
Inductive simulation of calorimeter showers with normalizing flows

Matthew R. Buckley , Ian Pang , and David Shih
NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

Claudius Krause *

NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
and Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany

(Received 21 July 2023; accepted 9 January 2024; published 13 February 2024)

Simulating particle detector response is the single most expensive step in the Large Hadron Collider
computational pipeline. Recently it was shown that normalizing flows can accelerate this process while
achieving unprecedented levels of accuracy, but scaling this approach up to higher resolutions relevant for
future detector upgrades leads to prohibitive memory constraints. To overcome this problem, we introduce
Inductive CaloFlow (iCaloFlow), a framework for fast detector simulation based on an inductive series of
normalizing flows trained on the pattern of energy depositions in pairs of consecutive calorimeter layers.
We further use a teacher-student distillation to increase sampling speed without loss of expressivity. As we
demonstrate with datasets 2 and 3 of the CaloChallenge2022, iCaloFlow can realize the potential of
normalizing flows in performing fast, high-fidelity simulation on detector geometries that are ∼10–100
times higher granularity than previously considered.

DOI: 10.1103/PhysRevD.109.033006

I. INTRODUCTION

The computational resources required by the physics
program of the Large Hadron Collider (LHC) are immense.
In addition to the formidable demands set by the acquis-
ition, reconstruction, and analysis of the physics events
themselves, the physics goals of the LHC call for detailed
and accurate simulations of these events. Such simulation
requires even greater computer resources than the data
acquisition and analysis itself (see [1–5] for recent reviews
of the current status and future plans for LHC computing).
The most significant bottleneck (see e.g., Fig. 1 of [2]) in

simulating LHC events is modeling the response of the
detector—and in particular that of the calorimeter—to
incident particles using Geant4 [6–8]. As the high-luminosity
runs of theLHCprogress, the demand for efficient simulation
of collider events will only grow more pressing.
In recent years, awidevariety of deepgenerativemodels—

including generative adversarial networks (GANs), Varia-
tional AutoEncoder (VAE)-based models, normalizing
flows, and diffusion models [9–30]—have demonstrated
their potential for fast and accurate surrogate modeling
of Geant4. The probability distribution of energy depositions
within a calorimeter can be learned by neural networks
trained on collections of Geant4 events, and then new
simulated events can be produced from these networks
much faster than running Geant4 itself. This approach has
gone beyond proof-of-concept, with AtlFast3 [22] (the

current official fast-simulation framework of the ATLAS
collaboration) adopting a GAN for a portion of its calorim-
eter simulation.
To spur new solutions [23,26,27] to the problem of fast

calorimeter simulation, the Fast Calorimeter Simulation
Challenge 2022 (CaloChallenge2022) [31] presents three
datasets [32–34], each with increasing numbers of detector
segments. Previous work [26] showed that the CaloFlow

method of [17,18], based on normalizing flows [35–37]
(see also [38,39] for reviews), could be quite successful at
fast and accurate emulation of dataset 1 calorimeter showers.
Generalizing the CaloFlow method to datasets 2 [33] and
3 [34], which are a factor of ∼10 and ∼100 larger in
dimensionality compared to dataset 1, is the focus on
this work.
The primary obstacle to scaling the CaloFlow approach up

to datasets 2 and 3 is memory consumption. While normal-
izing flows are a powerful method for density estimation
and generative modeling in high dimensional spaces, they
can be very memory intensive, since they attempt to
parametrize a bijective transformation between the data
space and a latent space of the same dimension. Scaling the
same architecture used in CaloFlow up to datasets 2 and 3
would easily outstrip the locally available GPU memory,
since the total number of model parameters scales asOðd2Þ,
where d is the data dimension. Only diffusion models have
been applied to these high-dimensional datasets so far [23].
Recently, L2LFlows [28] was proposed in order to over-

come this obstacle. L2LFlows is based on the physical
intuition that—since particles propagate through the*Corresponding author: Claudius.Krause@oeaw.ac.at

PHYSICAL REVIEW D 109, 033006 (2024)

2470-0010=2024=109(3)=033006(19) 033006-1 © 2024 American Physical Society

https://orcid.org/0000-0003-1109-3460
https://orcid.org/0000-0002-8225-7269
https://orcid.org/0000-0003-3408-3871
https://orcid.org/0000-0003-0924-3036
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.033006&domain=pdf&date_stamp=2024-02-13
https://doi.org/10.1103/PhysRevD.109.033006
https://doi.org/10.1103/PhysRevD.109.033006
https://doi.org/10.1103/PhysRevD.109.033006
https://doi.org/10.1103/PhysRevD.109.033006


calorimeter primarily in one direction—the pattern of
energy deposition in one layer should depend in large part
on the pattern in the previous layers. Trained on a toy
dataset (derived from the one used here [15,19]) for the
International Large Detector (ILD) [40,41] of comparable
size to dataset 2, L2LFlows introduced one flow per calo-
rimeter layer, conditioned on up to five previous layers
through an embedding network. By not training a single
flow to learn the voxel energies of the entire calorimeter, as
was the case in [17,18,26], but instead breaking up the
model into separate flows (each no larger than a single layer
of the calorimeter), L2LFlows was able to keep the memory
footprint of the model manageable while still scaling it up
to a higher granularity calorimeter.
In this paper, we take the approach of L2LFlows one step

further and replace the separate flows for each calorimeter
layer with a single flow that generates the voxel energies in
each layer, conditioned on the previous layer. This allows
for the entire calorimeter shower to be learned inductively:
training not on entire events over all layers, but rather on
pairs of layers. Like in a mathematical induction proof, the
initial layer is learned separately. Then, new events are
simulated layer by layer, with the results for the ith layer
serving as conditional input for the same normalizing flow
now generating the ðiþ 1Þth.
In more detail, our new framework, which we dub

Inductive CaloFlow (iCaloFlow), uses three normalizing
flows to learn and generate calorimeter events. First,
Flow-1 learns the pattern of total energy deposition in each
layer of the calorimeter, conditioned on the incident energy
entering the detector. This is a relatively low-dimension
dataset, with the dimension being the number of layers (45
for the examples used in this paper). Next, Flow-2 learns the
pattern of normalized energy deposition within the first
layer of the calorimeter, conditioned on the total energy
deposited in the layer. Finally, Flow-3 learns the pattern of
normalized energy deposition in the ith layer, conditioned
on both the total energy deposited in the layer and the
pattern of energy deposition in the previous (i − 1)th layer.
This last flow is trained simultaneously over the deposition
pattern of every layer beyond the first.
To achieve both high fidelity and ultra-fast generation

speed, we follow the teacher-student method of CaloFlow.
First we train masked autoregressive flow (MAF) [42]
versions of Flow-1, Flow-2, and Flow-3 on the Geant4

data. MAFs are fast in density estimation but slow [by a
factor of OðdÞ] in generation. Then we fit “student”
versions of Flow-2 and Flow-3 to their MAF teacher counter-
parts, using the technique of probability density distillation
(PDD) [43].1 The student models are inverse autoregressive

flows (IAFs) [44], which are fast in generation but slow in
density estimation.
The result is a new deep learning architecture, capable of

learning and quickly generating calorimeter events even for
the largest detector layout of CaloChallenge2022. We
quantify the fidelity of the events generated by both the
iCaloFlow teacher and student flows, using a combination of
histograms of physical features, classifier-based metrics (as
in Refs. [17,18,26,28]), and other metrics. We also measure
and report on the generation speed of iCaloFlow for different
batch sizes and hardware.
We reserve a detailed comparison with L2LFlows for

future work: while such a comparison would be very
interesting, it is nontrivial to perform. L2LFlows was trained
on a completely different dataset, comparable in size to
dataset 2, so direct comparisons are not possible without
significant additional computational effort.2 Here we just
note that the main differences with L2LFlows—using Flow-3

instead of separate flows for each calorimeter layer, and
conditioning on the previous layer instead of up to five
previous layers—make iCaloFlow significantly more memory
efficient, but likely at the cost of being less expressive (and
hence a worse fit to the data). The iCaloFlow IAF student
model also results in a speed advantage over L2LFlows’s
teacher-only MAF, again probably at the expense of
fidelity.
In Sec. II, we describe the datasets we train our algorithm

on and generate new data to compare against. In Sec. III, we
describe the multiple flows that make up the iCaloFlow

algorithm in detail, along with our training procedure for
both the teacher and student. In Sec. IV, we show the results
of our event generation, and use a classifier to quantita-
tively compare with the original dataset. We conclude
in Sec. V.

