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Background channels with their expected strength and uncertainty levels are usually known in the
searches of novel phenomena prior to the experiments are conducted at their design stage. We quantitatively
study the projected sensitivities in terms of discovery potentials. These are essential for the optimizations of
the experimental specifications as well as of the cost effectiveness in various investments. Sensitivities in
counting analysis are derived with complete Poisson statistics and its continuous approximation, and are
compared with those using maximum likelihood analysis in which additional measurables are included as
signatures. The roles and effects due to uncertainties in the background estimates are studied. Two expected
features to establish positive effects are verified and quantified: (i) In counting-only experiments, the
required signal strength can be derived with complete Poisson analysis, and the continuous approximation
would underestimate the results. (ii) Incorporating continuous variables as additional constraints would
reduce the required signal strength relative to that of counting-only analysis. The formulations are applied
to the case on the experimental searches of neutrinoless double beta decay in which both ambient and two-
neutrino backgrounds are considered.
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I. INTRODUCTION

In experimental searches of new but rare phenomena,
some knowledge of the background is usually known prior
to the experiments. A universal issue is then to make
projections of the sensitivities, either in terms of signal
discovery potentials or as exclusion limits, under certain
statistical criteria the experimenters set—at the design stage
before the experiments are performed.
The answers to these questions would define how much

exposure (target size times data taking time) would be
required to achieve certain specified sensitivities given the
expected level of background. This translates directly to
the investment in hardware and time and manpower, the
precise knowledge of which is getting increasingly
important with more and more elaborate experimental

projects. The cost effectiveness to deliver certain scientific
goals should be known and compared at the proposal
stage, which can be a decade or longer before the actual
data taking.
A similar but nonidentical problem was addressed in the

classic paper of Ref. [1]. The “confidence interval” results
from that work represent the knowledge of parameters after
the measurements are performed when the expected back-
ground is known. The procedures were further refined [2]
with the introduction of fluctuations to the actual back-
ground in one particular measurement. This work comple-
ments and expands these by considering the projected
sensitivities prior to the measurements, such that the
statistical fluctuations of both signals and backgrounds
have to be taken into account.
This article serves to address key aspects of this

problem. Counting analysis based on Poisson statistics
are described in Sec. II A. Results are compared with those
from previous work in the literature using a continuous
approximation [3–10]. Additional measurable information
such as energy are usually available. These are incorpo-
rated into the analysis with the maximum likelihood ratio
method [11–13]. The procedures and results are discussed
in Sec. III. The consequences of having uncertainties in the
background predictions are addressed in Sec. III E.
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While the methodology and results of this work are with
general validity to many research subjects, they follow from
our earlier “counting-only” analysis of the relation between
background and exposure in future neutrinoless double beta
decay (0νββ) projects [14]. Positive 0νββ signals manifest
as peaks in the measurable energy spectra at known
resolution, providing additional constraints which enhance
the sensitivities beyond those from simple counting meth-
ods. Section IV illustrates how the statistical methods
developed in this work can be applied to 0νββ experiments
in practice. Detailed implications and comparison of the
expected sensitivities to the various future double beta
decay projects on different candidate isotopes under differ-
ent experimental parameters are beyond the scope of this
work. These will be the themes of our subsequent studies
based on the methodology developed in this work.

II. POISSON COUNTING ANALYSIS

A. Complete Poisson distribution—formulation

In experimental measurements of rare events, Poisson
statistics [15] quantifies the probability of observing nobs-
events in a certain trial given a known mean μ:

Poiðnobs;μÞ¼
μnobs ·e−μ

nobs!
; nobs ¼ 0;1;2;3:…:; μ> 0: ð1Þ

The cumulative Poisson distribution

CPoið≤C; μÞ ¼
XC
i¼0

Poiði; μÞ ð2Þ

describes the probability of making an observation of an
integerC counts or less. These offer a complete description,
incorporating the discreteness of the problem and the
inevitable fluctuations among individual trials.
We denote B0 as expected average background counts

within certain region of interest (ROI), in which the signal
efficiency is denoted by εROI. In a counting-only analysis,
the only available information is nobs, the observed number
of events (“counts”). The selection of an ROI is not
necessary, such that εROI ≡ 1. The background B0 and
its uncertainty can, in principle, be predicted with good
accuracies prior to the experiments.
The sensitivity goals as discovery potentials for making

positive observations in experiments are described by a set
of criteria denoted by Pkσg , under which there are two
requirements to satisfy: (i) An experimental measurement
would have certain statistical “p value” of significance in
the interval ½þkσ;þ∞� where σ is the root-mean-square
(rms) of the background-only Gaussian distribution.
(ii) This condition is satisfied by a fraction g of repeated
identical experiments. We note that a typical choice in the
literature [4,6–10] is with the two-sided �3σ interval at
g ¼ 50% probability. In our applications to experimental

searches of rare signals in excess of certain background, the
selection of having one-sided interval of >þkσ is appro-
priate. The predefined discovery potential criteria of this
study, denoted by P3σ50, corresponds to the requirements of
having g ¼ 50% cases with “>þ3σ excess”—that is,
p ¼ 0.00135, evaluated from the integration of the interval
½þ3σ;þ∞� in a Gaussian distribution.
Poisson statistics is necessary in the complete formu-

lation of the problem. For a given positive B0 as input and
using P3σ50 as illustration, the Poisson distribution Poiði; μÞ is
constructed with mean μ ¼ B0. Let N3σ

obs be the minimal
integer number of observed events that provides ≥ 3σ
significance over a predicted average background B0. N3σ

obs
satisfies the following equation:

