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We find the connection between relativistic and nonrelativistic string vacua in AdS5 × S5 in terms of a free
parameter c flow. First, we show that the famous relativistic BMN vacuum flows in the large c parameter to an
unphysical solution of the nonrelativistic theory. Then, we consider the simplest nonrelativistic vacuum,
found in Fontanella and García [J. Phys. A 55, 085401 (2022)] (called BMN-like), and we identify its
relativistic origin, namely a noncompact version of the folded string with zero spin, ignored in the past due to
its infinite energy. We show that, once the critical closed B-field required by the nonrelativistic limit is
included, the total energy of such relativistic solution is finite, and in the large c parameter it precisely matches
the one of the BMN-like string. We also analyze the case with spin in the transverse anti–de Sitter directions.
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I. INTRODUCTION

The problem of finding the string spectrum is in general
a difficult task. When the background is flat space, the
spectrum of fluctuations is independent of the classical
solution around which one expands the action. The reason
behind it is that the flat space string sigma model is
Gaussian. This is not the case when the background is a
curved manifold, such as AdS5 × S5, where the spectrum
will in general depend on the particular classical string
solution chosen for the action expansion. Regarding rela-
tivistic strings in AdS5 × S5, the problem of computing the
spectrum around the BMN vacuum has been well studied
with many integrability techniques (thermodynamic Bethe
ansatz, Y-system, etc.; see Ref. [1] for a review on the
topic), but the spectrum for other vacua is a more
complicated problem, and to the best of our knowledge,
the only other vacuum where integrability techniques have
been applied is the GKP vacuum [2–4]. In recent years,
there have been indications that the problem of finding the
spectrum around a general vacua can be solved (at least,
formally) using an integrability-based technique called
Quantum Spectral Curve; see Ref. [5] for a review on
the topic. The success in understanding strings in flat space
and AdS5 × S5 has motivated a renewed interest in theories

derived from or reminiscent of them, like TT̄ deformations,
Yang-Baxter deformations, fishnet conformal field theory,
lower-dimensional anti–de Sitter (AdS), or nonrelativistic
limit.
In this article, we focus on the nonrelativistic (NR) limit

of string theory. We consider a string theory where the
NR limit has been taken on the target space geometry,
whereas the world sheet remains relativistic. In this limit,
the background geometry probed by the string is a String
Newton-Cartan (SNC) geometry, namely a particular
non-Lorentzian type of geometry. In this setting, bosonic
NR string theory defined on a generic SNC target space
is free of Weyl anomalies provided the beta function
vanishes [6,7].
The first example of NR string theory was proposed in

flat space in [8,9], and the only known example so far of
NR string in curved background is the one found in [10],
which is formulated by taking a NR limit in the AdS5 × S5

geometry while keeping the world sheet relativistic. It is a
current open problem to explore the landscape of NR string
theory, as there are indications that many backgrounds,
which are different at the relativistic level, will all limit to
the same type of background proposed in [8,10], sug-
gesting that the landscape of NR strings consists only in the
flat space and AdS5 × S5 SNC geometries.
NR string theory has been extensively explored at the

formal level. The structure of the NR Polyakov string
action in any SNC background can be obtained from
several different but equivalent approaches. A first
approach, described in [11] and known as the limit
procedure, involves rescaling the target space vielbein by
a parameter that is then sent to infinity. A second approach,
is the so-called null reduction approach [12–14], which
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consists in reducing a relativistic string theory on a
Lorentzian manifold along a null isometry at fixed momen-
tum. A third approach, proposed in [15,16], consists in
taking an expansion of the relativistic action in a large
parameter c and studying the equations of motion up to a
certain order in c. The idea behind the expansion approach
is reminiscent of the Lie algebra expansion method applied
to coset string sigma models [17], where in the latter
approach a concrete target space isometry algebra is
required in order to apply the expansion on it. Related
topics, such as T-duality [11], symmetries of the action
[14,18,19], connection to double field theory [20–23],
Hamiltonian formalism [24–26], open strings [27,28],
NR supergravity [29,30] and theories with NR world sheet
[12–14,31–35] have also been studied. We refer to [36] and
references therein for a recent review on the topic.
Although much progress has been achieved from the

formal point of view of NR string theory, less is known
about its physics, in particular regarding its predictions,
such as what observables look like in this theory. Having
knowledge on this would be particularly appealing in
view of formulating a NR version of holography, which
would be of a non-AdS type as the target space is a SNC
manifold.
As at the moment the best understood example

of holography is given by relativistic string theory in
AdS5 × S5, it seems reasonable to explore what its NR
version is. This would amount to formulating a holographic
correspondence between NR string theory in SNC
AdS5 × S5, e.g. [10], and its, not yet known, dual field
theory. Although we still have not yet identified the dual
field theory, some progress on the string theory side has
been made. In particular, a coset description of the SNC
AdS5 × S5 manifold was found [37,38], which made it
possible to formulate a NR version of the Metsaev-Tseytlin
coset action. Thanks to this formalism, it was possible to
find a Lax pair for this type of theory [37], which is the first
step toward showing classical integrability.
In view of a NR version of holography, it would be

important to determine the full string spectrum of NR string
theory in SNC AdS5 × S5.1 Although a final answer to this
problem is still missing, some progress in this direction has
been made. Classical string solutions admitted by NR string
theory in SNC AdS5 × S5 were studied in [39], where it
was shown that the simplest vacuum admitted by this
theory must always have a winding along the longitudinal
direction, as demanded by consistency with the Lagrange
multipliers equations of motion. Such a physical require-
ment renders even the simplest vacuum, which was called

BMN-like, quite complicated when expanding the action
around it [40], spoiling the usual perturbative S-matrix
computation. A different approach to the spectrum in NR
string theory in SNC AdS5 × S5 was given by analyzing
the classical spectral curve associated with the Lax pair
evaluated on the BMN-like vacuum [41]. The nonstandard
result obtained indicates that the usual notion of spectral
curve should be generalized to take into account the
nondiagonalizability of the monodromy matrix in the
context of nonsemisimple isometry algebras, which is
the case when taking the NR limit.
The motivation of this paper is to explore whether it is

sensible in AdS5 × S5 to construct the spectrum above
NR classical strings by taking directly the limit of the
relativistic string spectrum, similarly to the flat space
case, instead of having to construct it from scratch using
the NR action. For that, we shall show that the profile
and the conserved charges of NR classical strings can
indeed be obtained as a limit of an appropriate relativistic
classical string.
Our strategy consists in considering relativistic strings in

