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New physics beyond the Standard Model can give rise to stochastic gravitational-wave backgrounds, for
example, through cosmic strings. In this way, gravitational-wave searches with pulsar-timing arrays as well
as existing and future laser interferometers may provide information on particle physics beyond the
Standard Model. Here, we take one additional step and link particle physics beyond the Standard Model to
quantum gravity. We investigate whether particle physics models that may give rise to cosmic strings can be
embedded into an asymptotically safe theory of quantum gravity and matter. We focus on models where
cosmic strings arise from U(1)-symmetry breaking in an extended Yukawa-Abelian-Higgs sector that may
be part of a dark sector. We find a negative answer for the simplest model that can give rise to cosmic strings
and also find constraints on an extended model. We tentatively conclude that cosmic strings are difficult to
accommodate in asymptotically safe models. This fits well with the latest 15-year dataset and search for
new physics from the NANOGrav Collaboration, which disfavors a stable-cosmic-string interpretation. In
that sense, the recent data provide an indirect, albeit at present rather tentative, hint about the quantum
theory of gravity.
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I. MOTIVATION

Gravitational waves (GWs) have become a powerful
probe of fundamental physics. Besides increasingly strin-
gent tests of general relativity (GR) [1–5], GW observa-
tories can provide information about cosmology and
particle physics beyond the Standard Model (BSM) [6–11]
and even quantum gravity [12]. After the success of
the LIGO-Virgo Collaboration in detecting transient
GW signals from black-hole [13] and neutron-star binary
mergers [14], the LIGO-Virgo-KAGRA and Pulsar Timing
Array (PTA) Collaborations are looking for stochastic
gravitational waves [15,16]. A detection of such stochastic
background hinges on finding evidence for quadrupolar
Hellings-Downs correlations predicted by GR [17]. In the
past few years, PTA searches collected positive evidence
for a common red-noise process in the nanohertz frequency
range, first announced by the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) Colla-
boration in 2020 in their 12.5-year dataset [18] and
followed by similar findings by the Parkes Pulsar Timing
Array (PPTA) [19], the European Pulsar Timing Array
(EPTA) [20], and the International Pulsar Timing Array
(IPTA) [21] collaborations. Very recently, first evidence for a

Hellings-Downs pattern was discovered in the NANOGrav
dataset [22–29], the EPTA dataset [30–35], the PPTA
dataset [36–38], and the Chinese Pulsar Timing Array
(CPTA) dataset [39], suggesting a GW origin of the signal.
If the detection is indeed of a background of stochastic

GWs, these collaborations either may have detected super-
massive binary black-hole mergers or may probe physics at
early times in the history of the Universe [26,27,33]. These
early times are not accessible with the cosmic microwave
background (CMB), since the Universe was transparent to
the gravitational-wave background before recombination
but not to photons. At these early times, particle physics
beyond the Standard Model (SM) may generate a stochastic
GW background. Various models are, therefore, being
explored; see, for instance, the NANOGrav search for
signals of new physics in their latest 15-year dataset [27].
Two of these possible sources are first-order phase tran-
sitions and cosmic strings.
Within the SM, there are no first-order phase transitions

and cosmic strings do not arise [40]; thus, BSM physics is
required. Examples for such BSM models are extensions of
the Higgs sector of the SM; see, e.g., [41–50], or models of
the dark matter [51–57]. Often, these models are introduced
on an ad hoc basis as bottom-up approaches to new
physics. Here, we take a different approach and combine
bottom-up with top-down considerations: We consider
the simplest models that give rise to a stochastic GW
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background from cosmic strings and explore whether these
models make sense from a top-down point of view.
Specifically, we investigate whether they are ultraviolet
(UV) complete when coupled to quantum gravity.
We thereby establish a link between the properties of

gravity in the UV and observations of gravity in the deep
IR, in the form of a stochastic GW background. This link
uses that quantum gravity constrains the particle-physics
models that can give rise to a stochastic GW background.
Therefore, a detection of a stochastic background, with a
spectrum that is explained by a particular (class of) BSM
physics, provides an indirect hint about quantum gravity: If
a given theory of quantum gravity is not compatible with
the particular (class of) BSM physics, such a detection
would disfavor the theory.
In view of the difficulty of probing quantum gravity