II. CALOCHALLENGE DATA

Datasets 2 and 3 [33,34] of the CaloChallenge2022 [31]
consist of 100,000 Geant4-simulated electron showers each,
with incident energies sampled uniformly in log-space from
1 GeV to 1 TeV. The simulated detector volume has a
cylindrical geometry of radius 80 cm, with 45 layers of
active silicon detector (thickness 0.3 mm), alternating with
inactive tungsten absorber layers (thickness 1.4 mm). The
length of the voxel along the z-axis is 3.4 mm, which
corresponds to two physical layers (tungsten-silicon-
tungsten-silicon). Taking into account only the absorber
value of radiation length (X0 ¼ 3.504 mm) it makes the
z-cell size equal 0.8 X0.
Each detector layer is segmented in read-out voxel cells

in the azimuthal angle α and radial distance r from the
center of the cylindrical detector volume. The two datasets
only differ in their voxelization. Dataset 2 has each layer

1
Flow-1 is not paired with an IAF as the output dimension is

relatively small, and so generation time for the MAF is com-
paratively short.

2
L2LFlows would have to be retrained on dataset 2 and also

generalized to dataset 3 which is a factor of ∼10 larger.

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-2



divided into 9 concentric rings of voxels in the radial
direction. Each ring is then divided into 16 voxels in α, for
144 voxels in each of the 45 layers (6480 for the entire
detector). Dataset 3 has 18 radial segments and 50
azimuthal, for 900 voxels in the 45 layers (40500 total).
Figure 1 shows the geometry of the voxels within a layer for
both datasets, as well as the positioning of layers along the
calorimeter axis.
Each event record consists of the total energy of the

incident electron Einc, together with the energy depositions
recorded in each voxel I ia, where i is the layer index and a
is the voxel index within the layer. The minimum energy
deposition in each voxel is 15 keV. The time required to
generate a Geant4 shower depends strongly on the shower
incident energy. It is approximately Oð100 sÞ when aver-
aged over the incident energies of these datasets [45], but
the time required per shower is much longer for the showers
with higher incident energies. Since the underlying detector

geometry of datasets 2 and 3 is the same and only the
voxelization is different, the generation times with Geant4

are the same for both datasets.

III. iCaloFlow

A. Overview

The purpose of iCaloFlow (and of the CaloChallenge2022
generative modeling problem more generally) is to learn
and sample from the conditional probability density
pðI iajEincÞ that describes the Geant4 reference data. In
Fig. 2 we show a schematic of iCaloFlow, which consists
of three flows:

(i) Flow-1 learns the joint probability distribution of total
energy deposited in each layer Ei, conditioned on the
incident energy of the event Einc: p1ðEijEincÞ. It is
necessary to learn this probability distribution as Ei
is a conditional input for Flow-2 and Flow-3 in the

FIG. 1. Geometry of the detector voxels in each layer for dataset 2 (left) and dataset 3 (center) and the three-dimensional geometry of
dataset 2 (right). Dataset 2 has 9 concentric rings, each divided into 16 voxels in α, while dataset 3 has 18 rings, each divided into 50
segments. Both dataset 2 and 3 contain 45 layers in depth (as shown for dataset 2).

FIG. 2. Schematic of the three iCaloFlow flows. Solid lines are bidirectional—the direction into each flow denotes the density
estimation step and the direction out of the flow denotes the sample generation step. Note that there are postprocessing steps (see main
text) after each generation step, which are omitted in the schematic. Dashed lines indicate the conditional input to the respective flows.
Flow-3 is used iteratively on subsequent layers.

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-3



generation step. We found that removing Ei as a
conditional input in Flow-2 and Flow-3 decreased the
quality of our generated samples.

(ii) Flow-2 learns the probability distribution of the unit-
normalized voxel energies in the first layer of the
calorimeter, Î1a ≡ I1a=

P
b I1b, conditioned on

Einc and the energy deposited in the first layer,
E1: p2ðÎ1ajEinc; E1Þ. Here a is the voxel index.

(iii) Finally, Flow-3 learns the probability distribution of
unit-normalized voxel energies in every layer after
the first, Î ia ≡ I ia=

P
b I ib for i∈ ½2; 45�, where the

ith layer is conditioned on the energy deposited in
the layers i and i − 1 (Ei and Ei−1), Einc, the unit-
normalized voxel energies in the (i − 1)th layer
Î ði−1Þa, and the one-hot3 encoded layer number

i: p3ðÎ iajEinc; Ei; Ei−1; Î ði−1Þa; iÞ.
The conditional inputs, dimension of conditionals, and

the outputs for each of the three flows are summarized in
Table I. When generating new showers with iCaloFlow, first
the nominal energies per layer Ẽi are generated for a given
incident Einc with Flow-1.4 Then the unit-normalized voxel
energies Î1a of layer 1 is generated using Flow-2, conditioned
on Ẽ1 andEinc. Finally, the normalized voxel energies Î ia of
layers i ¼ 2;…; 45 are generated sequentially (inductively),
using Flow-3 with the conditional inputs of the previous
layer’s Î distribution provided by Flow-2 (for generating
Layer 2) or Flow-3 (for all subsequent layers). By generating
all layers beyond the first from a single normalizing flow
rather than each layer separately as in L2LFlows [28], our
model is far more efficient in memory usage. The potential
downsides are that training cannot be trivially parallelized
and our model may be less expressive.
One important subtlety with the construction of iCaloFlow

is that Flow-2 and Flow-3 cannot learn the unit-normalization
constraint of the Î ia training data perfectly. In practice, the
sum of the generated showers will be distributed around
unity, and there will always be some mismatch between the
nominal layer energy generated by Flow-1 and the actual
layer energy produced by the combination of all three
flows. We will address this mismatch here5 by taking the
latter as the actual layer energy: after multiplying Î ia with
the output of Flow-1 and applying a minimum energy
threshold of Emin ¼ 15 keV to obtain I ia, we take the
sum over voxels a as the total energy in the layer:

Ei ≡
X

a

ẼiÎ iaΘðẼiÎ ia − EminÞ: ð1Þ

We will think of the output of Flow-1 as just an intermediate
step needed for the subsequent conditioning, and refer to
output of Flow-1 when generating new events as the proxy
Ẽi. We note that referring to the output of a flow as a proxy
for the distributions it was trained on is nonstandard, but
necessary in this case due to the differences in normaliza-
tion and the multiple ways of defining the energy deposited
in a layer. In a sense, also the normalized shower shapes Î ia
that Flow-2 and Flow-3 learn can be thought of as proxies,
since the resulting samples need to be unnormalized and
thresholded as a postprocessing step,

I ia ¼ ẼiÎ iaΘðẼiÎ ia − EminÞ: ð2Þ

B. Architectures

1. Teacher MAFs

The iCaloFlow teacher flows (including Flow-1) are
MAFs [42], which learn a bijective transformation f
between a latent space z, with a simple N-dimensional
probability distribution,6 and the target space x. For
consistency with the “forward” function of the code, we
define z ¼ fðxÞ.
Following [17,18,26], all three teacher flows use com-

positions of rational quadratic spline (RQS) transforma-
tions [46] as their transformation function f. The neural
networks defining the parameters κ⃗ of the RQS consist of
MADE blocks [47]. The MADE blocks allow for tractable
training given the large dimensionality of the training data
for Flow-2 and Flow-3, at the cost of longer evaluation time for
generating new events. For details of the architectures used
for the teacher flows, see Table II.