AdS5 × S5 where we keep the NR rescaling parameter c.
When c ¼ 1, we get the usual relativistic action, and when
c → ∞, we get NR string theory in SNC AdS5 × S5. This
flowing2 procedure requires coupling the action to a critical
closed B-field, in order to correctly treat the divergent
term appearing in the action when c → ∞. By keeping the
c parameter free, we are able to identify the classical
solution of the relativistic theory, which flows at large c to
the BMN-like vacuum of NR string theory in SNC
AdS5 × S5. Such a solution is a noncompact version of
the folded string with zero spin, and it has infinite energy.
However, once the critical B-field is considered, we find
that the divergent part of the energy cancels out exactly.
The total energy, which is the sum of the contributions
from the metric and the critical B-field, remains finite in
the whole flow and, when c → ∞, it reproduces precisely
the energy of the BMN-like solution.
We also study the case when the solution has a spin in the

transverse AdS directions. In this case, we will find that the
total energy and spin are both divergent. However, for a
precise fine-tuning of the free parameters of the solution,
we show that in the large c limit a linear combination of the
total energy and the spin is finite and precisely matches the
dispersion relation and profile of a spinning solution found
by solving the equations of motion in the NR string theory
in SNC AdS5 × S5.
Another important point is to consider the flow of the

relativistic BMN string. We show that in the large c limit
this solution becomes an unphysical string localized in

1In the flat space case, the NR string spectrum can be easily
accessed by taking the zero Regge limit of the relativistic
spectrum [8]. Such a procedure is vacuum independent, as the
flat space action is Gaussian.

2When we use the word flow we mean that the formulas
involved in our study have a parametric dependence on a free
parameter c which goes from 1 to ∞.
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time. This is evidence that the BMN vacuum, which is
perhaps the simplest vacuum for relativistic strings in
AdS5 × S5, does not survive when c is taken to be large.
This can be interpreted as the fact that the BMN vacuum
describes a classical pointlike string fast moving around
the equator of the 5-sphere and therefore such motion
cannot be seen at the slow velocity regime captured by the
NR string theory in SNC AdS5 × S5. A diagram sum-
marizing the flow in the case of zero spin is given
in Fig. 1.
This paper is organized as follows. In Sec. II we review

how NR string theory in SNC AdS5 × S5 is obtained in the
limit procedure from relativistic string action in AdS5 × S5.
We present solutions parametrized by three parameters
ðκ;ω; νÞ, associated with energy, spin and angular momen-
tum, which are the polar coordinate version of solutions
found in [39]. In Sec. III we solve the equations of motion
for the relativistic string action in AdS5 × S5 keeping the
free parameter c. We present three solutions, namely the
BMN, a noncompact version of the folded string with
zero spin, characterized by the parameters ðκ; 0; νÞ, and its
spinning version, with parameters ðκ;ω; νÞ. We study their
Noether charges, dispersion relation and large c limit.
In Sec. IV we give our concluding summary and future
prospects. The paper ends with two Appendixes, one on the
convention and the other one on the NR rescaling in polar
coordinates.

II. NONRELATIVISTIC STRING ACTION
AND CLASSICAL SOLUTIONS

In this section, we review the construction of the bosonic
sector of NR string theory in SNC AdS5 × S5 starting from
the bosonic sector of relativistic AdS5 × S5 string action.
We construct the simplest classical solutions admitted by
NR string theory in SNC AdS5 × S5 and their spinning
generalization, which are the analog in polar coordinates of
the solutions constructed in Cartesian coordinates in [39].

A. Relativistic and nonrelativistic actions

For the purpose of studying classical string solutions
where fermion fields vanish, we consider the bosonic sector
of type IIB superstring theory in AdS5 × S5 given by

S ¼ −
ffiffiffi
λ

p

4π

Z
d2σðγαβ∂αXμ

∂βXνgμν þ εαβ∂αXμ
∂βXνbμνÞ;

ð2:1Þ

where λ is the ‘t Hooft coupling, related to the string tension
T via 2πT ¼ ffiffiffi

λ
p

, the string world sheet coordinates are
collected as σα ¼ ðτ; σÞ, with σ ≡ σ þ 2π, and γαβ ≡ffiffiffiffiffiffi
−h

p
hαβ is the Weyl invariant combination of the inverse

world sheet metric hαβ and h ¼ detðhαβÞ. The metric gμν is
the AdS5 × S5,

FIG. 1. This diagram illustrates the relativistic origin of the BMN-like string of NR string theory in SNC AdS5 × S5. It also shows that
the relativistic BMN vacuum is not a consistent vacuum for such theory.
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ds2 ¼ gμνdXμdXν ¼ ds2AdS þ ds2S;

ds2AdS ¼ −cosh2ρdt2 þ dρ2 þ sinh2ρdβ21 þ sinh2ρcos2β1dβ22

þ sinh2ρcos2β1cos2β2dβ23;

ds2S ¼ dφ2
1 þ cos2φ1dφ2

2 þ cos2φ1cos2φ2dφ2
3

þ cos2φ1cos2φ2cos2φ3dφ2
4

þ cos2φ1cos2φ2cos2φ3cos2φ4dφ2
5: ð2:2Þ

Here t is the global time, ρ is the radial coordinate in AdS5
and βi and φj are angles in AdS5 and S5 respectively. The
B-field bμν is a closed Kalb-Ramond field, i.e. db ¼ 0,
which we will fine-tune to a critical value when taking the
NR limit.
The analog in polar coordinates of the NR limit

considered in [10] is given by rescaling the coordinates
(see Appendix B for details)

β2 þ
π

2
→

1

c

�
β2 þ

π

2

�
; β1 →

1

c
β1;