XN3σ
obs−1

i¼0

Poiði;B0Þ ≥ ð1 − pÞ; ð3Þ

from which the value ofN3σ
obs can be determined. The output

S0 is the minimal signal strength where a Poisson distri-
bution with μ ¼ ðB0 þ S0Þ would give N3σ

obs or more events
with g ¼ 50% probability:

X∞
i¼N3σ

obs

Poiði;B0 þ S0Þ ¼ 0.5: ð4Þ

The required S0 for criteria Pkσg due to different k and g are
shown in Fig. 1. The characteristic step-wise features are
consequences of the discrete nature in Poisson statistics—
only integer nobs are observed in onemeasurement. The steps

FIG. 1. The variations of S0 versus B0 in discovery potential in
counting experiments under the criteria Pkσg , for k ¼ 3; 5 and
g ¼ 50; 90%. The inset displays contours at B0 < 10−3. The first
steps at lowest B0 correspond to the transition where an increase
of nobs from 1 to 2 events is required to positively establish the
signals.
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for P3σ50 and P
3σ
90 occur at the same B0. This corresponds to the

same required N3σ
obs to meet the ≥3σ (p ≤ 0.00135) criteria.

More S0 events are necessary to establish a positive signal in
P3σ90 than P3σ50 when g increases from 50% to 90% in Eq. (4).
Signal and background events are indistinguishable

experimentally. The Pkσg criteria and discreteness of
Poisson statistics apply to ðB0 þ S0Þ. However, the useful
information to experiments is on the variation of S0 with
B0. This explains the origin of the negative slopes between
the steps in Fig. 1.
A particular case of interest is the “zero-background

condition” in which nobs ¼ 1 event would qualify to be
taken as a positive signal. The maximum B0 (denoted as
Bmax
0 ) where such conditions apply correspond to the “first

steps” in Fig. 1. The dependence of Bmax
0 on k and p is

depicted in Fig. 2. The values of Bmax
0 and S0 under zero-

background condition at different Pkσg are summarized in
Table I, which illustrates the effects of k and g.
The values of Bmax

0 —and in general the required
nobs to establish positive signals at þkσ excesses over
background—are described by Eq. (3) and are therefore
independent of the choice of g. On the other hand, the

required signal strength S0 at Bmax
0 is given by Eq. (4) and

therefore has g dependence.

B. Continuous approximation to Poisson distribution

Continuous approximations to the Poisson distributions
are derived by replacing Eq. (2) with the regularized
incomplete gamma function:

CPoið≤C; μÞ ¼ ΓðCþ 1; μÞ
ΓðCþ 1Þ ; ð5Þ

where C is generalized to be a continuous variable. The
summations of Eqs. (3) and (4) are replaced by Eq. (5),
applicable for B0 ≥ 0. This has been adopted to derive
results to the sensitivity projection problem [3–10].
The comparisonsof thePoissondistributionPoiðn;μ¼B0Þ

and its continuous approximation is depicted in Fig. 3(a),
showing cases of μ ¼ 0.1; 1; 10 to illustrate behavior for
different ranges. For large μ, the continuous formulation
approximates well to the discrete case, and approaches the
Gaussian distribution.
Only integer results are possible in counting measure-

ments, so that the criterion “≥3σ” is mostly satisfied as an
inequality in the complete Poisson analysis. Illustrated in
Fig. 3(b) is an example of how S0 would differ with the two
formulations, where the integration from zero of the histo-
grams and dotted curves are different. The figure illustrates
with the example of B0 ¼ 0.053. Individual experiments
would require nobs ≥ 3ð2Þ to meet the “≥3σ” condition,
while P3σ50 would imply average S0 ¼ 2.64ð1.64Þ under
complete Poisson counting and continuous approximation,
respectively.
Results on the dependence of S0 versus B0 from both

formulations are depicted in Fig. 4(a). The S0 derived with
complete Poisson statistics (SPoi0 ) is always larger than that
from continuous approximation (Scont0 ), except at where
equality (¼ 3σ) is met. The fractional decrease is depicted
inFig. 4(b) by the black line,whereRPoi

0 ¼ðScont0 −SPoi0 Þ=SPoi0 .
It can be seen that the continuous approximation always
underestimate the necessary strength to establish a signal.
The deviation can be as much as 60% at low background
(B0 ∼ 10−3), but reduced to within 3% at large statistics
of B0 ≳ 100.

III. LIKELIHOOD ANALYSIS

In Sec. II, event count is used as “test statistic” [13,15].
This is a straightforward choice for experiments that
measure a single integer value as the only output.
However, in experiments with measurements of multiple
variables, the Poisson counting method is insufficient to
extract complete information available in the signal and
background. An alternative and more comprehensive for-
mulation of test statistic is therefore necessary.
A test statistic is a mapping from an experimental

outcome with multiple values to a single real number.
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FIG. 2. Variations of Bmax
0 which satisfies the zero-background

condition as a function of k andp. The contour is independent of g.

TABLE I. Summary of the S0 and Bmax
0 values in counting-only

analysis with complete Poisson statistics at the zero-background
condition where nobs ¼ 1 event can establish a positive signal
under the criteria Pkσg .

Excess over background ðkσÞ
þ3σ þ5σ

Bmax
0 0.00135 2.85 × 10−7

S0 at B0 < Bmax
0

50% 0.69
Sample fraction (g)

90% 2.3
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The optimal test statistic is the likelihood ratio, following
the Neyman-Pearson lemma [16].
In this analysis, we adopt log likelihood ratio (LLR) in

Secs. III A and III B to be the test statistic where S ¼ S0 is a
free parameter and B ¼ B0 is fixed. For cases where the
uncertainties in B are considered as in Secs. III E and IV, a
variant of LLR with additional “nuisance parameter”
(called log profile likelihood ratio) is used.

