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We discuss the self-consistency imposed by the analyticity of regular parts of form factors, appearing in
the z expansion for semileptonic B-meson decays, when fitted in different kinematic regions. Relying on
the uniqueness of functions defined by analytic continuation, we propose four metrics which measure the
departure from the ideal analytic self-consistency. We illustrate the process using Belle data for B → Dlνl
with the two kinematic regions chosen as the five low-z and the five high-z bins. For this specific example,
the metrics provide consistent indications that some choices (order of truncation, Boyd-Grinstein-Lebed or
Bourrely-Caprini-Lellouch) made in the form of the z expansion can be optimized. However, other choices
(z origin, location of isolated poles and threshold constraints) appear to have very little effect on these
metrics. On the other hand, changing the kinetic regions affects the results and should also be considered in
the optimization process. We briefly discuss the implication for optimization of the z expansion for nucleon
form factors relevant for neutrino oscillation experiments.
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I. INTRODUCTION

Experimental differential decay rates for exclusive
semileptonic decays of B mesons [1–9], combined with
ab initio lattice QCD calculations of the hadronic form
factors [10–24] provide reliable numerical estimations of
the Cabibbo-Kobayashi-Maskawa matrix elements jVubj
and jVcbj. Accurate lattice calculations are only possible for
a large enough invariant square of the 4-momentum of the
leptons, denoted q2, or more specifically when the recoil
energy of the final state meson is significantly smaller than
the inverse lattice spacing. In order to predict the shape of
the differential decay rate over the entire kinematic range
from reliable lattice results in the high-q2 region, an
analytic continuation method developed in the context of
kaon decays [25,26] has been adapted for B-meson decays
by Boyd, Grinstein, and Lebed (BGL) [27] and Bourrely,
Caprini, and Lellouch (BCL) [28]. The method is often
called the z expansion. The basic idea is to map the branch
cut in the complex q2 plane onto the boundary of the unit
disk in z with the rest of the cut complex q2 plane being
mapped into the interior of the disk. The goal is to find
parametrizations of the form factors for specific processes
where the effects of thresholds and isolated poles can to
some extent be separated from a smooth behavior in the

kinematic range. Ideally, after the mapping, the kinematic
range becomes a small interval near the origin and a few
terms in the Taylor expansion provide reliable results.
General strategies for combining the lattice and experi-
mental data are discussed in Ref. [11].
The extrapolation of lattice results with computationally

accessible q2 to the full kinematic range relevant for
experimental analysis has been performed for various
decay modes and by various collaborations [10–24].
Specific choices will be reviewed below. In general, the
agreement with the overall shape of the experimental
differential decay rate provides a strong guidance to select
reasonable procedures. If one assumes the standard model
is correct then an ab initio calculation in the full kinematic
range should reproduce the shape of the experimental data.
Under this assumption, the only unknown quantity is Vcb, a
Cabibbo-Kobayashi-Maskawa matrix element. The z
expansion being a compact and model-independent method
is very important to summarize the experimental results,
especially as it does not depend on the binning procedure.
Recent experiments provide fits of their data using the z
expansion. This amounts to continuous functions that allow
comparisons among experiments with different binnings.
For semileptonic decays of B mesons involving tree-level
virtualW� bosons, the form factor can be expressed in term
of analytic functions in the entire kinematic interval. An
important implication is that a (perfect) knowledge of the
analytic function in any open set in the complex q2 plane
uniquely determines the function in the whole interval
provided that no singularities or cuts prevent the analytical
continuation [29].
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In this article, we discuss the self-consistency imposed
by analyticity on regular parts of form factors when fitted in
different kinematic regions. In Sec. II, we review the BGL
and BCL parametrizations. In Sec. III, we consider existing
goodness of fit measures (χ2 and the Akaike information
criterion (AIC)] and define four dimensionless metrics
which measure the departure from ideal analytic self-
consistency. These metrics are “cost functions” for which
a large value indicates an inconsistent parametrization
conflicting with the assumed analyticity as defined math-
ematically in [29]. We illustrate the idea by calculating
these four metrics for B → Dlνl using partial decay widths
provided by the Belle Collaboration [6] with the two
kinematic regions chosen as the five low-z and the five
high-z bins. The numerical results are analyzed in Sec. IV
where we discuss the possibility of discriminating among a
certain number of choices (order of truncation, BGL
or BCL, z origin, and threshold constraints) made in the
z expansion. In Appendix D, we repeat the calculations
with the two kinematic regions chosen as the six low-z
and the four high-z bins. The results are summarized in the
conclusions where we also comment on new methods
of determining the order of truncation of the z expansion
[24,30]. We also briefly mention possible applications for
optimization of lattice nucleon form factors reviewed
in [31] and relevant for neutrino experiments such
as DUNE.

II. BGL AND BCL PARAMETRIZATIONS

In the following, we focus on different parametrizations
of the form factor that describe the decays B0 → D−lþνl
and Bþ → D0lþνl, with l ¼ fe; μg. In the isospin
limit, these processes can be described by a differential
decay rate that depends on the hadronic recoil variable
w≡ ðm2

B þm2
D − q2Þ=ð2mBmDÞ [6],
dΓ
dw

¼ Kðw2 − 1Þ3=2fþðwÞ2; ð1Þ

with

K ¼ G2
Fm

3
D

48π3
jVcbj2ðmB þmDÞ2

4r
ð1þ rÞ2 η

2
EW; ð2Þ

whereGF is the Fermi coupling constant,mB andmD are the
masses of the B and D mesons, respectively, r ¼ mD=mB,
and ηEW represents the electroweak corrections.
The two parametrizations of the vector form factor

fþðwÞ that we investigate are the BGL and BCL para-
metrizations. Both parametrizations use the z expansion
which takes the real kinematic range and embeds it into a
complex domain, where the process of analytical continu-
ation defines a unique regular (analytic and single-valued)
function. The mapping variable is zðq2; t0Þ, where

