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A novel method to differentiate the effects of Dirac and Majorana (D-M) neutrinos in four-body decays
has been discussed in [C. S. Kim et al., Inferring the nature of active neutrinos: Dirac or Majorana?, Phys.
Rev. D 105, 113006 (2022).]. There, it is concluded that the back-to-back kinematic scenario seems to
avoid the constraint imposed by the “practical Dirac-Majorana confusion theorem,” as one does not need to
fully integrate over neutrino and antineutrino momenta. In this paper, we propose to analyze radiative
leptonic lepton-decays (l → l0νν̄γ), as an independent alternative process to study the possible Majorana
nature of neutrinos. Our approach demonstrates that, in the back-to-back kinematic configuration (for the
l0 − γ and ν − ν̄ systems, respectively), the distinction between Dirac and Majorana cases disappears when
the inaccessible neutrino angle is integrated out, which might appear unexpected considering the claims in
[C. S. Kim et al., Inferring the nature of active neutrinos: Dirac or Majorana?, Phys. Rev. D 105, 113006
(2022).]. Our results apply in absence of nonstandard interactions, which can enhance generally the
sensitivity to the neutrino nature.
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I. INTRODUCTION

Nowadays the Dirac or Majorana nature of neutrinos, as
well as the mechanism from which they acquire mass, is
one of the unsolved puzzles whose solution seems to lie
beyond the Standard Model (SM). There are many minimal
extensions of it in order to account for nonzero masses
and mixings for the active neutrinos; namely adding new
gauge singlet fields, such as right-handed neutrinos. Some
of them are the well-known νSM [1,2] and the seesaw
mechanisms [3–7].
If neutrinos were Majorana particles, lepton number

would not be conserved and neutrinos would be their own
antiparticles, i.e., no conserved quantum number would
distinguish neutrino and antineutrino. There are some
important proposals to probe the Majorana nature of the
neutrino, such as the neutrinoless double beta decay ð0νββÞ
of nuclei1 [8–12], coherent scattering of neutrino on nucleus
with bremsstrahlung radiation [13], and many other lepton
number violating processes [14–47], most of themmotivated
by the propagation of a massive heavy neutral lepton.

However, the difference among Dirac and Majorana
neutrinos, when the unobservable neutrinos momenta get
fully integrated out, is proportional to some power of
neutrino masses, assuming they enter left-handed charged
weak currents, as in the SM. This is precisely stated by
the “practical Dirac-Majorana confusion theorem”
(DMCT) [48], and makes it extremely challenging to
distinguish experimentally between both possibilities,
especially for tiny neutrino masses.
It is crucial that the difference between Dirac and

Majorana nature can be settled independently of the mass
of the neutrinos provided their momenta are not integrated
out. Since neutrinos momenta are not experimentally
accessible, we need a method to infer them, so that we
can discern the neutrinos variables without the need of any
explicit observation of them, which is extremely difficult
any way at present. Kim, Murthy, and Sahoo claimed [49]
that we can deduce the neutrinos momenta working in the
back-to-back (b2b from now on) kinematic configuration
of a four-body decay with two final-state neutrinos, where
the difference between Dirac and Majorana cases does
survive irrespectively of the neutrino mass values, as long
as neutrinos are not strictly massless.
This could be a really exciting and important strategy

to distinguish the specific neutrino nature. Motivated by
this method (“KMS method” from now on), we analyze
radiative leptonic lepton-decays (l− → l0−νlν̄l0γ) as an
independent approach in order to distinguish the Dirac or
Majorana nature of neutrinos. We emphasize that the
quoted KMS method of analysis considers processes with
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1This could however be unobservable, even if neutrinos are
Majorana particles, depending on their properties, like the
neutrino mass ordering.
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νν̄ final states with same-flavor neutrinos, in order to apply
the quantum statistical properties of Majorana neutrinos.
Nevertheless, the Majorana nature of neutrinos could be
implemented even with νν̄ final states with different
flavors, working in the mass basis, where the quantum
statistical properties could be applied to distinguish
between Dirac and Majorana nature, as we shall discuss,
see, e.g., [50–53].2 This fact allows us to study many other
processes as an alternative strategy (without hadronic
transitions) with larger branching ratios (BR), such as
the radiative leptonic decays of leptons, in which we focus
here, that we will study neglecting possible nonstandard
interactions.
In Ref. [54], it was suggested that measurements of the

Michel parameters in muon decay cannot help to distin-
guish the nature of neutrinos because they are of different
flavors and the required antisymmetrization of the ampli-
tude for Majorana neutrinos does not apply. However, as
we shall discuss, the reason why we cannot distinguish
between Dirac and Majorana nature of neutrinos in this
process was carefully explained by London and Langacker
in [55]; they have shown that it is not possible, even in
principle, to test lepton-number conservation in muon
decay if the final neutrinos are massless and are not
observed (which agrees with the DMCT theorem for the
SM neutrinos interaction). Therefore, if we can infer some
information on neutrinos, it becomes possible to get a
nonvanishing difference between Dirac and Majorana
cases, even for this type of leptonic decays.
As it was first introduced in [51], and discussed in

several following works [50,52,53,56], the Majorana nature
could affect processes with νν̄ final states involving differ-
ent flavors. We emphasize that this effect is not a direct
consequence of the presence of indistinguishable fermions
in the final state but a result of the intrinsic Majorana
fermion properties. Using the fact that flavored neutrinos
do not have a definite mass; i.e., the existence of two
different basis, due to finite neutrino masses, this could lead
to “internal interference effects” [55] when considering
Majorana neutrinos. These effects can be analyzed with the
usual implementation of Feynman diagrams and their
corresponding Feynman rules for Majorana fermions.
These interference effects can be explained in detail from
first principles by studying the action of Majorana fields
over the final asymptotic neutrino states in the QFT
scheme, where now the operator Ψ can create either of
the two states, and so can Ψ̄.
The main idea is now clear: we will study the

possible effects of Majorana neutrinos in the radiative
leptonic decay of μ and τ leptons assuming we can
“measure” them (i.e., infer their kinematic variables),

avoiding integration over their momenta. In such cases,
we shall prove that the difference between Dirac and
Majorana nature of neutrinos is still present at the level of
differential decay rate and explicitly depends on the
neutrinos kinematics. Then, given the b2b configuration
analysis as explained in Sec. III B, we will show that the
D-M difference vanishes upon integration on the neutrinos
variables and discuss the origin of the discrepancy with the
KMS result.
This article is structured as follows: in Sec. II we

present the explicit radiative lepton-decay rate in the b2b
configuration, taking into account Dirac (Sec. II A) and
Majorana (Sec. II B) neutrinos. In Sec. III Awe present the
final energy and angular spectrum obtained from applying
our approach. The main results are discussed: specifically
showing that the differences for distinct neutrino nature do
not survive independently of the nonvanishing neutrino
mass, once the unobservable neutrino angle is integrated
out. Then, in Sec. III B we track the origin of the absence
of a difference between Dirac and Majorana cases in the
radiative leptonic lepton decay, we elaborate on and
clarify it, with the implementation of consistency tests
and helpful discussions. Finally our conclusions are given
in Sec. IV. Very useful complementary computations of
the phase space treatment, the b2b configuration and the
specific branching ratio calculation can be found in
Appendix A, B, and C, respectively, where all the com-
ments raised on Ref. [57] are corrected and clarified in
detail.

