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In this study, we use rational-quadratic neural spline flows, a sophisticated parametrization of
normalizing flows, for inferring posterior probability distributions in scenarios where direct evaluation
of the likelihood is challenging at inference time. We exemplify this approach using the T2K near detector
as a working example, focusing on learning the posterior probability distribution of neutrino flux binned in
neutrino energy. The predictions of the trained model are conditioned at inference time by the momentum
and angle of the outgoing muons released after neutrino-nuclei interaction. This conditioning allows for the
generation of personalized posterior distributions, tailored to the muon observables, all without
necessitating a full retraining of the model for each new dataset. The performances of the model are
studied for different shapes of the posterior distributions.
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I. INTRODUCTION

Particle physics experiments often face the challenge of
deducing hidden properties underlying the collected data.
For instance, when studying neutrinos, statistical methods
are employed to estimate latent variables like neutrino
masses and mixing angles.
In this context, both frequentist and Bayesian methods

are used and even sometimes cross validated. The frequent-
ist approach focuses on deriving estimates by analyzing the
observed data, assuming that the latent variables have fixed,
but unknown, values. This implies searching for a single set
of latent variable values that is inferred with tools such as
maximum likelihood estimation. On the other hand, the
Bayesian approach does not assume fixed latent variables,
but aims to estimate their posterior distribution. This is
particularly advantageous when dealing with complex
parameter spaces, common in particle physics, as it
facilitates the quantification of uncertainty and the explo-
ration of parameter correlations.
However, the implementation of Bayesian methods is not

without challenges, especially in situations where sampling
the posterior probability distribution is required to be fast.
Traditional Bayesian methods such as variational inference
(VI) or Markov Chain Monte-Carlo (MCMC) rely heavily
on the likelihood estimation, often rendering them inef-
fective when the density estimation is slow. Moreover,
these methods suffer from long “burn-in” or “training”
times, making the overall sampling process very slow.
The rapid advancements in artificial intelligence, par-

ticularly in deep learning have unlocked new avenues for

fast and flexible Bayesian inference. In this context, our
paper explores an alternative machine-learning-based
method for Bayesian inference, using a model based on
conditional normalizing flows (CNF). Normalizing flows—
the foundation of CNF—model complex distributions by
transforming a simple distribution like a normal distribu-
tion into a more intricate one. This is achieved through a
series of learnable transformations that progressively
shape the simple distribution into one that closely resem-
bles the target distribution. CNF extends this concept by
conditioning the flow transformation on the given dataset
of observed variables at inference time. This adaptability
allows for the elimination of the need for retraining with
new datasets, making the sampling process more effective.
Furthermore, unlike traditional likelihood-based Bayesian
methods like MCMC, CNF does not require the evaluation
of the likelihood at inference time, thereby making the
sampling faster when the calculation of the likelihood is
time consuming.
To illustrate this method, we will use the near detector fit

of the T2K (Tokai to Kamioka) experiment [1] as a working
example for our CNF model. At the near detector, muon
neutrinos interact with nuclei releasing muons observed
further. In our exploratory approach, we aim at estimating
the posterior distributions of the neutrino energy bin values
(the latent variables) from a dataset of muon momenta and
angles (the observed variables). The variance of the
posterior probability density translates the uncertainty
created by the Poissonian statistics when inferring the
latent variables. A detailed problem description is given in
Sec. II. Section III introduces the main concepts of condi-
tional probability estimation using normalizing flows. We
apply this concept to a simplified version of the near*mathias.elbaz@unige.ch
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detector fit in Sec. IV. Finally, Sec. V is an exploration of
how CNFs behave when tasked to predict a more complex
posterior distribution.

II. PROBLEM DEFINITION

The T2K experiment investigates neutrino oscillations.
The principal challenge encountered by the T2K
Collaboration is the complex parametrization of the models
of neutrino cross section, neutrino flux as a function of the
neutrino energy, and detector response used to infer the
oscillation parameters. One objective of the near detector
data fit is to constrain the neutrino cross section and flux
models. The near detector data fit involves searching for an
optimal set of parameters describing how systematic
uncertainties change the predictions on the event rate,
given the data. So far, only the outgoing muon observables
ðpμ; θμÞ after interaction between the neutrino and the
nuclei are used for the near detector fit at T2K. The near
detector data fit is achieved by studying a binned Barlow-
Beeston [2] likelihood with penalty terms corresponding to
the Gaussian priors of the systematics parameters of the
flux, cross section, and detector response models [3] jointly
noted s⃗:
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where the sum is over the energy bins, Nobs
i is the observed

number of events, and Npred
i is the predicted number of

events in the ith bin. The Barlow-Beeston likelihood
introduces parameters βi that account for the Poisson
fluctuations in the Monte-Carlo dataset that yields to
Npred

i . The second line captures the Gaussian uncertainties
arising from the systematics s⃗ with covariance matrix Vs⃗.
T2K’s near detector fit uses a frequentist method called

BANFF [4] and a Bayesian method rooted inMCMC called
Mach3 [5]. In our exploratory method, we exclude the T2K
systematics that account for cross sections, flux, and
detector uncertainties. Furthermore, the remaining latent
variable, represented by the vector of Barlow-Beeston
reweights β, only conditions the marginal distribution of
Eν. Therefore, the joint probability distribution of seeing an
event with ðpμ; θμÞ is as follows:

pðpμ; θμjβÞ ¼
Z

pðpμ; θμjEνÞ × pðEνjβÞdEν:

We can note that the likelihood L is formulated with a
straightforward linear dependence on the Barlow-Beeston
parameters. Nevertheless, the versatility of neural networks
enables them to capture more complex relationships

between latent variables and observations. This capability
suggests the potential applicability of our approach to more
complex systematic uncertainties, such as energy shifts [6].
One can envision a scenario where we simply rewrite the
expression of the likelihood function, incorporating a more
intricate formulation of the pðEν; pμ; θμjβÞ distribution.
However, delving into these more elaborate systematics
extends beyond the scope of the current study.
Given a dataset denoted as Xd, consisting of events

sampled from the distribution pðpμ; θμjβÞ, the objective of
our deep learning model is to predict the corresponding
posterior distribution pðβjXdÞ during the inference phase.
The vector β, representing Barlow-Beeston reweights, is the
only latent variable in this context. Hence, the spread of the
posterior distribution is solely a reflection of the Poisson
statistics. Our goal is to design a model to perform
Bayesian inference automatically at inference time for a
diverse range of datasets Xd.
As Papamakarios outlines in his thesis [7], Bayesian

techniques can be divided into two categories: “likelihood-
based inference” methods, which require an estimation of
the likelihood density pðXdjβÞ during inference, and
“likelihood-free inference” methods, which do not.
By binning the ðpμ; θμÞ space, we can estimate the

Poisson negative log likelihood given the observation of a
dataset Xd as follows:

pðXdjβÞ ¼
X

ði;jÞ
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Here, the summation is over bins ði; jÞ, and Nd
ði;jÞ and

Np
ði;jÞðβÞ denote respectively the detected and predicted

number of events in bin ði; jÞ for the reweight β. Therefore,
using the likelihood to train and test our deep learning
model is feasible. However, this calculation is computa-
tionally intensive, especially for a significant number of
bins or in a high-dimensional latent space. Therefore, we
opted for an alternative method that does not require
likelihood estimation during training and inference. This
method will be further discussed in the following sections
and in Appendix A.

III. CONDITIONAL DENSITY ESTIMATION
WITH NORMALIZING FLOWS

Normalizing flows (NF) are often used to estimate a
target distribution. In this particular context, the adoption of
NF emerges organically as a means to predict a posterior
distribution qϕðβjXdÞ close to the true posterior distribu-
tion pðβjXdÞ, where ϕ are the parameters of the NF model.
The basic concepts of normalizing flows will be explained
in Sec. III A. A more complete overview of normalizing
flows can be found in the review of Papamakarios et al. [8].
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In this work, the density estimation is performed through
rational-quadratic neural spline flows, a specific imple-
mentation of normalizing flows that will be presented in
Sec. III B. Finally, Sec. III C describes the utilization of
normalizing flows for Bayesian inference, explaining the
concept of “conditional normalizing flows” as a means to
learn a posterior distribution without the need of retraining
the model for new datasets Xd.

A. Normalizing flows

1. Definition

At its core, a normalizing flow is a diffeomorphism of the
probabilistic space that transforms a simple probability
distribution into a more complex one. The concept revolves
around the simple change of variable rule in probability
theory.
For a diffeomorphism of random variables, from x to z,

where z ¼ TðxÞ, the probability density function of z is
related to the one of x as follows:

pzðzÞ ¼ pxðxÞj det ðJTðxÞÞj−1;

with JTðxÞ the Jacobian of the transformation. px repre-
sents here the base distribution (a normal distribution in
general) from where we model the target distribution pz by
applying the diffeomorphism T to the probabilistic place.
The flow transformation can be composed of multiple

NFs. Suppose we represent the transformation T as a
composition of simpler Tk transformations, with T ¼
TK∘ � � � ∘T1. Starting with an initial value z0 ¼ x and target
value zK ¼ z, we can evaluate the transformation and
compute the Jacobian as follows:

zk ¼ Tkðzk−1Þ; k ¼ 1∶ K;

jJTðzÞj ¼
����
YK

k¼1

JTk
ðzk−1Þ

����;

where JTk
ðzk−1Þ represents the Jacobian determinant of the

Tk transformation evaluated at zk−1. In practical applications
of normalizing flows, the transformations Tk (or T−1

k ) are
often implemented using a neural network, which provides
the required flexibility to model complex mappings.

2. Loss function

The training of neural networks requires a loss function to
estimate the divergence between the predicted and true
distributions. The Kullback-Leibler (KL) divergence is a
fundamental concept in statistics, widely used to compare
two probability distributions [9]. The key intuition behind
using KL divergence lies in its ability to quantify the
information lostwhenone distribution is used to approximate
another. Formally, for two probability distributions P and Q
over the same space Ω, the KL divergence is defined as

DKLðPjjQÞ ¼
X

x∈Ω
PðxÞ log

�
PðxÞ
QðxÞ

�
: ð2Þ

An essential characteristic of the KL divergence is that it
is non-negative, withDKLðPjjQÞ ¼ 0 if and only if P andQ
are identical distributions. This property allows us to derive
a loss function from the KL divergence as