φ2 þ
π

2
→

1

c

�
φ2 þ

π

2

�
; φ1 →

1

c
φ1; ð2:3Þ

while leaving the other coordinates invariant. In addition,
we also have to rescale the string tension as T → c2T,
which can be absorbed into a more convenient redefinition
of the metric and B-field,

Gμν ≡ c2gμν; Bμν ≡ c2bμν: ð2:4Þ

Here c is a nonrelativistic contraction parameter, which
plays the stringy analog role of the speed of light, and is
assumed to be large. At large values of c, the vielbein
associated to Gμν expands as

Êμ
A ¼ cτμA þ 1

c
mμ

A þOðc−3Þ; Êμ
a ¼ eμa þOðc−2Þ;

ð2:5Þ

where A ¼ 0; 1 (longitudinal) and a ¼ 2;…; 9 (transverse).
The set of vielbein fτμA;mμ

A; eμag is called Newton-Cartan
data, and in polar coordinates is3

τμ
A¼diagðcoshρ;1;0;0;0;0;0;0;0;0Þ; mμ

A¼0; ð2:6Þ

eμa ¼ diagð0; 0;− sinh ρ;− sinh ρ; sinh ρðβ2 þ π=2Þ; 1; 1;
− ðφ2 − π=2Þ;−ðφ2 − π=2Þ cosφ3;

ðφ2 − π=2Þ cosφ3 cosφ4Þ: ð2:7Þ

Notice that τμA is an AdS2 vielbein and eμa is the vielbein
of ðsinh ρR3Þ ×R5. Substituting this expansion into the
action gives us

S ¼ −
ffiffiffi
λ

p

4π

Z
d2σγαβðc2∂αXμ

∂βXντμν þ ∂αXμ
∂βXνHμν

þ εαβ∂αXμ
∂βXνBμνÞ þOðc−2Þ; ð2:8Þ

where

τμν ≡ τμ
Aτν

Bη̃AB ¼ diagð−cosh2ρ; 1; 0; 0; 0; 0; 0; 0; 0; 0Þ;
ð2:9Þ

Hμν ≡ eμaeνbδ̃ab þ ðτμAmν
B þ τν

Amμ
BÞη̃AB

¼ diagð0; 0; sinh2ρ; sinh2ρ; sinh2ρðβ2 þ π=2Þ2; 1; 1;
ðφ2 − π=2Þ2; ðφ2 − π=2Þ2cos2φ3;

ðφ2 − π=2Þ2cos2φ3cos2φ4Þ; ð2:10Þ

with η̃AB ¼ diagð−1; 1; 0;…; 0Þ, δ̃ab ¼ diagð0; 0; 1; ...; 1Þ.
Although the action diverges for large values of c, we
can combine the divergent term with a fine-tuned B-field of
the form

B≡ c2

2
τμ

Aτν
BεABdXμ ∧ dXν ¼ −

c2

2
coshρdt ∧ dρ; ð2:11Þ

into a Lorentz square term,4

c2γαβ∂αXμ
∂βXντμν þ εαβ∂αXμ

∂βXνBμν ¼ c2γ00FAFBη̃AB;

ð2:12Þ

where

FA¼ τμ
A
∂0Xμ−

1

γ11
εABη̃BCτμ

C
∂1Xμ−

γ01
γ11

τμ
A
∂1Xμ: ð2:13Þ

A quadratic term of this form can be traded off for two
Lagrange multipliers as follows:

c2
Z

d2σγ00FAFBη̃AB ¼
Z

d2σ

�
λAFA −

1

4c2γ00
λAλ

A

�
:

ð2:14Þ
3Here we trade some abuse of notation for some convenience

by writing τμ
A and eμa as 10 × 10 matrices, although they are

10 × 2 and 10 × 8 matrices respectively. In this matrix repre-
sentation, the μ index runs over coordinates in the same order in
which their differentials appear in (2.2).

4The B-field is needed because the divergent term τμν is not
positive definite. In the Carrollian limit, where the divergent term
is positive definite, there is no need to turn on a B-field, and the
rewriting in terms of Lagrange multipliers comes directly.
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Notice that this equivalence only holds on shell, i.e. solving
the equations of motion for λA and substituting the solution
inside the rhs of (2.14) gives back the lhs of that equation.
The advantage of the rewriting (2.14) is to trade a divergent
term for a finite one, at the price of introducing extra
nondynamical degrees of freedom λA. At this point we are
finally allowed to take the limit c → ∞, which gives us the
NR action

SNR ¼ −
ffiffiffi
λ

p

4π

Z
d2σðγαβ∂αXμ

∂βXνHμν þ λAFAÞ: ð2:15Þ

An alternative form of the above action, proposed in [11],
consists in introducing the zweibein for the world sheet
metric hαβ ¼ θα

iθβ
jηij, such that (2.15) becomes

SNR ¼ −
ffiffiffi
λ

p

4π

Z
d2σðγαβ∂αXμ

∂βXνHμν

þ εαβðλþθαþτμþ þ λ−θα
−τμ

−Þ∂βXμÞ; ð2:16Þ

see Appendix A for our conventions. As commented
in [39], this action is obtained by assuming that the
following positivity condition must hold:

θ1
þθ0− − θ0

þθ1− ≥ 0: ð2:17Þ
If instead of choosing this positivity constraint we would
have chosen the quantity θ1

þθ0− − θ0
þθ1− to be negative,

then (2.16) would be the same but with θα
þ and θα

−

swapped.
The advantage of writing the NR action in the form (2.16)

is to make a Z2 symmetry manifest. To show this, one needs
to notice that (2.16) is clearly invariant under the following
substitution:

θα
� → θα

∓; τβ
� → τβ

∓; λ� → λ∓; ð2:18Þ
where τβA is the pull back of τμA. By taking the explicit form
of our τμ

A which is diagonal and even in ρ, we can
understand the swap of τβ� as an inversion of the sign of ρ.
Explicitly,

τβ
þ ¼ τμ

þ
∂βXμ ¼ τt

0
∂βtþ τρ

1
∂βρ → τt

0
∂βtþ τρ

1
∂βð−ρÞ ¼ τμ

−
∂βXμ ¼ τβ

−: ð2:19Þ

We remark that this identification works because τμ
A is

diagonal and an even function of ρ in our case. Therefore,
our NR action enjoys a Z2 symmetry which consists in

ρ → −ρ; θα
� → θα

∓; λ� → λ∓: ð2:20Þ
We should emphasize that, although the two formulations
of the NR action are equivalent, (2.20) is manifest in (2.16)
but not in (2.15). This symmetry will be useful later where
we have solutions for the radial coordinate ρ inR instead of
its range R≥0. The Z2 symmetry will allow us to take jρj as
the physical solution.

