <b_> , 6% = arg <b> . (6)
A AL

The phases 6~ and 5 enter the direct CP asymmetries of
D° — ztz~ and D° — 7°2° decays, respectively. We also
use the relative strong phase between the CKM-leading
contributions of the two decay channels, which we denote as

At-
o, = arg <d>. (7)
AY

In the isospin limit, this phase is related to the relative phase
between the Al = 1/2 and Al = 3/2 amplitudes which can
be extracted from the D — 7z branching ratios, see Ref. [73].
Direct CP asymmetries are defined as

af = |Af|2 - |A_f|2 ) (8)
LA+ AP

The normalization of the amplitudes is such that the
branching fractions are defined as

1 _
B =P/ (AP +IAP), ©)
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where P/ are phase space factors given by

D
Pl =
167m3),

x \Jmy = (mp, + mp,)2. (10)

\/m% — (mp, —mp,)?

where D = D%, D* and P, = 7%, z* depending on the
specific final state f.

III. ISOSPIN RELATIONS

A. Approximations

Throughout this letter we consider the SM case only and
use the following set of approximations.
(1) We consider the isospin limit, i.e., we do not take
into account isospin breaking effects.

(i) We neglect electromagnetic corrections and electro-
weak penguin contributions that are subleading due
to the smallness of their Wilson coefficients.

The approximations (i) and (ii) are expected to hold at the
O(1%) level [49]. Next, we use the fact that the involved
CKM matrix elements are hierarchical and use the follow-
ing approximations:
(iii) For branching ratios, we neglect contributions
which are suppressed by O(|A,/A4|) ~ A%, where
A= 0.23 is the Wolfenstein parameter, such that

B =Pl [, 2|AL). (11)

(iv) We calculate direct CP asymmetries at leading
order in |A, /4| [5,7,16]

alp, =1Im (A—b> r/ sin(87). (12)
Ay
Both Egs. (11) and (12) rely on 7/ respecting the hierarchy
induced by the CKM matrix elements, that is, r/ < 10%.
Eq. (12) also relies on the convention that A'Z and Ai
contain strong phases only.

B. Isospin decomposition

We write the isospin decomposition in such a way that all
weak phases are explicit and the theory parameters depend
on strong phases only [31,37,68]

AT =y (\/5(11/2 + f3/2)) —%b (\/Epl/z),

A
AOO = _Ad(2t3/2 — t1/2) _f(_pl/Z)’

AT = —2,(313)5). (13)

Here, 1/, 13, are the CKM-leading contributions
that correspond to Al = 1/2 and AI = 3/2 transitions,

respectively, and p;/, is the CKM-subleading Al = 1/2
contribution. Note that assumptions (i) and (ii) ensure that
in Eq. (13) there are no contributions with A7 = 5/2, and
that there is no Al =3/2 contribution to the CKM-
subleading amplitude. The notation in Eq. (13) is chosen
such that one can directly read off A'Z and A-,’; in the
convention of Eq. (1).

The isospin decomposition of the CP-conjugate ampli-
tudes A’ takes the same form as Eq. (13) up to the complex
conjugation of the CKM-factors and unphysical overall
phase-factors that do not enter any expressions for observ-
ables, see, e.g., Ref. [74].

As the matrix elements 7,5, 13/, and p;, that enter the
amplitudes A’ and A/ are the same and we have more
amplitudes than matrix elements, there exist sum rules
between the amplitudes of the system [49]. As a conse-
quence, this results also in relations between the observ-
ables that can be chosen as branching ratios and CP
asymmetries. For example, from the last line of Eq. (13)
it follows that A™ = A=, or in terms of observables, the
well-known relation [49,75]

agtp = 0. (14)

Below we derive new isospin relations that relate branching
fractions and CP asymmetries to 7/ and sin 5. We then use
these relations to extract the strong phases siné/ and r/
from direct CP asymmetries and branching ratio measure-
ments only.