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð3Þ

q2 is the momentum transfer, q2 ¼ m2
B þm2

D − 2wmBmD,
and tþ ¼ ðmB þmDÞ2. This change of coordinates maps
the cut complex q2 plane onto the unit disk. At threshold,
q2 ¼ tþ and z ¼ −1. The cut is mapped into the boundary
of the disk. The variable t0 determines where the z
expansion is centered about. We consider two t0 values
t0 ¼ topt ¼ ðmB þmDÞð ffiffiffiffiffiffiffi

mB
p − ffiffiffiffiffiffiffi

mD
p Þ2 and t0 ¼ t− ¼

ðmB −mDÞ2. The choice of t0 should not appreciably
affect the z expansion fit results, but it can be used to
adjust the systematic uncertainties. Following the original
authors, t0 ¼ topt is used with BCL [28] and t0 ¼ t− is used
with BGL [27]. The choice t0 ¼ topt puts z in the range
z∈ ½−0.0323; 0.0323�, and the choice t0 ¼ t− puts z in the
range z∈ ½0.0; 0.0646�.
We define the BGL parametrization as fþ;BGL, with the

explicit form used for a lattice calculation [16] and the
analysis of the Belle data [6], both for B → Dlνl,

fþ;BGLðzÞ≡ 1

ϕþðzÞ
XN
n¼0

aþ;nzn; ð4Þ

with

ϕþðzÞ ¼ 1.1213ð1þ zÞ2ð1 − zÞ1=2
× ½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r

p ð1þ zÞ�−5: ð5Þ

The outer function, ϕþðzÞ, is to some extent arbitrary but
must be analytic and nonzero for jzj < 1 in order to enforce
the unitarity condition on aþ;n [6,27]. We then define the
BCL parametrization as fþ;BCL, with the explicit form used
for a lattice calculation [12] B → πlνl but with m2

B�

replaced by m2
B�
c
,

fþ;BCLðzÞ≡ 1

1 − q2ðzÞ=m2
B�
c

XK−1
k¼0

bþ;k

�
zk − ð−1Þk−K k

K
zK

�
:

ð6Þ

One difference between the BGL and BCL parametriza-
tions is the use of the threshold condition discussed in
Appendix C. Here, BGL does not use the threshold
condition, while BCL does use it. The free parameters
aþ;n and bþ;n are fitted by using least square fitting
methods [32] and must satisfy the following unitarity
conditions [27]:

XN
n¼0

jaþ;nj2 ≤ 1; ð7Þ
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and [12,28]

XK
j;k¼0

Bjkbþ;jbþ;k ≤ 1: ð8Þ

We have checked that the inequalities are satisfied [33]. For
fþ;BGL we consider N ¼ 0, 1, 2 and for fþ;BCL we consider
K ¼ 1, 2, 3. It is important to note that N is not the number
of parameters whileK is, so to avoid confusion, the number
of parameters used in the fit will be denoted np for both
parametrizations, where np ¼ N þ 1 and np ¼ K. The zK

term that is attached to every bþ;k comes from the threshold
condition which will be discussed in more detail in
Appendix C.
The BGL parametrization sometimes includes a

Blaschke factor PþðzÞ as well, which contains the infor-
mation about the pole at q2� ≡m2

B�
c
¼ 40.02 GeV2.

However, it has been shown that the Blaschke factor does
not appreciably affect the z fit for the BGL analysis of
B → Dlνl due to the pole being very far away from the
kinematical region [16]. For this reason the Blaschke factor
has been set to 1 in [6,16] and our definition in Eq. (4)
follows this choice, while BCL replaces the commonly
used outer function and Blaschke factor with a prefactor
that has a pole at the same location as the Blaschke factor.
The pole q2� corresponds to zðq2�; t−Þ ¼ −0.308 and
zðq2�; toptÞ ¼ −0.337. The construction of the Bjk matrix
can be found in [28], and we calculate the values B00, B01,
B02, and B03 for B → Dlνl and display them in Table I.
The remaining Bmn values can be calculated using the
following relations [28]:

BjðjþkÞ ¼ B0k; ð9Þ

and

Bjk ¼ Bkj: ð10Þ

As discussed above, the outer functions are to some
extent arbitrary so long as they are analytic and nonzero in
the z range that we are interested in. In addition, the
Blaschke factor is sometimes set equal to 1 [6,16] because
the poles appear to be sufficiently far away from the
semileptonic kinematic region. It is then interesting to
investigate the parametrizations of Eqs. (4) and (6) with
their prefactors set equal to 1. To differentiate the form
factors when there are no prefactors, we denote Eq. (4) with

no prefactors as fþ;NN and we denote Eq. (6) with no
prefactors as fþ;NT, where NN stands for no prefactor
and no threshold, while NT stands for no prefactor with
threshold. The explicit forms of fþ;NN and fþ;NT can be
found below,

fþ;NNðzÞ ¼
XN
n¼0

aþ;nzn; ð11Þ

and

fþ;NTðzÞ ¼
XN−1

n¼0

bþ;n

�
zn − ð−1Þn−N n

N
zN

�
; ð12Þ

where NN uses t0 ¼ t− and NT uses t0 ¼ topt.

III. NEW METRICS AND RESULTS

In this section, we consider several tests that compare the
goodness of fit for the Belle data with various parametri-
zations and introduce new metrics to compare the self-
consistency of these parametrizations.