TABLE I. The conditional inputs for each flow, and the features
whose probability distributions are the output of each flow (for
both teachers and their paired student). Einc is the incident energy
of the particle, Ei (i ¼ 1;…; 45) is the total energy deposited in
layer i, Ẽi is a proxy for Ei (see text), and Î ia is the pattern of
normalized energy deposition in the voxels a in layer i. For
Flow-3, dataset 2 has smaller conditional dimension (191) com-
pared to dataset 3 (947).

Conditionals Dimension of conditional Output

Flow-1 Einc 1 Ẽi

Flow-2 Einc; E1 2 Î1a

Flow-3 Einc; Ei; Ei−1; Î ði−1Þa; i 191 or 947 Î ia

3One-hot encoding is used for layer numbers instead of ordinal
encoding using the layer number directly, because other than the
location in the detector, there is no information in the layer
number, i.e., layer 30 is not 15 times more important than layer 2.

4This does not directly correspond to the energy deposited in
the layer, Ei, see the discussion on postprocessing below.

5This problem is also present in the previous iterations of
CaloFlow [17,18,26] and in L2LFlows [28], but differences in the
reference datasets led to different treatments of the problem. For
more details, see Appendix A.

6In this work, the latent space follows an N-dimensional
Gaussian distribution.

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-4



2. Student IAFs

Though the three MAFs are capable of generating
complete events simulating the Geant4 output, the sampling
time is quite slow. While this is not a particular concern for
Flow-1, the sampling time is an issue especially for Flow-3,
which has a large output dimension and must be sampled
44 times sequentially (i.e., cannot be parallelized) in order
to generate a single event.
The solution proposed in [18],whichwe carry over here to

datasets 2 and 3 of CaloChallenge2022, is to pair every
slow-sampling MAF (i.e., FLOW-2 and Flow-3) with a fast-
sampling inverse autoregressive flow (IAF). Since training
the IAF with a negative log-likelihood of the probability of
the data is prohibitively slow, the IAF is trained by fitting it to
a pretrainedMAF using the PDDmethod developed in [18].
The goal of this training is for the IAF to learn fIAF ¼ fMAF,
or equivalently—since only the fast passes through the flows
can be used meaningfully for optimization—to have fMAF

and f−1IAF be each other’s inverse. For more details of the
training and loss terms, see Sec. III C 2 and [18].
In order to carry out the PDD method, we require fIAF ¼

fMAF at every individual step of the normalizing flow.
Hence, the IAF must be composed of the same number of
MADE-RQS blocks as its corresponding pretrained MAF.
However, the hidden layer sizes in the blocks can be
different. We use a larger hidden layer, with 384 nodes, for
Flow-3 student which led to better performance in dataset 2.
For dataset 3, Flow-3 student has the same hidden layer size
(256 nodes) as the teacher due to memory constraints. For a
detailed listing of the architecture hyperparameters for the
student IAFs, see Table II.

C. Training

Prior to training the teachers and students, we must
standardize and preprocess the datasets. New events

generated from the trained flows will be in the standardized
space, and thus the transformations are inverted to produce
events in the physical units. We detail this process for all
three flows in Appendix A. The same preprocessing was
used when training both the teachers and students.

1. Teachers

The teacher MAFs are trained using the mean negative
log-likelihood of the data evaluated on the output of the
MAF as the loss function,

Lteacher;1 ¼ −hlogp1ðEijEincÞi; ð3Þ
Lteacher;2 ¼ −hlogp2ðÎ1ajEinc; E1Þi; ð4Þ

Lteacher;3 ¼ −hlogp3ðÎ iajEinc; Ei; Ei−1; Î ði−1Þa; iÞi: ð5Þ

All teacher MAFs in this work are trained with independent
ADAM optimizers [48].
Given the different sizes of datasets 2 and 3, we use a

slightly different training strategy for the two datasets. We
use 70,000 samples of dataset 2 for training the flows and the
remaining 30,000 samples for model selection. The
OneCycle learning rate (LR) schedule [49] was imple-
mented for all three flows. With this LR schedule (see

TABLE II. Summary of architecture of the various MAF teacher and IAF student models used in iCaloFlow. For
the hidden layer sizes, the first number is the number of hidden layers in each MADE block and the second number
is the number of nodes in each hidden layer (e.g., 2 × 256 refers to 2 hidden layers per MADE block with 256 nodes
per hidden layer).

Layer sizes

Dimension of
base distribution

Number of
MADE blocks Input Hidden Output

Number of
RQS bins

DS2 Flow-1 45 8 256 1 × 256 1035 8
Flow-2 teacher 144 8 256 2 × 256 3312 8
Flow-2 student 144 8 256 2 × 256 3312 8
Flow-3 teacher 144 8 256 2 × 256 3312 8
Flow-3 student 144 8 384 2 × 384 3312 8

DS3 Flow-1 45 8 256 1 × 256 1035 8
Flow-2 teacher 900 8 256 2 × 256 20700 8
Flow-2 student 900 8 256 2 × 256 20700 8
Flow-3 teacher 900 8 256 1 × 256 20700 8
Flow-3 student 900 8 256 1 × 256 20700 8

FIG. 3. Illustration of OneCycle LR schedule with annihilation
phase [26].

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-5



Fig. 3), the LR begins at a chosen base LR and is updated
after each batch such that it increases up to a maximum LR.
After this, the LR ismade to decrease from themaximumLR
to the base LR. The schedule finishes with an annihilation
phasewhere the base LR is further decreased up to a factor of
10. As in [26], we find that using the OneCycle LR schedule
for dataset 2 enabled us to obtain a lower training loss within
a shorter number of epochs. We show a summary of the
training hyperparameters in Table III. The reason for the
smaller number of epochs in Flow-3 compared to the other
ones is that the dataset is now 44 times larger (consisting of
data from layer i and i − 1 for i∈ ½2; 45�).
Training Flow-1 and Flow-2 for dataset 3 uses a similar

strategy as used for dataset 2. However, a different learning
rate schedule was used when training the flows for dataset
3. Note that the CaloChallenge2022 provides dataset 3 as
two files of 50,000 events each (Files 1 and 2). For the first
stages of training, we combine the showers of these two
files into one dataset with 100,000 showers—70,000 of
these are used for training and the remaining 30,000 are
used for model selection.
We train Flow-3 for dataset 3 in two stages. First, we train

it for 20 epochs using 40,000 samples from File 1 for
training and 10,000 for model selection. Then, using the
same optimizer, we train Flow-3 for another 20 epochs using
40,000 samples of File 2. We again use the remaining
10,000 samples for model selection. Simultaneous han-
dling of all 100,000 showers was not possible due to
prohibitive memory requirements. A multistep LR schedule
was used when training the dataset 3 teacher flows, where
we halve a chosen initial LR after epochs 400 and 500 (see
Table III for summary of training hyperparameters). We
found that training the flows with OneCycle LR schedule
resulted in a slightly poorer performance for dataset 3.

For Flow-1 and Flow-2 of both datasets, the epoch with the
lowest test loss is selected for subsequent sample generation.
For Flow-3 of both datasets, due to the large training data, the
test loss is evaluated after every 250 batches and also at the
end of each epoch. The model checkpoint with the lowest
test loss is selected for subsequent sample generation.

2. Students

The main idea behind teacher-student training of the IAF
via PDD is to enforce that they are each other’s inverses
using only their fast passes:

x≡ f−1IAFðfMAFðxÞÞ; ð6Þ

and

z≡ fMAFðf−1IAFðzÞÞ: ð7Þ

We refer to these conditions as x-pass and z-pass, respec-
tively. For each of the passes, we can construct a set of
mean-squared error (MSE) losses that force the IAF to
converge to the MAF:

Lx ¼ MSEðx; f−1IAFðfMAFðxÞÞÞ ð8Þ

Lz ¼ MSEðz; fMAFðf−1IAFðzÞÞÞ: ð9Þ

In addition, [18] proposed two more MSE loss terms
(which we will refer to as Lx−MADE and Lz−MADE here) that
enforce the agreement betweenMAF and IAF at the level of
the outputs and parameters of each individual MADE block
(see [18] for details). These were found to improve the
performance of the teacher-student training and we also
include them here.
When training the Flow-2 students, we were able to

achieve good agreement between the teachers and students
by using the same loss function as in [18]:

L ¼ ðLx þ Lx−MADEÞ þ ðLz þ Lz−MADEÞ: ð10Þ

However, for Flow-3 students, using the same loss
function resulted in a significant disagreement between
the teachers and students for some distributions. Instead,
we found that training with x-loss only,

L̃ ¼ Lx þ Lx−MADE ð11Þ

resulted in better agreement. We note that a similar
behavior was found in [50] where the loss constructed
only using the x-pass was more robust to the large
dimensionality of the training data.
When training each student using PDD, the ratio of the

data used for training and model selection was chosen to
match that of the corresponding teacher. Like the teacher
MAFs, all the student IAFs are trained with independent

TABLE III. Hyperparameters used when training dataset 2 and
3 iCaloFlow models. For dataset 3 Flow-3, the number of epochs
is written as N þ N to indicate that we trained the flow for N
epochs on samples of File 1, followed by another N epochs on
samples of File 2.