II. RADIATIVE LEPTONIC l-DECAY

Since ml ≪ MW , we can safely integrate out the W
boson and use the Fermi-type theory of weak interactions to
describe the charged lepton decays. Then, the leading
Feynman diagrams contributing to the radiative leptonic
l-decay are shown in Fig. 1.
From now on, we will be working in the basis where the

mass matrix of charged leptons is already diagonalized
and the flavor-eigenstate neutrino (νL) is taken to be the
superposition of the mass-eigenstate neutrinos (Nj) with
mass mj, that is,

νlL ¼
X
j

UljNjL; ð2:1Þ

where j ¼ f1; 2; 3;…; ng is tagging mass-eigenstate
neutrinos.
In the mass basis, the l− → l0−νlν̄l0γ decay consists of

the subsets of all the n2 separate decays of neutrino mass
eigenstates allowed by phase space, i.e., the incoherent sum
of the separate modes l− → l0−N̄jNkγ [51]:

dΓðl− → l0−νlν̄l0γÞ ¼
X
j;k

dΓðl− → l0−N̄jNkγÞ ð2:2Þ
2Obviously, physics conclusions cannot depend on basis

choice, although a particular one can be most convenient in a
given analysis.
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Note that N̄ represents an antineutrino for the Dirac
neutrino case, but should be identified with N for the
Majorana neutrino case (N ¼ Nc ¼ CN̄T).
Here it is important to remark that all the fol-

lowing analysis and results are valid only for massive
neutrinos, no matter how light their masses could be, as
long as they are nonzero. In this case, we have two
different well defined basis (mass and flavor) and the
corresponding neutrino nature will affect in a different
way the differential decay rate computation as we shall
see. In the case of massless neutrinos, only one basis
exists and then Eq. (2.1) does not hold, also the

Uð1ÞB−L symmetry of the Lagrangian is recovered
and our results do not apply. For a helpful discussion
see ergo [58].

A. Dirac neutrino case

In the Dirac case, the corresponding amplitude for the
process l− → l0−N̄jNkγ is given by3:

MD ¼ MðaÞ þMðbÞ ≡Mðp2; p3Þ; ð2:3Þ

where (see Fig. 1 for momenta convention)

MðaÞ ¼ Ul0jU�
lk
eGFffiffiffi

2
p ½ū4γμð1 − γ5Þv3�ū2γμð1 − γ5Þ

�
=q1 þm1

q21 −m2
1

�
γνϵ�νu1;

MðbÞ ¼ Ul0jU�
lk
eGFffiffiffi

2
p u4γνϵ�ν

�
=q4 þm4

q24 −m2
4

�
γμð1 − γ5Þv3½ū2γμð1 − γ5Þu1�: ð2:4Þ

Neglecting all final lepton masses, as a good approximation, the unpolarized squared amplitude is

jMDj2 ¼ jUl0jU�
lkj2

64e2G2
F

ðp4 · p5Þðp1 · p5Þ2
fðp1 · p3Þ½ðp2 · p4 þ p2 · p5Þðp1 · p5Þ2 −m2

1ðp2 · p4Þðp4 · p5Þ

þ ðp1 · p4Þðp1 · p5Þð2ðp2 · p4Þ þ p2 · p5Þ − ðp1 · p5Þðp4 · p5Þðp1 · p2 þ p2 · p4Þ� þ ðp2 · p4Þ
× ½ðp3 · p4Þðp1 · p5Þ2 þm2

1ðp3 · p5Þðp4 · p5Þ þ ðp1 · p5Þðp3 · p5Þðp4 · p5 − p1 · p4Þ�g: ð2:5Þ

Finally, motivated by the KMS method, we need to work
in the initial charged-lepton rest frame, specifically in the
b2b kinematic configuration shown in Fig. 2, where the
scalar products, neglecting the final lepton masses, are
given by4:

p4 · p5 ¼ 2E2
l0 ; p2 · p3 ¼ 2

�
ml

2
− El0

�
2

;

p1 · p2 ¼ p1 · p3 ¼ mlEl0

�
ml

2
− El0

�
;

p1 · p4 ¼ p1 · p5 ¼ mlEl0 ;

p3 · p4 ¼ p2 · p5 ¼ El0

�
ml

2
− El0

�
ð1þ cos θÞ;

p3 · p5 ¼ p2 · p4 ¼ El0

�
ml

2
− El0

�
ð1 − cos θÞ: ð2:6Þ

FIG. 1. Lowest order Feynman diagrams for radiative leptonic lepton-decay in the Dirac neutrino case.

3Where, when computing the decay rate, we must sum
incoherently over the probabilities of all the allowed fj; kg
channels.

4The energies are related by: Eγ ¼ El0 and Eν ¼ Eν̄ ¼
ml
2
− El0 .
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Thus, in this kinematical configuration, the process is
described in terms of only two variables, the final
charged-lepton energy,5 E4 ≡ El0 , and the angle between
the neutrino and final charged-lepton directions, θ24 ¼ θ.
With these considerations, the final Dirac amplitude is
given by:

jMD
↔j2 ¼ jUl0jU�

lkj2
8e2G2

Fðml − 2El0 Þ2
mlEl0

×

�
8E2

l0 sin4
θ

2
þ ð1þ cos θÞm2

l

�
: ð2:7Þ

The subindex ↔ denotes the b2b configuration. The
1=El0 -dependence reflects the infrared behavior of the
amplitude in the soft-photon limit.