observationally, any hints that can be found for or against a
given theory are highly valuable. GWs (from transient
events) have already been used to place constraints, e.g., on
the mass of the graviton [58] and on Lorentz-invariance
violation in gravity [59]. If found, either of the two would
have profound implications for the quantization of gravity.
Here, we explore a different probe of quantum gravity,
namely, by testing whether it can accommodate particle
physics models that give rise to cosmic strings and, thus,
produce a stochastic GW background.
This paper is structured as follows. In Sec. II, we

review how cosmic strings arise and how the current data
from pulsar timing arrays constrains cosmic strings.
Furthermore, we review the current status of asymptotically
safe gravity-matter models. In Sec. III, we attempt to bring
cosmic strings into the asymptotic-safety paradigm, by
exploring whether the Abelian Higgs model can be
accommodated in the paradigm. We find a negative answer
and, thus, extend the model in Sec. IV, where we find that
the negative answer can be circumvented (under the
approximations we work with) only if a relatively large
number of auxiliary degrees of freedom are added to the
setting. We thus conclude in Sec. V that asymptotic safety
disfavors cosmic strings (although they are not ruled out).
Additional technical details are provided in the appendixes.

II. INTRODUCTION: COSMIC STRINGS
AND ASYMPTOTIC SAFETY

A. Cosmic strings

In quantum field theories, cosmic strings are one-
dimensional topological defects that can arise in an
Abelian gauge theory, when the symmetry is broken
spontaneously [60–62]. The order-parameter field takes
values within a U(1) manifold in the symmetry-broken
phase. To respect causality, the value of the order-parameter
field that it assumes after the phase transition in widely
separated regions is uncorrelated [63,64]. Once the system
has settled down, topologically stable line defects remain,

along which the order parameter vanishes; these are the
cosmic strings.
Electroweak symmetry breaking does not result in

cosmic strings, because the vacuum manifold does not
give rise to topologically stable line defects; thus, cosmic
strings are a signature of new physics beyond the SM.
Grand unified theories (GUTs) are one example of a setting
in which cosmic strings may arise [65]; dark gauge groups
are another [66,67].1

Cosmic strings form a network that emits GWs during its
evolution when string loops form, which oscillate due to the
string tension, andwhen local features such as cusps or kinks
emit bursts of GWs [70–72]. Taken together, they produce a
stochastic gravitational-wave background. A first estimate
for the spectrum is based onmodeling the strings as Nambu-
Goto strings.2 In more detail, the GW spectrum depends on
many aspects of the cosmic string network and its evolution
(see, for instance, [8,74–81]), many of which are accessible
only via numerical simulations. The resulting spectrumhas a
maximum amplitude that increases with the string tension
Gμ. This maximum happens at a peak frequency that
decreases with Gμ. Above this frequency, the spectrum
has a very slow falloff toward large frequencies.
GW data from PTA searches are, therefore, especially

useful to constrain cosmic strings with large string tensions.
The announcement of evidence for a common-red noise
signal (albeit without evidence for the Hellings-Downs
correlations that characterizes GWs) by the NANOGrav
Collaboration in 2020 [18] triggered speculation about
cosmic strings as one possible source for that background
[82–89], complemented by searches with PPTA, IPTA, and
EPTA datasets [90–93]. Although a GW spectrum sourced
by stable cosmic strings could fit the NANOGrav 12.5-yr
data relatively well [82,83], later datasets [19–21] indicated
that GW data actually prefer a steeper GW spectrum, while
the previous stable-cosmic-string interpretation yields a too
flat spectrum. As a large Gμ value produces a flat GW
spectrum in the PTA bandwidth, PTA searches put upper
bounds on the string tension.
Very recently, the NANOGrav Collaboration performed

a complete Bayesian search for cosmic strings [27] and
set new upper bounds on the string tension for four
different models of stable cosmic strings, following the
numerical-simulation description of [80]. The bounds lie
between log10ðGμÞ < −9.67 and log10ðGμÞ < −10.10
depending on the cosmic-string model. Crucially, a

1Dark photons may be produced by the decay of the corre-
sponding cosmic strings and form cold dark matter today [68,69].