Trained with multistep LR Initial LR Epochs Batch size

DS3 teacher Flow-1 1 × 10−4 750 1000
Flow-2 1 × 10−4 750 1000
Flow-3 1 × 10−4 20þ 20 500

Trained with OneCycle LR Base LR Max LR Epochs Batch size

DS2 teacher Flow-1 1 × 10−5 1 × 10−4 500 1000
Flow-2 2 × 10−5 1 × 10−3 200 1000
Flow-3 2 × 10−5 1 × 10−3 60 1000

DS2 student Flow-2 2 × 10−5 1 × 10−3 400 1000
Flow-3 2 × 10−5 5 × 10−4 100 1000

DS3 student Flow-2 2 × 10−5 1 × 10−3 400 100
Flow-3 4 × 10−6 1 × 10−4 15+15 100

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-6



Adam optimizers [48]. The OneCycle LR schedule was
implemented for all the student IAFs and the details of the
training hyperparameters are shown in Table III. Note that a
smaller batch size was used when training dataset 3 student
flows due to memory constraints.
For Flow-1 and Flow-2 of both datasets, the epoch with the

lowest mean Kullback–Leibler (KL) divergence7 is selected
for subsequent sample generation. For Flow-3 of both
datasets, due to the large training data, the intermediate
mean KL divergence of each epoch is evaluated after every
250 batches, while the final mean KL divergence is
evaluated at the end of each epoch. The model checkpoint
with the lowest evaluated mean KL divergence is selected
for subsequent sample generation.

IV. RESULTS

After training teacher and student flows on datasets 2
and 3, respectively, we generate 100,000 calorimeter show-
ers from each model for each dataset. Incident energies are
uniformly sampled from log-space between 1 GeV and
1 TeV—the same range and distribution of energies as the
training data.

A. Shower images

In Fig. 4, we show the pattern of energy deposition in all
layers for two example events from dataset 2 (one with
Einc ¼ 693 GeV and one with 86 GeV), compared with
two events generated by iCaloFlow with equal incident
energies. (Similar plots for dataset 3 events are difficult
to visualize clearly due to the density of voxels.) In Fig. 5,
we show the pattern of energy deposition in layers 1, 10,
20, and 45, averaged over all the events in the dataset for
both dataset 3 and the sampled events from iCaloFlow.

B. Distributions

We next consider more detailed diagnostic plots, com-
paring the distribution of various high-level features
between the Geant4, teacher, and student events. First, we
examine the energy deposition in each layer (again noting
this is obtained by the sum of the voxel energies output
from Flow-2 and Flow-3). In Fig. 6, we show the energies
deposited in each layer, averaged over all the generated
showers, which we denote by hEii. As expected, the
generated distributions are similar for both datasets 2
and 3, with small variations due to the different training
regimes and normalization differences in the output of the
flows. The output of the student networks largely follows
that of the teachers, with the most significant deviations at
both low and high layer numbers.

In Fig. 7, we show the total energy deposition Ei within a
layer for our selected set of layers (i ¼ 1, 10, 20, 45). Here
we see good overall agreement between Geant4 and iCaloFlow

distribution, with the exception of Layer 1 due to our choice
of postprocessing. In particular, our decision not to normal-
ize the outputs of Flow-2 and Flow-3 to unity results in a
difference between the energy deposited in a layer Ei and
the proxy output of Flow-1, Ẽi. On the other hand, we find
that the teacher voxel energy distributions in Figs. 8 and 9
are generally in good agreement with the Geant4 distribu-
tions. (As discussed further in Appendix A, enforcing Ei ¼
Ẽi would “fix” the distribution in Fig. 7, but at the cost of
creating an excess of low-energy voxels in Figs. 8 and 9.)
However, the student distributions suffer from an excess at
low voxel energies. We found that this discrepant behavior
is largely due to our choice of noise that is added to voxel
energies during preprocessing. However, the addition of
noise is necessary in our setup to ensure that the flow does
not only learn zero energy voxels [17]. Note that many
voxels have zero energy deposition, which are not captured
in this logarithmic plot.
We show the ratio of energy deposited in a layer to the

incident beam energy in Fig. 10, and the ratio of all
deposited energy to the incident beam energy in Fig. 11.
There is good overall agreement between iCaloFlow and
Geant4 events despite some excess at low ratios in the earlier
layers. We observed that the showers in the low ratio excess
in Layer 1 in these figures are the same showers found in
the low energy excess in Layer 1 shown in Fig. 7. These
showers are characterized by having mostly zero energy
voxels with a few bright voxels, this makes it difficult for
the flow to learn the underlying distribution.
We turn now to other aspects of the pattern of energy

deposition within each layer. First, we consider the sparsity
f0 for each layer, defined as the fraction of voxels that have
nonzero energy deposition and shown in Fig. 12. We note
that the lowest and highest layer numbers have larger
fraction of zero energy voxels. It appears to be more
difficult for iCaloFlow to learn distributions in these layers
with small f0 as evident from the deviations found in
distributions discussed in this section. In Figs. 13 (dataset
2) and 14 (dataset 3), we show box-and-whisker plots of
the distribution of energy deposited within all voxels in
each radial ring within the layer (9 such rings in the
geometry of dataset 2, each with 16 voxels. Dataset 3 has
18 rings in increasing radius, each with 50 voxels). In the
main plots of Figs. 13 and 14, we show the average
distribution of all voxels with nonzero energy deposition.
Beneath, we show the averaged sparsity of the voxels
within the ring. These distributions have good agreement
between the Geant4 and iCaloFlow events.
As a final comparison of the pattern of energy distribu-

tion, in Fig. 15 we show the distribution of the centers
of energy along the x axis of the detector for our
representative layer. The center of energy Cj along a

7The KL divergence between the student sðxÞ and teacher
tðxÞ distributions is defined as KLðs; tÞ ¼ R

dx sðxÞ log sðxÞ
tðxÞ ∼P

x∼s log
sðxÞ
tðxÞ.

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-7



coordinate (j ¼ x or y) is defined as the sum of the energy
deposited in each voxel times the voxel’s coordinate
distance from the origin, normalized by the total energy
deposited. We show only Cx, as the distribution of Cy is
statistically identical due to the symmetry of the detector
around the incident beam. Again, we see the largest

deviations in the tails of the centers of energy for the early
and late layers of dataset 3.
While these plots capture only a limited set of diagnostic

criteria for the generated events as compared to the Geant4

data, it appears that many of the distributions match well.
The most glaring and important exceptions are at low

FIG. 4. Pattern of energy deposition from two example events generated by Geant4 in dataset 2 (top row), iCaloFlow teacher (middle
row), and iCaloFlow student (bottom row). Events have Einc ¼ 693 GeV (left column) and Einc ¼ 86 GeV (right column). For visual
clarity, voxels with less than 1 MeVof energy have been suppressed. The beam axis is shown with a black line. For display purposes, the
separation between layers and voxels within a layer have both been artificially increased from the real detector geometry.

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-8



FIG. 6. Averaged total energy deposition hEii for each layer i for datasets 2 (left) and 3 (right). In each plot the averaged energy of the
Geant4 data is shown in black, and the distribution generated by iCaloFlow teacher (student) in red (blue). The fractional difference Δ
between the truth-level and generated distributions is shown below the main figures.