B. Simplest classical solutions: ðκ;0;0Þ and ðκ;0;νÞ
Now we have all the ingredients to start computing the

equations of motion of the nonrelativistic action in conformal
gauge. As the action involves also the zweibein associated
to the world sheet metric, we have an additional SOð1; 1Þ
freedom, which we choose to fix as θα� ¼ ð−1;∓ 1Þ.
The equations of motion for λA in conformal gauge take

the form

εαβθα
�τμ�∂βXμ ¼ ðρ̇ ∓ ρ0Þ − ðt0 ∓ ṫÞ cosh ρ ¼ 0; ð2:21Þ

where the dot and prime indicate derivatives with respect to
τ and σ respectively. After fixing also the residual gauge
freedom left by the conformal gauge fixing, which amounts
to a Diffþ ⊕ Diff− symmetry, we can completely deter-
mine the evolution of t and ρ:

t ¼ κτ; ρ ¼ gd−1ðκσÞ ¼ arcsinhðtan ðκσÞÞ; ð2:22Þ

where gd stands for the Gudermannian function. We can
check that setting the remaining coordinates to zero solves
the remaining equations of motion, as well as the Virasoro
constraints. In addition, we have to impose periodicity
ρðσÞ ¼ ρðσ þ 2πÞ, which forces κ to be half integer. This
type of solution is called static solution, or ðκ; 0; 0Þ
solution, and all its Noether charges vanish.
There is a more interesting solution which has non-

vanishing energy and linear momentum, and it is

t¼ κτ; ρ¼gd−1ðκσÞ; φ1¼ντ; λ�¼ λ�ðσÞ: ð2:23Þ
We should stress that φ1 was an angular coordinate before
taking the nonrelativistic limit, but now it resembles a radial
coordinate. The fields λ�ðσÞ need to satisfy the equations of
motion for t and ρ, which are

λ̇þ ∓ λ̇− ¼ κ tanðκσÞðλþ � λ−Þ þ ðλ0þ � λ0−Þ; ð2:24Þ

and the Virasoro constraints,

−
ν2

2
� κj secðκσÞjλ� ¼ 0: ð2:25Þ

This is an overdetermined, but consistent, system of
equations. We can solve the Virasoro constraints easily,
as they are algebraic equations, giving us

λ� ¼ � ν2j cosðκσÞj
2κ

; ð2:26Þ
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and they also solve the differential equation (2.24). In
addition, we also have to impose periodicity in σ on the
Lagrange multipliers, but in this case it gives the same
condition as the one coming from demanding periodicity
of ρ. We denote this solution as ðκ; 0; νÞ, and it is the
equivalent in polar coordinates to the BMN-like solution
presented in [39].
Finally, the only nonvanishing Noether charges of this

solution are the energy E and a linear momentum J, which
was an angular momentum on the 5-sphere before taking
the NR limit, and they are

E≡ −
Z

2π

0

dσ
dL
dṫ

¼
ffiffiffi
λ

p

2

Z
2π

0

dσ
2π

ðλþ − λ−Þ cosh ρ ¼
ffiffiffi
λ

p
ν2

2κ
;

ð2:27Þ

J ≡
Z

2π

0

dσ
dL
dφ̇1

¼
ffiffiffi
λ

p
ν; ð2:28Þ

which allow us to write the dispersion relation,

E ¼ J2

2κ
ffiffiffi
λ

p : ð2:29Þ

C. Spinning solution ðκ;ω;νÞ
Let us now move to a more complex ansatz:

t ¼ κτ; ρ ¼ gd−1ðκσÞ; β1 ¼ ωτ;

φ1 ¼ ντ; λ� ¼ λ�ðσÞ; ð2:30Þ

with all the remaining coordinates set to zero. Similarly to
φ1, β1 is also an angular coordinate that becomes a radial
coordinate after performing the nonrelativistic limit.
The fields λ�ðσÞ are fixed by solving the equations of

motion for t and ρ,

λ̇þ − λ̇− ¼ κ tanðκσÞðλþ þ λ−Þ þ ðλ0þ þ λ0−Þ;
λ̇þ þ λ̇− ¼ κ tanðκσÞðλþ − λ−Þ þ ðλ0þ − λ0−Þ

− 2ω2 tanðκσÞj secðκσÞj;

and by solving the Virasoro constraints,

−ν2 − ω2tan2ðκσÞ � 2κj secðκσÞjλ� ¼ 0: ð2:31Þ

Again, this system of equations is overdetermined but
consistent. It is simpler to solve the Virasoro constraints, as
they are algebraic equations for λ�, giving us

λ� ¼ � ν2 þ ω2tan2ðκσÞ
2κj secðκσÞj : ð2:32Þ

Similarly, periodicity of ρ and λ� implies that κ is a half
integer. This solution is denoted by ðκ;ω; νÞ.

