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We present a feasibility study to probe quantum entanglement and Bell inequality violation in the
process eþe− → τþτ− at a center-of-mass energy of

ffiffiffi
s

p ¼ 10.579 GeV. The sensitivity of the analysis
is enhanced by applying a selection on the scattering angle ϑ in the τþτ− center-of-mass frame. We
analyze events in which both τ leptons decay to hadrons, using a combination of decay channels
τ− → π−ντ, τ− → π−π0ντ, and τ− → π−πþπ−ντ. The spin orientation of the τ leptons in these decays is
reconstructed using the polarimeter-vector method. Assuming a dataset of 200 million τþτ− events and
accounting for experimental resolutions, we expect the observation of quantum entanglement and Bell
inequality violation by the Belle-II experiment will be possible with a significance well in excess of five
standard deviations.

DOI: 10.1103/PhysRevD.109.032005

I. INTRODUCTION

The most distinctive feature of quantum mechanics
is the inseparable nature of states describing physical
systems that have interacted in the past. The entangled
states give rise to correlations between these systems
that are present even after they are separated and can no
longer interact. After establishing the presence of quan-
tum entanglement, observables testing the violation of
Bell inequality [1] are the most interesting, because they
provide a direct proof of the nonlocal nature of quantum
correlations. The Bell inequality is derived by combin-
ing the probabilities of the outcome of various mea-
surements between two observers under the assumption
of Bell locality—that is, the factorizability of these
probabilities with respect to all shared resources (see,
for example, [2] for a review). Quantum mechanics does
not satisfy Bell locality, and the inequality can, there-
fore, be violated.
Bell inequality violation has been verified experimen-

tally with the polarizations of low-energy (that is, few eV)
photons in [3,4]: Two photons are prepared into a singlet
state and their polarizations measured along different
directions to verify their entanglement and the violation

of Bell inequality. Many experiments have been performed
to further test the inequality [5,6] and close possible
loopholes [7,8] with photons, using superconducting cir-
cuits [9] and using atoms [10]. The reader can find more
details and references in two review articles [11,12].
Though the study of entangled states and Bell inequal-

ity has been an ongoing concern in atomic and solid-state
physics for many years, it is only recently that also the
high-energy community has taken up in earnest the study
of the subject. Collider detectors, while not designed
for the probing of entanglement, turn out to be surpris-
ingly good in performing this task, thus ushering in
the possibility of many interesting new measurements
as well as new tools in probing physics beyond the
Standard Model.
Entanglement with low-energy protons has been probed

in Ref. [13] and proposed at colliders using hadronic final
states in Ref. [14]. The higher energy probes quantum
entanglement at smaller length scales [15]. Tests in the
high-energy regime of particle physics have been suggested
by means of neutral kaon physics [16–18] (see also
Ref. [19]), positronium [20], flavor oscillations in neutral
B mesons [21], charmonium decays [22], and neutrino
oscillations [23]. A discussion of some of these issues also
appears in Refs. [24,25]. The interest has been revived
recently after entanglement has been argued [26] to be
present in top-quark pair production at the LHC and it was
shown [27] that Bell inequality violation is experimentally
accessible in the same system. Following these works, the
study of entanglement has been proposed for top-quark
production [28–32], hyperons [33], and gauge bosons from
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Higgs boson decay [34–37] and direct production [36,37].
For all these particles, it is possible to study entanglement
and verify the violation of Bell inequality. Entanglement
has recently been observed in top-quark pairs produced at a
center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV [38]. It has also
been argued [39] that Bell inequality is violated in the
decays of B mesons at LHCb and Belle II.
In this paper, we propose to probe quantum entangle-

ment and Bell inequality violation using the process
eþe− → τþτ− at the Belle-II experiment, located at the
SuperKEKB collider. The SuperKEKB collider delivers
eþe− collisions at a center-of-mass (c.m.) energy offfiffiffi
s

p ¼ 10.579 GeV. The Belle collaboration has published
analyses of eþe− → τþτ− production with data correspond-
ing to an integrated luminosity of up to 921 fb−1, equiv-
alent to up to 841 million τþτ− events [40], while another
175 million events have been added with the Belle II
dataset [41]. The final aim of the SuperKEKB project is
to collect 50 ab−1 of data [42,43]. This would result in a
dataset of about 50 billion eþe− → τþτ− events.
We assess the feasibility of our proposal with a

Monte Carlo (MC) study. The study is based on 200 million
eþe− → τþτ− events, which we analyze in three decay
channels: τ− → π−ντ, τ− → π−π0ντ, and τ− → π−πþπ−ντ.
The combination of these decay channels covers about 21%
of τ pair decays. The detection of quantum entanglement
and Bell inequality in the process eþe− → τþτ− requires
the measurement of τ spin correlations in the rest frames
of the τþ and τ−. Besides the availability of a large τþτ−
dataset, our motivation for performing this study at Belle II
is that the overconstrained event kinematics and compara-
tively low c.m. energy allow for a precise reconstruction
of these rest frames, which, in turn, allows for a precise
measurement of the τ spin correlations in the directions
transverse and longitudinal to the τ flight direction. The
measurement of transverse and longitudinal τ spin corre-
lations is important in order to distinguish quantum
entanglement from local hidden-variable theories [15].
Ours is the first study of entanglement and Bell inequa-

lity violation in the process eþe− → τþτ− at Belle II. Tests
of entanglement and Bell inequality violation in τþτ−
systems has previously been proposed in eþe− collisions
at LEP [44], pp collisions at the LHC [45], and at future
leptonic colliders [46,47].
The paper is organized as follows: In Sec. II, we briefly

summarize how the density matrix describing the polari-
zation state of the τ pair can be computed from the
amplitudes of the underlying process. Section III introduces
the entanglement observables that we track in the following
Monte Carlo analysis. In Sec. IV, we propose a strategy for
detecting quantum entanglement and Bell inequality vio-
lation in the data recorded by the Belle-II experiment. The
details and results pertaining to the performed numerical
study are described in Sec. V, and our conclusions are
offered in Sec. VI.