C. Rescattering

In principle, there exists an ambiguity in how one defines
the two interfering amplitudes, e.g., we can define
them with CKM-coefficients —1,; and —4,/2, as we do
in Eq. (1), or for example with the CKM factors (1, — 4,)/2
and —4,/2, as frequently done when studying the U-spin
system of neutral D decays, see, e.g., Ref. [33]. Therefore
the “ratio of the two interfering amplitudes” is not clearly
defined a priori. An unambiguous definition can be
obtained in the language of operator matrix elements.
Using the Hamiltonian and the notation of Ref. [28]

G
Hesr =7g (qu(clgiwczQ;’)) = 2,07, (15)

4=ds 4=dis
O = (iay, (1 = 75)q)(@r, (1 = ys)c). (16)
03 = (qr,(1 = rs)q) @y, (1 = ys)c). (17)

(07) = (fl01]D°), (18)

we write the decay amplitudes as
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A(D? = f) = 2,00 + 2,0 (19)

M

— ~2((0Y - (O)) - %

(o)), (20)
and define the penguin over tree ratio as

2(08)

"=\or- o =

where we introduce the conventional factor of two in the
numerator due to our convention Eq. (1). Once we fix the
operator basis, our definition of 7/ becomes unambiguous.

We next elaborate on what we refer to as rescattering
effects. In this letter we associate rescattering with the
matrix element of the operator O°. The naive interpretation
of rescattering in this case is that the ¥ pair rescatters into a
dd pair that then hadronizes, together with the i pair, into
a pair of pions. Thus we define the no-rescattering limit as
the limit in which

<Os>n0 rescatt. 0, (22)

and consequently from Eq. (21)

rgo rescatt. — 0. (23)

The limit of large rescattering on the other hand
corresponds to the case |(Of)] ~ [(O%)| which implies
r/ > 1, depending on the relative phase between (O9)
and (O*). The experimental determination of 7/ thus
provides a test of rescattering effects in D — zz decays.

We also mention one more useful limit, the N, — oo
limit. A general discussion of the 1/N . expansion in charm
decays can be found in Ref. [76]. This limit can be tested by
studying a ratio of hadronic matrix elements [77,78] that
can be defined as follows

| (24)

ry=

132

In the N. = oo limit one finds, completely analogous to the
kaon sector [77], that

e =2, (25)

In kaon physics, the fact that this ratio is much bigger
than 2 is referred to as the A/ = 1/2 rule. The deviation
of r, from 2 can be interpreted as a failure of the
1/N, expansion, sizable rescattering, significant kinematic
effects or any combination of the above. The r/ ratio,
on the other hand, provides a clean probe of rescattering
effects.

D. Observables and theory parameters

In our isospin analysis we use three types of parameters
to which we refer as known parameters, observables, and
theory parameters.

We think of the CKM factors 4, and phase space factors
P/ as known parameters. We assume that these parameters
are well known from the independent experimental mea-
surements and we use them as input in our analysis.

The observables in our analysis are the branching
fractions and CP asymmetries. For the system of
D — zx decays, we thus have five observables

Bt=, B% B af;, a. (26)

The theory parameters can be read off Eq. (13) and are
given by the magnitudes and relative phases of the hadronic
matrix elements that appear on the right-hand side (rhs).
In particular, without loss of generality, we choose 73/, to
be real, resulting in a set of five theory parameters

arg(pl/z)- (27)

In what follows, we also use the following combinations of
theory parameters in Eq. (27)

t
, 5,:arg<£), W8 5, (28)

I32

132, tipls P1pls arg(ty)n).

tin
rt:—/

1372

where #/, 8 and §, are defined in Egs. (3), (4), and (7),
respectively. We emphasize that the parameters in Eq. (28)
are not independent from the parameters in Eq. (27) and
among the two sets of the theory parameters there are only
five that are independent.

The counting of the theory and experimental parameters
shows that, in the isospin limit, the system of D — zzx
decays can be completely solved. That is, all the theory
parameters in Eqgs. (27)—(28) can be expressed in terms of
the observables listed in Eq. (26), possibly up to some
discrete ambiguities. In particular, this means that the
parameters of interest, r/ and &/, can be expressed in
terms of branching fractions and direct CP asymmetries.