2Going beyond the Nambu-Goto paradigm, field-theoretic
strings can also access other decay channels, e.g., into dark
matter, and the dominant decay channel depends on the initial
conditions [73]. Whether field-theoretical cosmic strings can
produce gravitational-wave spectra that agree with Nambu-
Goto-string simulations is subject to an ongoing debate in the
literature [8,74].
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stable-cosmic-string interpretation of the data is disfa-
vored, compared to a signal from a population of super-
massive black-hole binaries [27].3

The string tension Gμ is related to the spontaneous
symmetry-breaking scale v through [62]

v ∼ 1016 GeV

�
Gμ
10−7

�
1=2

: ð1Þ

Thus, the latest NANOGrav data constrain the scale of
symmetry breaking to be v ≲ 4.6 × 1014 GeV.
Beyond the stable-cosmic-string paradigm, for whichGμ

is the only parameter, there are other cosmic-string
descriptions with extra parameters, such as metastable
cosmic strings [84], which can fit the data better [27].
Finally, cosmic strings can arise in a string-theoretic

context, when the cosmological expansion during inflation
stretches fundamental strings so that they become classical
objects [99–102]; see [103] for a review.The resultingnetwork
of cosmic superstrings may produce GWs similar to field-
theoretic strings, fitting the data better [27]. Within a ten-
dimensional superstring-theory setting, the associated string
tension is set by the corresponding fundamental Planck scale
in ten dimensions. When the six extra dimensions are
compactified, the tension canbe reduced, such that a stochastic
GW background from string theory may be compatible with
the observational constraints on the string tension.
In the present paper, we investigate for the first time

whether a different candidate theory of quantum gravity,
namely, asymptotically safe quantum gravity, can also
accommodate cosmic strings. Because asymptotically safe
gravity is a quantum field theory, the corresponding strings
would be field-theoretic strings arising from a phase tran-
sition. We connect our work with the latest phenomeno-
logical searches by setting the symmetry-breaking scale
according to the most recent results for stable cosmic strings.

B. Asymptotically safe gravity with matter:
A new landscape

Asymptotic safety is an appealing approach to quantum
gravity because of its conceptual and technical simplicity:
Instead of introducing new degrees of freedom, new

structures, and a new mathematical framework, as many
approaches do, it is based on just the metric and standard
quantum field theory. The single new ingredient required to
build a predictive quantum field theory of the metric is scale
symmetry. This symmetry does not arise at the classical
level but is instead a genuine consequence of the quantum
nature of gravity, because it is realized in the form of
asymptotic safety. Asymptotic safety is quantum-scale
symmetry: Quantum fluctuations balance out in such a
way that the running, scale-dependent couplings of the
theory are constant. An asymptotically safe regime can,
thus, be discovered by searching for zeros of the beta
functions of the couplings, which encode the scale depend-
ence of couplings. Using functional renormalization group
techniques [104–106] (see [107] for a recent review and
Appendix A), compelling evidence for asymptotic safety in
gravity has been found; see [108–114] for reviews.
Beyond pure gravity, there is strong evidence for

asymptotic safety in gravity with matter4; see [115–117]
for reviews. Under the impact of quantum gravity fluctua-
tions, the scale dependence of matter couplings changes.
For our purposes, the following important results will be
central.
(1) There is strong evidence that quantum gravity

fluctuations antiscreen all gauge couplings above
the Planck scale [118–121], which can solve the
Landau pole or triviality problem for the Abelian
gauge coupling [122–125].5 This solution restricts
the low-energy value of the Abelian gauge coupling,
because the requirement of scale symmetry bounds
the Planck-scale value of the gauge coupling from
above. Thus, a phenomenologically relevant con-
straint on low-energy physics follows from demand-
ing asymptotic safety for the Abelian gauge sector
with gravity.