II. TAU SPIN CORRELATIONS IN THE
STANDARD MODEL

The density matrix describing the polarization state of
the bipartite system formed by the τ-lepton pair can be
written as

ρ ¼ 1

4

�
1 ⊗ 1þ

X
i

Bþ
i ðσi ⊗ 1Þ þ

X
j

B−
j ð1 ⊗ σjÞ

þ
X
i;j

Cijðσi ⊗ σjÞ
�
; ð2:1Þ

where i; j∈ fn; r; kg and σi are the Pauli matrices. The
coefficients B�

i encode the polarization of the correspond-
ing τ� lepton, whereas the matrix Cij contains the
polarization correlations. The proposed decomposition
refers to a right-handed orthonormal basis fn̂; r̂; k̂g [48]
defined in the τ-pair center-of-mass frame as follows:

n̂ ¼ 1

sin ϑ
ðp̂ × k̂Þ; r̂ ¼ 1

sin ϑ
ðp̂ − cos ϑk̂Þ ð2:2Þ

with k̂ being the direction of one of the τ leptons in
the center-of-mass frame and ϑ the angle satisfying
p̂ · k̂ ¼ cosϑ, with p̂ an arbitrary unit vector in the
production plane. The quantization axis for the polarization
is taken along k̂, so that σk ≡ σ3. Formally,

Bþ
i ¼ Tr½ρðσi ⊗ 1Þ�; ð2:3Þ

B−
i ¼ Tr½ρð1 ⊗ σiÞ�; ð2:4Þ

Cij ¼ Tr½ρðσi ⊗ σjÞ�; ð2:5Þ

as implied by the properties TrðσiσjÞ¼2δij and TrðσiÞ¼0.
The polarization density matrix can be computed from

the scattering amplitude of the underlying eþe− → τþτ−
process in the following way. Consider the amplitude
for the production of a fermion ψλ with polarization
λ∈ f− 1

2
; 1
2
g along a given quantization direction:

MðλÞ ¼ ½ūλA�; ð2:6Þ

where the symbolA indicates the term in the amplitudeM
multiplying the spinor ūλ and square brackets denote a
contraction of spinor indices. The outgoing particle is then
described by a state

jψi ¼
X
λ

MðλÞjuλi ð2:7Þ

yielding the spinor-space density matrix
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ρψ ¼ jψihψ j
hψ jψi ¼

P
λλ0 ½ūλA�½ūλ0A�†juλihūλ0 jP
λλ0 ½ūλA�½ūλ0A�†hūλ0 juλi

¼
P

λλ0 ½ūλA�½ūλ0A�†juλihūλ0 j
2m

P
λ½ūλA�½ūλA�†

¼
P

λλ0 ½Aūλ0 �†½Aūλ�juλihūλ0 j
2mjMj2 ; ð2:8Þ

where we made use of the orthogonality relation hūλ0 juλi≡
½ūλ0uλ� ¼ 2mδλ0λ with m being the mass of the fermion and
jMj2 the squared amplitude (summed over the spin) for the
production process.
The density matrix in the polarization space can be

obtained upon projection via the operators [49]

juλihūλ0 j
2m

≡Πu
λλ0

2m
¼ 1

4m
ð=pþmÞ

�
δλλ0 þγ5

X
i

siσiλλ0

�
; ð2:9Þ

jvλihv̄λ0 j
2m

≡Πv
λλ0

2m
¼ 1

4m
ð=p−mÞ

�
δλλ0 þγ5

X
i

siσiλλ0

�
; ð2:10Þ

where fsμi g is a triad of spacelike four-vectors, satisfying
sμi pμ ¼ 0, obtained by boosting the canonical basis1of the
spin four-vector s to the frame where the fermion has four-
momentum p. By acting with the first projector on the
spinor-space density matrix, we then obtain

ρλλ0 ¼
�
Πu

λλ0

2m
ρψ

�
¼½AA†Πu

λλ0 �
jMj2 ¼1

2

�
1þ

X
i

hsiiσi
�
; ð2:11Þ

where i∈ fn; r; kg and hXi is the ensemble average of the
quantity X. The computation of the density matrix for an
antifermion ψ̄ λ proceeds analogously with the replacement
of the projection operator in Eq. (2.9) by that of Eq. (2.10).
The generalization to processes yielding more than one
fermion in the final state is straightforward and recovers

Eq. (2.1) for the pair production case. In particular, we have
B�

i ¼ hs�i i and Cij ¼ hsþi s−j i, with sþi and s−i being the
spin vector of the antifermion and fermion, respectively.
The amplitude of the process we are interested in can be

obtained from the diagram in Fig. 1, yielding

M ¼ −
e2

s
½v̄ðpþÞγμuðp−Þ�½ūðk−ÞγμvðkþÞ�; ð2:12Þ

where s ¼ ðpþ þ p−Þ2 and the squared amplitude

jMj2 ¼ 4e4

s
ð4m2

τsin2ϑþ sðcos2ϑþ 1ÞÞ; ð2:13Þ

where we neglected the mass of the electron and summed
over the spin of all the involved fermions. In the τ-pair
center-of-mass frame, our conventions set k̂ along the kþ
momentum and p̂ along pþ and identify the angle ϑ in
Eq. (2.2) with the scattering angle included by these
momenta.
Computing the polarization density matrix of the τ pair,

we find

ρ ¼ r0

0
BBB@

sðcos2ϑþ 1Þ −i
ffiffiffi
s

p
mτ sin 2ϑ −i

ffiffiffi
s

p
mτ sin 2ϑ −ssin2ϑ

i
ffiffiffi
s

p
mτ sin 2ϑ 4m2

τsin2ϑ 4m2
τsin2ϑ i

ffiffiffi
s

p
mτ sin 2ϑ

i
ffiffiffi
s

p
mτ sin 2ϑ 4m2

τsin2ϑ 4m2
τsin2ϑ i

ffiffiffi
s

p
mτ sin 2ϑ

−ssin2ϑ −i
ffiffiffi
s

p
mτ sin 2ϑ −i

ffiffiffi
s

p
mτ sin 2ϑ sðcos2ϑþ 1Þ

1
CCCA; ð2:14Þ

where r0 ¼ 1=ð8m2
τsin2ϑþ 2sðcos2ϑþ 1ÞÞ.