E. Tree parameters

Before we proceed to the determination of #/ and sin &/,
we elaborate on how to extract the phase §,; defined in
Eq. (7) from the D — zz branching ratios in the isospin
limit, see also Refs. [37,73].

From the isospin decomposition in Eq. (13) and neglect-
ing the CKM-subleading contributions to the amplitudes,
we can solve for the theory parameters that contribute to the
CKM:-leading parts of the amplitudes, namely |, 5|, |£3 /]
and the relative phase , between t,/, and #3/,. We obtain

1 B+0

t =— /==, 29
| 3/2| 3Md| P+0 ( )

033011-4
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1 B+— 1B% 280
|t1/2| |/1 | \/ P+_ 3 W P+0) (30)

|[1/2| B+— 'P+O BOO 'P+0

== = — 4+ 3——-2 (31
|t3/2| B+0 p+— + B+0 7)00 ( )
cos §; = cos <arg( /2>>
132
1 (9Bt PO

_ ( A 1). (32)

From these relations and Eq. (13) we derive the expres-
sion for the phase d; between the CKM-leading ampli-
tudes of D — 7272~ and D — 7°2° as defined in Eq. (7).

We have
2—r? 0
cos b, = i ¥ 71050 . (33)
V(2 =77 + r,c088,)> + 9r7 sin? 5,
and
+3r,|siné
sind; = ri|sind (34)

V2 =12+ r,cos8,)2 +9r7sin2 5,

Note that sin d, is only known up to a sign, as we do not
know the sign of sin §,. Our results Eqgs. (31) and (32) agree
with the analytical expressions in Ref. [73], once we
account for the different conventions of the isospin
decomposition.

A comment is in order about the phase J,. The phase §, is
defined as arelative phase between CKM-leading amplitudes
of D° - 7z~ and D° — 7°2°, two decays with different
final states. In general, such a relative phase cannot be
physical, yet here we solve for , in terms of physical
observables. The resolution of this apparent paradox is that in
the isospin limit z** and z° are not distinguishable, which
makes this phase meaningful in the isospin limit.

F. Penguin over tree ratio

We employ now the isospin amplitude sumrule [12,49,68]
for the CKM-suppressed amplitudes. From Eq. (1) and the
first and second lines of Eq. (13) it follows that

L A*‘

V2!

which implies the following relations for the absolute values
and the relative phase of CKM-subleading amplitudes:

—AY, (35)

Af”

av| = V2, (36)

ar. A =z (37)
g Ago - :

We note that Egs. (35)—(37) are related to the amplitude sum
rule in Eq. (14) of Ref. [49].

In the following we derive the implications of Egs. (36)
and (37). We obtain two isospin limit relations that relate
branching fractions, CP asymmetries and the relative
strong phases 67~ and 6% defined in Eq. (6). We then
use these two relations to solve for the relative strong
phases in terms of branching fractions and CP asymme-
tries. Finally, we use the approximation in Eq. (12) to solve
for the penguin over tree ratio.

First, we derive the implications of the sum rule between
the absolute values of CKM-subleading amplitudes given
in Eq. (36). Dividing the expressions Eq. (12) for CP
asymmetries, we obtain

187~ p»

siné*‘zﬁ 1B8+-p® (38)
sing®  a%, \| 2Pt B

and

00 -+~ 00
L 1577 (39)
r 2Ppt= B0
We emphasize that this relation only holds when all of the
approximations (i)—(iv) are satisfied.