B. Majorana neutrino case

Unlike the Dirac case, the properties of Majorana neu-
trinos have strong consequences in the amplitude. For
Majorana neutrinos the decay modes l− → l0−N̄jNkγ and
l− → l0−N̄kNjγ yield the same final states for k ≠ j as well
as for k ¼ j (since N̄i ¼ Ni), and hence their amplitudes
must be added coherently. This is a result that can be obtained
rigorously in the QFT formalism.
The possible first order Feynman diagrams for the

l− → l0−NjNkγ decay are shown in Fig. 3, leading to
the total amplitude:

MM ¼ Mjkðp2; p3Þ −Mkjðp3; p2Þ; ð2:8Þ

where the relative sign betweenMðp2; p3Þ andMðp3; p2Þ
stems from the application of Wick’s theorem in presence
of Majorana fermions (see, e.g., Ref. [59]).
It can be shown that, after summing over polarizations,

ReðMðp2; p3ÞM�ðp3; p2ÞÞ ∝ m2
ν ≈ 0 due to the small-

ness of neutrino masses.6 Thus

jMMj2 ¼ jM̄jkðp2; p3Þj2 þ jM̄kjðp3; p2Þj2: ð2:9Þ

The computation, neglecting the final lepton masses, leads
to the following squared amplitude for the b2b kinematic
configuration:

jMM
↔j2 ¼ 8e2G2

Fðml − 2El0 Þ2
mlEl0

�
jUl0jU�

lkj2
�
8E2

l0sin
4

�
θ

2

�

þm2
lð1þ cosθÞ

�

þjUl0kU�
ljj2

�
8E2

l0cos
4

�
θ

2

�
þm2

lð1− cosθÞ
��

:

ð2:10Þ

Thus, the Majorana nature of neutrinos would generate a
different behavior of the amplitude compared with the
Dirac neutrinos case, Eq. (2.7).

III. ENERGY AND ANGULAR DISTRIBUTIONS

In this section we develop our own derivation, motivated
by the KMS method, and compute the corresponding
energy and angular distributions of the ν − ν̄ and l0 − γ
systems in the b2b configuration, respectively. We will
finally discuss our results.

A. Our approach

When we restrict ourselves to the b2b scenario, which is
just a specific kinematic configuration of the general case,
as we did before, we will adopt the following notation of
the corresponding decay rate according to Eq. (A6) (see
Appendix A for all the details):

dΓD;M

dEνdEν̄dcosΘνν̄dcosθl0dϕ

����
b2b

¼ 2E2
ν

ð4πÞ6ml

1

ϵ

X
j;k

jMD;M
↔ j2;

ð3:1Þ

dΓD;M

dEl0dEγdcosΘl0γdcosθνdϕ

����
b2b

¼ 2E2
l0

ð4πÞ6ml

1

ϵ

X
j;k

jMD;M
↔ j2;

ð3:2Þ

FIG. 2. b2b kinematic configuration in the initial charged-
lepton rest frame.

5The corresponding energy range is 0 ≤ El0 ≤
ml
2
.

6We are considering only the contribution of the three active
light neutrinos mass eigenstates.
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where ϵ ¼ 1ð2Þ for Dirac (Majorana) neutrinos, showing
that it is just the standard differential decay rate evaluated in
the specific b2b kinematics,7 and the amplitudes involved
were already quoted in the last section.

Using the jMD=M
↔ j2 previously computed, we obtain the

following neutrinos differential decay rate:

dΓD
ννjb2b ≡ dΓD

dEνdEν̄d cosΘνν̄d cos θl0dϕ

����
b2b

¼ 4αG2
Fðml − 2El0 Þ4
ð4πÞ5m2

lEl0

×

�
8E2

l0 sin4
θ

2
þ ð1þ cos θÞm2

l

�
;

dΓM
ννjb2b ≡ dΓM

dEνdEν̄d cosΘνν̄d cos θl0dϕ

����
b2b

¼ 4αG2
Fðml − 2El0 Þ4
ð4πÞ5m2

lEl0
ðE2

l0 ð3þ cos 2θÞ þm2
lÞ;

ð3:3Þ

where we already used the unitarity relations for the mixing
matrix elements considering just the three active light
neutrinos mass eigenstates. We can also consider the
presence of a massive sector leaving the sum explicit,
where the new sterile neutrinos could be produced if they
are energetically allowed, or else could affect the unitarity
relation if they are forbidden by kinematics. Nevertheless,
as discussed in Ref. [53], the possible effect would be

suppressed by the specific heavy mixing and cannot be
higher than 10−4, thus it should only be considered if that
precision is needed.
Then the difference between Dirac and Majorana cases

in the b2b scenario is

dΓD
ννjb2b − dΓM

ννjb2b ¼
4αG2

Fðml − 2El0 Þ5
ð4πÞ5m2

lEl0

× ðml þ 2El0 Þ cos θ: ð3:4Þ

The difference is evident, unfortunately, the angle θ is not
experimentally accessible, so we should rather integrate
over it to get the final charged-lepton energy distributions
for Dirac and Majorana cases.
In order to integrate over this inaccessible angle, we just

need to rewrite the angle θ that appears in the right-hand
side of the above equations in terms of our phase space
variables θl0 and ϕ, i.e., θ ¼ θðθl0 ;ϕÞ.
Since θ is the angle between p⃗ν and p⃗l0 , it is easy to get,

as shown in Eq. (B9) that:

cosθ≡ p̂4 · p̂2 ¼ sinθl0 sinθν cosϕ− cosθν cosθl0 : ð3:5Þ

Now, since this neutrinos differential decay rate does not
depend explicitly on θν, we have the freedom to fix it to
ease further computations.8 Then, for example, we can
choose the system in such a way that θν ¼ 0 and thus we
get cos θ ¼ − cos θl0 , which does not have a dependence on
the ϕ angle, showing explicitly the azimuthal symmetry of

FIG. 3. Lowest order Feynman diagrams for radiative leptonic lepton-decay in the Majorana neutrino case.

7Where Eγ ¼ El0 , Eν ¼ Eν̄ and Θνν̄ ¼ Θl0γ ¼ π.