The Noether charges associated to this solution are

E≡ −
Z

2π

0

dσ
dL
dṫ

¼
ffiffiffi
λ

p

4π

Z
2π

0

dσðλþ − λ−Þ cosh ρ

¼
ffiffiffi
λ

p

2

�
ν2

κ
þ ω2

κ

Z
2π

0

dσ
2π

tan2ðκσÞ
�
; ð2:33Þ

S≡
Z

2π

0

dσ
dL

dβ̇1
¼

ffiffiffi
λ

p
ω

Z
2π

0

dσ
2π

tan2ðκσÞ; ð2:34Þ

J ≡
Z

2π

0

dσ
dL
dφ̇1

¼
ffiffiffi
λ

p
ν: ð2:35Þ

Notice that the integral of the square of the tangent
diverges, as it introduces a second order pole in the
integration path. Thus, the only solution with finite energy
is the one with ω ¼ 0, namely, the solution we studied in
the previous section. However, there exists another inter-
esting case, which corresponds to ω ¼ �κ. In this case,
energy and spin are both divergent, but their linear
combination is finite, that is

E ∓ S
2
¼ J2

2κ
ffiffiffi
λ

p : ð2:36Þ

III. RELATIVISTIC STRINGS FLOWING TO
THEIR NR COUNTERPARTS

In this section, we take a step back and approach the
construction of NR classical string solutions from a differ-
ent angle. Instead of considering the NR limit at the level of
the action, wewant now to keep the contraction parameter c
finite, and take the large c limit only at the very end. We
start with the relativistic action (2.1), which is coupled to
the critical closed B-field, and we rescale coordinates with
c accordingly to (2.3). If c ¼ 1, we get the relativistic
action, but if c ≠ 1, we have a theory that interpolates
between the relativistic and the NR actions.5 We solve the
c-dependent equations of motion in conformal gauge,
obtaining solutions depending on c; we take the c → ∞
limit on the classical solutions, and compare with the NR
strings from the previous section.
Here we will consider two particular examples: the BMN

string and a noncompact version of the folded string. We
will show that there is no physically meaningful NR string
associated to the first one, and that the second one, in both
cases with and without spin, reduces to the classical NR
strings discussed in the previous section.

5As long as c is finite, the action is equivalent to the relativistic
one because we can always integrate out the Lagrange multipliers
using Eq. (2.14). However, at large values of c one should be able
to construct an interpolating theory in the spirit of [15,16].
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A. Flow of BMN string

The two simplest solutions to the equations of motion
for strings propagating in AdS5 × S5 are the massless
geodesic, which are pointlike strings. They are classified,
up to global SOð2; 4Þ × SOð6Þ transformations, into two
types: either the geodesic lies completely inside AdS5,
or time evolves in AdS5 and the string moves around the
big circle of S5. In the latter case, the solution is the
famous BMN.
In the coordinates used in (2.2), the BMN string takes

the form

t ¼ κτ; φ1 ¼ cκτ; ð3:1Þ

with all the other coordinates set to zero. We can see that
the large c limit is not well defined here. Although φ1 is an
angular variable defined modulo 2π, trigonometric func-
tions acting on φ1 will be ill defined. Energy and angular
momentum associated with this solution are

E≡ −
Z

2π

0

dσ
dL
dṫ

¼
ffiffiffi
λ

p
c2κ;

J ≡
Z

2π

0

dσ
dL
dφ̇1

¼
ffiffiffi
λ

p
cκ; E ¼ cJ; ð3:2Þ

which become infinite in the large c limit. Equivalently,
we can argue that κ should go to zero as c goes to infinity,
such that κ̃ ¼ cκ remains finite. In this picture, we obtain an
unphysical solution localized at t ¼ 0 with finite J but still
infinite E. Thus, we can argue that we cannot define a
physically meaningful nonrelativistic limit of the BMN
solution.
From a physical perspective, nonrelativistic string

vacua should have a winding along the spatial longi-
tudinal direction in order to have a well-defined spectrum.
However, the BMN solution is pointlike both in AdS5
and S5 spaces, and therefore cannot have winding. It is
possible to generalize such a BMN solution by adding
winding on a circle inside S5. However, such winding is
not aligned with the critical Kalb-Ramond B-field defined
in (2.11).

B. Flow of noncompact folded string

The folded string solution is one of the most famous
classical string solutions in AdS5 × S5. However, for our
purposes, we need to consider a noncompact version of the
usual folded string. Both, the usual and the noncompact
folded strings are characterized by the ansatz

t¼ κτ; β1 ¼ ωτ; φ1 ¼ ντ; ρ¼ ρðσÞ: ð3:3Þ

All the remaining coordinates are set to zero. If we
substitute this ansatz into the equations of motions, the
only equation that is nontrivially satisfied is

c2ρ00 ¼ ðc2κ2 − ω2Þ sinh ρ cosh ρ; ð3:4Þ

which should be supplemented with the Virasoro constraint

c2ρ02 ¼ ðc2κ2 − ν2Þcosh2ρ − ðω2 − ν2Þsinh2ρ: ð3:5Þ

The solution to these equations is unique and given by6

ρ ¼ −iam

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2

c2
− κ2

s
σ;
c2κ2 − ω2

c2κ2 − ν2

!
: ð3:6Þ

In the regime ν > cκ, sinh ρ is a compact function, and
we find the usual folded string, see e.g. [42–45]. However,
when ν < cκ, sinh ρ is a noncompact function given by7

sinh ρ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2κ2 − ν2

c2κ2 − ω2

s
sc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2κ2 − ω2

p

c
σ;

ν2 − ω2

c2κ2 − ω2

�
;

ð3:7Þ

where we have assumed that ν2 > ω2.8 We demand that the
above solution must be periodic in the σ coordinate. The
condition sinh ρðσ þ 2πÞ ¼ sinh ρðσÞ imposes

π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2κ2 − ω2

c2

s
¼ nK

�
ν2 − ω2

c2κ2 − ω2

�
; ð3:8Þ

where n is an integer. The large c limit of (3.3) gives

t ¼ κτ; β1 ¼ ωτ; φ1 ¼ ντ;

ρ ¼ −igdðiκσÞ ¼ gd−1ðκσÞ; ð3:9Þ

which matches perfectly the more involved NR classical
solution (2.30) (without the Lagrange multipliers’ part, as
we do not have access to them coming from this perspec-
tive). Thus, the noncompact folded string is the correct
relativistic origin of the NR classical solutions we studied
in the previous section.
We shall show now that the dispersion relation of the

noncompact folded string also gives rise to the dispersion
relations we found for the NR solutions. In contrast with the

6We thank Arkady Tseytlin for remarking that the range of ρ is
defined from 0 to þ∞, as sinh ρ is a radial coordinate. Thanks to
the Z2∶ ρ → −ρ symmetry on the relativistic metric, jρj is also a
solution of the equations of motion, which belongs to the
appropriate range. However, we will not consider jρj in the
intermediate steps because this introduces an apparent singularity
in the computations, but we will keep it in mind in final results.