LðϕÞ ¼DKLðpzðzÞkqϕðzÞÞ
¼ Ez∼pzðzÞ½logpzðzÞ− logqϕðzÞ�
¼ Ez∼pzðzÞ½logpzðzÞ�
−Ez∼pzðzÞ½logpxðT−1ðz;ϕÞÞ þ log jdetJ−1T ðz;ϕÞj�;

where Ez∼pzðzÞ is the expectation for samples of the target
distribution pz, ϕ represents the parameters of the flow T
parametrized by the neural network, px is the base
distribution, and qϕ is the predicted distribution.
The loss function can be computed for target densities pz

from which one can sample, but the density evaluation for a
specific point z is not required. When optimizing the
transformation T, we estimate the gradient of the KL
divergence by drawing samples from the target distribution
zn ∼ pzðzÞ:

∇ϕLðϕÞ ≈ −
1

N

XN

n¼1

½∇ϕ logpxðT−1ðzn;ϕÞÞ

þ∇ϕ log j det J−1T ðzn;ϕÞj�: ð3Þ

3. Autoregressive flows

For a transformation to be valid, it must be both invertible
and possess a tractable Jacobian determinant. However,
even if a network ensures theoretical invertibility, practical
computations might still be expensive or infeasible. The
computation of the determinant of the Jacobian is required
for the loss calculation and sampling scales with a cubic
complexity of the probability space dimension. A tractable
Jacobian determinant implies a complexity that scales at
most OðDÞ, where D is the dimension of the probabilistic
space, which is ensured by autoregressive flows [10].
In autoregressive flows, the transformation is structured

such that each output dimension depends only on its lower
dimensions. This involves employing D componentwise
transformations, referred to as transformers, such as

z0i ¼ τðzi;hiÞ with hi ¼ hiðz<i;ϕÞ;

where z0i is the ith component of z0, zi is the ith component
of z, τ represents the transformer, which is a one-
dimensional diffeomorphism concerning zi and depends
on the ith dimension of the conditioner hi. hi takes
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z<i ¼ ðz1; z2;…; zi−1Þ as input, i.e., the previous compo-
nents of z.
Owing to this definition, the Jacobian matrix, denoted as

JTðzÞ, is lower triangular. Consequently, the log-determinant
of the Jacobian matrix can be efficiently computed by taking
the sum of the logarithm of its diagonal elements:

log j det JTðzÞj ¼
XD

i¼1

log

����
∂τ

∂zi
ðzi;hiÞ

����:

However, the diffeomorphism constraint imposed on the
transformer is highly restrictive, requiring it to be a mono-
tonic and C1 function. To enhance expressiveness, various
flows have been developed. In the upcoming section, wewill
use neural spline flows, specifically focusing on rational-
quadratic neural spline flows, which are among the most
expressive flows developed to date [11].

B. Neural spline flows

Significant efforts have been dedicated to a specific class
of normalizing flows known as neural spline flows (NSF)
[11]. Splines are piecewise-defined differentiable functions.
In the context ofNSFs, each transformer is a spline,with each
piece serving as a bijective and differentiable function on its
defined segment. To guarantee that the transformer remains
bijective and differentiable, making it a C1 function, the
overall spline should not only be monotonic, but also
maintain continuity along with its derivative.

1. Rational-quadratic neural spline flows

Durkan et al. [11] advocated for the use of monotonic
rational-quadratic spline flows (RQ-NSF), where the trans-
formers are rational-quadratic functions, i.e., the ratio of
two quadratic functions. Rational-quadratic splines have a
convenient flexibility due to their infinite Taylor-series
expansion while being defined by a small number of
parameters. Additionally, these splines are analytically
invertible and differentiable.
The overall spline acts as a diffeomorphism, providing a

smooth one-to-one mapping within a specific region of
interest, typically chosen as the segment ½A; B�. Within this
segment, the transformer distorts the parameter space,
while beyond this interval, it is the identity. This trans-
formation is achieved through the use of the rational-
quadratic spline’s parametrization introduced by Gregory
and Delbourgo [12]. The parametrization involves a total of
N different rational-quadratic functions, with their boun-
daries determined by pairs of coordinates ðxðnÞ; yðnÞÞNn¼0

known as knots, where the spline passes through. To ensure
continuity, the first knot is ðxð0Þ; yð0ÞÞ ¼ ðA; AÞ, and the last
knot is ðxðNÞ; yðNÞÞ ¼ ðB;BÞ. In order to parametrize a
monotonic spline, N-1 intermediate positive derivative
values ðfðnÞÞN−1

n¼1 need to be defined. The derivatives at

the boundary points are set to 1 to match the identity
function (i.e., fð0Þ ¼ fðNÞ ¼ 1).

2. Masked autoregressive network

The conditioners hi associated with the transformers,
responsible for providing the parameters of the RQ-NSF
are expressed as functions of the autoregressive input
features z<i. However, implementing these conditioners
as separate neural networks for each dimension is computa-
tionally inefficient, particularly for high-dimensional data.
To overcome this issue, a solution known as masked

autoregressive network (MAN) [13] is adopted in this
work. The masked autoregressive network takes the entire
vector z as input and directly outputs all the parameters of
the D conditioners ðh1; h2;…; hDÞ simultaneously. This is
achieved by modifying a standard feed-forward network, to
ensure that no connections exist from the input z≥i to the
outputs ðh1;…; hiÞ. This connection cut is implemented by
elementwise multiplication of the weight matrices connect-
ing the neurons of the network with a binary matrix of the
same size. The binary matrix “masks out” the undesired
connections by setting them to zero, preserving all other
connections. This network was used by Papamakarios et al.
[14] to parametrize flows, leading to masked autoregres-
sive flows.
However, this can lead to richer relations for later

components and poorer relations for the first dimensions.
To ensure that all input variables interact with each other,
random permutations of dimensions are commonly intro-
duced between autoregressive flows.