A. Formulation and single integer counting

The counting-only likelihood function is given by

L C ≡L ðSjN;BÞ;

¼ e−ðBþSÞðBþ SÞN
N!

: ð6Þ

Following conventional notations of Refs. [11,15], the
LLR, denoted by q0, is defined as

q0 ≡ tðS ¼ 0Þ ¼ −2 ln
�
L ðS ¼ 0Þ
L ðŜÞ

�
; ð7Þ

in which Ŝ is the value of S∈ ð0;∞Þ that L ðSÞ is
maximized for given N and at a fixed B ¼ B0 value.
The q0 is defined as a test statistic (t) which serves as the
foundation of a statistical test under the special case
where S ¼ 0.
We are interested in this work to quantitatively assess the

significance of a measurement in supporting a discovery
scenario. Accordingly, the dataset has to be tested against
the null hypothesis (H0) case of S ¼ 0. Consistent data set
of H0 with S ¼ 0 will give q0 → 0 whereas large q0 values
imply deviation from H0. The alternative hypothesis (H1)
characterizes the case with S ¼ S0 > 0, where S0 is the
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FIG. 3. (a) Comparison of Poisson distribution in its complete
formulation and continuous approximations in the cases of
μ ¼ B0 ¼ 0.1; 1; 10. (b) The μ ¼ ðB0 þ S0Þ distributions with
P3σ50 under both criteria at B0 ¼ 0.053, showing their differences,
μ ¼ 2.7ð1.7Þ for complete Poisson (continuous approximation).

(a)

4�10 3�10 2�10 1�10 1 10 210
 (counts)0B

1�10�4

1

2
3
4

10

20
30
40

210

 (
co

un
ts

)
0S

0
PoiS

0
contS

20 30 40 50 60 210
 (counts)0B

10

20

30

40

 (
co

un
ts

)
0S

(b)

4�10 3�10 2�10 1�10 1 10 210
 (counts)0B

0.6�

0.5�

0.4�

0.3�

0.2�

0.1�

0

0.1

0Po
i

R

0
Poi)/SPoi

0 S� 
0
cont(S

FIG. 4. (a) Comparison between counting-only with complete
Poisson (SPoi0 ) and continuous approximation (Scont0 ) in defining the
P3σ50 sensitivity. (b) Relative change (R

Poi
0 ) of Scont0 relative to SPoi0 .

SINGH, LI, WONG, SHARMA, and SINGH PHYS. REV. D 109, 032001 (2024)

032001-4



mean signal strength. If a significant fraction of a dataset
generated byH1 gives large q0 values,H0 would have to be
rejected.
The probability distributions of q0 for given B0 are

evaluated from datasets simulated with L C having N ¼
B0 þ S0 events: (i) Pðq0jH0Þ corresponding to H0 with
data at S0 ¼ 0, and (ii) Pðq0jH1Þ corresponding to H1 with
data at nonzero S ¼ S0 > 0.
Standard statistics variables are adopted to quantify

statistical consistency with hypotheses in Pðq0jH0Þ and
Pðq0jH1Þ. Data with q0 < tα are considered to be within
the “acceptance interval” consistent with H0, where tα is a
boundary to the “size of test” [13] (also called the type-1
error and denoted as α), a predefined value corresponding
to the probability that the dataset which is inconsistent with
H0, or equivalently when q0 is rejected to be H0:

α≡
Z

∞

tα

Pðq0jH0Þdq0: ð8Þ

The “power of test” [13] corresponds to (1 − β), where β
(also called the type-2 error) is the probability of q0 within
the acceptance region of H0 in the scenario where the
hypothesis H1 is true. It can be expressed as

β≡
Z

tα

0

Pðq0jH1Þdq0: ð9Þ

In counting experiments, integrations in Eqs. (8) and (9)
should be replaced by summations, such that

α ≥
X
q0≥tα

Pðq0jH0Þ; and β ¼
X
q0≤tα

Pðq0jH1Þ: ð10Þ

As a result of discreteness relevant and crucial to low-
statistics counting, α in general cannot be exactly equal to,
and should instead overcover, the “size of test.” Therefore,
α should be defined instead as an inequality. On the
contrary, the β condition depends on the mean signal
strength S0 which is a real number, so that it can be
satisfied as an equality.
The criteria Pkσg defined in this work corresponds to the

matching of p ¼ α and g ¼ ð1 − βÞ to the standard
statistical variables. Accordingly, P3σ50 implies the choice
of tα which leads to p ¼ 0.00135 for Pðq0jH0Þ with
q0 ∈ ½0; tα�. Experiments with q0 ∈ ½tα;∞� are inconsistent
with H0.
In addition, there is ð1 − βÞ ¼ 50% probability to have

q0 ∈ ½tα;∞� in Pðq0jH1Þ so that the experiment is recog-
nized to have observed positive signals.
As a result of the discreteness of single-value integer

counting, the count to q0 mapping is always one to one at
Ŝ > 0. Examples of Pðq0jH0Þ and Pðq0jH1Þ distributions
for LLR counting analysis withL C are shown in Figs. 5(a)

and 5(b), which describe cases of low and high statistics,
respectively.
In the absence of additional measurables, the LLR

analysis on L C results in S0½L C� (signal strength of
counting-only LLR analysis) which are identical to SPoi0

derived by the complete Poisson counting analysis.