A. χ 2 test

We use the LsqFit Python library [32] to perform the fits of
the different models with the Belle data, and the resulting fit
parameters can be found in Appendix A. The LsqFit library
also provides the χ2 and reduced-χ2, χ2ν, and these values
are provided for BGL, BCL, NN, and NT with one, two,
and three parameters, denoted 1p, 2p, and 3p, respectively,
in Table II. We also provided the p-values which take into
account the number of fitting parameters.
It is clear that the 2p and 3p cases have very significantly

lower χ2 and χ2ν then the 1p case. However it is less clear
that the χ2, χ2ν, and p-values provide significant discrimi-
nation between 2p and 3p for a given model or discrimi-
nation among the different models. For a given model, the
χ2ν of the 2p are typically 5%–10% smaller than for the 3p
and the p-values typically 10% larger for 2p. However, the
difference of theses quantities among the 2p are smaller.
Note also that all the 3p fits are very close to each other and
have the same χ2 with three significant digits.
To further investigate the differences between the form

factors using BGL and BCL with 2p and 3p and give an
idea of the role played by the quadratic terms (curvature),
we set the form factor with BCL 3p as a reference and
calculate the relative deviation with other parametrizations
options. The results can be found in Fig. 1. We see that the
differences between BCL 3p and BGL 3p are an order
of magnitude smaller than the differences for either of the
2p cases, which also helps explain why the global metrics
had identical values for BGL and BCL with 3p.
It is also possible to estimate the role of the curvature

considering the value of the quadratic term for the largest

TABLE I. The matrix elements Bjk which are used in the BCL
unitarity condition for np ¼ 1, 2, 3.

B00 B01 B02 B03

0.0118 −0.0028 −0.0069 0.0038
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value of z in units of the constant term. It amounts to 2% in
the BGL case and 1% in the BCL case. The difference
between the 2p and 3p series can be obtained from data
presented in Appendix A: 0.0001 − 0.0056zþ 0.07z2 for
BGL and 0.002þ 0.13z − 8z2 for BCL. In order to allow
meaningful comparison, we can divide these difference
of series by the zeroth-order coefficient for 3p and
obtain 0.00801282 − 0.448718zþ 5.60897z2 for BGL
and 0.00258065þ 0.167742z − 10.3226z2 for BCL. For
the largest values of z, the three orders contribute, respec-
tively, in absolute value as (0.00801282, 0.0289872,
0.0234071) for BGL and (0.00258065, 0.00541806,
0.0107694) for BCL. As these numbers represent relative
changes due to the curvature, it is clear that the effects are
small for BGL and even smaller for BCL.

B. Akaike information criterion

A test that enables quantitative comparisons between
models with differing numbers of parameters that are not
rigorously possibly without Bayesian techniques is the

AIC. The AIC value is defined like an augmented χ2 value,
where the augment is adding a 2np term [34,35],

AIC ¼ 2np þ χ2: ð13Þ

The inclusion of a penalty which is linear in np is used to
discourage overfitting, and the factor 2 in front of np is
discussed in [36]. Therefore, the preferred model will be
the model that has the lowest AIC value. Changes in the
AIC values ΔAIC when the number of degrees of freedom
ν is changed by Δν can be considered significant if
jΔAICj=AICj > jΔνj=ν [37].
These AIC values are displayed in Table II. The 2np term

for 1p will not compensate for the drastically larger χ2 value
compared to the 2p and 3p fits, clearly showing that 1p is not
descriptive enough. The AIC values in Table II show that
all the 2p cases satisfy the inequality regarding ν, which
indicates that the 2p case is preferred over the 3p case.
However, the AIC values between BGL and BCL for the
same number of parameters is still too close to determine
anything significant about which of the models does a better
job of fitting the Belle data. We proceed to define our own
metrics to find one that is able to distinguish between the
different parametrization options that we consider.

C. Self-consistency metrics

In the form factor expressions, the polynomials in z
are approximations of analytic functions in the kinematic
range. The absence of singularities or cuts in that range
implies that the exact knowledge of the function in an open
region can uniquely determine the function in another
region. This can be achieved by analytic continuation [29].
In the current context, if an analytic function is defined on
an open segment of the real z axis corresponding to the
kinematic range and if we partition this segment in a region

TABLE II. The χ2, χ2ν , AIC, C0, C1,D1, andD2 values calculated from the fits performed on the differential decay width data with the
BGL, BCL, NN, and NT parametrizations with 1p, 2p, and 3p. The p-values are also calculated using BGL and BCL with 1p, 2p, and 3p
for the 5L5H partition.

χ2 χ2ν p-value AIC C0 C1 D1 D2

BGL 1p 99 11 2.5 × 10−17 101 15.76 39.44 41.85 10.95
BGL 2p 4.56 0.57 0.803 8.56 1.18 5.16 5.78 4.76
BGL 3p 4.55 0.65 0.715 10.55 17.56 91.76 104.64 117.68

BCL 1p 33.3 3.7 0.0001 35.3 3.37 7.63 8.02 1.90
BCL 2p 4.64 0.58 0.795 8.64 0.63 2.72 3.00 1.74
BCL 3p 4.55 0.65 0.715 10.55 15.23 78.96 89.85 100.37

NN 1p 135 15 1.1 × 10−24 137 24.50 64.26 68.54 19.02
NN 2p 4.88 0.61 0.770 8.88 1.85 7.82 8.88 8.21
NN 3p 4.55 0.65 0.715 10.55 19.10 100.16 115.43 126.79

NT 1p 135 15 1.1 × 10−24 137 24.50 64.31 68.54 19.02
NT 2p 5.04 0.63 0.753 9.04 2.11 8.83 10.03 9.55
NT 3p 4.55 0.65 0.715 10.55 19.81 104.04 119.70 131.76

FIG. 1. The relative deviation of our reference form factor
parametrization BCL 3p with the other parametrization options,
plotted as a function of q2.