FIG. 1. The tree-level Feynman diagram for the considered
process. We omit Z and H contributions as they are negligible atffiffiffi
s

p ¼ 10.579 GeV.

1In the rest frame of the fermion, we have s ¼ ð0; sÞ and

s1 ¼

0
B@

0

1

0

0

1
CA; s2 ¼

0
B@

0

0

1

0

1
CA; s3 ¼

0
B@

0

0

0

1

1
CA:
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For the coefficients in Eq. (2.1), we obtain B�
i ¼ 0 and

C ¼ c0

0
BB@

ð4m2
τ − sÞsin2ϑ 0 0

0 ð4m2
τ þ sÞsin2ϑ 4mτ

ffiffiffi
s

p
sin θ cosϑ

0 4mτ
ffiffiffi
s

p
sin ϑ cosϑ −4m2

τsin2ϑþ sðcos2ϑþ 1Þ

1
CCA; ð2:15Þ

where c0 ¼ 1=ð4m2
τ sin2 ϑþ sðcos2 ϑþ 1ÞÞ. Averaging

over the angular distribution of the two τ leptons yields

hCi ¼

0
B@

−0.419875 0 0

0 0.526708 0

0 0 0.893167

1
CA ð2:16Þ

for
ffiffiffi
s

p ¼ 10.579 GeV and mτ ¼ 1.777 GeV.
Equation (2.16) shows that the parameter D ¼

TrðhCiÞ=3 ¼ 1=3 does not signal the presence of entan-
glement, as it relies on an average. Averaging, in general,
dilutes the effect of quantum correlations.

III. ENTANGLEMENT OBSERVABLES

On general grounds, a bipartite state is called separable
if its density matrix can be written as a convex combination
of product states:

ρsep ¼
X
i;j

pijρ
A
i ⊗ ρBj ; with pij > 0 and

X
i;j

pij ¼ 1;

ð3:1Þ

where the labels A and B denote the two composing
subsystems. By definition, a system is called entangled
if it is not separable.
Quantifying the entanglement content of a bipartite

system is generally a complicated task, because the
possible decompositions into pure state pose an optimiza-
tion problem for the chosen entanglement measure or
monotone. Fortunately, algebraic solutions are available
for simpler systems, for instance, for those composed of
two qubits. In order to assess the presence of entanglement
in the τ-pair polarization state, we track the concurrence
C½ρ� [50–52], an entanglement monotone which for a
bipartite qubit system can be quantified as

C½ρ� ¼ maxf0; λ1 − λ2 − λ3 − λ4g∈ ½0; 1�; ð3:2Þ

where λi are the eigenvalues, in decreasing order, of the
matrix

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ̃

ffiffiffi
ρ

pq
; with ρ̃ ¼ ðσ2 ⊗ σ2Þρ�ðσ2 ⊗ σ2Þ:

ð3:3Þ

Nonvanishing values of the concurrence witness the pres-
ence of entanglement, and a value of 1 indicates a
maximally entangled state. At the tree level, we find

C½ρ� ¼ ðs − 4m2
τÞsin2ϑ

4m2
τsin2ϑþ sðcos2ϑþ 1Þ ð3:4Þ

for the process eþe− → τþτ−. Entanglement vanishes at the
kinematic threshold, because the conservation of angular
momentum, in the absence of an orbital component, forces
the complete classical correlation of the τ-pair spins and
their state into a separable one.
The genuine quantum correlations that entangle the

polarization states of the τ lepton can also be used to
discriminate between quantum mechanics and alternative
local stochastic classical theories relying on hidden
variables [53]. This is the idea behind the so-called
Bell inequalities [1], which bound the expectation
value of a suitable operator under the hypothesis that
the involved correlators are local, i.e., that they factorize
according to the rules of probability [44]. For the bipartite
qubit system at hand, a useful test is encoded in the
following inequality [5]:

jn̂1 ·C · ðn̂2 − n̂4Þ þ n̂3 ·C · ðn̂2 þ n̂4Þj ≤ 2; ð3:5Þ

with n̂i being four unit vectors indicating the directions along
which the spins of the two leptons can be measured. The
upper bound is respected by correlations stemming from
local theories but can be violated within quantum mechanics
if the state of interest is entangled. In order to detect the
violation of this generalized Bell inequality, it is necessary to
maximize the effect through a suitable choice of the four
measurement directions. The procedure can be bypassed by
introducing the operator m12½C� [54], defined as

m12½C� ¼ m1 þm2; ð3:6Þ

where m1 ≥ m2 ≥ m3 are the eigenvalues of the positive
semidefinite matrix M ¼ CTC. If and only if m12½C� > 1,
then the bound in Eq. (3.5) is violated and local hidden-
variable theories can be ruled out.
With the results in Eq. (2.15), we find

m12½C� ¼ 1þ
� ðs − 4m2

τÞsin2ϑ
4m2

τsin2ϑþ sðcos2ϑþ 1Þ
�

2

; ð3:7Þ
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which we plot in Fig. 2 as a function of the scattering angle.
The figure shows that the violation of the bound in Eq. (3.5)
becomes easier to detect when one selects events in which the
τ pair is produced in direction transverse to the beam axis.
In relation to the proposed Bell test, we remark that the

relative velocity v with which the τ pair flies apart is
sufficiently large to create, at the times t1 and t2 of decay,
a spacelike separation

jt1 − t2jc
ðt1 þ t2Þv

< 1; ð3:8Þ

for more than 95% of the τ pairs (see Fig. 3). The separation
prevents local interactions (as those arising through the
exchange of photons between the charged taus) and ensures
that the locality loophole [55] is closed. The selection of
these events could be implemented with a suitable cut
on the relative momentum of the two particles. However,
given the amount of available data and the small fraction of
pairs rejected by the cut, this refinement would not affect
the significance of the proposed Bell test.