(a)

(b)

FIG. 5. Distributions of test statistic q0 for simulated data with
null [Pðq0jH0Þ] and alternative [Pðq0jH1Þ] hypotheses for
negligible B0 uncertainties: (a) depicts a low-B0 case with
ðB0;S0Þ ¼ ð0.01; 0Þ and (0.01,1.7) while (b) is a large-B0 case
with ðB0; S0Þ ¼ ð1000; 0Þ and (1000,97). The acceptance criteria
specified by tα are displayed. The approximations of Eqs. (12)
and (13) are superimposed, verifying that they match Pðq0jH0Þ
and Pðq0jH1Þ for large but fail for small ðB0; S0Þ.

PROJECTIONS OF DISCOVERY POTENTIALS FROM EXPECTED … PHYS. REV. D 109, 032001 (2024)

032001-5



The counting-only results of Figs. 1, 4(a), and 4(b) can be
derived by both formulations in Secs. II A and III A.

B. Extended likelihood with additional measurables

In realistic applications, such as 0νββ experiments to be
discussed inSec. IV, the observables typically include energy.
Without loss of generality, we take energy of an event to be
the additional available observable. The studied scenario is
with signal events having known monoenergetic E0 smeared
by experimental resolution characterized by Gaussian
peaks with known width: rms and FWHM (full-width-
half-maximum) denoted by σE0

and ΔE0
ð≡2.355 × σE0

Þ,
respectively. The background is known and is a constant
independent with energy, characterized by B0 and σB
denoting, respectively, the expected background count and
its rms uncertainty. AnROI has to be specified in the analysis
in such experiments, in which additional energy measure-
ments are available. A natural choicewould be ðE0 � NσσE0

Þ
where thevariableNσ would parametrize the intervalwidth of
the ROI. Background is then quantified as ðB0=σE0

Þ in units
of counts per rms, as compared to the exclusive counting-only
cases of B0ðcountsÞ in Sec. II.
In the limit of σB ≪ B where the background is

accurately predicted, the likelihood function of a signal
S given a known background profile B and a dataset E with
N events with measured energy Eiði ¼ 1; NÞ can be
described by the extended likelihood function:

L CE≡L ðSjE;BÞ;

¼e−ðBþSÞðBþSÞN
N!

YN
i¼1

�
B ·fBðEiÞþS ·fSðEiÞ

ðBþSÞ
�
; ð11Þ

where fB and fS are normalized probability density
functions of, respectively, background and signal, such
that

R
ROI fBðEÞdE ¼ 1 and

R
ROI fSðEÞdE ¼ 1.

In our adopted0νββ-inspired scenario,B ¼ B0 andfB is a
constant independent of energy, while fS is a Gaussian with
knownmean andwidth. Results onL CEðSÞ fromEq. (11) is
independent on the choice of ROI, so long as it covers the
entire signal region—ROIðL CEÞ ¼ E0 � 4σE0

is selected in
this analysis, with which εROIðL CEÞ ¼ 0.9999.
The LLR of Eq. (7) is selected [1] as the test statistic (q0)

[11–13,15]. Unlike those from counting analysis of Eq. (7),
probability distributions of q0 do not have analytical form
for both the H0 and H1 hypotheses, and have to be
generated by simulation. Approximation methods can be
used in the special cases of large samples, as discussed in
Sec. III C.
The case of σB ≪ B was first studied. A total of

50-million experiments are generated for each E with
different input values of S0. The number of background
(NB) and signal (NS) events for individual experiment
follow Poisson statistics: PoiðNBjB0Þ and PoiðNSjS0Þ,
respectively, while their energy distributions follow fBðEÞ

and fSðEÞ within the ROI. The total number of events,
N ¼ NB þ NS, varies with each experiment. The Ŝ values
that maximize L for individual experiments are derived,
from which the q0 values of Eq. (7) are evaluated. Their
distributions over large number of experiments in Pðq0jH0Þ
andPðq0jH1Þ corresponds to the probability densities where
q0 is consistent with H0 and H1, respectively.
Displayed in Fig. 5(a) are distributions of Pðq0jH0Þ and

Pðq0jH1Þ as functions of q0 in bothL C andL CE for a low-
statistics case, where ðB0; S0Þ ¼ ð0.01; 0Þ and (0.01,1.7).
The analogous high-statistics case at ðB0; S0Þ ¼ ð1000; 0Þ
and (1000,97) is shown in Fig. 5(b). As additional energy
information is incorporated to the analysis, Pðq0jH0Þ and
Pðq0jH1Þ are smeared out in low statistics, while changes are
minor in high statistics.
The tα values corresponding to ≥3σ upward excesses

from H0 are marked in Figs. 5(a) and 5(b). In particular in
the high statistics limit where B0 ¼ 1000 in Fig. 5(b),
Pðq0jH0Þ approximates to χ2 distribution and tα → 9.

C. Approximate distribution of q0 for large samples

Following the formulation by Wilks [17] and Wald [18],
Pðq0jH0Þ or Pðq0jH1Þ can be simplified in the large-
sample limit, where Poisson distributions can be approxi-
mated by Gaussian. Computing resources in simulations
can therefore be saved by the use of analytic equations
when results are evaluated from input spanning large
parameter space.
When S ≥ 0, Pðq0jH0Þ is given by half χ2 distribution

for one degree of freedom plus a half δ function:

Pðq0jH0Þ ≈
1

2
δðq0Þ þ

1

2

1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffi
q0

p e−q0=2; ð12Þ

while Pðq0jH1Þ is described by noncentral χ2 distribution
for one degree of freedom:

Pðq0jH1Þ ≈ ð1 −Φð
ffiffiffiffi
Λ

p
ÞÞδðq0Þ

þ 1

2

1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffi
q0

p e−ð
ffiffiffiffi
q0

p −
ffiffiffi
Λ

p Þ2=2; ð13Þ

whereΛ is the noncentrality parameter, andΦ is cumulative
Gaussian distribution. The Λ is the q0 value of most
probable—that is, Asimov—dataset [11].
Binned likelihood function is used in the evaluation ofΛ:

L ðSjfnig; BÞ ≈
Yn
i¼1

PoiðnijFðEijS; BÞÞ; ð14Þ

where

FðEijS; BÞ ¼ ½B · fBðEiÞ þ S · fSðEiÞ� · wðEiÞ ð15Þ

is the expected counts in the ith bin with bin size wðEiÞ, ni
is the measured count and Ei is the mean energy. We note
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that likelihood expression of Eq. (14) differs from Eq. (11)
by a scaling constant that is canceled out when taking the
likelihood ratio.
The Asimov dataset is therefore the expected count in

each bin:

ni ¼ FðEijS0;B0Þ; ð16Þ

where S0, B0 are the input values to generate the simulated
data. Accordingly, the Λ value is the likelihood ratio:

Λ ≈ −2 ln
�
L ðS ¼ 0jB; ni ¼ FðEijS0;B0ÞÞ
L ðŜjB; ni ¼ FðEijS0;B0ÞÞ

�
; ð17Þ

with the ni! factorial terms in denominator and numerator
canceled out.
The approximations of Pðq0jH0Þ and Pðq0jH1Þ by

Eqs. (12) and (13) in the low- and high-statistics regimes
are superimposed in Figs. 5(a) and 5(b), respectively. It can
be seen that, for the high-statistics limit, the approximations
match well with the simulation results of Pðq0jH0Þ and
Pðq0jH1Þ, but they deviate significantly in the low-statistics
regimes.

D. Comparison between counting and extended
likelihood analysis

Taking experiments where where both counts and energy
are measured, the required S0 strength to achieve the P3σ50
discovery potential criteria are derived. Several analysis
schemes are compared: (i) with the LLR analysis using
L CE of Sec. III B exploiting both information, denoted
S0½L CE�, (ii) with a counting-only analysis via L C of
Sec. III A discarding the available energy information,
denoted S0½L C� (this is equivalent to SPoi0 of Sec. II A
when the ROI intervals and εROI are taken into account
[14]), and (iii) with a counting-only analysis the continuous
approximation of Sec. II B [3–10], denoted S0½cont�.
As noted in Sec. III B, the sensitivities on S0½L CE� is

independent on the choice of ROI, so long as εROI ≃ 1,
such as ROIðL CEÞ ¼ E0 � 4σE0

. On the contrary, the
counting-only analysis of (ii) and (iii) depend on the
choice of ROI as parametrized by Nσ. The optimal Nσ

(denoted Nopt
σ ) which gives minimal S0½L C�ð≡Sopt0 ½L C�Þ

and S0½cont�ð≡Sopt0 ½cont�Þ can be evaluated.
The variation of Nopt

σ as a function of ðB0=σE0
Þ is

displayed in Fig. 6(a). As noted in Ref. [4] and verified
in our results, the choice of Nopt

σ ¼ 1.4 is optimal at large
ðB0=σE0

Þ ≳ 1. The ranges of optimal ROIs for low ðB0=σE0
Þ

vary broadly due to large fluctuations in low counts and the
discreteness of Poisson statistics. Depicted in Fig. 6(b) is
Sopt0 ½L C� superimposed with the cases of fixed ROI for
intervals E0 � NσσE0

(where Nσ ¼ 1; 2; 3) corresponding to
εROI ¼ 68.3%; 95.5%; 99.7%, respectively.

The results of the three analysis schemes are compared in
Fig. 7(a). The deviations of Sopt0 ½cont� and Sopt0 ½L C� relative
to S0½L CE� are depicted in Fig. 7(b).
While the features can be expected, the results verify and

quantify that in experiments incorporating additional
energy information, the discovery potentials are enhanced
due to S0½L CE� ≤ Sopt0 ½L C�, which implies that less events
are required to establish positive signals.
At the low-statistics regime ½ðB0=σE0

Þ≲ 0.01�, this
originates from that the P3σ50 criteria can be satisfied for
all B0 in L CE, which is not the case for counting-only
analysis in L C due to “overcoverage” (the p ¼ 0.00135
criteria cannot be met). At high statistics ½ðB0=σE0

Þ≳ 0.1�,
requirements for the energy values to match a predefined
Gaussian peak provide the dominant constraints.
At low ðB0=σE0

Þ ∼ 10−3, the Sopt0 ½cont� can underestimate
the required strength of S0½L CE� by as much as 20%.
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FIG. 6. (a) Variation of Nopt
σ versus ðB0=σE0

Þ in counting-only
analysis for which the required S0 to satisfy P3σ50 are at minimum.
The ROIs are defined by intervals E0 � NσσE0

. (b) Comparison of
S0 versus ðB0=σE0

Þ at Nopt
σ with those at fixed Nσ ¼ 1; 2; 3.
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The Sopt0 ½L C�, on the other hand, can be overestimated by
as much as 30% and is larger than S0½L CE� for all
ðB0=σE0

Þ > 5 × 10−4. At large ðB0=σE0
Þ > 1, both deriva-

tions with counting-only analysis give consistent results
which overestimate S0½L CE� by ∼6%.

E. Effects of background uncertainties

In realistic experiments, the background B is usually not
precisely known and can be characterized with an uncer-
tainty σB. That background knowledge can be described as
auxiliary measurement channels (for instance, from simu-
lations, prototype measurements, extrapolations from non-
ROI regions) in the likelihood analysis.

The likelihood with an additional auxiliary channel can
be described by another Poisson distribution Poiðn0jτBÞ,
and expressed as [11–13]

L CEB ≡L ðS; BjEÞ;

¼ e−ðBþSÞðBþ SÞN
N!

e−τBðτBÞn0
n0!