SIMONS, GUSTAFSON, and MEURICE PHYS. REV. D 109, 033003 (2024)

033003-4



H corresponding to a high-z (or equivalently high-w or
low-q2) part and the complementary region L in the low-z
region, it is then clear that ideally the perfect knowledge of
the function inH uniquely determines the function inL and
vice versa.
In practice, if we use experimental data, we know the

function at a finite number of points with a limited
accuracy. It is expected that, if we obtain a polynomial
approximation in H using the data in H, we call fhighþ ðzÞ
and extend this polynomial to L, and if we obtain flowþ ðzÞ
by swapping the roles of H and L, then the discrepancy

ΔfðzÞ≡ fhighþ ðzÞ − flowþ ðzÞ ð14Þ

is nonzero and provides a measure of the inconsistency of
the continuations due to imperfect knowledge of the
function in addition to the uncertainty in the data.
A rough global measure of the inconsistency of a specific

method used to obtain the polynomial approximation could
be the L2 norm of ΔfðzÞ. This quantity depends on the
units of the form factor and the range of z in the integral.
For a decent approximation, one would expect that
ðΔfðzÞÞ2 would be of the order of the average experimental
variance σ̄2exp and we could expect to get a quantity of order
one by dividing by the length of the z interval and the
average experimental variance σ̄2exp ¼ 0.00199. For these
reasons we start with the dimensionless quantity

C0 ≡ 1

σ̄2expjzmax − zminj
Z

zmax

zmin

ðΔfðzÞÞ2dz: ð15Þ

A more refined metric denoted C1 can be obtained by
weighting locally with the inverse local variance σ2expðzÞ
obtained from the experimental data by interpolating
with LsqFit,

C1 ≡ 1

jzmax − zminj
Z

zmax

zmin

ðΔfðzÞÞ2
σ2expðzÞ

dz: ð16Þ

When the experimental form factors are provided as
binned data with nb bins, we can define a discrete version of
C1 as

D1 ¼
1

nbin

Xnbin
i¼1

�
Δfi
σi

�
2

; ð17Þ

with Δfi ¼ ΔfðziÞ, zi being in the middle of the ith bin.
This can be calculated in a straightforward way without the
need of interpolations. If the bins are narrow enough, we
expect thatD1 ≃ C1. The general form ofD1 is reminiscent
of a χ square, however, σ2i is not the variance of Δfi.
Given that the experimental binned data may involve

significant correlations among the bins, we can pursue the
analogy and generalize D1 to

D2 ¼
1

nbin

Xnbin
i;j¼1

ΔfiC−1ij Δfj; ð18Þ

with Cij the covariance matrix of the binned data for the
form factor.
The covariance matrix Cij is calculated using sampled

bootstrap form factor data points. Using the GVAR Python

library [38], we generated M ¼ 104 bootstrap differential
decay width datasets generated from the Belle data using
the underlying covariance matrix. Then using Eqs. (1)
and (2), we converted the generated differential decay
width data into data describing the form factor, with fi

being the set of random form factor data in the ith bin.
Finally, we calculated Cij using

Cij ¼
1

M

XM
m¼1

�
fim − f̄i

��
fjm − f̄j

�
; ð19Þ

where fim is the mth data point in the ith bin and f̄i is the
mean of the data in the ith bin. And the σ2i from Eq. (19) is
the diagonal entries of the covariance matrix, σ2i ¼ Cii.
The Belle data have nbin ¼ 10 bins, and we split the data

in half between the L andH regions. We denote this choice
5L5H. In Appendix D, we consider a six low-z four high-z
division denoted 6L4H.We then fit the free parameters aþ;n

and bþ;n to the L region data and the H region data
separately. If we had perfect knowledge of fþ in the L
region we could reconstruct it in the H region and vice
versa. An example of this is shown for BGL with 2p in
Fig. 2 and for BCL with 2p in Fig. 3.
We carry out this method for BGL and BCL with 2p and

3p, use the resulting parameters to plot the form factorfþðzÞ,
and convert the Belle data from differential decay width
data to form factor data and include it in Figs. 4 and 5.
Both BGL and BCL have more overlap between the fits for
2p than for 3p. In the 3p fits case, the error band is very small

FIG. 2. The results of our fits using the BGL parametrization.
The orange line is the mean value of our fit and the lighter orange
region is the 1-σ error band, the black triangles are the Belle data
with error bars, and the dashed arrow indicates whether region L
(left) or region H (right) was used in the fit.
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in the H region and the error band increases in size as it
moves into theL region, but theL fit has large error bands in
both the L and H regions.
Now using the results of the fits for every parametriza-

tion with 1p, 2p, and 3p, we are able to calculate the
discrete and continuous metrics. The values of C0 and C1

that we calculate are listed in Table II for all parametriza-
tions with 1p, 2p, and 3p, and D1 and D2 are similarly
shown in Table II.

Since ΔfðzÞ reflects the discrepancy between fits and
extrapolations, the most self-consistent model is the one
with the lowest values of C0, C1, D1, and D2. We see that
the 2p values are all considerably lower than the corre-
sponding 1p or 3p values and are clearly preferred, which
agrees with what we obtained with the AIC metrics. We
define the mean values of the C0, C1, D1, and D2 for only
the 2p models as C̄2p

0 ¼ 1.443, C̄2p
1 ¼ 6.133, D̄2p

1 ¼ 6.923,
and D̄2p

2 ¼ 6.065. Comparing the C0, C1, and D1 values
from the 2p models with these mean values, the values from
the BCL parametrization lie 55%–56% below the mean
values, the values from the BGL parametrization lie
15%–18% below, the values from the NN parametrization
lie 27%–28% above the mean values, and the values from
the NT parametrization lie 43%–46% above the mean
values. For the D2 values from the 2p models, BCL lies
71% below the mean value, BGL lies 21% below the mean
value, NN lies 35% above the mean value, and NT lies 57%
above the mean value. For each metric with 2p compared
to the mean values with 2p, the BCL parametrization is
significantly lower than the mean and appears to be the
most self-consistent from the point of view of analyticity.
We have also considered the effects of relaxing

the threshold condition in BCL in C and changing the
values of t0, namely, using topt for BGL or t− for BCL in
Appendix B. The tables make clear that these choices affect
the metrics by at most a few percent and are essentially
irrelevant.