8The following discussion can be directly applied to Eq. (3.2)
for θl0.
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this specific selection. Using this dependence, where
0 ≤ θl0 ≤ π and 0 ≤ ϕ ≤ 2π so that all possible angular
configurations between l0 and ν are accounted for, we have
from Eq. (3.4):Z

2π

0

Z
π

0

ðdΓD
ννjb2b − dΓM

ννjb2bÞdθl0dϕ

¼
Z

2π

0

Z
π

0

−4αG2
Fðml − 2El0 Þ5

ð4πÞ5m2
lEl0

ðml þ 2El0 Þ

× cos θl0dθl0dϕ ¼ 0: ð3:6Þ

Doing this, it is straightforward that the difference between
Dirac and Majorana cases vanishes once the angular
integration is made. We emphasize that this difference
will vanish in any other selected frame, doing the angular
integration properly, as derived in Eq. (B9).
Specifically, for subsequent discussions, if we work

in the system where the neutrinos define the x-axis
(θν ¼ π=2), as done in the KMS method, in such a way
that cos θ ¼ cosϕ sin θl0 , the difference between Dirac
and Majorana cases after the angular integration is:Z

2π

0

Z
π

0

ðdΓD
ννjb2b − dΓM

ννjb2bÞdθl0dϕ

¼
Z

2π

0

Z
π

0

4αG2
Fðml − 2El0 Þ5
ð4πÞ5m2

lEl0
ðml þ 2El0 Þ

× cosϕ sin θl0dθl0dϕ ¼ 0: ð3:7Þ

Again, the difference between Dirac and Majorana cases
vanishes, consistently with the last computation, since the
physics must not depend on the selected reference frame we
are working on. Here we anticipate that the main discrep-
ancy with the KMSmethod is that their analysis sets ϕ ¼ 0,
where in this example it is clear that setting ϕ ¼ 0 would
lead to different results depending on the selected system,

which makes no physical sense. This reason, along with
several other arguments, will lead us to conclude that ϕ is
not fixed by any kinematic condition and must be inte-
grated over its entire range, as we will discuss in detail later.
Actually, we can do the same computation for the l0 − γ

decay rate [since, even if in the b2b configuration we can
relate El0 and Eν, the neutrinos and electron-photon dis-
tributions are not the same in this kinematic scenario, as
shown in Eqs. (3.1) and (3.2)] and plot the specific energy
distribution for thel0 − γ and ν − ν̄ pairs, integrating over the
inaccessible angle θ; this is shown in Fig. 4 (just for a τ decay,
for simplicity). As we pointed out before, both distributions
are different and the Dirac and Majorana cases are, unfortu-
nately, indistinguishable in each case.
This last point is specially important, since the explanation

of the impossibility to distinguish the specific neutrino nature
in each distribution is different. For thel0 − γ spectrum, it is a
direct application of the DMCT, since we already integrated
over all the neutrino variables andwe are neglecting neutrino
mass contributions. For the ν − ν̄ spectrum, one might think
that there should be a difference betweenDirac andMajorana
distributions, since we are keeping information about the
neutrinos energies. This would be true if the neutrinos
energies were not equal, so the change Eν ↔ Eν̄ could lead
to a difference while computing the Majorana neutrino case.
Regrettably, in the b2b case, they are exactly the same
(Eν ¼ Eν̄), so we cannot distinguish between Dirac and
Majorana nature from this energy variable alone. This
statement is precisely the reason why the difference between
Dirac and Majorana distributions cannot be independent of
the angular variable θ.

B. Discussions and consistency tests

In this section we elaborate on our results and focus on
discussing the main reason for the lack of a difference
between Dirac and Majorana nature of neutrinos. This
outcome, which may differ from initial expectations based

FIG. 4. Energy spectra for charged lepton-photon and neutrinos in τ → l0νν̄γ decays, restricted to the b2b case. They are identical for
Dirac and Majorana cases.
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on the motivation provided by the KMS method, deserves
careful analysis. We emphasize that the specific process
under study is not the same as the one used in [49], and the
Majorana nature affects in a distinct manner the two of
them. Nevertheless this will only influence the dynamics
and not the kinematics. So, from now on, we will be
focusing on the kinematic analysis, which must be the same
considering all our previous assumptions.
Particularly, working in the same system as done in the

KMS method, we traced the main difference of this feature
with the KMS approach and found that it primarily arises
from the ϕ variable treatment. Therefore we want to delve
further into this topic and specify the reasons why this
variable should not be fixed in the b2b configuration.
Additionally, we will outline the results that would be
obtained if we do so in our specific process.
It is suggested in the KMS method that ϕ ¼ 0 is a

condition fixed by the b2b kinematics. As we mentioned,
the b2b scenario is obtained by applying the condition
p⃗2 ¼ −p⃗3, or equivalently p⃗4 ¼ −p⃗5. These restrictions
affect three of the five phase-space kinematic independent
variables as follows: Eν ¼ Eν̄ and Θνν̄ ¼ π. Therefore, the
remaining two angular variables must run over all their
possible configurations, meaning that we must not set ϕ to
any specific value. In other words, the condition p⃗2 ¼ −p⃗3

can be achieved for any value of ϕ and not just for ϕ ¼ 0.
Nevertheless, beyond these qualitative arguments, we did
the quantitative derivation of this assertion in Appendix B,
where it is shown explicitly that ϕ is not fixed at all by the
b2b restriction.
Finally, the last argument given in the KMS approach is

that in the b2b configuration the νν̄ and l0γ systems define a
plane (since they are two independent vectors) and thus
ϕ ¼ 0. We also clarify this statement in Appendix B, where
we fully agree with the νν̄ and l0γ systems defining a plane,
but show that such plane is independent of theϕ value, being
ϕ ¼ 0 just an allowed specific configuration. This can be
seen directly from the plane equation and applied to any
selected system. Then ϕ remains an independent variable.
Also, as discussed in previous sections, the physics must

not depend on the selected reference frame. We already
showed that, at least, in two different systems (θν ¼ 0 and
θν ¼ π=2) the difference between Dirac and Majorana
distributions vanishes while doing the angular integration
properly (not fixing ϕ ¼ 0), which extends to any other. We
shall discuss next what happens when assuming the
condition ϕ ¼ 0 and will obtain that this difference will
be nonvanishing in the system defined by θν ¼ π=2, while
it will remain zero in the system where θν ¼ 0, which is
clearly a physical contradiction and again another argument
against fixing ϕ in the b2b kinematic configuration.
Now, for completeness, we will study the possible

modifications to our main results in the case that we set
ϕ ¼ 0. In the system defined by θν ¼ 0, it is straightfor-
ward that the difference in any expression will be just an
overall 2π factor after the angular integration, due to the

azimuthal symmetry. Also, for the Dirac-Majorana differ-
ence, the result will vanish again due to the θl0 integration.
For the following discussion, it is important to compare
what happens now in the KMS system (θν ¼ π=2).
Replacing the ϕ ¼ 0 condition into Eq. (3.3), where
now cos θ ¼ cosϕ sin θl0 ¼ sin θl0, the difference between
Dirac and Majorana cases is precisely:

dΓD
ννjb2b − dΓM

ννjb2b ¼
4αG2

Fðml − 2El0 Þ5
ð4πÞ5m2

lEl0

× ðml þ 2El0 Þ sin θl0 ; ð3:8Þ

and will be nonzero after the angular integration, as we
shall see next, which is a physical contradiction as we just
emphasized.
For a complete discussion of this case (ϕ ¼ 0), we can

now integrate over the energy range and get the angular
distribution shown in Fig. 5(a) [5(c)] for the tau (muon)
decay, where the difference between Dirac and Majorana
cases is obvious. Again, for the experimental observable
we must integrate over the inaccessible angle θ
(cos θ ¼ sin θl0), to get the final neutrinos energy distri-
butions for Dirac and Majorana cases:

Z
dΓD

ννjb2bd cos θl0 ¼
4αG2

F

ð4πÞ5m2
l

ðml − 2El0 Þ4
El0

×

��
20

3
− 2π

�
E2
l0 þ

1

2
ðπ þ 4Þm2

l

	
;

ð3:9Þ
Z

dΓM
ννjb2bd cos θl0 ¼

4αG2
F

ð4πÞ5m2
l

ðml − 2El0 Þ4
El0

×

�
20

3
E2
l0 þ 2m2

l

	
: ð3:10Þ

This final energy distribution, obtained after integrating
over cos θl0, is shown in Fig. 5(b) [5(d)] for the tau (muon)
decay, considering the Dirac and Majorana cases, with a
clear difference between both of them, given explicitly by
the following expression:Z

ðdΓD
ννjb2b − dΓM

ννjb2bÞd cos θl0

¼ 2αG2
F

ð4πÞ5m2
l

ðml − 2El0 Þ5
El0

π½ml þ 2El0 �: ð3:11Þ

Therefore, by setting ϕ ¼ 0, it would be possible in
principle to distinguish between Dirac and Majorana nature
of neutrinos measuring the final energy distribution of the
b2b configuration. Then, this could be a really promising
result, motivating its search in current and future experi-
ments, being an attractive alternative process to the one
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studied in [49], due to its larger branching ratio (BR).9

Finally, focusing on this last statement, we would also like
to clarify the estimation process of the BR as done in the
KMS method, which could lead to confusion for the b2b
case. This is done in detail in Appendix C, where we find a
BR for the b2b case of the following order:

BRðl ¼ τÞb2b ¼ ðΓÞb2b=Γτ ≈ 1.68 × 10−10;

BRðl ¼ μÞb2b ¼ ðΓÞb2b=Γμ ≈ 1.34 × 10−10; ð3:12Þ

being too suppressed, as expected for such a specific
kinematic configuration.
In conclusion, once the appropriate treatment of the

phase-space in the b2b configuration is clarified, our
approach remains consistent with all the tests carried out
and allows a clearer interpretation of the results, leading to
the fact that there is no difference produced by the Dirac or
Majorana nature of neutrinos in l → l0νν̄γ, independently
of the neutrino mass, once the inaccessible neutrino
variables are integrated out. Recalling our comments above
Eq. (2.9) and below Eq. (3.3), any difference between these
two cases will be heavily suppressed by squared sterile
neutrino masses and mixings, likely preventing their soon
observation. We remark that we were neglecting possible
neutrino nonstandard interactions. It remains to be studied
how much these can enhance the sensitivity to the neutrino

FIG. 5. Comparison of Dirac and Majorana distributions.

9Unfortunately, if we consider the full angular dependence
(without setting ϕ ¼ 0) as we just discussed, the difference
between Dirac and Majorana cases vanishes once the angular
integration is made, consistently with the result in the last
section.

MÁRQUEZ, PORTILLO-SÁNCHEZ, and ROIG PHYS. REV. D 109, 033005 (2024)

033005-8



nature [60], through BRðl ¼ μ; τÞb2b, while still being
consistent with all other constraints.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the radiative leptonic
lepton-decay l → l0ν̄νγ, in the neutrinos mass basis. We
have developed our own approach, inspired in the method
put forward in [49], extending its application to final-state
neutrinos of different flavor, in order to distinguish between
Dirac and Majorana neutrinos; we have computed its
matrix element for the b2b configuration in the decaying
lepton rest frame for both cases.
Presumably, this b2b kinematic scenario avoids the

constraint imposed by the ‘practical Dirac-Majorana con-
fusion theorem’ (DMCT) [48] leading to striking
differences between the Dirac and Majorana cases, that
are not proportional to tiny neutrino masses. Instead, we
found that there is no difference between Dirac and
Majorana distribution in l → l0ν̄νγ once the inaccessible
neutrino angle is integrated out.
We discussed in detail the angular treatment, with quanti-

tative and qualitative arguments favoring our conclusions.
This turns out to be crucial, since its inaccurate interpretation
could lead to very attractive results, even observable in
current and near future experiments. However, after careful
study, this leads to nodifference betweenDirac andMajorana
energy distributions, for the process under consideration,
remaining consistent with all the tests done.
Finally, we wish to emphasize that the idea proposed

by [49] is very appealing in order to avoid the DMCT.
This fact highlights the necessity to study other types of
decays and specific kinematic scenarios within this
approach, where angular or energy dependencies could
lead to a nonzero difference between the Dirac and
Majorana distributions, hopefully observable in current
or forthcoming experiments.
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APPENDIX A: PHASE SPACE DEFINITION

First of all, in order to avoid confusion, we define
our differential rate notation for the process lðp1Þ →
ν̄ðp2Þνðp3Þl0ðp4Þγðp5Þ. Upon the definition of the

following five independent variables of the system, in
the frame typically used in a four-body decay process
(as can be seen in Fig. [4] of Ref. [49]), we have:

(i) sνν̄ ≡ ðp2 þ p3Þ2 and sl0γ ≡ ðp4 þ p5Þ2, the
invariant masses of the ν − ν̄ and l0 − γ systems,
respectively.

(ii) θν (θl0 ), the polar angle between the three-momen-
tum of ν̄ (l0), in the center-of-momentum frame of
the ν̄ − ν (l0 − γ) pair, and the flight direction of the
ν − ν̄ (l0 − γ) system in the rest frame of l.

(iii) ϕ, the azimuthal angle described between the two
planes defined by the ν − ν̄ and l0 − γ systems, in
the rest frame of l.