C. Normalizing flows for amortized Bayesian inference

The previous section highlighted the advantages of NFs
for density estimation due to their expressive nature. Using
the previous definition, NFs are effective at estimating a
density pθðxÞ. Building on this, a natural question arises:
can we extend NFs to learn conditional probabilities
pθðxjzÞ in a similar manner, where z is a condition
provided by the user at inference time? We will keep the
notation of Sec. II with the input datasetXd from where we
want to infer the target posterior distribution, pðβjXdÞ.
A commonly used approach in this context is to apply

normalizing flows to VI, as noted in previous works
[15,16]. VI requires evaluating the likelihood. In our study,
the computation of the Poisson likelihood is feasible, but
extremely time and computationally expensive at training
time and sampling time, especially for high dimensionalXd
or β. Addressing this limitation, likelihood-free inference
(LFI) emerges as an alternative. LFI refers to a set of
methods used for statistical inference when the likelihood
function (or equivalently the target posterior distribution) is
either unavailable or too computationally intensive to
calculate. The potential of normalizing flows for LFI has
been previously explored in works like [17,18].
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In this work, we investigate a similar method as in [17]
utilizing normalizing flows. This method bypasses the need
for direct likelihood evaluation during training and sampling,
and instead trains the model using samples of the target
posterior distribution that have already been generated. We
generate samples of the target posterior distribution using a
simulation process detailed in Appendix A, which serve as
the basis for computing our loss function, as described in
Eq. (3). These samples can be generated once prior to
training. Another key feature of our model is its amortization
aspect, which enables the inference process to generalize
across differentXd datasets, thereby eliminating the need for
separate training for each dataset. This model approximates
the posterior distribution of latent variables for a wide range
of Xd datasets. At the heart of our model are one or more
encoder neural networks designed to distill information from
the conditional variable Xd into the parameters of the flow
transformation.
NF models embedding encoder networks are referred to

as CNF in this work. Such models are particularly used in
amortized variational inference [15,16]. CNFs can be seen
as estimators of a family of flows, instead of a single flow,
with the ability to choose the right flow under the
conditions given by the input. The encoder networks learn
a lower-dimensional representation hϕðXdÞ of the dataset,
referred to as context features, where ϕ are the parameters
of the encoder network, and their outputs are fed into each
MAN of the normalizing flows. This results in an input-
dependent flow transformation, endowing it to be used for
amortized Bayesian inference as it will be applied in the
following section. An illustration of the concept of CNF is
given in Fig. 1.

IV. CONDITIONAL NORMALIZING FLOWS FOR
THE NEAR DETECTOR FIT AT T2K

In this section, CNF will be used to sample from the
posterior probability pðβjXdÞ given a dataset Xd. The
implementation of RQ-NSF is based on the nflows
Pytorch implementation of Durkan et al. [19]. In this
work, the training is done in two steps, which will be

detailed in Sec. IVA. Section IV B delves into the archi-
tecture of the CNF model. Section IV C presents the
performance of the model tasked with the prediction of
the posterior distribution accounting for Poisson fluctua-
tions at inference time. In our exploratory methodology, we
have simplified the problem by segmenting the neutrino
flux into three energy bins, each associated with a reweight
variable β ranging from 0.5 to 1.5. Consequently, the latent
space under consideration is the cube ½0.5; 1.5�3.

A. Training methodology

Training the model involves simultaneously learning
two essential components: (1) the context features, here
generated by two encoder networks, and (2) RQ-NSF
transformations.
The training is divided into two steps. Figure 2 shows a

conceptual representation of the posterior distribution
learning during these two phases.
(1) In the initial stage, the objective is to obtain an

approximate representation of the posterior distri-
bution using only a simple linear flow, the RQ-NSFs
being frozen and initialized as the identity. The aim
is to convert a normally distributed variable
u ∼N ð0; IÞ into a tridimensional correlated Gaus-
sian variable x ∼N ðμ;ΣÞ that closely resembles
pðβjXdÞ. Given a normal variable u, we can simply
add a shift and correlations with a linear trans-
formation:

x ¼ Luþ μ:

Here, L corresponds to the Cholesky decomposition
of the covariance matrix Σ ¼ LLT , and μ represents
the mean of the x distribution. Both the Cholesky
matrix and the mean are learned and directly output
by the first encoder network only, and we note its
parameters as ψ . The only requirement for this linear
flow is that L is a lower-triangular matrix with
strictly positive diagonal elements. This first step is
important for two reasons. Firstly, it prevents train-
ing instabilities by initially shifting and scaling pðuÞ

FIG. 1. Concept of a conditional normalizing flows model
using MAN. The encoder network outputs a lower dimension
representation of the input dataset which is fed into the MAN of
each NF, producing input-dependent flows parameters θi.