IV. ANALYSIS OF SELF-CONSISTENCYMETRICS

In this section, we discuss the relations among the new
metrics. First we will compare different metrics for a given
parametrization and then we will compare the same metric
but for different parametrizations.

A. Comparing the metrics for a given parametrization

The first comparison that we make is betweenC1 andC0.
The ratios C1=C0 can be found in Table III. The values in
the 2p row are consistent within ∼3% of each other, and the
values in the 3p row are within ≲1% of each other. In other
words, the two metrics are proportional, with a proportion-
ality constant which depends mostly on the number of
parameters used in the fit. Note that the absolute normali-
zation of C0 or C1 is not important. From the standard
deviations in the binned data [6], we have

1

nbin

Xnbin
i¼1

1

σ2i
≃

2.81	
1

nbin

Pnbin
i¼1 σi



2
; ð20Þ

which partially explains that C1 is larger than C0. We next
look at D1=C1. Since D1 is a discrete version of C1, we
expect relative differences of the order of 1=nbin ¼ 0.1. We
see that this is the case in Table IV.

FIG. 3. Same as Fig. 2 but for the BCL parametrization.

FIG. 4. Plots of the form factor fþðzÞ vs z using the results of
our fits from regions L and H for the 5L5H partition. The results
of our BGL fit with 2p (left), the results of our BCL fit with 2p
(right). The blue region indicates the fit from region H and the
green region indicates the fit from region L. In both cases, the
solid lines are for the z values used in the fit region and the dashed
lines are for the z values used in the extrapolated region.

FIG. 5. Same as Fig. 4 but for 3p.
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In summary, we found that the three metrics C0, C1, and
D1 provide consistent estimates of the departure from
analyticity. For instance, we could just consider D1, which
is easier to calculate from experimental binned data. So far,
we have ignored correlations among the bins. Table II of
Ref. [6] shows that these correlations are significant, which
motivated the introduction of D2. The ratios D2=D1 are
provided in Table V. We see that for 2p the ratios have a
stronger dependence on the parametrization which ampli-
fies the discrimination (a lower D1 means an even lower
D2). On the other hand, for the suboptimal choice 3p, the
ratio is about 1.1 in the four cases and D2 does not provide
new information.
The values in the 3p row are consistent within ≲1%

of the other values in the 3p row, however, we see that
the D2=D1 ratio for 2p is smaller for BCL than it is for
BGL, NN, or NT by roughly 43%. It is great that these
comparisons show consistency, and they show that the D2

metric provides the most information to discriminate
between the parametrizations.

B. Comparing the same metric
for different parametrizations

Since the NN and NT parametrizations are not ever
mentioned in the literature, at this point we ignore them and
focus again on BGL and BCL as they were shown to be
preferred over NN or NT by every metric we considered.
Now comparing the same metric between the BGL and
BCL parametrizations, the ratios Ci;BCL=Ci;BGL for i ¼ 0, 1
are given in Table VI and Dj;BCL=Dj;BGL for j ¼ 1, 2 in

Table VII. For this, we recalculated the BGL parametriza-
tion with t0 ¼ topt and the BCL parametrization with
t0 ¼ t−, in order to have the z expansion consistent when
comparing different parametrizations.
It is important is observe that the values in Tables VI

and VII for the 3p rows are all consistent within ≲1%
of the other values in the 3p rows. It is also important to see
that the values in the 2p rows are very similar for
C0;BCL=C0;BGL, C1;BCL=C1;BGL, and D1;BCL=D1;BGL, how-
ever, there is a decrease of roughly 36% in the 2p values
for D2;BCL=D2;BGL. This shows the consistency of our
defined metrics and shows that C0, C1, and D1 offer a
similar amount of information compared to D2, which
possibly contains more information about the fits because
it is the only metric to differ in these categories when
compared.

V. CONCLUSION

In conclusion, we investigated the BGL and BCL para-
metrizations of the form factor used in the differential decay
rate of B → Dlνl. With the experimental binned data
collected by the Belle Collaboration [6], we found that the
standard χ2 and χ2ν do not provide us with enough
information to distinguish between BGL vs BCL or 2p
vs 3p. The AIC clearly favors 2p over 1p or 3p but the
differences between BGL and BCL are too small to be
meaningful.
We introduced four metrics or cost functions (C0, C1,

D1, and D2) that measure the discrepancy between fits and
extrapolations of the regular parts of form factors in the
high and low parts of the kinematic range. Given the
analyticity of these regular parts, a perfect fit in one region
would provide a unique and perfect analytical continuation
in the other region and vice versa. The first metric (C0) is a
dimensionless L2 norm of the discrepancy. C1 is a locally

TABLE III. The ratio of C1 to C0 calculated with BGL, BCL,
NN, and NT for 2p and 3p for the 5L5H partition.

C1;BGL=C0;BGL C1;BCL=C0;BCL C1;NN=C0;NN C1;NT=C0;NT

2p 4.373 4.318 4.227 4.185
3p 5.226 5.185 5.244 5.252

TABLE IV. The ratio of D1 to C1 calculated with BGL, BCL,
NN, and NT for 2p and 3p for the 5L5H partition.