IV. MEASUREMENT OF TAU SPIN
CORRELATIONS

The measurement of the τ spin correlation matrix C is
based on the spin-dependent differential cross section dσ
for the process eþe− → τþτ−, which is given by [56]

dσ ¼ jM̄pj2ð1 − bþμ s
μ
þ − b−ν sν− þ cμνs

μ
þsν−ÞdLips; ð4:1Þ

where jM̄pj2 denotes the spin-averaged matrix element for
the process eþe− → τþτ− and dLips is the Lorentz invariant
phase-space measure. The symbols sμþ and sμ− refer to the
spin of the τþ and of the τ−. Combining Eq. (4.1) with
the expression for the differential decay rate of the τ,
given by [56]

dΓ ¼ 1

2mτ
jM̄dj2ð1þ hμsμÞdLips; ð4:2Þ

one obtains the relation

dσ ¼ jM̄pj2jM̄dj2jM̄0
dj2ð1 − bþμ h

μ
þ − b−ν hν−

þ cμνh
μ
þhν−ÞdLips: ð4:3Þ

The symbols jM̄dj2 and jM̄0
dj2 refer to the spin-averaged

matrix elements for the decay of the τþ and τ−, and hμþ
and hν− denote the polarimeter vectors of the τþ and τ−,
respectively. The polarimeter vectors provide a handle to
measure the orientation of the τþ and τ− spins. The relation
between the polarimeter vector and the τ spin orientation is
given by Eq. (4.2).
For the three decay channels τ− → π−ντ, τ− → π−π0ντ,

and τ− → π−πþπ−ντ considered in this paper, the polari-
meter vector is a function of the momenta of the charged
and neutral pions produced in the τ decay. For the decay
channels τ− → π−ντ and τ− → π−π0ντ, the polarimeter
vector can be computed analytically, and we use the
expressions given by Eqs. (3.25) and (3.39) in Ref. [56].
For the decay channel τ− → π−πþπ−ντ, it is not possible to
derive analytic expressions for the polarimeter vector, and
we instead use the algorithm in Ref. [57] to compute hμþ
and hν− numerically. The decays τ− → π−π0ντ and τ− →
π−πþπ−ντ proceed via intermediate ρð770Þ and a1ð1260Þ

FIG. 3. Histogram of the number of events as a function of the
ratio jt1 − t2j=ðt1 þ t2Þ between the difference and the sum of the
decay times of the two taus. The events have been generated by
105 pseudoexperiments in which the decay times are randomly
varied within an exponential distribution. The black-dashed
vertical line distinguishes events separated by a timelike interval
(to the right of the line) from those that are spacelike separated
(to the left of the line).

FIG. 2. The observables m12½C� and C½ρ� as a function of the
scattering angle ϑ (defined by the directions of the incoming
positron and outgoing τþ in the τ-pair rest frame) at

ffiffiffi
s

p ¼
10.579 GeV. The solid red and yellow lines represent the Standard
Model expectation for these observables. Entanglement is present
if C½ρ� > 0 (above the area hatched in red), while the generalized
Bell inequalities are violated for m12½C� > 1 (above the area
hatched in green). For both observables, the central region (for
small cos ϑ) is where the largest values are to be found.

PROBING ENTANGLEMENT AND TESTING BELL INEQUALITY … PHYS. REV. D 109, 032005 (2024)

032005-5



resonances. We, hence, refer to these decay channels as πþ,
ρþ, and aþ1 for the τþ and as π−, ρ−, and a−1 for the τ−.
It has been shown that all hadronic τ decay channels

provide the same sensitivity, or “τ spin analyzing power,” if
the charged and neutral pions produced in the τ decays
can be reconstructed and measured with negligible experi-
mental resolution [58]. In contrast, the spin analyzing
power of the leptonic decay channels τ− → e−ν̄eντ and
τ− → μ−ν̄μντ is limited to about 40% compared to hadronic
τ decays [59]. For this reason, we focus on hadronic τ
decays in this paper.
The polarimeter vectors hμþ and hν− need to be computed

in the rest frames of the τþ and τ−. The rest frames are
determined by reconstructing the full event kinematics,
including the momenta of the two neutrinos produced
in the τ decays, as detailed in the next section. In the τþ
and τ− rest frames, the timelike component of the
polarimeter vector vanishes: h0 ¼ 0. Equation (4.3) thus
reduces to

dσ ¼ jM̄pj2jM̄dj2jM̄0
dj2ð1þ Bþ · hþ þ B− · h−

þ hþ · C · h−ÞdLips: ð4:4Þ

Using this relation, we determine the polarizations Bþ
and B− and the spin correlation matrix C by an unbinned

maximum-likelihood (ML) fit [60]. The likelihood function
is given by

L ¼
Y
i

ð1þBþ · hþ
i þ B− · h−

i þ hþ
i ·C · h−

i Þ: ð4:5Þ

In Eq. (4.5), the subscript i refers to the events i in the
eþe− → τþτ− event sample, and the product extends over
all events in this sample. The 15 parameters of the fit—the
three elements of the polarization vector Bþ of the τþ,
the three elements of the polarization vector B− of the τ−,
and the nine elements of the spin correlation matrixC—are
determined by a numerical maximization of the likelihood
function L with respect to these parameters. The param-
eters are expressed in the fn̂; r̂; k̂g coordinate system
defined in Sec. II. The maximization is performed numeri-
cally, using the program MINUIT [61]. Alternative proce-
dures for determining Bþ, B−, and C are compared to the
ML-fit method in Appendix B.
Equation (4.4) holds for a fixed value of the scattering

angle ϑ. We have checked that the maximization of the
likelihood function yields an unbiased estimate of the spin
correlation matrix C when Eq. (2.15) is integrated over
intervals in ϑ. As an example, we give in Eq. (4.6) the spin
correlation matrix computed for a sample of eþe− → τþτ−
events, produced by MC simulation as detailed in Sec. V:

C ¼

0
B@

−0.4129� 0.0033 −0.0014� 0.0040 0.0008� 0.0036

0.0007� 0.0029 0.5273� 0.0032 0.0024� 0.0030

0.0024� 0.0031 0.0030� 0.0032 0.8829� 0.0028

1
CA: ð4:6Þ

The events considered in the computation were selected
in the decay channel πþπ− within the range 0 ≤ ϑ ≤ π
and were analyzed on MC-truth level. No selection
criteria (acceptance cuts) are applied on the charged
and neutral pions produced in the τ decays. All nine
elements of the matrix agree with the Standard Model
expectation, given by Eq. (2.16), within the quoted
statistical uncertainties.
Once the spin correlation matrix C is determined, we

compute the observables C½ρ� and m12½C� using Eqs. (3.2)
and (3.6), in order to test for entanglement and Belle
inequality violation. The elements of the density matrix ρ
are given by Bþ, B−, and C through Eq. (2.1).
Figure 2 demonstrates that the feasibility to detect

quantum entanglement and Belle inequality violation
increases if one selects events in which the τ leptons are
produced in direction transverse to the beam axis, i.e., with
ϑ ≈ π=2. We perform an optimization of a selection on ϑ,
with the aim of maximizing the significances C½ρ�=δC½ρ�
and ðm12½C� − 1Þ=δm12½C�. The results of this optimiza-
tion will be presented in the next section.

V. MONTE CARLO STUDY

A sample of 200 million eþe− → τþτ− MC events was
generated with the program MadGraph_aMC@NLO v2.9.16 [62],
using leading-order matrix elements. The program PYTHIA

v8.306 [63] is used for the modeling of parton showers,
hadronization processes, and τ decays. All τ decay channels
are included in the simulation. The events are analyzed on
MC-truth level and after taking realistic experimental
resolutions into account.
Instead of performing a full simulation of the Belle-II

detector [64] based on Geant4 [65], we simulate the
experimental resolution by randomly varying (“smearing”)
the position of the primary event vertex, the four-vectors of
the charged and neutral particles produced in the τ decays,
and the longitudinal (dxy) and transverse (dz) impact
parameters of tracks. In the case of τ decays into three
charged pions, we also smear the position of the τ decay
vertex. The z axis is defined as the direction of the electron
beam. For the τ decay channels considered in this
paper, only the resolutions for charged pions (π�) and
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for photons (γ) are relevant. The latter originate from
neutral pion (π0) decays. The resolutions are taken from
Ref. [64] and are summarized in Table I. For the τ decay
vertex, we assume a resolution of 500 μm in the direction
parallel to the τ flight direction and 10 μm in each of the
two perpendicular directions. The smeared values are
obtained by randomly sampling from a Gaussian distribu-
tion with mean equal to the true value and width equal to
the experimental resolution given in the table. The symbol
pT refers to the momentum in direction transverse to the
beam axis, and the symbols θ and ϕ denote the polar and
azimuthal angles, respectively, with respect to this axis. The
resolution on the pT of charged pions is parametrized
by σpT

¼ pTðc0pT ⊕ c1=βÞ, where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðm=EÞ2

p
is

the charged pions’ velocity in units of the speed of light.
The resolution on the energy E of photons is parametrized
by σE ¼ Eðc0=E ⊕ c1=

ffiffiffiffi
E4

p
⊕ c2Þ. The coefficients ci

are given in Table I. The symbol ⊕ indicates that
contributions to the resolutions are added in quadrature.

Angular resolutions are given in units of radians. The
angular resolution for π� represents our estimate.
The angular resolution for γ improves proportional to the
square root of the photons’ energy. For the resolutions on
the transverse and longitudinal impact parameters, which
typically vary with pT and θ of the track, we have taken
averages and rounded the values to one significant digit.
The energy spread of the beam electrons and the effect of
beamstrahlung is simulated by varying the constraint on the
energy of the τþτ− system and of its momentum in beam
direction by 0.1 GeV [42] and by varying its momentum in
direction transverse to the beam axis by 0.01 GeV.
The π� and γ produced in the τ decays are required to

pass selection criteria, which ensure that the particles can
be well identified and their momenta be well reconstructed
in the Belle-II detector. Charged pions are required to have
a transverse momentum pT > 0.1 GeV, while photons are
required to have an energy E > 0.1 GeV. Both are required
to be within the geometric acceptance of the central drift
chamber: 17 < θ < 150°. The selection criteria are taken
from Ref. [40]. We refer to them as acceptance cuts.
The full kinematics of each event, including the

momenta of the two neutrinos produced in the τ decays,
is reconstructed using a two-step procedure. In the first
step, we determine approximate values of the τ lepton
momenta by solving a set of analytic equations. The
approximate values are then used as starting point for a
kinematic fit (KF), which is executed in the second step.
The first step is based on the formalism introduced in

Appendix C in Ref. [46] and has been extended to the case
of τ decay channels other than τþτ− → πþν̄τπ−ντ. Details
of the extended formalism are given in Appendix A.
The KF is based on the work presented in Refs. [66–68].

The number of fitted parameters totals 17: the position
of the primary event vertex (3); the components px and py

of the momenta of the neutrinos produced in the decay of
the τþ and τ− (4); the position of the decay vertices of τþ
and τ− (6); and the E, px, py, and mass components of the
τþτ− system (4). For the uncertainties on these parameters,
the KF uses the values given in Table I. We use the symbols
τþh and τ−h to refer to the system of π� and γ produced in
the decays of the τþ and τ−, respectively. We assume the
uncertainties on the π� and γ momenta to be negligible and,
thus, do not include the τþh and τ−h momenta as parameters
in the fit. For τ leptons that decay into π� or ρ�, we follow
the approach referred to as “huge error method” in Ref. [69]
to allow the fit to freely vary the position of the τ decay
vertex along the direction of the charged pion’s track. The
E and pz components of the neutrino four-vector are
computed analytically, using the τ and neutrino mass
constraints. All other constraints are represented by
Lagrange multipliers in the KF. In total, there are eight
such constraints: four “parallelism” constraints of the type
described in Sec. IV.1.3.3 in Ref. [67] and four constraints

TABLE I. Experimental resolutions used in the MC study.