FIG. 2. Representation of the predicted posterior distribution
during training. The current approximation of the posterior
distribution is represented in blue, and the target posterior
distribution in red. (a) The initial state. (b) The transition between
step 1 and step 2. (c) The end of the training.
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to cover pðβjXdÞ. More crucially, it empowers the
complex flows to fully use their expressiveness in
learning local non-Gaussian characteristics, rather
than expending their potential on locating and
scaling u.
During this step, the loss function can be ex-

pressed as

LðψÞ ¼ DKLðpðβjXdÞkqψ ðβjXdÞÞ

≈
1

N

XN

j¼1

X3

i¼1

�
1

2
ðL−1ðβj − μÞÞ2i þ logðσiÞ

�
:

Here, σi corresponds to the i-th diagonal element of
L. To maintain clarity, we have purposefully re-
frained from introducing an additional summation
that would account for the mean loss expectation
across various datasets Xd.
The first term within this expression bears a strong

resemblance to a χ2 term, and it reaches minimal
values when μ is equal to the mean of the β samples
and when the introduced spreads σi from L are
maximized. The second term is proportional to the
Shannon entropy of the predicted posterior distri-
bution, exerting an opposing effect to the first term.
In particular, the reduction in entropy leads to a
minimization of σi.

(2) After 10% of the training, we enable the RQ-NSFs,
before the linear flow. We learn context features
noted hϕðXdÞ from a second encoder network with
parameters ϕ. hϕðXdÞ is fed into the MANs of the
RQ-NSFs which have their own parametrization θ.
These flows introduce input-dependent non-Gaus-
sian characteristics to the predicted posterior distri-
bution qðψ ;θ;ϕÞðβjXdÞ. To ensure smooth transitions
in the loss function between stages 1 and 2, we
initialize the RQ-NSFs to the identity transforma-
tion. Consequently, the expression for the predicted
β can be written as

β ¼ L½TK∘…∘T1ðuÞ� þ μ:

Upon enabling the additional flows, the loss function
transforms into

Lðψ ;θ;ϕÞ¼ 1

2N

XN

j¼1

X3

i¼1

½T−1
K ∘…∘T−1

1 ðL−1ðβj−μÞÞ�2i

þ
X3

i¼1

�XK

k¼1

logðjJTk
jiiÞþ logðσiÞ

�
:

The complexity of this loss function may seem greater
compared to the previous one, yet it can still be broken
down into a combination of a χ2 term and an entropy term.

What is important to note is that this formulation also
reveals the computational efficiency of the backward
computations, which exhibit linear complexity concerning
both the number of flows and the dimensions of the
posterior distribution. This property enhances the training’s
scalability, allowing it to be effectively applied to higher
dimensions with larger numbers of flows.

B. Model’s architecture

The architecture of the model is represented in Fig. 3.
The model’s structure can be broken down into two main
blocks: the encoder block and the flows block encompass-
ing the RQ-NSFs and the linear flow. The encoder block
contains two encoder networks, both utilizing a convolu-
tional neural network (CNN) architecture, chosen for its
capacity in extracting information from image-based data.
This feature is particularly beneficial for processing our
bidimensional histogram inputs,Xd. One CNN yields both
the Cholesky Matrix L and μ, while the second CNN
generates the context features used by the RQ-NSFs. Both
CNNs share a common architecture, differing only in their
last fully connected layers. The architecture is based on a
fine-tuned ResNet-50 model [20] followed by one fully
connected layer. The first CNN produces nine output nodes
(six for L and three for μ), while the second CNN generates
ten context features. Although the number of context
features proved sufficient for the study, it is important to
note that a complex distribution may require more context
features.
The initial phase of the flow model involves a sequence

of K ¼ 4 blocks, each comprising an RQ-NSF followed by
a generalized lower-upper permutation as defined by

FIG. 3. Model’s architecture used for the inference of pðβjXdÞ
from a dataset Xd.
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Oliva et al. [21]. The parameters of the RQ-NSFs are
learned through a MAN consisting of three hidden layers,
each containing 256 nodes. The MAN outputs the param-
eters of a nine-knot tridimensional spline. The linear flow is
only parametrized by the output of the first CNN.
The model is trained using 7,500 Xd datasets of muon

observables, and for each dataset, 4000 samples from the
target posterior distribution to compute the loss as in
Eq. (3). The generation of the datasets and the posterior
samples is detailed in Appendix A.

C. Model’s performances

The present section focuses on evaluating the model’s
performances up to the fourth moment prediction for the
posterior distribution. In this analysis, we compare two
posterior distributions: the sampled predicted posterior
distribution using NF qNFðβjXdÞ and the sampled target
distribution ptargetðβjXdÞ used to compute the loss during
training along with the designed reweight βAsimov, referred
to as the Asimov datapoint, used to generate Xd. ptarget is
produced by generating Poisson fluctuations of Xd and
identifying the most likely reweight for each fluctuation.
Therefore, both ptarget and qNF retain the initial bias
inherent in the creation of the dataset Xd. Consequently,
we focus on comparing qNF not with βAsimov but with ptarget.
For each βAsimov, we generate a dataset Xd from which

we generate 10,000 samples from qNFðβjXdÞ and 10,000
samples from ptargetðβjXdÞ. A comparison between

qNFðβjXdÞ and ptargetðβjXdÞ is shown in Fig. 4 for a
specific dataset Xd. The model seems able to predict
correctly the shape of the posterior distribution including
correlations and higher order moments. To evaluate the
model’s performance, we analyze its predictions over a
complete range of β values. Figure 5 presents this analysis,
offering a comparison among the means of qNFðβjXdÞ,
ptargetðβjXdÞ, and the Asimov datapoint.
Additionally, we quantify the accuracy using the coef-

ficient of determination, denoted as R2 for N ¼ 1000

Asimov datapoints uniformly sampled from the ½0.5; 1.5�3
cube. In this case, R2 is defined as