D1;BGL=C1;BGL D1;BCL=C1;BCL D1;NN=C1;NN D1;NT=C1;NT

2p 1.120 1.103 1.136 1.136
3p 1.140 1.138 1.154 1.151

TABLE V. The ratio of D2 to D1 calculated with BGL, BCL,
NN, and NT for 2p and 3p for the 5L5H partition.

D2;BGL=D1;BGL D2;BCL=D1;BCL D2;NN=D1;NN D2;NT=D1;NT

2p 0.824 0.580 0.925 0.952
3p 1.125 1.117 1.098 1.101

TABLE VI. The ratio of Ci;BCL to Ci;BGL calculated for both 2p
and 3p with both choices of t0 for the 5L5H partition.

C0;BCL=C0;BGL C1;BCL=C1;BGL

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

2p 0.536 0.545 0.523 0.532
3p 0.862 0.866 0.855 0.860

TABLE VII. The ratio of Dj;BCL to Dj;BGL calculated for both
2p and 3p with both choices of t0 for the 5L5H partition.

D1;BCL=D1;BGL D2;BCL=D2;BGL

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

2p 0.515 0.524 0.360 0.370
3p 0.854 0.859 0.849 0.854
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weighted version of C0 that favors the kinematic regions
with smaller experimental uncertainties. D1 is a discretized
version of C1 which can be implemented directly from the
experimental binned data. D2 is an extension of D1 that
incorporates the correlations among the bins. In view of the
significant bin correlations [6], D2 should be a better
measure than D1. C0, C1, and D1 provide very similar
and consistent discriminations, while D2 somehow ampli-
fies the discriminations for 2p.
All the new metrics strongly favor 2p over 3p. A possible

interpretation is that the experimental uncertainties prevent
an accurate determination of the quadratic corrections and
that one partially extrapolates the experimental noise which
is not an analytical function of z. This is consistent with the
large uncertainties on the quadratic coefficients already
found for global fits as displayed in Appendix A.
All the metrics favor 2p over 1p. Except for D2 in BCL,

the new metrics are significantly larger for 1p. This is
clearly consistent with the very low p-values for the 1p
global fits provided in Table II, which implies that
corrections to the constant approximation are significant
and result in significantly different constant approximations
in the high- and low-z regions. Note that for BCL it appears
that 1p is a better approximation than 1p for the other
parametrizations.
Focusing on the 2p results, we find a finer resolution

among parametrizations. For all the new metrics, we
observe smaller values for BCL than for the other para-
metrizations. In addition, BGL does better than no pre-
factor. It is possible that, in the case considered here, the
BCL prefactor captures the features of the actual form
factor in a slightly better way. This is hinted at by the fact
that a constant approximation has a significantly smaller χ2

for BCL. This observation may be anecdotal and study of
other cases should shed more light on the question. We also
found that other choices, such as the value of t0 or the
imposition of a threshold condition, have a marginal impact
on the values of the new metrics.
Given that the experimental data came in ten w bins, we

found it natural to split the interval into 5L5H values to
investigate the self-consistency. However, the size of the
error bars on the form factors are typically larger for low w
which motivated a comparison with the case of splitting the
Belle data into the 6L4H w values. The metrics are given in
Appendix D. Some of the features are very similar. The new
metrics strongly favor 2p over 3p and 1p. The D2 metric
differs from the original analysis of the 5L5H dataset split,
which showed the BCL 1p and 2p as being too close to
favor one over the other. We also see the finest resolution in
the 2p results among all the parametrizations. In the 6L4H
case, we find the smallest values with the BGL para-
metrization which is unlike the 5L5H case, which saw the

smallest values with the BCL parametrization. In the 6L4H
case, we find that the four new metrics are in most cases
significantly lower than in the 5L5H case, implying lower
discrepancies between the low-w data and the high-w data
with this other subdivision.
It should be emphasized that all the metrics measure

discrepancies among fits and not closeness to data. It might
be possible to include them in augmented χ2 [34,35],
however, determining the coefficient in front of the metric
is a nontrivial task. It should also be noted that very
recently, Bayesian inference methods have been used to
deal with the truncation question [24] and applied to
Bs → Klνl [23]. These methods consider higher-order
expansions and provide results in agreement with other
calculations based on unitarity [30]. It would be very
interesting to repeat our analysis using this Bayesian
inference procedure for the two sets of bins considered
here separately and compare alternative higher-order
expansions with our metrics.
So far our calculations of the metrics have been limited

to one set of experimental data [6] for B → Dlνl and it is
premature to draw general conclusions. Applying the
method to other processes involving the z expansion should
help identify more general properties. The z expansion has
also been used extensively in the study of nucleon form
factors. Various neutrino-deuteron scattering experiments
have been combined to extract the z expansion of the
isovector axial nucleon form factor from experiment [39].
The z expansion has also been used to parametrize lattice
calculations of the same quantity, see for instance [40–48]
and more references in a recent review article [31].
These parametrizations have been used to incorporate
nucleon effects in the calculations of neutrino-nucleus
cross section [49]. The method that we proposed can be
applied to nucleon form factors as long as one can perform
new fits in distinct kinematic regions. This is feasible for
binned data, but if extrapolation procedures are involved,
such as the continuum limit in lattice calculations, all the
details of the existing procedure need to be repeated in
kinematic subregions.

ACKNOWLEDGMENTS

This research was supported in part by the U.S.
Department of Energy (DOE) under Award No. DE-
SC0010113. We thank R. Van de Water for emphasizing
the need for a metric involving covariances and for com-
ments on the presentation. We thank M. Wagman for
comments on the AIC criterion and for comments on the
manuscript. We thank A. Kronfeld and F. Herren for
valuable discussions and A. Juttner and O. Witzel for
pointing out recent references.