Next, we derive the implication of the sum rule between
the arguments of the CKM-subleading amplitudes given in
Eq. (37). We write 67~ as

A+— A+—AO0A00
St = ) = b ~d"b 40
we(() =oe(Giy) @
=7[+500—5d, (41)

where in the last line we used the isospin relation in
Eq. (37). This result allows us to express the left-hand side
(Ihs) of Eq. (38) in terms of the phases 6% and &,. We find

N
% = cot 8 sin §,; — cos J,. (42)
Now, as we have two relations that relate branching ratios,
CP asymmetries and relative strong phases, Egs. (38)
and (40), we can solve for sin 5™~ and sin6%. To do so,
we substitute the result of Eq. (42) into Eq. (38) and solve
for cot 5. We find

1 acp 1 B= P
2P BY

cot 8% = +cotdy,  (43)

sin a

033011-5



GAVRILOVA, GROSSMAN, and SCHACHT

PHYS. REV. D 109, 033011 (2024)

from which we can obtain

sin 8% — —sign(agy) . (44)
5= po 2
\/1+ﬁ(_ %B_Boo‘i_cosfsd)
Similarly we obtain
. +_
sinét” = —51gn(aCP) 45)

14+ 2P Bl +cosé 2
sin? 8, aCP 7300 C08 04

The sign of each of the sin 8/ can be extracted from the sign

of a’ép using the fact that Im(—1,/4,) < 0. The ratio of the
CKM-subleading over CKM-leading amplitudes follows
then from Eq. (12)

o= acy (46)
| sind/Tm(=1,/44)|

Substituting the expressions for sin 6/ in Eqs. (44) and (45)
into Eq. (46), we arrive at

00 _ 1
[Im(—25/24)|
1)+ (aCP\/lS”r PO+ a2,/ 2B%P T cos§,)?
cr 280079*‘ sin® 8, '
(47)
and
_ 1
[Im(=4,/24)]

(a%V2BOP + afn VBT PYcoss,)
B+=P%sin%5, ’

(48)

x¢@5¥+

where sin §,; and cos d, are given in Egs. (31)—(34) in terms
of branching fractions only. Equations (44)—(48) are the
main results of this letter. They allow the extraction of r/
and siné from direct CP asymmetries and branching
fractions with a theory uncertainty of O(1%).

IV. NUMERICAL RESULTS

In the following we show numerical results based on the
formalism presented above. We use the numerical input as
given in Table I. We also consider a future data scenario
which is specified in Table II. Note that the value of alp
that we use has been extracted by LHCb employing a
universal time-dependent CP violation coefficient AY

TABLE 1. Experimental input data. We use the decay times and
masses from Ref. [80].

Direct CP asymmetries

aty +0.004 + 0.008 [81-84]

a%‘}, —0.0002 £ 0.0064 " [81,85,86]

aty 0.00232 £ 0.00061 [2]
Branching ratios

B(D® - n*x°) (1.247 £0.033) x 1073 (80]

B(D® - ntz7) (1.454 £0.024) x 1073 [80]

B(D® - 7°7°) (8.26 +-0.25) x 10~ (80]

Further numerical inputs
Im(2,/(=44)) (=6.14+0.3) x 107* [80]

*Our extraction from Acp(D° — 72°2°%) = —0.0003 & 0.0064
[81] and AY = (—=1.0 £ 1.1 £ 0.3) x 107* [52].

[2,79] and we use the same value for AY also for our
extraction of a%(}, from the corresponding time-integrated
measurement, see Table I. A universal AY is motivated by
U-spin symmetry [25]. This implies an overall systematic
theory uncertainty in the extraction of the direct CP
asymmetries of second order in U-spin breaking, see
Eq. (133) in Ref. [25]. This uncertainty can be generically
estimated as O(10%). Thus in order for the numerical
predictions for & and 7/ to reach a theory uncertainty of
O(1%), improved measurements that do not require the
universality assumption for AY are necessary. This can be
achieved by employing future data on AY*~ and AY® in
the determination of the direct CP asymmetries. We
emphasize that in the following we use the data on alp
and a%), with the universality assumption in place. This
results consequently in an overall theory uncertainty of
roughly O(10%) on top of the experimental errors quoted
below for the numerical values of sin 8 and r/ as obtained
from Egs. (44)—(48).
Our results are given in Table III. We also perform tests
of benchmark scenarios for 7/ and list their significance of
rejection with current data in Table IV.
We make the following observations
(i) The measurement of aCP agrees with the isospin
sum rule Eq. (14).