FIG. 5. Averaged energy deposition pattern of events in layers 1, 10, 20, and 45 (from left to right) for the Geant4 data in dataset 3 (top
row), events sampled from iCaloFlow teacher trained on dataset 3 (middle row), and events sampled from iCaloFlow student trained on
dataset 3 (bottom row).

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-9



FIG. 8. Histograms of energy deposition per voxel in the layers 1, 10, 20, and 45 (from left to right) for dataset 2 (upper row) and
dataset 3 (lower row). Distributions of Geant4 data are shown as black lines, and those of iCaloFlow teacher (student) trained on dataset 2
or 3 (as appropriate) in red (blue).

FIG. 7. Histograms of total energy deposited in a layer i (Ei), for i ¼ 1, 10, 20, and 45 (from left to right), for dataset 2 (top row) and
dataset 3 (bottom row). Distribution of Geant4 data is shown as black lines, and that of the iCaloFlow teacher (student) trained on dataset
2 or 3 (as appropriate) in red (blue).

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-10



deposited energies, most notably in early layers (see Fig. 7
for example).

C. Classifier metrics

The histograms and averaged deposition patterns of the
generated events as compared to the Geant4 data suggest that
iCaloFlow can match many of the properties of the data.
Given the complexity of the events however, these simple
distributions may not capture correlations within events,

thereby giving a misleading impression of the accuracy of
the sampler. We wish to more quantitatively determine if
the generated probability distribution pgenerated is identical
to that of the data pdata.
To answer this question, we follow the conventions

of [17,18], and use a binary classifier trained to distinguish
the Geant4 and generated events [51]. (Such binary classi-
fiers can also be used to reweight generative models to
improve their fidelity, see [52].) Table IV shows the results
of 10 independent classifier runs on generated events from

FIG. 10. Histograms of the ratio of total energy deposited and incident energy in a layer i (Ei), for i ¼ 1, 10, 20, and 45 (from left to
right), for dataset 2 (top row) and dataset 3 (bottom row). Distribution of Geant4 data is shown as black lines, and that of the iCaloFlow
teacher (student) trained on dataset 2 or 3 (as appropriate) in red (blue).

FIG. 9. Histograms of energy deposition per voxel in all layers for dataset 2 (left) and dataset 3 (right). Distributions of Geant4 data are
shown as black lines, and those of iCaloFlow teacher (student) trained on dataset 2 or 3 (as appropriate) in red (blue).

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-11



both datasets. “Low-level features” refers to all energy
depositions per voxel (normalized with Einc and multiplied
by a factor 100) and Einc itself (preprocessed as log10 Einc).
“High-level features” are the incident energy (preprocessed
as log10 Einc), the energy deposited in each of the layers
[preprocessed as log10 ðEi þ 10−8Þ], the center of energy in
the x and y directions (normalized with a factor 100), and
the width of the x and y distributions (normalized with a
factor 100). More details on the architecture and trainings
procedure can be found in Appendix B.

In Table IV, the results of the classifier runs are presented
as AUC and JSD scores. According to the Neyman-Pearson
lemma, we expect the AUC to be 0.5 if the true and
generated probability densities are equal. The AUC is 1 if
the classifier is able to perfectly distinguish between
generated and true samples. The second metric,
JSD∈ ½0; 1�, is the Jensen-Shannon divergence which also
measures the similarity between the two probability dis-
tributions. The JSD is 0 if the two distributions are identical
and 1 if they are disjoint.

FIG. 12. Histograms of fraction of voxels in layers 1, 10, 20, and 45 (from left to right) which have nonzero energy deposition f0 for
dataset 2 (upper row) and dataset 3 (lower row). Distributions of Geant4 data are shown as black lines, and those of the iCaloFlow teacher
(student) trained on dataset 2 or 3 (as appropriate) in red (blue).

FIG. 11. Histograms of the ratio of total energy deposition (all layers) and incident energy for dataset 2 (left) and dataset 3 (right).
Distributions of Geant4 data are shown as black lines, and those of iCaloFlow teacher (student) trained on dataset 2 or 3 (as appropriate)
in red (blue).

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-12



FIG. 13. Box and whisker plots showing the distribution of energy deposited in each ring of voxels at fixed radial distance from the
beam line (9 such rings for dataset 2) in layers 1, 10, 20, and 45 of dataset 2. Geant4 data are shown in black, iCaloFlow teacher (student)
events in red (blue). Each box extends from the first quartile of energies greater than zero to the third quartile. The whiskers extend from
the 5th to 95th percentile of the nonzero energy deposition. Lower subplots show f0, the average fraction of voxels in each radial ring
with zero energy deposition.

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-13



FIG. 14. Box and whisker plots showing the distribution of energy deposited in each ring of voxels at fixed radial distance from the
beam line (18 such rings for dataset 3) in Layers 1, 10, 20, and 45 of dataset 3. Geant4 data are shown in blue, iCaloFlow events in red.
Each box extends from the first quartile of energies greater than zero to the third quartile. The whiskers extend from the 5th to 95th
percentile of the nonzero energy deposition. Lower subplots show f0, the average fraction of voxels in each radial ring with zero energy
deposition.

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-14



In our study, we find that iCaloFlow is able to produce
generated samples of sufficiently high fidelity for dataset 2
to fool the classifier. This is evident by the dataset 2 teacher
and student classifier scores being clearly less than unity in
Table IV.
In contrast, the AUC scores for our dataset 3 teacher and

student models are all >0.9, which indicates lower fidelity.
Also, the high-level scores are greater than the low-level
scores for our dataset 3 models. This is likely due to the
low-level classifier having insufficient capacity to separate
the iCaloFlow and Geant4 dataset 3 samples. It would be
interesting to explore more sophisticated architectures to
improve the classification performance of the low-level
classifier, but we save this for future work.
In general, the teacher models performed better than

the student models at the classifier tests. This is to be
expected since the students require a second distillation
step, and it is not surprising that some fidelity is lost in
the process.

FIG. 15. Histograms of the centers of energy along the x-axis, Cx, for dataset 2 (left) and dataset 3 (right). Distributions of Geant4 data are
shown as black lines, and those of the iCaloFlow teacher (student) trained on dataset 2 or 3 (as appropriate) in red (blue). Due to the
symmetry of the detector and incident beam, the distributions for the centers of energy in the y direction (Cy) are statistically identical to Cy.

TABLE IV. Mean and standard deviation of 10 independent
classifier runs.

Low-level features High-level features

AUC JSD AUC JSD

DS2 teacher 0.797(5) 0.210(7) 0.798(3) 0.214(5)
DS2 student 0.840(3) 0.286(5) 0.838(2) 0.283(4)
DS3 teacher 0.911(3) 0.465(6) 0.941(1) 0.561(3)
DS3 student 0.910(8) 0.462(18) 0.951(1) 0.601(5)

TABLE V. Average time taken to generate a single shower
event by iCaloFlow teacher and student models for datasets 2 and
3. The timing was computed for different generation batch sizes
on our Intel Core i9-7900X CPU and our TITAN V GPU. We
were not able to generate shower events on the CPU for large
batch sizes due to memory constraints.

Model Batch size GPU times (ms) CPU times (ms)

DS2 teacher 1 7.12 × 104 8.84 × 104

10 7.10 × 103 1.21 × 104

100 7.75 × 102 3.47 × 103

1000 1.65 × 102 � � �
10000 1.21 × 102 � � �

DS2 student 1 1.06 × 103 4.08 × 103

10 2.79 × 102 4.08 × 102

100 2.99 × 101 4.93 × 101

1000 2.18 � � �
10000 1.34 � � �

DS3 teacher 1 4.76 × 105 3.86 × 106

10 5.28 × 104 3.31 × 105

100 9.17 × 103 � � �
1000 5.17 × 103 � � �
5000 4.57 × 103 � � �

DS3 student 1 1.29 × 103 3.36 × 103

10 1.33 × 102 6.22 × 102

100 3.58 × 101 � � �
1000 8.84 � � �
5000 5.87 � � �

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-15



Finally, we note that the authors of CaloScore [23] have
produced results for datasets 2 and 3 using a score-based
diffusion model. They performed a similar classifier test on
their samples and obtained an AUC of 0.98 for both
datasets.