R2 ¼ 1 −
P

ikβAsimov − β̂k2P
ikβAsimov − 1k2 ¼ 1 −

12

3N

X

i

kβAsimov − β̂k2;

where β̂ represents themean of theqNF (orptarget) and βAsimov

denotes the Asimov datapoint. An R2 of 1 implies that the
model predicts the mean with perfect accuracy, while an R2

of 0 indicates that themodel randomly predicts themean. For
our model, the R2

NF value is 0.9975. This score is marginally
lower than the R2

target of 0.9980 using ptarget. The coefficient
of determination is further reflected in the root mean square
(rms) errors: 0.013 when comparing the mean of ptarget

against the Asimov data point, and 0.014 for the mean of
pNF against the Asimov data point. This highlights that the

FIG. 4. 10,000 samples from the target posterior distribution (a) and from the predicted posterior distribution (b). The diagonal
plots represent the marginal distribution of the three reweight bins βi. The off diagonal plots correspond to the 2D histograms
of ðβi; βjÞ.
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model’s deviations are minor compared to the Poisson
fluctuations in generating the dataset Xd.
Our goal is to assess the alignment of qNF with ptarget,

particularly in terms of the standard deviation, Pearson
correlation factors are now included in the term “covariance
coefficient.” The discrepancies in these statistical moments
come from two sources: (1) statistical variations due to the
finite sample size from posterior distributions, and (2)
systematical discrepancies introduced by the model itself.
A comprehensive analysis of these discrepancies for the
first statistical moments is detailed in Table I within
Appendix B. Notably, it is demonstrated that both distri-
butions closely approximate multivariate Gaussian
distributions.
In our study, we introduce a metric designed to quantify

the shape differences between the two distributions, qNF
and ptarget, across various Asimov data points. To achieve a
balanced measure of these discrepancies, we employ a
symmetrical version of the Kullback-Leibler divergence:

DsðqNF; ptargetÞ ¼
DKLðqNFjjptargetÞ þDKLðptargetjjqNFÞ

2
:

We estimate Ds using a Monte Carlo estimate, as
outlined in Eq. (2), for datasets of qNF and ptarget with
equal sample sizes, and we average this over 200 Asimov
data points. To focus solely on shape discrepancies, we
remove the mean from both datasets.

Furthermore, we compare the expected value of Ds
between qNF and ptarget by examining the metric in a
simpler context: two datasets derived from centered three-
dimensional correlated Gaussian distributions with differ-
ent covariance matrices. We generate two datasets of N
samples respectively from N ð0;ΣÞ and N ð0;Σþ ΔΣÞ.
Here, Σ is the average covariance matrix in our study
(as detailed in Table I). The covariance difference, ΔΣ,
is a random symmetric matrix. We derive its elements by
drawing ΔLij from Unifð½− ffiffiffi

3
p

αjLijj;
ffiffiffi
3

p
αjLijj�Þ for j ≤ i,

where L is the Cholesky decomposition of Σ, and ΔL
represents the deviation in the Cholesky matrix between the
two distributions. The parameter α represents the root mean
square relative mismatch (RMSRM) in the Cholesky matrix
components between the two multivariate Gaussian
distributions.
Figure 6 illustrates the evolution of Ds with the sample

size for different values of α. We also show the evolution of
Ds for qNF and ptarget. It shows the importance of statistical
errors in the predictions since the metric Ds shrinks
drastically with the sample size. Notably, the trend of Ds
with increasing sample size using qNF and ptarget corre-
sponds with that of the mismatched Gaussian distributions
at α ¼ 0.014. This implies that the RMSRM in the standard
deviations between the target and predicted distributions is
approximately 1.4%, which is in agreement with Table I.
Furthermore, this inference method offers advantages in

terms of sampling speed while keeping a high predictive
accuracy. Traditional methods based on likelihood estima-
tion are inherently limited in speed by the process of
estimating the likelihood. For instance, calculating the
likelihood as defined in Eq. (1) a million times on one
of our CPU cores requires 1135 seconds. Consequently, for
approaches that need at least one likelihood estimation for
each posterior sample (like the Metropolis-Hasting algo-
rithm used in MCMC), the fastest possible sampling rate

FIG. 6. Evolution of Ds with sample size for different values of
α. The evolution of Ds using qNF and ptarget is represented with
the thicker dashed line.

FIG. 5. Projection in the ðβ0; β1Þ plane of the mean of the
predicted posterior distribution (blue), the reweight given Xd
using likelihood maximization (red) and the Asimov datapoints
(green) on a grid and for a constant β2 of 1. The circles in dashed
lines have a radius of 0.05 and are centered at the designed
β value.
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assuming a 100% sampling efficiency is a million posterior
samples in 1135 seconds. In contrast, the model’s sampling
speed represents a more efficient alternative, generating
1 million samples from qNF in 174 seconds on the same
CPU core. This translates to a minimum improvement in
sampling speed by a factor of 6.5. Such an increase in speed
during inference is particularly advantageous for real-time
applications, including object tracking or stock price
prediction. This is particularly interesting if the model
can predict non-Gaussian posterior distribution. This ques-
tion will be addressed in the following section.