Charged hadrons

Quantity Resolution

pT: c0 1 × 10−3 GeV−1

pT: c1 3 × 10−3

θ 10−3

ϕ 10−3

dxy 10 μm
dz 20 μm

Photons

Quantity Resolution

E: c0 2 × 10−3 GeV
E: c1 1.6 × 10−2

ffiffiffiffiffiffiffiffiffi
GeV4

p
E: c2 1.2 × 10−2

θ 4 × 10−3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½GeV�p

ϕ 4 × 10−3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½GeV�p

Event vertex

Quantity Resolution

x 10 μm
y 10 μm
z 20 μm

τþτ− system

Quantity Resolution

px 0.01 GeV
py 0.01 GeV
pz 0.1 GeV
Mass 0.1 GeV
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that demand that the sum of τþh þ ντ þ τ−h þ ν̄τ four-vectors
equals the four-vector of the eþe− initial state.
For the optimization of the selection on j cosðϑÞj < x,

we perform a scan of the significances C½ρ�=δC½ρ� and
ðm12½C� − 1Þ=δm12½C� as a function of the upper limit x,
where the symbols δC½ρ� and δm12½C� refer to the statistical
uncertainties on the observables C½ρ� and m12½C�, respec-
tively. We vary x within the range 0–1 in steps of 0.05. The
result of the scan is illustrated in Fig. 4 for the cases that the
event kinematics and polarimeter vectors are taken from
MC-truth level and for the case that they are reconstructed
by the KF after smearing the events by the experimental
resolutions. A good compromise between maximizing the
effect of entanglement and Bell inequality violation, on the
one hand, and maintaining a high-statistics event sample,

on the other hand, is achieved for the selection
j cosðϑÞj < 0.40. Maintaining a high-statistics event sample
reduces the uncertainties δC½ρ� and δm12½C�.
In the figure, one can see that all decay channels

contribute in a meaningful way to the sensitivity for
detecting quantum entanglement and Bell inequality vio-
lation. The decay channels ρþρ− and π�ρ∓ contribute the
most, reflecting their higher branching fractions. The
significance of the combination is computed by adding
the significances of individual decay channels in quad-
rature. The significances C½ρ�=δC½ρ� and ðm12½C� − 1Þ=
δm12½C� are reduced by about 10% and 30%, respectively,
when the events are smeared by the experimental reso-
lutions and reconstructed by the KF, compared to the
sensitivity obtained at MC-truth level.

FIG. 4. Significances C½ρ�=δC½ρ� (left) and ðm12½C� − 1Þ=δm12½C� (right) as a function of the upper limit imposed on j cosðϑÞj. The
significances are given for the decay channels πþπ−, π�ρ∓, π�a∓1 , ρ�ρ∓, ρ�a

∓
1 , and aþ1 a

−
1 individually and for their combination. The

events are analyzed on MC-truth level (top) and with experimental resolutions taken into account (bottom). No acceptance cuts are
applied on the π� and γ produced in the τ decays.
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Values and uncertainties on the observables C½ρ� and
m12½C� for events that pass the selection j cosðϑÞj < 0.40
on the scattering angle ϑ are given in Tables II and III.
Table II gives the results obtained when events are analyzed
at MC-truth level and Table III those obtained after
smearing the events by the experimental resolutions and
reconstructing the event kinematics by the KF.
The uncertainties on Bþ, B−, and C as well as on the

observables C½ρ� and m12½C� are computed by bootstrap-
ping [70]: A set of Ntoy ¼ 100 toy datasets is constructed
from the original sample. The events in each toy dataset
are drawn randomly from the original sample, such that
the number of events in each toy dataset equals N. The
bootstrap samples may contain the same event exactly
once, multiple times, or not at all. The probability PðnÞ for
a certain event to be contained n times in the toy dataset is
given by the Poisson distribution PðnÞ ¼ ðλne−λÞ=n! with
λ ¼ 1=N. For each toy dataset, we compute the spin
correlation matrixC by maximizing the likelihood function
L given by Eq. (4.5). The statistical uncertainty on the
element Cij is then computed by sorting the Ntoy values of
this element, which we obtained by the bootstrapping
procedure, and taking half the difference between the
84% and 16% quantiles. Statistical uncertainties on the

observables C½ρ� andm12½C� are estimated by taking the set
of Ntoy spin correlation matrices C, computing C½ρ� and
m12½C� for each matrix using Eqs. (3.2) and (3.6), and
then taking half the difference between the 84% and
16% quantiles for these observables.
The values and uncertainties for the combination of

decay channels in Tables II and III are computed by taking
a weighted average of the individual decay channels i,
with weights given by the inverse of the square of the
uncertainties δC½ρ�i and δm12½C�i expected for channel i.
For the combination of all six decay channels, we expect
that a measurement of τ spin correlations in the process
eþe− → τþτ− at Belle II will allow one to observe
entanglement and Bell inequality violation with signifi-
cances well in excess of five standard deviations (s.d.).
The numerical values of the significances amount to
463 s.d. in case of entanglement and 87 s.d. in the case
of Bell inequality violation.
The significances computed based on the numbers given

in Tables II and III are about 10% lower compared to those
shown in Fig. 4. The difference is due to the acceptance
cuts. Events passing the selection j cosðϑÞj < 0.40 pass the
acceptance cuts with an efficiency that varies between 52%
and 95%, depending on the τ decay channel. The effect of
these efficiencies is to increase the uncertainties δC½ρ� and
δm12½C�. The efficiency is the lowest for the decay channel
ρþρ− and the highest for the decay channel πþπ−. We have
checked that the acceptance cuts do not introduce a bias
on the τ spin correlation. The values of C½ρ� and m12½C�
obtained for events passing the selection j cosðϑÞj < 0.40
change only marginally, by about 1%, when the acceptance
cuts are applied.
As can be seen by comparing Tables II and III, the

experimental resolutions increase the uncertainties δC½ρ�
and δm12½C� by a small amount and also reduce the
measured values and, thus, the significances by a few
percent. As the focus of this study is the detection of
entanglement and Bell inequality violation and not the
precise measurement of C½ρ� and m12½C�, we do not make
an attempt to mitigate this effect by accounting for the
experimental resolutions in the likelihood function L given
by Eq. (4.5) or compensate for the effect via calibration.
We advise the reader not to take the quoted values of the

significances literally. We quote their numerical values
solely for the purpose of substantiating our expectation that
an observation of entanglement and Bell inequality viola-
tion with a significance well in excess of five s.d. is highly
likely after all experimental effects, including effects not
considered in our Monte Carlo study, are taken into
account. The following three effects will degrade the
sensitivity somewhat in a realistic experiment: the presence
of non-Gaussian tails in the experimental resolutions, the
presence of backgrounds, and systematic uncertainties. Of
the three, the presence of backgrounds will probably have
the most sizable effect.