(i1) Although we have currently essentially no informa-
tion about sins®, we can still infer nontrivial
information about 7°°. This can be understood from

TABLE II. Future data scenario employing the current central
values and using prospects for the errors from Table 6.5 of
Ref. [87] (300 fb~!) and Table 122 of Ref. [88] (50 ab™!) for
D" = 777~ and DY — 7929, respectively. All other input data is
left as specified in Table I.

aly (232 4£0.07) x 1073
a%, (—24£9) x 107

033011-6



DETERMINATION OF THE D — zx OF ...

PHYS. REV. D 109, 033011 (2024)

TABLE III. Numerical results for current and hypothetical
future data. In the future data scenario, the results for r,,
cos 9, and cos d, are identical to the ones with current data, as
these depend only on the branching ratio data which is not
modified in the future data scenario compared to current data.
Furthermore, in the future data scenario sin 57~ < 0. The overall
additional relative systematic uncertainty of O(10%) due to the
universality assumption of AY for the extraction of the direct CP
asymmetries comes on top of the errors shown here, see text
for details.

Parameter Current data Future data scenario

r 3.43 £0.06 3.43 £0.06

cos b, 0.06 £ 0.02 0.06 = 0.02

cos by —0.68 +0.01 —0.68 +0.01

| sin 6% 0y 0.06 056
oS- 0.3 0.21

| (s)(l)n 577 0.71’%53 0.691“(1,%6

r+_ 5.2%;‘4'2 5.2%%

r 5.5f2_7' 5.5f];3

TABLE IV. Test of benchmark hypotheses and significance of
their rejection for current data. In the considered future data
scenario all hypotheses listed here are rejected at > 5¢. In order to
account for the overall O(10%) relative systematic uncertainty
due to the assumption of a universal AY for the extraction of the
direct CP asymmetries, we multiply the hypotheses for ' by a
factor 1.10, resulting in a more conservative (lower) significance
of rejection, see text for details.

Hypothesis Current data
r’==1.0 2. 76
r’==0.1 370
0 =1.0 2.60
0 =0.1 3. 70
Pi2=0 3.80

closer inspection of Eq. (47), which contains a
contribution independent of a%,. This is a conse-
quence of isospin symmetry, which translates
knowledge about D° — 77z~ into constraints on
D° — %29, see also Eq. (39).

(iii) The central values of 7% (+*7) are quite large and
2.60 (2.70) away from 1.

(iv) The future data scenario demonstrates that our
method will allow to extract the ratio of CKM-
subleading over CKM-leading amplitudes with
unprecedented precision, the key advantage being

that no assumption about the strong phases 6% and
5%~ has to be made in order to do so.

(v) Once the sign of a‘ép is determined, we also know
the sign of sin&’. In our future data scenario this is
the case for sin5*~.

(vi) Comparing r, to the limit Eq. (24), we observe an
O(1) enhancement in the “charm A = 1/2 rule,” in
agreement with Ref. [33].

(vii) Comparing to the limit of no rescattering Eq. (23) we
obtain for current data ' > 0 at 3.8c.

The last observation, if confirmed, implies either very large
rescattering effects or BSM physics.

V. CONCLUSION

We show that the approximate isospin symmetry of the
D — zz system allows for the extraction of the magnitudes
of CKM-subleading over CKM-leading amplitudes from
direct CP asymmetries and branching ratios without mak-
ing assumptions about the relevant strong phase. This ratio
is colloquially known as the “penguin over tree ratio.”
Our main theoretical results are given in Eqgs. (44)—(48).
Numerically, from current data we obtain

0 =525, (49)
rt= =555 (50)

The large central values are driven by the sizable direct CP
asymmetry found currently in D — 7z~ Using prospects
for the development of experimental errors, we demonstrate
that our method will allow to probe the puzzle of penguin
enhancement in charm decays with unprecedented preci-
sion in the future.
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