3Additionally, the EPTA Collaboration also reported [33] an
upper bound on the string tension of log10ðGμÞ < −9.77 for a
cosmic-string model following [80]. Additionally, EPTA also
reported an upper bound of log10ðGμÞ < −10.44 for the cosmic-
string model by [77]. The PPTA Collaboration’s previous dataset
[90] put an upper bound of log10ðGμÞ≲ −9.3, following [80].
Bounds from the CMB are weaker, Gμ ≲ 10−7 [94–96], even
though model independent. While bounds from the runs of the
LIGO-Virgo-KAGRA Collaboration can be competitive [97],
they rely on a large extrapolation over frequency space. New
bounds might come with future interferometric observatories
such as LISA [8], the Einstein Telescope [98], the Cosmic
Explorer, DECIGO, and BBO.

4By matter, we refer to all nongravitational fields, such that,
e.g., the SM gauge fields are also “matter” in our nomenclature.

5Seemingly different results are found in calculations based on
perturbation theory (see, e.g., [126–130]), where a gravitational
contribution to the beta function is or is not present, depending on
the choice of scheme. In [131], a possible reason for this
difference is found: In [126–130], the gravitational coupling is
treated as a fixed external parameter. This may not be the correct
treatment in some schemes, where the gravitational coupling may
assume a fixed-point value that is divergent. In [131], a family of
schemes is analyzed, containing a case with divergent fixed-point
value as a limiting case. It is shown that if the limit is taken
carefully, unphysical quantities (such as the gravitational cou-
pling or the gravitational contribution to the beta function of the
gauge coupling, none of which corresponds to a measurable
quantity) diverge, but a physical and universal quantity, namely,
the critical exponent at the fixed point, stays finite. Generalizing
from this example, one may expect that perturbative calculations
need to include the beta function for the gravitational coupling
and focus on universal quantities (such as critical exponents),
instead of unphysical quantities (such as contributions to beta
functions), in order to find agreement between different schemes.
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(2) Oppositely to the Abelian gauge coupling, the Higgs
quartic coupling is screened by gravity fluctuations
[132–137], which results in a vanishing value of the
Higgs quartic coupling at the Planck scale. As
pointed out prior to the discovery of the Higgs
particle at the LHC, asymptotic safety can thereby
predict a Higgs mass close to the thereafter discov-
ered value [138].6

(3) Finally, asymptotically safe gravity can both anti-
screen or screen Yukawa couplings, depending on
the values of gravitational couplings at microscopic
scales [140–142].
(i) In the case of screening, the SM cannot be

accommodated in an asymptotically safe set-
ting, because the Yukawa couplings must van-
ish at the Planck scale, which translates into
vanishing Yukawa couplings at the electroweak
scale. Thus, compatibility with the SM con-
strains the values of the gravitational couplings
at microscopic scales.

(ii) In the case of antiscreening, the value of the top
quark Yukawa coupling is bounded from
above [143–145], just like the Abelian gauge
coupling. Interestingly, there are indications
that the gravitational couplings satisfy the
conditions required to generate antiscreening,
at least if the impact of the SM matter fields
on the gravitational couplings is accounted for
[143,146]; see also [137] for an alternative
mechanism.7

Beyond the SM, gravity screens or antiscreens various
interactions, such that an asymptotically safe landscape of
models emerges. There are indications that this “new”
landscape is rather distinct from the landscape associated to
string theory. First, there are indications that the asymp-
totically safe landscape is small, in the sense that, e.g.,
popular candidates for dark matter are not included in it or
are strongly constrained [133,136,147–149]. Second, there
are indications that this landscape differs when it comes to
axionlike particles, which are rather prevalent in string
theory [150] but may not be compatible with asymptotic
safety [151].
Furthermore, asymptotically safe solutions to the