We can write the differential decay width as

dΓ
dsνν̄dsl0γd cos θνd cos θl0dϕ

¼ Xβνβl0

ð4πÞ6ml
ffiffiffiffiffiffiffiffiffiffiffiffiffisνν̄sl0γ

p jM̄j2;

ðA1Þ
with

X ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

l; sνν̄; sl0γÞ
q

2ml
; βν ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðsνν̄; m2

ν; m2
ν̄Þ

4sνν̄

s
;

βl0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðsl0γ; m2

l0 ; 0Þ
4sl0γ

s
; ðA2Þ

where X is the magnitude of three-momentum of ν − ν̄ or
l0 − γ system in the rest frame of l, while βν (βl0 ) refers to
the magnitude of three-momentum of the ν (l0) in the
center-of-momentum frame of the νν̄ (l0γ) pair.
It is convenient to rewrite the differential width in terms

of Eν and Eν̄ in order to obtain the energy spectrum of the
neutrinos. Thus, we can do the variables change:

dsνν̄dsl0γd cos θν ¼ −
4ml

ffiffiffiffiffiffi
sνν̄

p
Xβν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

ν −m2
νÞðE2

ν̄ −m2
ν̄Þ

q
× dEνdEν̄d cosΘνν̄; ðA3Þ

where Θνν̄ is the angle between the three-momenta of both
neutrinos, in the rest frame of l. Also, we can obtain the
energy spectrum for the final charged lepton and the photon
with the following change of variables:

dsνν̄dsl0γd cos θl0 ¼ −
4ml

ffiffiffiffiffiffiffisl0γ
p

Xβl0
Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

l0 −m2
l0 Þ

q
× dEl0dEγd cosΘl0γ; ðA4Þ

where Θl0γ is the angle between l0 and γ, in the rest frame
of l.
Finally, neglecting all the final-state masses, as a good

approximation, we get for the neutrinos differential decay
distribution:

DIRAC-MAJORANA NEUTRINOS DISTINCTION IN FOUR-BODY … PHYS. REV. D 109, 033005 (2024)

033005-9



dΓD;M

dEνdEν̄d cosΘνν̄d cos θl0dϕ
¼ 2

mlð4πÞ6
EνEν̄El0

Eγ

1

ϵ

×
X
j;k

jMD;Mj2; ðA5Þ

where ϵ ¼ 1ð2Þ for Dirac (Majorana) neutrinos. Here El0

and Eγ must be written in terms of Eν̄ and Eν, according to
the energy-momentum conservation law. Note also that we
are taking into account all the possible neutrino mass final
states and the sum extends over all energetically allowed
neutrino pairs. The 1=2 factor that appears in the Majorana
case has two different origins. For the k ¼ j case, it is due
to the presence of indistinguishable fermions in the final
state; while for k ≠ j, it arises because of double counting,
since the sum

P
j;k is not restricted to j ≤ k.

Meanwhile, for the differential decay distribution involv-
ing the charged lepton and photon energies we obtain:

dΓD;M

dEl0dEγd cosΘl0γd cos θνdϕ
¼ 2

mlð4πÞ6
EνEl0Eγ

Eν̄

1

ϵ

×
X
j;k

jMD;Mj2; ðA6Þ

where Eν̄ and Eν must be written in terms of El0 and Eγ

according to the energy-momentum conservation law.
These, in principle, are two different spectra and will be
so in any specific kinematic configuration.

APPENDIX B: BACK-TO-BACK
CONFIGURATION

As written above, it is convenient to describe our phase
space variables in the rest frame of the decaying particle to
avoid any confusion. First, we are going to denote p0

i as the
momentum of the i–particle in the corresponding center of
mass frame for the relevant particle pair (ν − ν̄ or l0 − γ)
and pi the corresponding momentum in the rest frame of
the decaying particle. Now, following Fig. 4 of Ref. [49],
both momenta, p0

i and pi, are related by a Lorentz boost in
the ẑ direction. We define our boost in the ẑ direction for the
4-momentum p0

ν and p0̄
ν as follows:

Λμ
ν ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q
0 0 Xffiffiffiffi

sνν̄
p

0 1 0 0

0 0 1 0

Xffiffiffiffi
sνν̄

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q

1
CCCCCCA
: ðB1Þ

For p0
4 and p0

5 we use the Lorentz transformation:

Λ0μ
ν ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q
0 0 − Xffiffiffiffiffiffi

sl0γ
p

0 1 0 0

0 0 1 0

− Xffiffiffiffiffiffi
sl0γ

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q

1
CCCCCCA
; ðB2Þ

where we employ the definition of X, sνν̄ and sl0γ from the
previous appendix. In general, we can write the corre-
sponding 4-momentum in the rest frame of l as follows:

p2 ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q
0 0 Xffiffiffiffi

sνν̄
p

0 1 0 0

0 0 1 0

Xffiffiffiffi
sνν̄

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q

1
CCCCCCA

0
BBB@

ffiffiffiffi
sνν̄

p
2

βν sin θν cosϕ

βν sin θν sinϕ

βν cos θν

1
CCCA

¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffisνν̄þX2
p

2
þ Xffiffiffiffi

sνν̄
p βν cos θν

βν sin θν cosϕ

βν sin θν sinϕ

X
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q
βν cos θν

1
CCCCCCA
; ðB3Þ

p3 ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q
0 0 Xffiffiffiffi

sνν̄
p

0 1 0 0

0 0 1 0

Xffiffiffiffi
sνν̄

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q

1
CCCCCCA

0
BBBBB@

ffiffiffiffi
sνν̄

p
2

−βν sin θν cosϕ
−βν sin θν sinϕ
−βν cos θν

1
CCCCCA

¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffisνν̄þX2
p

2
− Xffiffiffiffi

sνν̄
p βν cos θν

−βν sin θν cosϕ
−βν sin θν sinϕ

X
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sνν̄

q
βν cos θν

1
CCCCCCA
: ðB4Þ

p4 ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q
0 0 − Xffiffiffiffiffiffi

sl0γ
p

0 1 0 0

0 0 1 0

− Xffiffiffiffiffiffi
sl0γ

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q

1
CCCCCCA

0
BBBBB@

ffiffiffiffiffiffi
sl0γ

p
2

βl0 sin θl0

0

−βl0 cos θl0

1
CCCCCA

¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffi
sl0γþX2

p
2

− Xffiffiffiffiffiffi
sl0γ

p βl0 cos θl0

βl0 sin θl0

0

− X
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q
βl0 cos θl0

1
CCCCCCA
; ðB5Þ
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p5 ¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q
0 0 − Xffiffiffiffiffiffi