D. Timing

Shower generation timings for different generation batch
sizes are shown in Table V. The speedups going from
teacher to student are the expected OðdÞ, where d is the
dimensionality of a single layer (144 for DS2 and 900 for
DS3). On the GPU, iCaloFlow is generally faster than Geant4,
which takes approximately 100 s per event, except for
dataset 3 teacher with a generation batch size of 1. On the
CPU, iCaloFlow is still faster than Geant4 for both dataset 2
models and also dataset 3 student. With the student models,
we were able to generate a single shower on the GPU as
quickly as 1.34 ms (5.87 ms) for dataset 2 (3)—Oð105Þ
faster than Geant4.

V. CONCLUSIONS

In this paper, we have introduced a new approach to
generating highly-granular calorimeter showers with nor-
malizing flows. This is the first flow-based approach that
has been applied to calorimeter shower data with dimen-
sionality as large as dataset 3 of CaloChallenge2022.
Instead of learning the joint distribution of all voxels,
we focus on the distribution per calorimeter layer and use
an inductive algorithm to generate the sample. This
approach is inspired by the physical nature of the shower,
which starts to develop close to the entry point of the
incoming particle and evolves deeper into the detector.
Previous approaches used separately trained flows for

each layer [28], while we use a single flow for the step of
generating layer i based on the shower in layer i − 1
(treating i ¼ 1 separately), in the spirit of a mathematical
proof by induction. The advantage of this approach is in its
much more efficient setup. Instead of 45þ 1 normalizing
flows, we need only three. This efficiency (along with the
inductive approach) would be preserved even if we
increased the size of Flow-3 to be much larger than Flow-2

and the flows of [28]. However, the downside of our
inductive approach is that training Flow-3 cannot be trivially
parallelized across multiple GPUs (as the equivalents were
in [28]). Also, sharing the same flow across all layers is
presumably less expressive than using one flow for
each layer.
In both L2LFlows and iCaloFlow, event generation must

occur sequentially through each layer. On top of this,
the slow sampling from the MAF strongly motivates the
added step of distilling them into student IAF networks.
Compared to the teachers, the students speed up event
production by a factor of approximately the number of
voxels in a layer—though it is still necessary to iterate

through all the layers. iCaloFlow is the first work to include a
teacher-student pairing in any CaloFlow-like setup for higher
dimensional calorimeter shower data such as datasets 2
and 3.
At this time, no exhaustive comparison with other gen-

erative neural networks is possible. The most natural com-
parison point, the algorithm of [28], is applied to a different
data set. During the completion of CaloChallenge2022,
iCaloFlow will be compared against other codes, and a more
complete understanding of its strengths and weaknesses will
be available.
A possible limitation to this inductive algorithm is

generalizing it to nonregular calorimeter geometries. In
iCaloFlow, Flow-3 requires each layer to be identical in structure,
allowing the efficient weight-sharing and training that are the
major advantages of the algorithm. Significant modifications
would be required to adapt to layer-dependent voxelization.
While this might not be possible for arbitrary geometries,
some variations (for example, breaking a large voxel in one
layer into groups of small voxels in other layers) could admit
an inductive flow approach.
Even with these caveats, the efficiency, event generation

speed (when using the IAF students), and relatively high
fidelity of iCaloFlow make it a competitive architecture for
fast calorimeter event generation. One promising future
direction is to realize a similar inductive setup based on
coupling-layer flows, which are equally fast in density
estimation and generation. This would presumably reduce
training time as we would not have to train both teacher and
student flows.

ACKNOWLEDGMENTS

We thankGopolangMohlabeng for discussion in the early
stages of this project. Thisworkwas supported byDOEgrant
DOE-SC0010008. C. K. would like to thank the Baden-
Württemberg-Stiftung for support through the program
Internationale Spitzenforschung, project Uncertainties—
Teaching AI its Limits (BWST_IF2020-010). In this work,
we used the NumPy 1.16.4 [53], Matplotlib 3.1.0 [54], SCIKIT-

LEARN 0.21.2 [55], H5PY 2.9.0 [56], PyTorch 1.11.1 [57], and
nFlows 0.14 [58] software packages.

APPENDIX A: PRE- AND POSTPROCESSING

The incident energy is a conditional for all three flows. In
all cases, it is transformed from the physical range (1 GeV
to 1 TeV) to normalized log-space:

Einc → log10
Einc

104.5 MeV
∈ ½−1.5; 1.5�: ðA1Þ

For Flow-1, the total energy deposited in layer i (Ei) is
obtained from summing all voxels of the layer. As the flow
has difficulty learning a distribution where many elements
are exactly zero, uniform noise in the range [0, 5] keV is
added to Ei [17]. We then divided by 65 GeV (this is

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-16



slightly larger than the maximum energy deposition in any
layer in any of the events of the dataset):

Ei → xi ≡ ðEi þ rand½0; 5 keV�Þ=65 GeV: ðA2Þ

As a final step, we apply a logit transformation:

yi ¼ log
ui

1 − ui
; ui ≡ αþ ð1 − 2αÞxi; ðA3Þ

where the offset α≡ 10−6 ensures that the boundaries
xi ¼ 0 and 1 map to finite numbers.
For both Flow-2 and Flow-3, we apply the same processing

steps for the energy depositions per voxel, I ia. First, we
add uniform noise in the range [0, 5] keV to every voxel.
Then, we normalize the voxel by the sum of all voxels of
the given layer and then apply the logit transformation of
Eq. (A3) to it:

I ia → I ia þ rand½0; 5 keV�
I ia → I ia=

X

b

I ib ≡ Î ia

uia ¼ αþ ð1 − 2αÞÎ ia

yia ¼ log
uia

1 − uia
: ðA4Þ

When generating new events from our trained flows, the
preprocessing steps are inverted, and normalized showers
are transformed back to physical space using the proxy
output of Flow-1. Voxel energies below the detector thresh-
old of 15 keV are set to zero.

Flow-2 is conditioned on the energy deposited in the first
layer, E1. This is preprocessed as in Eqs. (A2) and (A3),
with the additional step of dividing y1 by 4:

E1 → xi ≡ ðEi þ rand½0; 5 keV�Þ=65 GeV

u1 ≡ αþ ð1 − 2αÞx1
y1 ¼

1

4
log

u1
1 − u1

: ðA5Þ

This final division by 4 is to bring the range of y1 down
to Oð1Þ.
The conditional inputs for Flow-3 are preprocessed as

follows: I ði−1Þa follows the steps of Eq. (A4). Ei and Eði−1Þ
follow Eqs. (A2) and (A3) (without the factor 4 of Flow-2).
The layer number i is one-hot encoded in a vector of
length 44.
When sampling new events from iCaloFlow, these

transformations are inverted. As a final step, the detector
energy threshold is applied on the generated voxel

energies by setting all voxels with I ia < 15 keV to zero.
As noted previously, when generating new patterns of
energy deposition from Flow-2 and Flow-3, the generated Î ia
are not enforced to sum to one. Forcing them to sum to
one, as was the choice made in the previous iterations of
CaloFlow [17,18,26], here causes problems in the voxel
energy histograms in Figs. 8 and 9. It enhances low-
energy voxels above the cut-off threshold, leading to a
large excess at the lower end of the voxel energy histo-
grams. This was less of a problem previously, for dataset 1
and for the CaloGAN dataset, because the normalization was
learned better, perhaps because these datasets were lower
dimensional. Meanwhile, in L2LFlows [28], which was
trained on a dataset comparable in dimensionality to
dataset 2, the voxel energies were normalized by maximum
voxel energy in the dataset, so no renormalization with Ei
was needed and this issue was avoided. However, we
found that normalizing by maximum voxel energy did not
improve our results here.