muon (g − 2) problem [152] and neutrino mass generation
[153–156] exist, flavor anomalies have also been explored
[157,158], and dark-energy [159–161] and inflationary
models can be constrained; see, e.g., [135,148,162–166].
Here, we extend such studies to investigate whether simple

models that can, in principle, give rise to cosmic strings can
be accommodated in the asymptotically safe landscape
or not.
Asymptotic safety is sometimes referred to as a non-

perturbative UV completion. However, there are no indi-
cations that an asymptotically safe fixed point in the SM
together with gravity is actually nonperturbative. Instead,
the fixed point appears to be near perturbative, although
not an asymptotically free fixed point (and in that sense not
strictly perturbative). What this term means more specifi-
cally is clarified through the following list of characteristics
that have been found.

(i) A fixed point in the gravitational sector can be found
using perturbative techniques [167,168].8

(ii) A fixed point in the gravitational sector shows
scaling exponents which are close to the canonical
dimensions of the couplings [169–172].9

(iii) Extrapolating the SM from the electroweak scale to
the Planck scale and beyond is possible within
perturbation theory, with one-loop beta functions
describing the running couplings reasonably well;
see [145] for an explicit study of two-loop effects.

(iv) The size of the gravitational contributions to the beta
functions of matter couplings is typically found to be
small (with the coefficients of the beta function
being smaller than one), and, thus, critical exponents
are near canonical; see, e.g., [136]—in particular,
see [137,173] for a discussion of uncertainties.

(v) Nontrivial symmetry identities which are not ex-
pected to hold in nonperturbative field theories are
approximately satisfied in asymptotically safe grav-
ity-matter theories [174–176].

(vi) The gravitational interaction strength is bounded
from above, if the generation of free parameters,
linked to higher-order matter interactions, is to be
avoided [121,123,141,142,177–179].

This near-perturbative nature of asymptotically safe grav-
ity-matter models has two important consequences.
First, it provides us with control over calculations.

Concretely, when RG flows are calculated, higher-order
interactions are always generated. Neglecting these inter-
actions can lead to unreliable results in nonperturbative
settings; but it is expected to be a robust approximation in a
near-perturbative regime. We thus base our study on
neglecting such higher-order interactions.
Second, a near-perturbative model may allow us to

extrapolate our results from Euclidean to Lorentzian
signature. Because we use renormalization group tech-
niques, we work in a Euclidean setting, where these are
much more straightforward to set up (see [180–187] for6The value is subject to precise knowledge of the top quark

mass [139], which is not sufficiently well known to decide
whether or not the asymptotically safe prediction of the Higgs
mass matches observations.

7There is a significant systematic uncertainty associated to
the values of the gravitational couplings at microscopic scales;
see [117] and references therein.

8These studies have not yet been extended to account for
matter fields.

9For an asymptotically free fixed point, scaling exponents are
exactly the canonical dimensions.
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works in Lorentzian signature). Within a deeply non-
perturbative quantum gravity regime, where quantum
gravity fluctuations are no longer just fluctuations about
a flat background, an analytical continuation from
Euclidean to Lorentzian signature is challenging, because
the configuration spaces of Euclidean and Lorentzian path
integrals differ [188] and because a Wick rotation does
generically not exist, even at the level of individual
spacetime configurations [189]. However, in a near-
perturbative regime, it is expected that quantum gravity
fluctuations are just fluctuations about a flat background
about which an analytical continuation, although by no
means easy, could be achievable [190,191]. We therefore
base our renormalization group calculations on Euclidean
signature in the following.

III. ABELIAN HIGGS MODEL
IN ASYMPTOTIC SAFETY

We focus on the Abelian Higgs model, which contains an
Abelian gauge field Aμ and a charged scalar ϕ. This is the
simplest model which can give rise to cosmic strings
[62,192]. The behavior of the cosmic string network in
this model has been analyzed by large-scale numerical
simulations [193–197].
We couple it to quantum gravity, in order to understand