×
YN
i¼1

�
B · fBðEiÞ þ S · fSðEiÞ

ðBþ SÞ
�
; ð18Þ

where τ is the ratio of data size of auxiliary measurement
channel relative to the main measurement channel, such
that the rms uncertainty in B is σB ¼ ffiffiffiffiffiffi

τB
p

=τ.
For nonzero σB, additional values of n0 for this aux-

iliary measurement are generated alongside PoiðNBjB0Þ,
PoiðNSjS0Þ aswell as datasetsEðH0Þ andEðH1Þ for Eq. (18).
The LLR for test statistic of Eq. (7) is extended to

q0 ≡ tðS ¼ 0Þ ¼ −2 ln
�
L CEBðS ¼ 0; ˆ̂BÞ
L CEBðŜ; B̂Þ

�
; ð19Þ

in which ˆ̂B is, for given E, the value of B that maximizes
L CEBðS; BÞ in B∈ ð0;∞Þ at S ¼ 0 and ðŜ; B̂Þ is the ðS; BÞ
that maximizes L CEBðS; BÞ in S∈ ð0;∞Þ and B∈ ð0;∞Þ.
The Asimov dataset includes n0 ¼ τB0 in addition to the

conditions of Eq. (16). The binned likelihood function can
be expressed as

L ðSjfnig; BÞ ≈
�Yn
i¼1

PoiðnijFðEijS; BÞÞ
�
· Poiðn0jτBÞ:

ð20Þ

An LLR analysis is performed on likelihood functions of
L C in Eq. (6) and L CE in Eq. (11) with uncertainty term
incorporated in L CEB in Eq. (18). Effects of a nonzero
ðσB=BÞ are studied through the q0 distributions for
Pðq0jH0Þ and Pðq0jH1Þ in both low and high statistics,
analogous to Figs. 5(a) and 5(b). The expected signal
counts that meet the P3σ50 criteria for different ðσB=BÞ values
to the count-only and count-plus-energy cases, respectively,
are depicted in Figs. 8(a) and 8(b). The fractional increase
of S0 in L CE due to nonzero ðσB=BÞ relative to the case of
zero uncertainty is given in Fig. 8(c).
It can be seen that at the low-statistics regime (B0 < 1

within ROI ¼ E0 � 4σE0
) the effects of σB are negligible.

The reason is that statistical fluctuations of small numbers
in a single measurement dominate over the inadequate
knowledge of the background. There are notable increases
to the required S0 in high statistics due to σB uncertainties,
and the impact is larger in L C than in L CE. A ðσB=BÞ ¼
10% uncertainty will give rise to increase in S0 by 45% and
17% at B0 ¼ 100 within ROI for counting-only and

(counts/rms)

(counts/rms)

(counts/rms)
(a)

(b)

FIG. 7. Sensitivities of ðS0=εROIÞ as a function of ðB0=σE0
Þ:

(a) On L CE by LLR analysis with complete information
incorporated, choosing ROIðL CEÞ ¼ E0 � 4σE0

. These are com-
pared with those counting-only analysis via L C and continu-
ously approximation for the optimal ROI of E0 � Nopt

σ σE0
. (b) The

deviations of Sopt0 ½L C� and Sopt0 ½cont� relative to S0½L CE�,
denoted as R0½L CE�.
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counting-plus-energy analysis, respectively. The availabil-
ity of the additional energy measurements makes the
evaluation of S0 more robust and less vulnerable to back-
ground uncertainties.
We note that σB depends on the knowledge on B from the

auxiliary data prior to the experiments. In practice, with
improving data quality and increasing data size during the
experiments, σB can be expected to be further reduced.

IV. CASE STUDY: NEUTRINOLESS DOUBLE
BETA DECAY

A case study was performed to make sensitivity projec-
tions on future 0νββ experiments with profile likelihood,
similar to previous work in Ref. [19]. This study serves to
illustrate how the formulation and algorithms developed in
this work can be applied in practice. A particular isotope
and theoretical model are selected as example. Detailed
comparisons taken into account the variety of target
isotopes, experimental design specifications, theoretical
modeling, and practical resource effectiveness are issues
beyond the theme and scope of this work.
The process 0νββ [9,20] is a lepton-number violating

process involving the decays of isotope AββðN; ZÞ to two
electrons:

N
ZAββ → N−2

Zþ2Aþ 2e−: ð21Þ

Experimental signature is a monoenergetic energy peak at
the decay Q value (Qββ). The FWHM of the 0νββ peak is
denoted by ΔQββ

in %.
The decay half-life τ0ν1=2 can be derived from measure-

ments via

τ0ν1=2 ¼ ln 2 ·

�
NA

ðN þ ZÞ
�
·

�
Σ

Sobs=εROI

�
; ð22Þ

whereNA is the Avogadro number, Σ denotes the combined
exposure typically expressed in units of ton-year (ton-yr),
and Sobs is the observed strength of the 0νββ peak. For
simplicity, we take the ideal case where both isotopic
abundance and experimental signal efficiency are 100%.
The realistic exposure relative to the ideal one can be
evaluated by corrections on these two parameters [14].
The measurable is related to neutrino masses via

�
1

τ0ν1=2

�
¼ G0νg4AjM0νj2

���� hmββi
me

����
2

; ð23Þ

where me is the electron mass, gA is the effective axial
vector coupling [21,22], G0ν is a known phase space factor
[23] due to kinematics, jM0νj is the nuclear physics matrix
element [24], while hmββi is the effective Majorana
neutrino mass. To connect jM0νj with hmββi, we adopt
the model of Ref. [25] which observed that ½jM0νj2 ·G0ν�

(counts/rms)

(counts/rms)

 (counts/rms)

(a)

(b)

(c)

FIG. 8. The effects on the sensitivities on S0 defined by P3σ50 due
to background uncertainties (σB=B) (a) in counting-only analysis
with L C, and (b) in LLR analysis with energy information
ðL CEÞ when the signal is an energy peak with Gaussian
distribution, and the selected ROIðL CEÞ ¼ E0 � 4σE0

. (c) The
fractional increase of S0 in L CE (denoted as RS0 ) due to nonzero
ðσB=BÞ relative to the case of zero uncertainty.
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can be approximated by a constant at fixed hmββi inde-
pendent of the 0νββ candidate isotopes. Measurements in
τ0ν1=2 can then be translated to sensitivities in hmββi and be
compared to the predicted ranges of neutrino mass inverted
and normal ordering (IO and NO) [26,27].
Two background channels are considered: (i) ambient

background which is assumed to be constant at Qββ, and
(ii) background due to two-neutrino double beta decay
(2νββ) which leaks into the 0νββ peaks due to nonzero
energy resolution of ΔQββ

. Other background such as
cosmogenic-induced events and solar neutrino interactions
can be incorporated in future research, by expanding the

constant ambient background conditions to include addi-
tional spectral components with energy dependence.
Following conventions [4,28,29], the ambient back-

ground is parametrized by the “background index” (BI0)
defined as

BI0 ≡
B0ðΔQββ

Þ
Σ

; ð24Þ

which is the background in the FWHM energy range ΔQββ

around Qββ per ton-year of exposure, with dimension
[counts=ðFHWM-ton-yrÞ]. Background levels expressed

(a) (b)

(c) (d)

FIG. 9. Combined background LLR analysis for 136Xe in ðΔQββ
; τ0ν1=2Þ space at different contours Σ ¼ 1; 10; 100; 1000 ton-yr taking

BI0 ¼ ðaÞ10−6; ðbÞ10−4; ðcÞ10−2, and (d) 1 counts=ðFHWM-ton-yrÞ under the specific case where uncertainties in the expected ambient
background are negligible, or ðσB=BÞ ¼ 0%. Case (a) is, in particular, effectively the zero ambient background condition. Predicted
hmββi ranges for neutrino mass IO and NO [26,27], following the matrix elements models prescribed in Ref. [14] are superimposed.
Scenarios with 2νββ background switched off are displayed as dotted lines to illustrate individual contributions from both background
components. The 2νββ process is the leading background for increasing ΔQββ

beyond the divergent points.
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in BI0 are universally applicable to comparing sensitivities
of different 0νββ experiments on a variety of the 0νββ
candidate isotope.
The input parameters specific to the 0νββ candidate

isotope chosen for this study, 136Xe, are Qββ ¼ 2.458 MeV
and τ2ν1=2 ¼ 2.2 × 1021 yr [30–32]. Signal events with
strength S0 with Gaussian energy distribution at mean
Qββ and FWHM ΔQββ

are simulated, superimposed by both
background channels. Multiple simulated datasets for
different ðB0; S0Þ are produced.
The ambient background is assumed to be energy

independent. The 2νββ background spectrum with the
parametrization of Ref. [33] is adopted. The measured
spectrum is derived via Gaussian smearing with width

characterized by detector resolution ΔQββ
. The likelihood

with expected 2νββ background and uncertainties of σB
(¼ ffiffiffiffiffiffi

τB
p

=τ) can be written as

L CEBν≡L ðS;BjEÞ;

¼ e−ðBþνþSÞðBþνþSÞN
N!

e−τBðτBÞn0
n0!

×
YN
i¼1

�
B ·fBðEiÞþν ·f2νðEiÞþS ·fSðEiÞ

ðBþνþSÞ
�
; ð25Þ

where ν is the expected count of 2νββ in ROI, and f2νðEÞ is
the 2νββ spectrum normalized with

R
ROI f2νðEÞdE ¼ 1.

We first take the asymptotic case of ðσB=BÞ ≃ 0% with
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FIG. 10. Requirements in ðBI0;ΔQββ
Þ space for 0νββ experiments with 136Xe to achieve P3σ50 , for Σ at (a) 1, (b) 10, (c) 100, and

(d) 1000 ton-yr, under the specific case where uncertainties in the expected ambient background are negligible, or ðσB=BÞ ¼ 0%.
Detector performance parameters in ðBI0;ΔQββ

Þ for the coming generation of 136Xe projects [19,34–37] are superimposed. The B2ν ¼ 1

and Bamb ¼ 1 contours correspond to, respectively, where the first 2νββ and ambient background event would appear within
ROI ¼ Qββ � 4σE0

.
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the τB-term suppressed. The likelihood of Eq. (25) is
simplified to

L CEν¼
e−ðBþνþSÞðBþνþSÞN

N!