APPENDIX B: CLASSIFIER

The performance metric based on the classifier test uses
the neural network architecture that was provided by the
CaloChallenge2022 [31,59] evaluation script. It is based on
the classifiers that were used in [17,18] and was also used
(with slightly different hyperparameters) in [26]. To be
precise, the classifier is a deep, fully-connected neural
network with an input and two hidden layers with 2048
nodes each. All activation functions are leaky ReLUs, with
default negative slope of 0.01, except the output layer,
which uses a sigmoid activation function for its single
output number. We do not use any regulators such as batch
normalization or dropout.
The input for low- and high-level feature classification is

preprocessed as described in the main text. For dataset 2,
we work with the second provided file of 100,000 showers
[33]. We split it in train/test/validation sets of the ratio
(60∶20∶20). For dataset 3, we use the third file provided at
[34] split in the ratio (40∶10) for training and model
selection and the full fourth file of [34] to obtain the final
scores.
All networks are optimized by training 50 epochs

with an Adam [48] optimizer with initial learning rate of
2 × 10−4 and a batch size of 1000 (250) for datasets 2 (3),
minimizing the binary cross entropy. We use the model
state with the highest accuracy on the validation set for the
final evaluation and we subsequently calibrate the classifier
using isotonic regression [60] of sklearn [55] based on
the validation dataset before evaluating the test set.

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-17



[1] The High Luminosity Large Hadron Collider: The New
Machine for Illuminating the Mysteries of Universe, edited
by O. Brüning and L. Rossi (World Scientific, Singapore,
2015), 10.1142/9581.

[2] P. Calafiura, J. Catmore, D. Costanzo, and A. Di Girolamo,
ATLASHL-LHC computing conceptual design report, Tech-
nical Reports No. CERN-LHCC-2020-015, No. LHCC-G-
178, CERN, Geneva, 2020.

[3] CMS Collaboration, CMS phase-2 computing model: Up-
date document, Technical Reports No. CMS-NOTE-2022-
008, No. CERN-CMS-NOTE-2022-008, CERN, Geneva,
2022, https://cds.cern.ch/record/2815292.

[4] ATLAS Collaboration, ATLAS software and computing
HL-LHC roadmap, Technical Reports No. CERN-LHCC-
2022-005, No. LHCC-G-182, CERN, Geneva, 2022, https://
cds.cern.ch/record/2802918.

[5] HEP Software Foundation Collaboration, HL-LHC comput-
ing review: Common tools and community software, in
2022 Snowmass Summer Study, edited by P. Canal et al.
(2020), arXiv:2008.13636.

[6] GEANT4 Collaboration, Geant4–A simulation toolkit, Nucl.
Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[7] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce
Dubois, M. Asai et al., Geant4 developments and applica-
tions, IEEE Trans. Nucl. Sci. 53, 270 (2006).

[8] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T.
Aso et al., Recent developments in Geant4, Nucl. Instrum.
Methods Phys. Res., Sect. A 835, 186 (2016).

[9] M. Paganini, L. de Oliveira, and B. Nachman, Accelerating
science with generative adversarial networks: An applica-
tion to 3D particle showers in multilayer calorimeters, Phys.
Rev. Lett. 120, 042003 (2018).

[10] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN:
Simulating 3d high energy particle showers in multilayer
electromagnetic calorimeters with generative adversarial
networks, Phys. Rev. D 97, 014021 (2018).

[11] L. de Oliveira, M. Paganini, and B. Nachman, Controlling
physical attributes in GAN-accelerated simulation of
electromagnetic calorimeters, J. Phys. Conf. Ser. 1085,
042017 (2018).

[12] M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt,
Generating and refining particle detector simulations using
the Wasserstein distance in adversarial networks, Comput.
Software Big Sci. 2, 4 (2018).

[13] M. Erdmann, J. Glombitza, and T. Quast, Precise simulation
of electromagnetic calorimeter showers using a Wasserstein
generative adversarial network, Comput. Software Big Sci.
3, 4 (2019).

[14] D. Belayneh et al., Calorimetry with deep learning: Particle
simulation and reconstruction for collider physics, Eur.
Phys. J. C 80, 688 (2020).

[15] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol et al., Getting high: High fidelity
simulation of high granularity calorimeters with high speed,
Comput. Software Big Sci. 5, 13 (2021).

[16] ATLAS Collaboration, Fast simulation of the ATLAS
calorimeter system with generative adversarial networks,
Technical Report No. ATL-SOFT-PUB-2020-006, CERN,
Geneva, 2020, http://cds.cern.ch/record/2746032.

[17] C. Krause and D. Shih, CaloFlow: Fast and accurate gen-
eration of calorimeter showers with normalizing flows,
Phys. Rev. D 107, 113003 (2023).

[18] C. Krause and D. Shih, CaloFlow II: Even faster and still
accurate generation of calorimeter showers with normaliz-
ing flows, Phys. Rev. D 107, 113004 (2023).

[19] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol et al., Decoding photons: Physics in
the latent space of a BIB-AE generative network, EPJ Web
Conf. 251, 03003 (2021).

[20] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D.
Hundhausen, G. Kasieczka et al., Fast and accurate electro-
magnetic and hadronic showers from generative models,
EPJ Web Conf. 251, 03049 (2021).

[21] E. Buhmann, S. Diefenbacher, D. Hundhausen, G.
Kasieczka, W. Korcari, E. Eren et al., Hadrons, better,
faster, stronger, Mach. Learn. Sci. Tech. 3, 025014 (2022).

[22] ATLAS Collaboration, AtlFast3: The next generation of fast
simulation in ATLAS, Comput. Software Big Sci. 6, 7
(2022).

[23] V. Mikuni and B. Nachman, Score-based generative models
for calorimeter shower simulation, Phys. Rev. D 106,
092009 (2022).

[24] ATLAS Collaboration, Deep generative models for fast
photon shower simulation in ATLAS, arXiv:2210.06204.

[25] A. Adelmann et al., New directions for surrogate models
and differentiable programming for high energy physics
detector simulation, in 2022 Snowmass Summer Study
(2022), arXiv:2203.08806.

[26] C. Krause, I. Pang, and D. Shih, CaloFlow for CaloChallenge
dataset 1, arXiv:2210.14245.

[27] J. C. Cresswell, B. L. Ross, G. Loaiza-Ganem, H. Reyes-
Gonzalez, M. Letizia, and A. L. Caterini, CaloMan: Fast
generation of calorimeter showers with density estimation
on learned manifolds, in Proceedings of the 36th
Conference on Neural Information Processing Systems
(2022), https://ml4physicalsciences.github.io/2022/.

[28] S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, C.
Krause, I. Shekhzadeh, and D. Shih, L2LFlows: Generating
high-fidelity 3D calorimeter images, J. Instrum. 18, P10017
(2023).

[29] E.Buhmann, S.Diefenbacher, E.Eren,F.Gaede,G.Kasieczka,
A. Korol, W. Korcari, K. Krüger, and P. McKeown, CaloClouds:
Fast geometry-independent highly-granular calorimeter simu-
lation, J. Instrum. 18, P11025 (2023).

[30] H. Hashemi, N. Hartmann, S. Sharifzadeh, J. Kahn, and T.
Kuhr, Ultra-high-resolution detector simulation with intra-
event aware GAN and self-supervised relational reasoning,
arXiv:2303.08046.

[31] M. Faucci Giannelli, G. Kasieczka, B. Nachman, D.
Salamani, D. Shih, and A. Zaborowska, Fast calorimeter
simulation challenge 2022, https://calochallenge.github.io/
homepage/ (2022).

[32] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D.
Salamani, D. Shih et al., Fast calorimeter simulation chal-
lenge 2022—dataset 1, 10.5281/zenodo.6234054 (2022).

[33] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D.
Salamani, D. Shih et al., Fast calorimeter simulation chal-
lenge 2022—dataset 2, 10.5281/zenodo.6366271 (2022).