TABLE III. Observables C½ρ� and m12½C� measured in indi-
vidual decay channels and for the combination of all six channels,
for events that pass the acceptance cuts and the selection
j cosðϑÞj < 0.40. Events are reconstructed by the KF after
smearing them by the experimental resolutions given in Table I.

Decay channel C½ρ� m12½C�
πþπ− 0.6722� 0.0062 1.463� 0.012
π�ρ∓ 0.6658� 0.0026 1.361� 0.007
π�a∓1 0.6370� 0.0035 1.298� 0.009
ρþρ− 0.6524� 0.0026 1.326� 0.008
ρ�a∓1 0.6181� 0.0035 1.264� 0.010
aþ1 a

−
1

0.6062� 0.0073 1.229� 0.018

All channels 0.6475� 0.0014 1.331� 0.004

TABLE II. Observables C½ρ� and m12½C� measured in individ-
ual decay channels and for the combination of all six channels,
for events that pass the acceptance cuts and the selection
j cosðϑÞj < 0.40. Events are analyzed on MC-truth level.

Decay channel C½ρ� m12½C�
πþπ− 0.7079� 0.0071 1.483� 0.011
π�ρ∓ 0.7113� 0.0029 1.482� 0.008
π�a∓1 0.6762� 0.0028 1.388� 0.009
ρþρ− 0.7111� 0.0032 1.495� 0.007
ρ�a∓1 0.6798� 0.0026 1.402� 0.008
aþ1 a

−
1

0.6386� 0.0060 1.294� 0.018

All channels 0.6905� 0.0014 1.444� 0.004
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Based on Fig. 1 in Ref. [41], we expect the dominant
background to arise from misreconstruction of the τ decay
channel. The figure shows that the τ decay channel gets
misreconstructed in about 15% of eþe− → τþτ− events at
Belle II, while in the remaining 85% of events the τ decay
channel is reconstructed correctly. Backgrounds arising
from the process eþe− → qq̄ and from other sources are
small in comparison. The misreconstruction of the τ decay
channel may happen if, for example, the γ produced in π0

decays fail to get reconstructed due to detection inefficien-
cies, are outside of the geometric acceptance of the
electromagnetic calorimeter, or have energies below the
threshold of 0.1 GeV. In the case the τ decay channel does
get misreconstructed, two things happen: Because the
polarimeter vector of the τ depends on the momenta of
the particles produced in the τ decay in a way that is
specific to each τ decay channel, the polarimeter vector will
be computed in the wrong way. Besides, the wrong four-
vectors will be used in that computation. Unfortunately, the
full Belle-II detector simulation based on Geant4 [65] is
necessary to study the misreconstruction of the τ decay
channel in detail.
Concerning the effect of systematic uncertainties, we

point out that the experimental resolutions considered in
our MC study reduce the significances for observing
entanglement and Bell inequality violation by rather
moderate amounts of 10% and 30%, respectively. Since
systematic uncertainties refer to uncertainties on the exper-
imental resolutions and on the background, we expect
their effect to be comparable in size to the effect of the
experimental resolutions and of the background. If sys-
tematic uncertainties constitute a limiting factor to the
sensitivity of the analysis, we expect that their effect can be
mitigated by including suitable control regions into the ML
fit or by auxiliary measurements, taking advantage of the
large dataset of eþe− → τþτ− events recorded by Belle II.
We expect non-Gaussian tails to affect the numerical

values of the significances but not to alter our conclusion
that an observation of entanglement and Bell inequality
violation with a significance well in excess of five s.d. is
highly likely once the Belle II Collaboration reproduces our
study with their data.
In summary, we are confident that the presence of non-

Gaussian tails in the experimental resolutions, back-
grounds, and systematic uncertainties disregarded in our
analysis will not prevent the observation of entanglement
and Bell inequality violation in the process eþe− → τþτ−
at Belle II.

VI. SUMMARY

We have studied the prospects for testing quantum
mechanics by probing entanglement and Bell inequality
violation in the process eþe− → τþτ− at Belle II. We expect
that a dataset of 200 million eþe− → τþτ− events will be
sufficient to observe quantum entanglement and Bell

inequality violation with a significance well in excess of
five standard deviations after full detector effects, back-
grounds, and systematic uncertainties are taken into
account. A dataset of this size has already been recorded
by Belle II.
Our study is based on the analysis of six decay channels:

πþπ−, π�ρ∓, π�a∓1 , ρþρ−, ρ�a
∓
1 , and aþ1 a

−
1 . Compared to

analyzing only the decay channel πþπ−, the channel most
prominently studied in the context of τ spin measurements
in the literature, the combination of all six decay channels
improves the significance for detecting entanglement by
more than a factor of 4 and the significance for detecting
Bell inequality violation by more than a factor of 2. The
inclusion of the decay channels π�ρ∓, π�a∓1 , ρþρ−, ρ�a

∓
1 ,

and aþ1 a
−
1 into the analysis will be possible if the charged

and neutral pions produced in the τ decays can be
reconstructed with high efficiency and purity.
We encourage the Belle II Collaboration to reproduce

this study with their full detector simulation and their data.
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APPENDIX A: ANALYTIC EQUATIONS FOR
KINEMATIC RECONSTRUCTION