sl0γ
p

0 1 0 0

0 0 1 0

− Xffiffiffiffiffiffi
sl0γ

p 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q

1
CCCCCCA

0
BBBBB@

ffiffiffiffiffiffi
sl0γ

p
2

−βl0 sin θl0
0

βl0 cos θl0

1
CCCCCA

¼

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffi
sl0γþX2

p
2

þ Xffiffiffiffiffiffi
sl0γ

p βl0 cos θl0

−βl0 sin θl0
0

− X
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

sl0γ

q
βl0 cos θl0

1
CCCCCCA
: ðB6Þ

Finally, we can apply the b2b constraint p⃗2 ¼ −p⃗3 or
equivalently, due to energy momentum conservation,
p⃗4 ¼ −p⃗5. In this kinematic scenario it is easy to show
that X ¼ 0, which is consistent with the fact that, in the b2b
configuration, the boosts in Eqs. (B1) and (B2) are exactly
the identity matrix, i.e., the center of mass frame of the ν − ν̄
and l0 − γ systems coincides with the decaying lepton rest
frame. Then, in the b2b case the three-momentum of the
final-state particles can be written as follows

p⃗2 ¼

0
B@

βν sin θν cosϕ

βν sin θν sinϕ

βν cos θν

1
CA; p⃗3 ¼

0
B@

−βν sin θν cosϕ
−βν sin θν sinϕ
−βν cos θν

1
CA;

ðB7Þ

p⃗4 ¼

0
B@

βl0 sin θl0

0

−βl0 cos θl0

1
CA; p⃗5 ¼

0
B@

−βl0 sin θl0

0

βl0 cos θl0

1
CA: ðB8Þ

Here it is essential to emphasize that the above equations
fulfill the b2b constraint (p⃗2 ¼ −p⃗3 and p⃗4 ¼ −p⃗5) for all
possible values of ðθl0 ; θν;ϕÞ and not only when ϕ ¼ 0.
Thus, we showed cleverly that ϕ ¼ 0 is not a constraint
imposed by the b2b kinematics, as suggested in [49] (see
also [57]), and it needs to be integrated over its full range.
Another important result comes from the definition of the

angle θ that appears in the amplitude, which is the angle
between the neutrino and the charged lepton. From that
definition, it is straightforward to compute its explicit form,
in terms of the angles θl0 ; θν andϕ, for the b2b configuration.
Using the above expressions for the three-momentum in the
b2b case we obtained:

cosθ≡ p̂2 · p̂4 ¼ sinθl0 sinθν cosϕ− cosθν cosθl0 ; ðB9Þ

that shows the specific dependence of θ on θν, θl0 and ϕ.
Other relations resulting from p⃗2 ¼ −p⃗3 and p⃗4 ¼ −p⃗5

(neglecting the mass of the final-state particles) are

sνν ¼ 4E2
ν; sl0γ ¼ ðml − 2EνÞ2;

βl0 ¼
ml

2
− Eν; βν ¼ Eν;

Θνν̄ ¼ π; Θl0γ ¼ π; ðB10Þ

taking E1 ¼ E2 ¼ Eν.
Finally, since in this b2b configuration the p⃗2ð−p⃗3Þ and

p⃗4ð−p⃗5Þ are two independent vectors, they can always
span a plane, i.e. they can always form a basis of a two-
dimensional space. This argument is used in the KMS
method to claim that ϕ ¼ 0. For completeness we work on
this subject below and demonstrate that, even it is certainly
true that these two vectors span a plane, this condition does
not fix ϕ ¼ 0, as we just showed before.

1. How can we describe that plane?

Since in the l rest frame, these vectors start from the
origin of the coordinate system ðx0; y0; z0Þ ¼ ð0; 0; 0Þ, then
the plane spanned by the vectors p⃗2 and p⃗4 is given by the
well-known equation:

ðx; y; zÞ ¼ λp⃗2 þ νp⃗4; ðB11Þ

where λ and ν are just the parameters of the plane-
equation ð−∞ < λ; ν < þ∞Þ.
The following computation can be done in any selected

reference frame, but for this specific discussion we keep
working in the system where θν ¼ π=2 as done in the KMS
method, where the plane equation can be put in the general
form, giving rise to (after a fast simplification):

ðcos θl0 sinϕÞx − ðcos θl0 cosϕÞyþ ðsin θl0 sinϕÞz ¼ 0:

ðB12Þ

Then it is completely clear that the b2b condition is
satisfied for each value of ϕ and the corresponding plane
spanned by the vectors p⃗2 and p⃗4 is given by Eq. (B12).
This reaffirms that ϕ ¼ 0 is not a condition fixed by the b2b
scenario, and instead ϕ remains as an independent variable
that must be integrated over its full range. To illustrate this
plane condition, we show in Fig. 6 various examples with
different ϕ and θν:

(i) Diagram (a): For ϕ ¼ 0 we get y ¼ 0, which means
that the plane is precisely the x–z plane, which is in
agreement with the KMS method, but is not the only
option allowed by the kinematics.

(ii) Diagram (b): For θl0 ¼ π=2 we get z ¼ 0, which
means that the plane is precisely the x − y one, a
configuration completely allowed by the kinematics.

And you can keep going with all the possible configu-
rations, as diagram (c), etc. All of them are in agreement
with the b2b constraints and with the fact that the two final
independent vectors span a plane, checking again that
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ϕ ¼ 0 is just an allowed configuration but not a condition
fixed by the b2b kinematics.