BUCKLEY, PANG, SHIH, and KRAUSE PHYS. REV. D 109, 033006 (2024)

033006-18

https://doi.org/10.1142/9581
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
https://arXiv.org/abs/2008.13636
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1007/s41781-021-00056-0
http://cds.cern.ch/record/2746032
http://cds.cern.ch/record/2746032
http://cds.cern.ch/record/2746032
https://doi.org/10.1103/PhysRevD.107.113003
https://doi.org/10.1103/PhysRevD.107.113004
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1051/epjconf/202125103049
https://doi.org/10.1088/2632-2153/ac7848
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1103/PhysRevD.106.092009
https://arXiv.org/abs/2210.06204
https://arXiv.org/abs/2203.08806
https://arXiv.org/abs/2210.14245
https://ml4physicalsciences.github.io/2022/
https://ml4physicalsciences.github.io/2022/
https://ml4physicalsciences.github.io/2022/
https://doi.org/10.1088/1748-0221/18/10/P10017
https://doi.org/10.1088/1748-0221/18/10/P10017
https://doi.org/10.1088/1748-0221/18/11/P11025
https://arXiv.org/abs/2303.08046
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://doi.org/10.5281/zenodo.6234054
https://doi.org/10.5281/zenodo.6366271


[34] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman,
D. Salamani, D. Shih et al., Fast calorimeter simulation
challenge 2022—dataset 3, 10.5281/zenodo.6366324 (2022).

[35] L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear
independent components estimation, arXiv:1410.8516.

[36] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estima-
tion using real NVP, arXiv:1605.08803.

[37] D. Rezende and S. Mohamed, Variational inference with
normalizing flows, in International Conference on Machine
Learning (PMLR, 2015), pp. 1530–1538, https://
proceedings.mlr.press/v37/rezende15.html.

[38] I. Kobyzev, S. J. Prince, and M. A. Brubaker, Normalizing
flows: An introduction and review of current methods, IEEE
Trans. Pattern Anal. Mach. Intell. 43, 3964 (2020).

[39] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S.
Mohamed, and B. Lakshminarayanan, Normalizing flows
for probabilisticmodeling and inference, J.Mach. Learn. Res.
22, 1 (2021), https://www.jmlr.org/papers/v22/19-1028.html.

[40] H. Abramowicz et al., The international linear collider tech-
nical design report—Volume 4: Detectors, arXiv:1306.6329.

[41] The ILD Concept Group, International large detector:
Interim design report, arXiv:2003.01116.

[42] G. Papamakarios, T. Pavlakou, and I. Murray, Masked
autoregressive flow for density estimation, in Advances in
Neural Information Processing Systems (2017), Vol. 30,
https://papers.nips.cc/paper_files/paper/2017.

[43] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O.
Vinyals, K. Kavukcuoglu et al., Parallel WaveNet: Fast
high-fidelity speech synthesis, in Proceedings of the 35th
International Conference on Machine Learning, edited by J.
Dy and A. Krause, Vol. 80 of Proceedings of Machine
Learning Research (PMLR, 2018), pp. 3918–3926, https://
proceedings.mlr.press/v80/oord18a.html.

[44] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I.
Sutskever, and M. Welling, Improved variational inference
with inverse autoregressive flow, in Advances in Neural
Information Processing Systems (2016), Vol. 29, https://
papers.nips.cc/paper_files/paper/2016.

[45] A. Zaborowska (private communication).
[46] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,

Neural spline flows, in Advances in Neural Information
Processing Systems (2019), Vol. 32, p. 7511, https://papers
.nips.cc/paper_files/paper/2019.

[47] M. Germain, K. Gregor, I. Murray, and H. Larochelle,
Made: Masked autoencoder for distribution estimation, in
International Conference on Machine Learning (PMLR,
2015), pp. 881–889, https://proceedings.mlr.press/v37/
germain15.html.

[48] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[49] L. N. Smith and N. Topin, Super-convergence: Very fast tra-
ining of neural networks using large learning rates, in Artificial
Intelligence and Machine Learning for Multi-Domain Oper-
ations Applications (SPIE, Baltimore, MD, 2019), Vol. 11006,
pp. 369–386, https://www.spiedigitallibrary.org/conference-
proceedings-of-spie/11006/1100612/Super-convergence--
very-fast-training-of-neural-networks-using/10.1117/12
.2520589.short.

[50] C.-W. Huang, F. Ahmed, K. Kumar, A. Lacoste, and A.
Courville, Probability distillation: A caveat and alternatives,
in Proceedings of The 35th Uncertainty in Artificial Intelli-
gence Conference, edited by R. P. Adams and V. Gogate,
Vol. 115 of Proceedings of Machine Learning Research
(PMLR, 2020), pp. 1212–1221, https://proceedings.mlr
.press/v115/huang20c.html.

[51] D. Lopez-Paz and M. Oquab, Revisiting classifier two-
sample tests, arXiv:1610.06545.

[52] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B.
Nachman, and D. Shih, DCTRGAN: Improving the pre-
cision of generative models with reweighting, J. Instrum. 15,
P11004 (2020).

[53] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau et al., Array programming with
NumPy, Nature (London) 585, 357 (2020).

[54] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel et al., SCIKIT-LEARN: Machine learning in
Python, J. Mach. Learn. Res. 12, 2825 (2011), https://www
.jmlr.org/papers/v12/pedregosa11a.html.

[56] A. Collette, Python and HDF5 (O’Reilly, 2013),
ISBN 9781449367831.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan et al., PyTorch: An imperative style, high-performance
deep learning library, in Advances in Neural Information
Processing Systems 32, edited by H. Wallach, H.
Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, and R.
Garnett (CurranAssociates, Inc., 2019), pp. 8024–8035, http://
papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

[58] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,
nFlows: Normalizing flows in PyTorch, 10.5281/zen-
odo.4296287 (2020).

[59] M. Faucci Giannelli, G. Kasieczka, B. Nachman, D.
Salamani, D. Shih, and A. Zaborowska, Fast calorimeter
simulation challenge 2022 github page, https://github.com/
CaloChallenge/homepage (2022).

[60] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On
calibration of modern neural networks, arXiv:1706.
04599.

INDUCTIVE SIMULATION OF CALORIMETER SHOWERS WITH … PHYS. REV. D 109, 033006 (2024)

033006-19

https://doi.org/10.5281/zenodo.6366324
https://arXiv.org/abs/1410.8516
https://arXiv.org/abs/1605.08803
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1109/TPAMI.2020.2992934
https://www.jmlr.org/papers/v22/19-1028.html
https://www.jmlr.org/papers/v22/19-1028.html
https://www.jmlr.org/papers/v22/19-1028.html
https://www.jmlr.org/papers/v22/19-1028.html
https://arXiv.org/abs/1306.6329
https://arXiv.org/abs/2003.01116
https://papers.nips.cc/paper_files/paper/2017
https://papers.nips.cc/paper_files/paper/2017
https://papers.nips.cc/paper_files/paper/2017
https://proceedings.mlr.press/v80/oord18a.html
https://proceedings.mlr.press/v80/oord18a.html
https://proceedings.mlr.press/v80/oord18a.html
https://proceedings.mlr.press/v80/oord18a.html
https://proceedings.mlr.press/v80/oord18a.html
https://papers.nips.cc/paper_files/paper/2016
https://papers.nips.cc/paper_files/paper/2016
https://papers.nips.cc/paper_files/paper/2016
https://papers.nips.cc/paper_files/paper/2016
https://papers.nips.cc/paper_files/paper/2019
https://papers.nips.cc/paper_files/paper/2019
https://papers.nips.cc/paper_files/paper/2019
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v37/germain15.html
https://arXiv.org/abs/1412.6980
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.short
https://proceedings.mlr.press/v115/huang20c.html
https://proceedings.mlr.press/v115/huang20c.html
https://proceedings.mlr.press/v115/huang20c.html
https://proceedings.mlr.press/v115/huang20c.html
https://arXiv.org/abs/1610.06545
https://doi.org/10.1088/1748-0221/15/11/P11004
https://doi.org/10.1088/1748-0221/15/11/P11004
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://github.com/CaloChallenge/homepage
https://github.com/CaloChallenge/homepage
https://github.com/CaloChallenge/homepage
https://arXiv.org/abs/1706.04599
https://arXiv.org/abs/1706.04599