The formalism introduced in Appendix C in Ref. [46]
yields approximate values for the eight unknown com-
ponents of the τþ and τ− four-vectors by applying eight
constraints and solving the resulting system of linear
equations. Two constraints refer to the mass of the τ
lepton four-vector, and two require the neutrinos to be
massless. The remaining four constraints are obtained
by demanding the four-vector of the τþτ− system to
be equal to the initial state of the eþe− collision:
pττ ¼ ðEeþ þ Ee− ; 0; 0; Ee− − EeþÞ, where Eeþ and Ee−

refer to the nominal energies of the eþ and e− beams,
respectively, and the z axis points in direction of the
electron beam. We have extended the formalism to the
case of arbitrary hadronic τ decay channels, obtaining
the following relations, which we use in lieu of the
equations given in Appendix C in Ref. [46].
We start by parametrizing the four-vectors of the τþ

and τ−, denoted by the symbols pτþ and pτ− , by

pμ
τ� ¼ 1 ∓ a

2
pττ �

b
2
pμ
hþ ∓ c

2
pμ
h− � dqμ; ðA1Þ

where
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qμ ¼ 1

s
ϵμνρσpν

ττp
ρ
hþp

σ
h− ðA2Þ

and the symbols a, b, c, and d represent four coefficients,
which are to be determined. The first three of the co-
efficients, a, b, and c, are obtained as solutions to the
equation

0
B@

a

b

c

1
CA ¼ ½M�−1 · Λ; ðA3Þ

where

½M� ¼

0
B@
−x m2

hþ −z

y −z m2
h−

s −x y

1
CA and Λ¼

0
B@
m2

τ þm2
hþ − x

m2
τ þm2

h− − y

0

1
CA:

ðA4Þ

In the above equations, the symbols phþ and ph− denote the
momentum of the τþh and τ−h , i.e., the momentum of the
system of π� and γ produced in the decays of the τþ and τ−,
and mhþ and mh− denote the masses of these systems. The
symbol s denotes the square of the center-of-mass energy of
10.579 GeV and ϵμνρσ the Levi-Civita tensor. The symbols
x, y, and z are defined, respectively, by

x¼pττ ·phþ ; y¼pττ ·ph− ; and z¼phþ ·ph− : ðA5Þ

The fourth coefficient, d, is given by

d2 ¼ −
1

4q2
½ð1þ a2Þsþ bm2

hþ þ cm2
h− − 4m2

τ

þ 2ðacy − abx − bczÞ�: ðA6Þ

Equation (A6) yields two solutions of opposite sign, which
determine the four-vectors pτþ and pτ− up to a twofold sign
ambiguity. We resolve the sign ambiguity by choosing the
solution more compatible with tracking information [71].
For the decay channels π� and ρ�, we quantify the level of
compatibility based on the transverse impact parameter of
the charged pion’s track, while for the decay channel a�1 we
use the position of the τ decay vertex.

APPENDIX B: COMPARISON OF DIFFERENT
METHODS FOR MEASURING SPIN

CORRELATION

Alternatively to the ML fit given by Eq. (4.5), the
polarization vectors Bþ and B− for the τþ and τ− and
the spin correlation matrix C can be measured by the
following.

1. Expectation value

Reference [46] uses the expectation values of the product
of the polarimeter vectors hþ and h− to measure the
elements of Bþ, B−, and C. The relation between the
expectation values of h� and B� and between hhþ · h−i
and C is given by Eq. (30) of Ref. [46]. It reads

B�
i ¼ 3hh�

i i;
Cij ¼ 9hhþ

i h
−
j i; ðB1Þ

where the indices i and j are either n, r, or k and the
expectation value is computed as the average over the
events in the eþe− → τþτ− event sample.

2. Double-differential cross section

Expressing the Lorentz invariant phase-space measure
in Eq. (4.4) in polar coordinates and integrating over the
azimuthal angles ϕþ and ϕ− yields the following expres-
sion for the double-differential (2d) cross section as a
function of the polar angles θþ and θ−, given by Eq. (VI.6)
in Ref. [72]:

1

σ

dσ
d cos θþi d cos θ

−
j
¼ 1

4
ð1þ Cij cos θ

þ
i cos θ−j Þ; ðB2Þ

where cos θþi ¼ hþ · êi (cos θþj ¼ hþ · êj) denotes the
direction cosine of the polarimetric vector hþ (h−) with
one of the basis vectors fn̂; r̂; k̂g in the rest frame of the
τþ (τ−) and i; j∈ fn; r; kg.

3. Single-differential cross section

The spin correlation matrix C may alternatively be
extracted from the single-differential (1d) cross section
as a function of the observable ξij ¼ cos θþi cos θ−j , given
by Eq. (4.16) in Ref. [73]:

1

σ

dσ
dξij

¼ 1

2
ð1þ CijξijÞ ln

�
1

jξj
�
: ðB3Þ

4. Forward-backward asymmetry

Alternatively, one may extract the τ spin correlation
using the forward-backward (FB) asymmetries given by
Eq. (25) in Ref. [30]:

Aij ¼
Nðcos θþi cos θ−j > 0Þ − Nðcos θþi cos θ−j < 0Þ
Nðcos θþi cos θ−j > 0Þ þ Nðcos θþi cos θ−j < 0Þ

¼ 1

4
Cij; ðB4Þ

where the symbol N represents number of events, the
direction cosines cos θþi and cos θ−j are defined as before,
and i; j∈ fn; r; kg.

PROBING ENTANGLEMENT AND TESTING BELL INEQUALITY … PHYS. REV. D 109, 032005 (2024)

032005-11



In case of the double-differential (single-differential)
cross section, binned distributions in θþi versus θ−j (ξij)
are fitted to determine the element Cij of the spin
correlation matrix. The fits are implemented using the
software package RooFit [74].
Different conventions exist in the literature for

defining the helicity frame and the sign of the polar-
imeter vector. These conventions lead to different
signs for the terms proportional to B�

i and Cij in
Eqs. (B1)–(B4). The signs in the equations above match
our definition of the helicity frame and of the polari-
meter vector.
The sensitivity of the different methods is compared in

Table IV. The ML-fit method provides the lowest uncer-
tainties and, thus, the highest significance. While the
performance of the fits to binned 2D and 1D cross
sections comes close to the performance of the ML-fit
method, the significances for the expectation value and

forward-backward asymmetry methods are about 15%
and 30% lower. The performance advantage of the
unbinned ML fit increases if the size of the event sample
is reduced.
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