APPENDIX C: BRANCHING RATIO
COMPUTATION

First we will compute the BR of this b2b kinematic
scenario in a way that might seem correct at first glance, but
that—without the right considerations—can lead to erro-
neous conclusions. Finally we will discuss this problem in
detail and the correct way to estimate this observable.
For a first consistency test, the total BRðl → l0νν̄γÞ for

the general kinematic configuration was computed, being

in perfect agreement with those reported by [61], giving us
a corroboration that our procedure was correct.
Now, as a first attempt, onemight be tempted to estimate the

b2b BR by integrating over all the energy and angular con-
figurations of the differential decay rates evaluated in this
kinematic case.Essentially, for the caseϕ ¼ 0, integratingover
the remaining energy dependence of Eqs. (3.9) and (3.10):

BfD;Mg
↔ ≡ 1

Γl

Z
ðdΓD;M

νν jb2bÞdEνdEν̄d cos θl0 : ðC1Þ

Doing this, and cutting off photons below an energy
threshold of 10 MeV in the decaying-lepton rest frame,

FIG. 6. Planes defined from p⃗2 and p⃗4 in the b2b depending on different values of ϕ, θl0 .
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given by the experimental resolution at Belle [62] (achiev-
able at Belle-II [63]),10 we obtain:

BD
↔ðl ¼ τÞ ¼ ΓD

↔=Γτ ≈ 4.3 × 10−4;

BM
↔ðl ¼ τÞ ¼ ΓM

↔=Γτ ≈ 2.4 × 10−4; ðC2Þ

BD
↔ðl ¼ μÞ ¼ ΓD

↔=Γμ ≈ 1.9 × 10−4;

BM
↔ðl ¼ μÞ ¼ ΓM

↔=Γμ ≈ 1.1 × 10−4; ðC3Þ

which, in principle, is a result that could motivate even
more its search and reflect the advantages of this specific
process (l → l0νν̄γ), since we do not have to deal with
hadronic form factors and the computed BR is much larger
than the ones estimated in [49] for B decays (B↔ ≈ 10−12)
and related processes.
Nevertheless, the estimated BRs (C2), (C3) seem

troublesome. First of all, they are different for Dirac and
Majorana cases (because we used the condition ϕ ¼ 0, as
stressed), which disagrees with the DMCT theorem, as we
must integrate over the neutrinos variables to calculate
them. Even so, this can be easily corrected, just considering
the full range of variation of ϕ.
The main problem is quite clear: Since the total

BRðl → l0νν̄γÞ is of the orderOð10−2Þ, it is hard to believe
that a specific kinematic configuration, such as the b2b, is
only two orders of magnitude more suppressed than the
general case. Then, for a complete discussion of this problem
we will comment on the specific reason why this BR esti-
mation is wrong, and also do the right computation for this
case, which can be applied for any other specific kinematic
configuration inwhich one (ormore) of the continuous phase
space variables is(are) fixed to specific value(s).
The width of an N-body decay can be seen as the

hypervolume of the phase space weighted by the dynamic
condition (squared amplitude) of the specific process. This
hypervolume is determined by the specific range of all the
continuous phase space independent variables, which is
specified by the minimum and maximum values they could
take according to energy-momentum conservation. If one
(or more) of these variables take(s) a fixed value in a
specific kinematic configuration, an integration over a zero-
range variable has to be done in order to compute the
theoretical BR, leading to a vanishing contribution for this
specific case.
In other words, once a continuous phase space variable is

fixed, the phase-space hypervolume is reduced to a phase-
space hypersurface, meaning that in that case the purely
theoretical BR estimation will be zero for that configura-
tion. We note this is congruent with the intuitive notion of
obtaining a null probability for a unique configuration
among all the continuous (infinite) possibilities.

This does not mean that the differential decay rate is zero
in that case. Actually, we can compute without further
difficulties any differential distribution as long as the fixed
variables are not integrated. Then, the main problem of
the estimated BR is that we integrated over the already
evaluated differential decay rate, leading to a number
that does not have a probability interpretation, since for
the correct theoretical BR computation, we first need the
differential decay rate for the general case and then to
integrate over all phase-space variables, which range will
be fixed by the specific kinematic scenario and the energy-
momentum conservation.
In particular our notation first introduced in Eqs. (3.1),

was precisely motivated to avoid this possible confusion.
It provides evidence that, once the decay rate is already
evaluated in a specific kinematic scenario, we cannot
integrate over the kinematic variables fixed by the b2b
condition and interpret the result as a probability, specifi-
cally as the BR of the b2b case, that could lead to a larger
value than the real one.
Finally, we know that the experimental resolution is

finite and thus experimentally we cannot have a strictly
fixed variable. Then, it is well defined to estimate a nonzero
BR for the b2b configuration, considering a small range of
variation for the theoretically fixed variables, according to
the experimental resolution.
Then, to estimate the real BR for the experimental b2b

case, without fixing ϕ and using a proper method for this
estimation, we have to do the following: First we integrate
over the remaining neutrino’s variables (θν and ϕ) in
Eq. (A6), which are not fixed by any kinematic condition,
leading to a decay rate that depends only on the electron
and photon energy, together with the angle between them
ð dΓ
dEl0dEγd cosΘl0γ

Þ, in the general kinematic case.

Then, using this differential decay rate, we can apply
the experimental energy and angular resolution11 to inte-
grate over the “pseudo” b2b case, i.e., an infinitesimal
phase-space region that will be indistinguishable from
the theoretical b2b case by the experiment, as shown
in Fig. 7, where the energy of the final charged-lepton
and the photon are equal, up to the energy resolution
(El0 − ΔE ≤ Eγ ≤ El0 þ ΔE), and the angle between them
is π, up to the angular resolution (π − Δθ ≤ θl0γ ≤ π).
Since we are not evaluating the differential decay rate in

a specific kinematic configuration in any moment, we can
safely interpret this result as an occurrence probability.
Furthermore, since the integration region contains the
theoretical b2b case, the corresponding BR obtained after
the integration must therefore be larger than the theoretical
b2b case alone.

10This threshold was 7 MeV at the Crystal Box experiment, in
the search for μ → eγγ [64].

11We use ΔE ¼ 0.01El0 , Δθ ¼ 10 mrad and ΔE ¼ 0.04El0 ,
Δθ ¼ 13 mrad for the muon and tau experimental resolu-
tion respectively, as reported by Mu2e [65] and Belle-II [63]
experiments.
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Doing these, cutting off photons below an energy
threshold of 10 MeV in the decaying-lepton rest frame,
we estimate the following BR for the experimental b2b
case as follows:

ðΓÞb2b ¼
Z

Emax
l0

Emin
l0

Z
El0þΔE

El0−ΔE

Z
π

π−Δθ

dΓ
dEl0dEγd cosΘl0γ

× dEl0dEγd cosΘl0γ; ðC4Þ

getting the results:

BRðl ¼ τÞb2b ¼ ðΓÞb2b=Γτ ≈ 1.68 × 10−10;

BRðl ¼ μÞb2b ¼ ðΓÞb2b=Γμ ≈ 1.34 × 10−10: ðC5Þ

As we can see, these branching ratios are many orders of
magnitude smaller than the ones obtained, using the KMS
method, in (C2) and (C3). Also, the BR calculated is the
same for Dirac and Majorana neutrinos, in agreement with
the DMCT theorem, being all consistent with our previous
discussions.
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