×
YN
i¼1

�
B ·fBðEiÞþν ·f2νðEiÞþS ·fSðEiÞ

ðBþνþSÞ
�
: ð26Þ

Uncertainties of 2νββ background rates and spectra are also
negligible in this analysis.
The LLR analyses are applied to cases with and without

2νββ background described by likelihood functions of,
respectively, L CEBν in Eq. (25) and L CE in Eq. (11).
Distributions of q0 following Eq. (7) for Pðq0jH0Þ and
Pðq0jH1Þ in low and high statistics scenario, similar to
those of Figs. 5(a) and 5(b), are derived. The FðEijS; BÞ in
Asimov dataset of Eq. (14) is expanded to

FðEijS; BÞ ¼ ½B · fBðEiÞ þ ν · f2νðEiÞ þ S · fSðEiÞ�wðEiÞ
ð27Þ

with an additional ½ν · f2νðEiÞ� factor.
The τ0ν1=2 versus ΔQββ

at different contours of Σ ¼ 1; 10;
100; 1000 ton-yr scanning over BI0 ¼ 10−6; 10−4; 10−2;
1 counts=ðFHWM-ton-yrÞ are depicted in Figs. 9(a)–9(d),
superimposed on the predicted ranges of IO and NO
[26,27]. The divergent points between the solid and dotted
lines depend on Σ and BI0. They denote the Δ values
above which the irreducible 2νββ background would
dominate. In particular, the low BI0 ¼ 10−6 scenario of
Fig. 9(a) corresponds to where the ambient background can
be neglected.
The allowed regions to achieve P3σ50 in ðΔQββ

;BI0Þ
space for Σ ¼ 1; 10; 100; 1000 ton-yr are depicted in
Figs. 10(a)–10(d), in which the performance specifications
in ðBI0;ΔQββ

Þ for the coming generation of 136Xe projects
[19,34–37] are superimposed. For fixed Σ, ambient and
2νββ background depend only on BI0 and ΔQββ

, respec-
tively. The contours of B2ν¼1 and Bamb ¼ 1 within ROI ¼
Qββ � 4σE0

are marked.
While the numerical results are derived from 136Xe under

the assumptions stated, some general and notable features
related to the sensitivity projections for future 0νββ projects
can be observed:
(1) Following Fig. 7, counting-only analysis can lead to

sensitivity projections which deviate by >6% from
those of complete LLR analysis with energy in-
formation included. The discrepancies can be as
large as 20–30% for BI0Σ < 10−2.

(2) The point at which the solid and dotted lines
converge signifies the transition on which of the
two background modes are dominant—the ambient
and 2νββ background dominate the sensitivities at

ΔQββ
values lower and higher than the transition

point, respectively.
(3) Effects of nonzero ðσB=BÞ: At parameter space in

Fig. 9 where 2νββ background dominates, there are
no effects to the sensitivities. When ambient back-
ground is the leading channel, the relative drop of
sensitivities (equivalently, increase in required Σ)
can be read off directly from Fig. 8(c).

(4) The low-ΔQββ
regime in Fig. 9(a) for BI0 ¼ 10−6 is

effectively the zero ambient background condition.
The blue shaded region in Fig. 11 is where back-
ground due to 2νββ is also negligible such that one
observed event within ROI will constitute a positive
signature under P3σ50. The required experimental
specifications are ΔQββ

< 1.3% and Σ > 1.5 ton-year
for IO, and ΔQββ

< 0.5% and Σ > 315 ton-year for
NO. The white region is where the irreducible 2νββ
background limits the 0νββ sensitivities. The blue
dotted line depicts the case where one 2νββ back-
ground event can be observed on average.

(5) The relatively high background levels of BI0 ¼ 1 in
Fig. 9(d) corresponds to those achieved in the
current generation of experiments [38]. The 2νββ
background is only of minor impact except for ΔQββ

larger than a few% where the solid and dotted lines
diverge. Exposures of Σ ¼ 10 ton-yr and 100 ton-yr
are required to cover IO from experiments with
ΔQββ

< 1.4% and 8.0%, respectively. In addition,
probing the entire NO region is not possible
even with Σ ∼ 1000 ton-yr for experiments with
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FIG. 11. The conditions, represented by the white region, under
which the irreducible 2νββ background for 136Xe limits the 0νββ
sensitivities in the zero ambient background scenario. The blue
shaded region corresponds to parameter space where one ob-
served event can constitute a positive signal under P3σ50. The blue
dotted line depicts the case where one 2νββ event can be observed
on average. The bands for IO and NO are superimposed.
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ΔQββ
¼ 0.12% [39], the best resolution achieved to-

date with 76Ge.
(6) It can be inferred from Fig. 10(b) that the exper-

imental specifications for the coming generation of
projects could cover IO at Σ > 10 ton-yr. However,
following Fig. 10(d), this would be insufficient to
probe NO. Covering NO entirely would require Σ ≃
1000 ton-yr atΔQββ

≲ 1% together with BI0 at≲0.1.
(7) Future 0νββ projects to probe IO and NO would

necessarily have ðBI0 · ΣÞ < 1 with multiple ton-
year exposure of enriched isotopes. A misestimation
of the sensitivity reach by a few-% already implies
nonoptimal use of substantial resources. It follows
from Fig. 7(b) that counting-only analysis with
complete Poisson or continuous approximations
are no longer adequate. Energy information has to
be incorporated in the evaluation of the sensitivity
projections to provide the best input for the assess-
ment of cost effectiveness.

V. SUMMARY AND PROSPECTS

We develop in this work the statistical methods to define
required signal strength to establish a positive effect in an
experiment with known background and uncertainties—
before it is performed. It expands from our earlier counting-
only analysis [14] to incorporate constraints from addi-
tional measurements.

Two expected features are quantified on the required
signal strength to establish positive effects. First, in
counting-only experiments, the strength can be derived
correctly with complete Poisson analysis, and the continu-
ous approximation would underestimate the values.
Furthermore, incorporating continuous variables as addi-
tional constraints would reduce the required signal strength
relative to that derived with counting-only analysis.
The procedures are applied to 0νββ experiments on one

isotope 136Xe under realistic parameters as illustrations on
how they are used in practice. The theme of our future
research would be to adapt these tools to perform system-
atic studies on the sensitivity dependence of 0νββ projects
to experimental choice of target isotopes, detector reso-
lution, and planned exposure.
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