SIMONS, GUSTAFSON, and MEURICE PHYS. REV. D 109, 033003 (2024)

033003-8



APPENDIX A: OUR CALCULATED FIT PARAMETERS

For completeness, we list the fit parameters that were the result of our fits to the Belle data. For 1p, 2p, and 3p, we show
the BGL and BCL fit parameters in Table VIII and the NN and NT parameters in Table X. We also provide the ratios of the
fit parameters for BGL and BCL in Table IX and for NN and NT in Table XI. Finally, we provide the parameters for BGL,
BCL, NN, and NT using the L and H fits in Tables XII–XV. For BGL and BCL, one can see that, for 1p, the fits in the H
region are closer to the global fits; for 2p, the fits in theH and L regions are more consistent with each other and the global
fits; for 3p, slightly larger variations are observed but the global fits are somehow averages of the H and L fits.

TABLE VIII. The aþ;n and bþ;n values that came from the global fit of BGL and BCL.

BGL BCL

aþ;0 aþ;1 aþ;2 bþ;0 bþ;1 bþ;2

1p 0.00804(19) � � � � � � 0.703(16) � � � � � �
2p 0.01238(41) −0.0654ð58Þ � � � 0.773(19) −2.41ð42Þ � � �
3p 0.01248(67) −0.071ð31Þ 0.07(37) 0.775(20) −2.28ð64Þ −8ð28Þ

TABLE IX. The ratios aþ;nþ1=aþ;n and bþ;nþ1; bþ;n using the central values of the parameters from Table VIII.

BGL BCL

aþ;1=aþ;0 aþ;2=aþ;1 bþ;1=bþ;0 bþ;2=bþ;1

2p −5.281 � � � −3.112 � � �
3p −5.710 −0.99998 −2.942 3.716

TABLE X. The aþ;n and bþ;n values that came from the global fit of NN and NT.

NN NT

aþ;0 aþ;1 aþ;2 bþ;0 bþ;1 bþ;2

1p 0.666(17) � � � � � � 0.666(17) � � � � � �
2p 1.154(37) −7.22ð53Þ � � � 0.921(23) −7.14ð53Þ � � �
3p 1.181(61) −8.7ð2.8Þ 18(33) 0.917(24) −7.56ð82Þ 18(32)

TABLE XI. The ratios aþ;nþ1=aþ;n and bþ;nþ1; bþ;n using the central values of the parameters from Table X.

NN NT

aþ;1=aþ;0 aþ;2=aþ;1 bþ;1=bþ;0 bþ;2=bþ;1

2p −6.257 � � � −7.750 � � �
3p −7.404 −2.088 −8.236 −2.376

TABLE XII. The aþ;n values that came from the L and H fits of BGL.

BGL L fit BGL H fit

aþ;0 aþ;1 aþ;2 aþ;0 aþ;1 aþ;2

1p 0.00825(22) � � � � � � 0.00804(20) � � � � � �
2p 0.01238(41) −0.0663ð62Þ � � � 0.01240(40) −0.0658ð57Þ � � �
3p 0.01232(75) −0.063ð36Þ −0.04ð44Þ 0.01264(69) −0.079ð32Þ 0.16(37)
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APPENDIX B: INVESTIGATING THE t0 PARAMETER

The BGL and BCL parametrizations use different choices for t0, although the value of t0 does not
affect the size of the z range, but it does affect the center of the z range. We investigated the effect of t0 on our
metrics by calculating all the metrics using both choices of t0. The χ2, χ2ν, and AIC values can be found in Table XVI, and
the C0, C1, D1, and D2 values can be found in Table XVII.
We find that the choice of t0 has negligible effects on the χ2, χ2ν, and AIC metrics at all with the precision that we consider.

However, the C0 and C1 as well as the D1 and D2 metrics have some minor differences based on the choice of t0, but the
differences are on the order of 1%. This confirms that the main role of t0 is to set the central value of the z range.

TABLE XIII. The bþ;n values that came from the L and H fits of BCL.

BCL L fit BCL H fit

bþ;0 bþ;1 bþ;2 bþ;0 bþ;1 bþ;2

1p 0.715(18) � � � � � � 0.703(17) � � � � � �
2p 0.772(19) −2.45ð45Þ � � � 0.774(19) −2.45ð42Þ � � �
3p 0.774(20) −2.22ð66Þ −17ð33Þ 0.774(20) −2.45ð67Þ −1ð28Þ

TABLE XIV. The aþ;n values that came from the L and H fits of NN.

NN L fit NN H fit

aþ;0 aþ;1 aþ;2 aþ;0 aþ;1 aþ;2

1p 0.929(26) � � � � � � 0.708(17) � � � � � �
2p 1.227(64) −10.2ð2.1Þ � � � 1.159(53) −7.29ð85Þ � � �
3p 1.12(16) 0.7(14.0) −237ð299Þ 1.15(26) −7ð11Þ −3ð108Þ

TABLE XV. The bþ;n values that came from the L and H fits of NT.

NT L fit NT H fit

bþ;0 bþ;1 bþ;2 bþ;0 bþ;1 bþ;2

1p 0.929(26) � � � � � � 0.708(17) � � � � � �
2p 0.896(28) −10.3ð2.1Þ � � � 0.923(28) −7.15ð83Þ � � �
3p 0.889(30) −14.7ð6.0Þ −241ð306Þ 0.923(36) −7.2ð3.8Þ −3ð104Þ

TABLE XVI. Same as Table II, but every value is calculated with both choices of t0 for the 5L5H partition.