V. QUANTIFYING AND MODELING NON-
GAUSSIAN CHARACTERISTICS

While the model demonstrated its proficiency in accu-
rately predicting a posterior distribution, the last section
did not extensively highlight the expressiveness of the
RQ-NSF. The posterior distributions, accounting for the
Poisson statistics, are close to multivariate Gaussian dis-
tributions. In particular, the important features, the mean,
and the covariance matrix could potentially be learned by
the linear flow only.
This section is an exploration of the model’s behavior

when tasked with predicting non-Gaussian attributes. To
this end, we introduce modifications to ptarget introducing a
distinct “island” within the third energy bin dimension.
This bimodal structure of the posterior distribution serves
as a meaningful test case, as conventional methods like

Metropolis Hasting’s algorithm for Markov Chain Monte-
Carlo often struggle to infer multimodal distributions.
A crucial aspect of our model is put to the test: its

capability to predict non-Gaussian features that depend on
the input datasetXd. This test demonstrates that the context
features learned fromXd and fed to the MAN influence the
geometry of the qNF. To this end, the introduced shift and
weight of the island are input dependent and more
precisely, proportional to the total event count in the dataset
Xd.
This is done by taking the already generated samples

from ptarget and applying a stochastic transformation with
probability p of shifting by a quantity s the posterior
samples. We have chosen expressions for the probability
and for the shift, defined as follows, where Nevents is the
total event count in millions:

pðNeventsÞ ¼ 4Nevents

sðNeventsÞ ¼ 2Nevents:

An example of the comparison of ptarget and qNF for a
specific choice of reweight β is given in Fig. 7. The close
agreement between them illustrates the model’s capacity to
infer this non-Gaussian characteristic.
We aim to assess the model’s accuracy in predicting the

island weight (related to p) and the distance between the
means of the two modes (related to s) across various Nevents
values. We construct datasets for Asimov datapoint βAsimov

FIG. 7. 10,000 samples from the target posterior distribution (a) and from the predicted posterior distribution (b). The diagonal plots
represent the marginal distribution of the three reweight bins βi. The off diagonal plots correspond to the 2D histograms of ðβi; βjÞ.

FAST POSTERIOR PROBABILITY SAMPLING WITH … PHYS. REV. D 109, 032008 (2024)

032008-9



corresponding to increasing event counts. We estimate the
marginal distribution of β3 by fitting the samples using a
mixture of two Gaussian distributions for qNF. We compute
the distance between the modes using the absolute differ-
ence of the two means given by the fit while the weight of
the island is directly given by the fit.
Figure 8 presents the evolution of the predicted distance

and island weight for seven different Nevents values between
37,500 and 62,500. For each value of Nevents, the posterior
distributions are predicted for 50 βAsimov sampled in the
hyperplane yielding Xd with Nevents events (see
Appendix A for more details). Although predictions for
the island weight exhibit some variability, both the island
weight and distance are consistently predicted with accu-
racy within a 1σ margin from the designed values.

VI. CONCLUSION

In this work, we explored the potential of normalizing
flows for amortized Bayesian inference in the context of the
near detector fit at T2K. A brief introduction to normalizing
flows as conditional density estimators is performed,
emphasizing the particular implementation of RQ-NSF.
In a simplistic case, it was shown that such a model
can predict accurately the posterior distribution of latent

variables (the energy bin reweights) from observables (the
muon momentum and angle) provided at inference time
with a minimum improvement in sampling speed by a
factor of 6.5. In the last section, it was also demonstrated
that normalizing flows can predict more intricate posterior
distributions. However, the full potential of RQ-NSF might
not have been fully tapped in this study. The exploration
could extend to introducing multiple non-Gaussian attrib-
utes. In the context of the T2K experiment and neutrino-
nuclei interactions, this method could also be extended with
morework to a more complex set of systematics. Ultimately,
the demonstration ofNF’s flexibility and efficiency paves the
way for more informed and accelerated Bayesian inferences,
a prospect that holds substantial promise for a myriad of
data-driven applications.
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APPENDIX A: GENERATING THE DATASETS

To generate the datasets, we divide the neutrino flux into
three energy bins: [200 MeV, 620 MeV], [620 MeV,
800 MeV], and [800 MeV, 1.7 GeV]. For this study, we
choose three equally populated bins using the nominal T2K
flux where all systematics are set to their nominal values 1.
The momentum pμ ranges from 0 to 1.7 GeV, and the angle
θμ ranges from 0 to π. We choose a nominal distribution for
the triplet ðpμ; θμ; EνÞ corresponding to charged-current
quasielastic events generated by the NEUT Monte-Carlo
generator [22] with a “nominal” T2K neutrino flux at the
near detector [23].
β is a tridimensional vector, where each component

represents a reweight for a specific energy bin.
Consequently, the probability of having a neutrino in the

i-th energy bin is given by pðEi
νjβÞ ¼ βipðEi

νÞP
j
βjpðEj

νÞ
¼ βiP

j
βj
.