7In this article we will follow the convention of [46] for the
elliptic modulus, where dn2ðx;mÞ þm sn2ðx;mÞ ¼ 1 is fulfilled.

8This noncompact solution can also be obtained from the usual
compact folded string solution using the identity snðix; mÞ ¼
iscðx; 1 −mÞ. This identity allows us to show that the large c
limit of the compact folded string also flows to (3.9).
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usual folded string, this noncompact version has not been
widely studied in the literature because its spin and energy
diverge, which makes this analysis a bit more involved.
However, as we are motivated by NR string theory, the
construction of the SNC AdS5 × S5 string action requires
us to include a B-field that provides an additional con-
tribution to the classical energy. We will study separately
the cases of ω ¼ 0 and ω ≠ 0 because in the first case the
B-field contribution is enough to cancel such divergence.

1. Solution ðκ;0;νÞ
Let us address first the case of ω ¼ 0. As we have

already stated, the energy has two Lagrangian contribu-
tions: one coming from the AdS5 × S5 metric, EG, and one
from the closed B-field (2.11), EB,9

EG ≡ −
Z

2π

0

dσ
dLG

dṫ
¼ c2

ffiffiffi
λ

p Z
2π

0

dσ
2π

cosh2ρṫ; ð3:10Þ

EB ≡ −
Z

2π

0

dσ
dLB

dṫ
¼ −c2

ffiffiffi
λ

p Z
2π

0

dσ
2π

cosh ρρ0; ð3:11Þ

E¼EGþEB ¼ c2
ffiffiffi
λ

p Z
2π

0

dσ
2π

coshρðcoshρṫ−ρ0Þ: ð3:12Þ

For any nonvanishing value of c, EG is divergent due to the
noncompactness of ρ. This manifests as second order poles
in the integration path. One is located at σ ¼ π

2
,

cosh2ρṫ ¼ κdc2
�
κσ;

ν2

c2κ2

�
∼

1

κðσ − π=2Þ2 ; ð3:13Þ

and another one is located at σ ¼ 3π
2
with the same residue.

However, this is also true for EB but with opposite residue,

− cosh ρρ0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ν2

p
dc

�
κσ;

ν2

c2κ2

�
nc

�
κσ;

ν2

c2κ2

�

∼ −
1

κðσ − π=2Þ2 ; ð3:14Þ

and similarly for the one at 3π=2. Thus, the combined
contribution to the energy is finite and given by

E ¼ 2nc2
ffiffiffi
λ

p

π

�
K

�
ν2

c2κ2

�
− E

�
ν2

c2κ2

��

¼ κc2
ffiffiffi
λ

p "
1 −

E
�

ν2

c2κ2
�

K
�

ν2

c2κ2
�
#
; ð3:15Þ

where n is the integer appearing in the periodicity condition
(3.8). This solution has also an angular momentum J:

J ≡
Z

2π

0

dσ
dL
dφ̇1

¼
ffiffiffi
λ

p
ν: ð3:16Þ

We cannot write a closed form for the dispersion relation
because it requires us to solve the periodicity condition,
which cannot be solved analytically due to the elliptic
integral.
In the large c limit, the energy (3.15) is still finite10 and

becomes

lim
c→∞

E ¼ lim
c→∞

κc2
ffiffiffi
λ

p "
1 −

E
�

ν2

c2κ2
�

K
�

ν2

c2κ2
�
#
¼

ffiffiffi
λ

p
ν2

2κ
; ð3:17Þ

which matches the energy (2.27) perfectly. The angular
momentum J will remain the same in the large c limit, and
therefore we recover the dispersion relation (2.29).

2. Spinning solution ðκ;ω;νÞ
In this section, we consider the case ω ≠ 0. The analysis

is similar to the ω ¼ 0 case, so we will only point out the
differences. The energy again gets a contribution from the
metric and the B-field, as defined in (3.12). However, in
this case, the poles that appear in the contribution to the
energy from the B-field do not cancel the ones that appear
in the contribution from the metric. In fact,

cosh2ρṫ − cosh ρρ0 ∼
κ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ω2

c2

q
κ2 − ω2

c2

1

ðσ − π=2Þ2 ; ð3:18Þ

and similarly for σ ¼ 3π=2.
Despite that, we can still formally study what is the

large c limit of the energy. After some nontrivial algebra,
we find

lim
c→∞

E ¼ κ
ffiffiffi
λ

p

2π

Z
2π

0

ν2 þ ω2tan2ðκσÞ
2κ2

dσ: ð3:19Þ

It is immediate to check that the resulting energy is exactly
the same as (2.33), that is, the energy of the NR classical
solution described in Sec. II C.
The spin S is given by

S≡
Z

2π

0

dσ
dL

dβ̇1
¼

ffiffiffi
λ

p
ω

Z
2π

0

dσ
2π

sinh2ρ: ð3:20Þ

9As we commented above, we have to restrict ρ to non-
negative values. This amounts to substituting ρ by jρj in the
following expressions. Nevertheless, the discussion on the
cancellation of the divergence remains the same. We thank
Andrea Guerrieri for useful comments on this point.

10We should point out that the energy (3.12) is proportional to
the difference of the two constrains imposed by the Lagrange
multipliers in SNC AdS5 × S5 (2.21). This assures us that the
limit is finite despite the overall c2 factor.
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If we substitute formula (3.7) in this equation and compute
its large c limit, we obtain

lim
c→∞

S ¼
ffiffiffi
λ

p
ω

Z
2π

0

dσ
2π

tan2ðκσÞ; ð3:21Þ

which matches (2.34) perfectly.
For completeness, we should mention that the angular

momentum J for this solution is also
ffiffiffi
λ

p
ν, which

matches (2.35).
At the end, after fixing ω ¼ �κ, we reproduce precisely

the dispersion relation (2.36).11 Therefore, we can safely
conclude that the NR classical strings in SNC AdS5 × S5

described in the previous section can be reconstructed
from the large c limit of the noncompact folded string
in AdS5 × S5.