χ2 χ2ν AIC

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

BGL 1p 99 99 11 11 101 101
BGL 2p 4.56 4.56 0.57 0.57 8.56 8.56
BGL 3p 4.55 4.55 0.65 0.65 10.55 10.55

BCL 1p 33.3 33.3 3.7 3.7 35.3 35.3
BCL 2p 4.64 4.64 0.58 0.58 8.64 8.64
BCL 3p 4.55 4.55 0.65 0.65 10.55 10.55

NN 1p 135 135 15 15 137 137
NN 2p 4.88 4.88 0.61 0.61 8.88 8.88
NN 3p 4.55 4.55 0.65 0.65 10.55 10.55

NT 1p 135 135 15 15 137 137
NT 2p 4.96 5.04 0.62 0.63 8.96 9.04
NT 3p 4.55 4.55 0.65 0.65 10.55 10.55
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APPENDIX C: BCL WITH NO THRESHOLD CONDITION

The threshold condition from [28] comes from zðtþ; t0Þ ¼ −1 which can be seen in Eq. (3) and from the fact that
ðzþ 1Þ ∼ const × ðq2 − tþÞ1=2 near z ¼ −1. Then the threshold condition is

�
dfþ
dz

�
z¼−1

¼ 0: ðC1Þ

We investigate the effect of the threshold condition by reproducing our results using the BCL parametrization with no
threshold condition, which we call BCL� and has the form

fþ;BCL� ðzÞ ¼ 1

1 − q2ðzÞ=m2
B�
c

XN
n¼0

bþ;nzn: ðC2Þ

Using this BCL�, we recalculate all the values in Tables XVI and XVII and the results are displayed in Tables XVIII
and XIX.
These values are mostly identical to the BCL values shown in Tables XVI and XVII, with the only differences appearing

in C0, C1, D1, and D2.

TABLE XVII. Same as Table II but every value is calculated with both choices of t0 for the 5L5H partition.

C0 C1 D1 D2

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

BGL 1p 15.76 15.38 39.44 38.44 41.85 41.76 10.95 10.64
BGL 2p 1.18 1.16 5.16 5.11 5.78 5.72 4.76 4.69
BGL 3p 17.56 17.58 91.76 91.83 104.64 104.54 117.68 117.57

BCL 1p 3.37 3.37 7.62 7.63 8.02 8.02 1.90 1.90
BCL 2p 0.63 0.63 2.70 2.72 2.98 3.00 1.71 1.74
BCL 3p 15.13 15.23 78.44 78.96 89.39 89.85 99.85 100.37

NN 1p 24.50 24.50 64.26 64.26 68.54 68.54 19.02 19.02
NN 2p 1.85 1.87 7.82 7.88 8.88 8.95 8.21 8.29
NN 3p 19.10 19.19 100.16 100.66 115.43 115.81 126.79 127.23

NT 1p 24.50 24.50 64.31 64.31 68.54 68.54 19.02 19.02
NT 2p 2.09 2.11 8.72 8.83 9.92 10.03 9.42 9.55
NT 3p 19.69 19.81 103.42 104.04 119.70 119.70 131.16 131.76

TABLE XVIII. Same as Table XVI but using BCL� for the 5L5H partition.

χ2 χ2ν AIC

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

BCL� 1p 33.3 33.3 3.7 3.7 35.3 35.3
BCL� 2p 4.64 4.64 0.58 0.58 8.64 8.64
BCL� 3p 4.55 4.55 0.65 0.65 10.55 10.55

TABLE XIX. Same as Table XVII but using BCL� for the 5L5H partition.

C0 C1 D1 D2

t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt t0 ¼ t− t0 ¼ topt

BCL� 1p 3.37 3.37 7.62 7.63 8.04 8.04 1.93 1.93
BCL� 2p 0.63 0.61 2.65 2.55 2.96 2.84 1.61 1.54
BCL� 3p 17.03 17.88 88.14 77.00 102.68 89.58 109.22 96.28
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APPENDIX D: ADJUSTING THE L AND H REGIONS

As explained in the conclusions, we also investigated splitting the data into the six lowest w values and the four highest w
values, which we abbreviate as 6L4H. The plots in Figs. 6 and 7 show the results of the 6L4H fits for both BGL and BCL
with both 2p and 3p.
In Fig. 6, we see much smaller error bands in comparison with Fig. 4 with both the low-w fits and the high-w fits. We see

the same effect in Fig. 7 in comparison to Fig. 5 but to a much larger extent. It is also interesting how the low-w fits in Figs. 4

FIG. 6. Plots of the form factor fþðzÞ vs z using the results of our fits from regions L andH for the 6L4H partition. The results of our
BGL fit with 2p (left), the results of our BCL fit with 2p (right). The blue region indicates the fit from region H and the green region
indicates the fit from region L. In both cases, the solid lines are for the z values used in the fit region and the dashed lines are for the z
values used in the extrapolated region.

FIG. 7. Same as Fig. 6 but for 3p.

TABLE XX. The C0, C1, D1, and D2 values for BGL, BCL, NN, and NT with 1p, 2p, and 3p. for the 6L4H
partition.

C0 C1 D1 D2

BGL 1p 9.29 23.26 24.47 6.35
BGL 2p 0.24 0.65 0.68 0.19
BGL 3p 4.09 3.62 3.63 6.12

BCL 1p 2.50 5.66 5.90 1.39
BCL 2p 0.62 0.66 0.63 0.26
BCL 3p 4.72 3.40 3.32 5.20

NN 1p 13.34 34.98 37.26 10.39
NN 2p 0.22 0.98 1.10 0.72
NN 3p 3.68 3.89 3.99 7.13

NT 1p 13.34 35.01 37.26 10.39
NT 2p 0.25 1.14 1.29 0.98
NT 3p 3.53 4.04 4.18 7.56
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and 5 underestimate the data in theH region, but when we adjust the L region then the 2p fits underestimate the data less in
H, but the 3p L fits now overestimate the data in H.
We also recalculated the metrics found in Table II but with 6L4H and display the results in Table XX. Every metric in

Table XX is lower for the corresponding metric in Table II. The metrics from the 3p parametrizations had the most
significant decrease with the change to 6L4H.
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