Now, the modified joint probability of pμ and θμ
becomes the sum of the individual probabilities corre-
sponding to each energy bin:

pðpμ; θμjβÞ ¼
X3

i¼1

pðpμ; θμjEi
νÞ × pðEi

νjβÞ

¼
X3

i¼1

pðpμ; θμjEi
νÞ ×

βiP
jβj

; ðA1Þ

where Ei
ν represents the neutrino energy corresponding to

the i-th bin.
To train and test the model, we need multiple datasets,

which are generated in the following way:
(1) A sample of the reweight β, called the Asimov

datapoint, is taken from a uniform distribution in the
range [0.5, 1.5] for each component.

FIG. 8. Variation of the distance between modes (top) and the
island weight (bottom) with the event counts. Error bars represent
�1σ deviations calculated for 50 posterior distributions from 50
different Xd.
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(2) The modified probability grid is computed using
Eq. (A1) multiplied by

P
j βj to account for the

increasing total number of events for increasing
reweight values.

(3) ðpμ; θμÞ samples are sampled from this grid using
the accept-reject Monte-Carlo technique. The total
number of generated samples is proportional toP

j βj and goes from 25,000 to 75,000. This means
that we train our model on datasets of varying size,
where the datasets corresponding to the nominal
reweight value β ¼ ½1; 1; 1� have 50,000 events.

(4) The ðpμ; θμÞ events are stored in a histogram with a
size of 200 × 200, noted Xd.

(5) This process is repeated 7500 times for distinct
Asimov datapoints β, generating 7500 datasets
containing between 25,000 and 75,000 ðpμ; θμÞ
samples.

During training, the loss calculation, referenced in
Eq. (3), requires sampling from the target posterior dis-
tribution pðβjXdÞ. This is achieved by applying Poisson
fluctuations to each dataset Xd. Subsequently, for each
varied dataset, we identify the most likely β. The resulting β
values from this process for a given dataset effectively
sample the target posterior distribution. While this simu-
lation step might be resource heavy for latent spaces with
high dimensions, it is a one-time requirement before
training, conducted alongside the creation of the dataset.
Consequently, one must balance the trade-off between the
lengths of pretraining and training against the speed of
sampling, which ultimately hinges on the particular sce-
nario at hand.

APPENDIX B: STATISTICAL AND
SYSTEMATICAL ERRORS IN THE

STATISTICAL MOMENT PREDICTIONS

We estimate these errors by calculating the mean squared
error (MSE) between a statistic from the predicted posterior
distribution SNF and that of the target posterior distribution
Starget for a given Asimov datapoint. We generate many
samples of the two statistics using bootstrapping on the
posterior datasets. In order to decouple the fluctuations ofSNF
from the ones ofStarget,we compareSNF toStarget, whereStarget
is the average of Starget over 1000 bootstrapped datasets for a
given Asimov datapoint. The MSE calculation is as follows:

MSE ¼ EBootðjSNF − Stargetj2Þ
¼ VS

stat þ VS
bias: ðB1Þ

EBoot denotes the expectation over the bootstrapped
posterior datasets. The first term corresponds to the

statistical error VS
statðNÞ which typically scales with 1

N,
where N is the number of posterior samples while the
second term is constant as a function of N. Therefore, the
MSE can be modeled by the function

MSEfitðNÞ ¼ a
N
þ b; a; b > 0:

In order to estimate these fit parameters a and b, we
calculate the MSE for an increasing number of posterior
samples and fit the curve with the above equation for each
Asimov datapoint. This is done using 200 datasets gen-
erated from Asimov data points uniformly sampled from
the ½0.5; 1.5�3 volume. The errors for the studied statistics
are summarized in Table I.
Our analysis shows that the error in the mean prediction

is mainly systematical and tends also to be bias dominated
for the standard deviation for N ≫ 2000. More posterior
samples are required for the error in the Pearson correlation
factors to be dominated by the bias, between 4000 and
13,000 posterior samples depending on the correlation
factor. The skewness and kurtosis measurements exhibit
higher statistical error. While the MSE presented in the
table can be linked to intrinsical error of the model, the
skewness and kurtosis values are not significant at a 0.05
level, meaning that both ptarget and qNF are very close to
Gaussian distributions.

TABLE I. Table of the comparison of a chosen set of statistics
between the predicted and target posterior distribution. The
values are averaged across the 200 Asimov datapoints. a and
b correspond to the parameters of the fit of the MSE. Starget
corresponds to the mean of the statistic from the sampled target
posterior distribution.

Bin Starget a b Bias (
ffiffiffi
b

p
)

Mean
0 1.00 8.87 × 10−4 4.86 × 10−5 5.6 × 10−3
1 1.00 1.05 × 10−3 5.29 × 10−5 5.9 × 10−3
2 1.00 7.64 × 10−4 5.49 × 10−5 5.9 × 10−3

Standard deviation
0 1.31 × 10−2 0.91 × 10−4 5.61 × 10−8 1.81 × 10−4
1 1.48 × 10−2 1.13 × 10−4 5.67 × 10−8 1.90 × 10−4
2 1.20 × 10−2 0.73 × 10−4 3.13 × 10−8 1.37 × 10−4

Pearson correlation factor
(0,1) −0.49 1.22 1.47 × 10−4 9.84 × 10−3
(1,2) −0.39 1.14 8.96 × 10−5 7.77 × 10−3
(2,0) 0.03 0.98 2.62 × 10−4 1.29 × 10−2
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