C. A comment on the noncompact folded string
in Cartesian coordinates

We want to close this section with a comment on the
large c limit of the noncompact folded string in Cartesian
coordinates. At the relativistic level, it is physically
equivalent to write the AdS5 × S5 string theory action in
different sets of coordinates; in particular, there is no
problem in changing from polar coordinates to Cartesian
ones. This property no longer holds after taking the
nonrelativistic limit, and one expects to obtain equivalent
theories only when the change of coordinate transformation
is analytic in 1=c2.12 This is not our case, as the change of
coordinates is noninvertible at ρ ¼ 0. Because of that, we
want to analyze separately the nonrelativistic limit of
AdS5 × S5 in Cartesian coordinates.
Although the actions may be different in the NR limit,

the relativistic classical string solution that acts as seed
is the same, so we may be able to change to Cartesian
coordinates and apply the same logic to reconstruct the
solutions presented in [39]. For that, we consider the AdS5
metric in Cartesian coordinates

ds2AdS ¼ −

 
1þ zizi

4

1− zizi

4

!
2

dt2 þ 1

ð1− zizi

4
Þ2
dzidzi; i¼ 1;…;4:

ð3:22Þ

The diffeomorphism that takes the Cartesian metric (3.22)
to the polar one (2.2) is

z1 ¼ 2 tanh

�
ρ

2

�
cos β3 cos β2 cos β1;

z2 ¼ 2 tanh

�
ρ

2

�
cos β3 cos β2 sin β1;

z3 ¼ 2 tanh

�
ρ

2

�
cos β3 sin β2;

z4 ¼ 2 tanh
�
ρ

2

�
sin β3; t ¼ t:

Substituting our ansatz for the folded string (3.3), we get

t¼ κτ; z1¼2 tanh

�
ρ

2

�
cosðωτÞ; z2¼2 tanh

�
ρ

2

�
sinðωτÞ:

ð3:23Þ

Considering ω ¼ 0 and the large c limit, we have

t ¼ κτ; z1 ¼ 2 tan

�
κσ

2

�
; ð3:24Þ

where we have used that the inverse Gudermannian function
can also be expressed as gd−1ðxÞ ¼ 2arctanhðtanðx=2ÞÞ.
From that, it is clear that the BMN-like string we found
in [39] is exactly the nonrelativistic limit of the noncompact
folded string presented here in polar coordinates.

IV. CONCLUSIONS

Following the line of research started in [39] in Cartesian
coordinates, we have constructed the simplest classical
string solutions of NR string theory in SNC AdS5 × S5 in
polar coordinates. In this paper, we answer the question of
what is the relativistic origin of these NR string solutions.
We found that the relativistic string that at large c becomes
the BMN-like string of NR string theory in SNC AdS5 × S5

is a noncompact version of the folded string with zero
spin S. Such solution has infinite energy and, due to that, it
has been ignored so far in the literature. However, moti-
vated by NR string theory, we need to couple the original
relativistic action in AdS5 × S5 to a closed critical B-field.
This B-field does not contribute to the equations of motion,
but it modifies the energy of the string, and, in fact, its
contribution to the energy has the precise form to cancel
the divergence of the energy coming from the metric
contribution. Such cancellation holds at each value of
the parameter c. In the limit when c is large, we found
that the total energy (metric and B-field) is still finite and
matches precisely the energy of the BMN-like string
computed by using the NR string action.
In addition to the BMN-like string, we also considered a

more complicated NR string with spin S in the AdS
transverse directions. This string has infinite energy and
spin, but, for some particular values of the free parameters

11We need to be careful when deriving this result, as choosing
ω ¼ �κ is not consistent at c ¼ 1 since sinhðρÞ becomes purely
imaginary. This can be cured by taking κ ¼ �ðω − 1=cÞ at the
relativistic level.

12For a further discussion on this topic, see also [40,47].
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(κ ¼ �ω), their difference is finite. Again, we found the
relativistic solution that flows to it in the large c limit. Such
solution is a noncompact version of the folded string with
spin S. This solution also has infinite energy and spin, and
this time the B-field contribution is not enough to cancel
the divergences. In contrast to the noncompact folded
string with zero spin S, this solution has been considered
in the literature, e.g. [42], although not in much detail. In
the limit when c is large, we found that the total energy
matches the one of the string solution computed by using
the NR string action.
Interestingly, we found that the large c limit of the BMN

string does not lead to any consistent NR classical string.
This seems to be related with the observation from [8] in
flat space, which states that the spectrum of strings with no
winding is empty, as the BMN string is pointlike. The NR
limit represents a way to zoom into a special corner of the
relativistic theory, where only strings with slow velocity
can appear. In line with this picture, it seems like the BMN
string is too fast to be seen at the NR regime.
The ideas of this paper could be applied to more exotic

relativistic classical string solutions, e.g. spiky string [48,49],
pulsating string [50–53], giant magnons [54–56], etc. As
there is already a vast literature on classical strings in
AdS5 × S5, this allows us to borrow those results instead
of needing to perform a classification from scratch. Then
it would be interesting to study the large c flow of all of
them and see which one remains in the NR corner. It
would also be interesting to see if the Pohlmeyer
reduction [57–59] can be applied in this limit and if
there exists a NR version of the Neumann and Neumann-
Rosochatius integrable system that appears in the context
of spinning strings in AdS5 × S5 [60–62].
The NR string dispersion relation for flat space was

obtained in [8] by taking the zero Regge limit of the
relativistic one. In flat space, computing the spectrum of
fluctuations is a vacua independent result, as the action is
Gaussian, which is not the case in AdS5 × S5. Here, we
have shown that the classical part of the spectrum, namely
the dispersion relation of the classical solution, can be
obtained from the large c limit of the relativistic one. It is
still an open question if this picture survives at the quantum
level. This is not easy to check, as we know neither the
quantum corrections of the NR classical solutions nor of
the associated relativistic ones. Although the quantum
corrections of the relativistic (compact) folded string are
well known [43,63], it is not obvious if those results
immediately extend to the noncompact string we have
used in this paper. Even more, it is not even clear to us if the
fluctuations around this noncompact folded string are well
defined, as only the solution with S ¼ 0 has finite total
energy once the B-field is included in the action. Regarding
the NR classical strings, some attempts have been made to
access the quantum corrections [40,41]. These articles use
well-known methods employed in relativistic AdS5 × S5,

the light-cone quantization and the classical spectral curve,
but it has been found that they do not completely work for
the NR action. The results presented here may shed some
light on how to adapt these methods to SNC backgrounds.
From the holographic point of view, it would be

interesting to understand the dual role of the closed critical
B-field in N ¼ 4 SYM, as it should turn on a TrF3 term
[64,65].13 It might be that the bare conformal dimension
of the dual gauge invariant operator corresponding to the
noncompact folded string with S ¼ 0 becomes infinite
(infinite spin chain) and the TrF3 term might act as a
counterterm that makes it finite.
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APPENDIX A: CONVENTIONS

For a generic object OA, we define its light-cone
combinations as

O� ≡O0 �O1; O� ≡ 1

2
ðO0 �O1Þ: ðA1Þ

The longitudinal Minkowski metric then has nonvanishing
components ηþ− ¼ −1=2 and ηþ− ¼ −2. We take ε01 ¼
−ε01 ¼ þ1 for εαβ, εab and εAB. In light-cone components
εþ− ¼ 1

2
, εþ− ¼ −2. Our convention for p-forms

is ωp ¼ 1
p!ωμ1���μpdx

μ1 ∧ � � � ∧ dxμp .

APPENDIX B: POLAR COORDINATES COSET
REPRESENTATIVE AND NR LIMIT

The AdS5 × S5 metric in polar coordinates (2.2) can be
written in terms of a Maurer-Cartan (MC) 1-form, since

13We thank Elias Kiritsis for pointing out these references
to us.
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AdS5 × S5 is the coset space SOð2;4Þ×SOð6Þ=SOð1;4Þ×
SOð5Þ. The soð2; 4Þ ⊕ soð6Þ algebra is generated by
relativistic translations Pâ and rotations Jâ b̂ for the
AdS5 part, with â; b̂;… ¼ 0; 1;…; 4, whereas for the S5

part it is generated by spatial translations Pa0 and
rotations Ja0b0 , with a0; b0;… ¼ 1;…; 5. Its commutation
relations are

½Pâ; Pb̂� ¼
1

R2
Jâ b̂; ½Pa0 ; Pb0 � ¼ −

1

R2
Ja0b0 ; ðB1aÞ

½Pâ; Jb̂ ĉ� ¼ 2ηâ½b̂Pĉ�; ½Pa0 ; Jb0c0 � ¼ 2δa0½b0Pc0�; ðB1bÞ

½Jâb̂;Jĉd̂�¼4η½b̂½ĉJâ�d̂�; ½Ja0b0 ;Jc0d0 �¼4δ½b0½c0Ja0�d0�; ðB1cÞ

where R is the common AdS5 and S5 radius. The algebra
has a Z2 outer automorphism, where the fJâ b̂; Ja0b0 g span a
grading 0 subspace, whereas the complementary set
fPâ; Pa0 g spans a grading 1 subspace. One can construct
a MC 1-form A ¼ g−1dg, with g∈ soð2; 4Þ ⊕ soð6Þ, which
takes the form

Aμ ¼ eμâPâ þ eμa
0
Pa0 þ ωμ

â b̂Jâ b̂ þ ωμ
a0b0Ja0b0 ; ðB2Þ

where eμâ; eμa
0
are the vielbein of AdS5 × S5 and ωμ

â b̂,
ωμ

a0b0 are the components of the Levi-Civita spin con-
nection. The metric is then obtained by taking the “square”
of an MC 1-form,

gμν ¼ hAð1Þ
μ ; Að1Þ

ν i; ðB3Þ

where Aμ
ð1Þ is the projection of Aμ inside the grading 1

subspace, and h·; ·i is an inner product, adjoint invariant
under soð2; 4Þ ⊕ soð6Þ, which is taken to be

hPâ; Pb̂i ¼ ηâ b̂; hPa0 ; Pb0 i ¼ δa0b0 : ðB4Þ

The AdS5 × S5 metric in polar coordinates given in (2.2)
can be written in terms of the following choice of coset
representative, which we have not found in literature and
we are presenting here for the first time:

g ¼ gAdSgS;

gAdS ¼ expðtP0Þ expðβ3J34Þ exp
��

β2 þ
π

2

�
J13

�
expðβ1J12Þ expðρP1Þ

gS ¼ expðφ5J34Þ exp
��

φ4 þ
π

2

�
J13

�
expðφ3J12Þ exp

��
φ2 þ

π

2

�
P1

�
expðφ1P5Þ; ðB5Þ

where ft; ρ; β1; β2; β3g are coordinates of AdS5, whereas
fφ1;…;φ5g are coordinates of S5.
The NR limit proposed in [10] consists in taking the

İnönü-Wigner contraction of soð2; 4Þ ⊕ soð6Þ to the string
Newton-Hooke5 ⊕ Eucl5 algebra. This amounts to split-
ting the AdS indices as â ¼ ðA; aÞ, with A ¼ 0; 1 and
a ¼ 2; 3; 4, and rescaling the generators, as well as the
radius R, as

PA →
1

c
PA; JAa → cJAa; R → cR; ðB6Þ

which is equivalent to not rescaling the radius R, but acting
only on the generators,

Pa → cPa; Pa0 → cPa0 ; JAa → cJAa; ðB7Þ
and then taking the c → ∞ limit. Thanks to the choice of
the coset representative (B5), generators are in a 1∶1

correspondence with coordinates. One can then pass to
the “dual” picture, where the algebra is not rescaled, but
coordinates are. In this dual picture, the rescaling of
generators (B7) is equivalent to rescaling coordinates, as

β2 þ
π

2
→

1

c

�
β2 þ

π

2

�
; β1 →

1

c
β1;

φ2 þ
π

2
→

1

c

�
φ2 þ

π

2

�
; φ1 →

1

c
φ1: ðB8Þ

The advantage of having used the MC formalism is that we
are not forced to use the same coordinates as in [10] to
define the NR limit. In this way, the NR limit is defined as a
contraction of the isometry algebra, which in turn fixes the
rescaling of one’s own favorite coordinates, as done in [40].
One should keep in mind that different choices of coor-
dinates can lead to different NR theories.
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