whether the interplay with quantum gravity is constraining
enough to be able to either predict the energy scale relevant
for GWs from cosmic strings or to altogether exclude that
cosmic strings are produced. The interplay of asymptotic
safety with uncharged scalars has previously been explored
in [132,136,198–207]; a dark charged scalar with Higgs
portal has been investigated in [147] and the Higgs scalar in
[134,138,143,144,208–211].
The effective dynamics for our model, parametrized by

scale-dependent couplings, is given by

Γk ¼
Z

d4x
ffiffiffi
g

p �
ZϕgμνDμϕðDνϕÞ† þ m̄2

kϕϕ
† þ λ̄4k

4
ðϕϕ†Þ2

þ ZA

4
gμκgνλFμνFκλ −

R
16πGN

�
: ð2Þ

The covariant derivative Dμ contains the gauge con-
nection with gauge coupling g, but not the metric con-
nection, because it acts on a spacetime scalar. We make the
assumption that the nonminimal coupling of the scalar to
the spacetime curvature scalar is negligible and, therefore,
set it to zero in our analysis. Besides two inessential
couplings, namely, the wave-function renormalizations
for the gauge field, ZA, and for the scalar, Zϕ, our truncation
of the effective dynamics contains the canonically leading
terms in the scalar potential, namely, mass and quartic
interaction, as well as the gravitational coupling GN . The
presence of a cosmological constant is unimportant for this
setting.

As it is usual in searches for asymptotic safety, we
introduce dimensionless couplings ðm; λ4; GÞ through

m̄k ¼ mkZϕ; λ̄4k ¼ λ4Z2
ϕ; GN ¼ Gk−2; ð3Þ

where k is the RG scale, which is a momentum scale.
Dimensionless couplings enable us to find scale symmetry,
because they are constant in a scale-symmetric regime. In
contrast, dimensionful couplings exhibit scaling; i.e., under
changes of the RG scale k, they change with kD, whereD is
the mass dimension of the coupling.
We expand the metric around a flat Euclidean back-

ground gμν ¼ δμν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hμν. The resulting gravity-

matter vertices give rise to loop diagrams which generate
a gravitational contribution to the scale dependence of the
matter couplings. From these diagrams, evaluated with
functional RG techniques, we derive the beta functions in
order to discover whether there is an asymptotically safe
fixed point in the UV, from which a phase of spontaneous
symmetry breaking (SSB) can be reached in the IR.10

We start by reviewing the beta function for the Abelian
gauge coupling, with the quantum-gravity contribution
previously calculated in [118–120,122–124], which is

βg ¼ −
5

18π
Ggþ 1

48π2
g3

ð1þm2Þ4 þOðg4Þ: ð4Þ

The gravitational contribution comes in at leading order in
the gauge coupling and, therefore, acts akin to a change
in the spacetime dimensionality, which would produce a
canonical scaling term that is linear in the coupling. The
sign of the contribution is negative, such that quantum
gravity antiscreens the Abelian gauge coupling. Thus, the
beta function admits an interacting fixed point at

g� ¼ ð1þm2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
40π

3
G

r
: ð5Þ

This fixed point generates an upper bound for the gauge
coupling at the Planck scale; see Fig. 1 in [124]:
Any Planck-scale value below g� can be reached from
the free fixed point, at which the gauge coupling is relevant
due to the gravitational effects. The Planck-scale value
gðMPlanckÞ ¼ g� is the unique value that is connected to the
interacting fixed point in the UV. Any Planck-scale value
above g� is not connected to a UV completion (either free or
safe). Therefore, the unique asymptotically safe trajectory
emanating from g� also defines an upper bound for the
value of the Abelian gauge coupling at IR scales gIR;max.

10We do not add finite-temperature effects in our study. These
can play a role in the early Universe and result in SSB if the low-
energy theory is in the symmetry-broken phase and thermal
fluctuations generate a positive mass term. We leave the study of
such effects to future work.
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This upper bound is compatible with the observed value,
since gIR;obs < gIR;max [124]; see also [137].
Next, we turn to the scalar potential and focus on mass

and quartic coupling. The salient features of the system are
already encoded in the leading-order terms of the beta
functions at small couplings; see [212]. We will, therefore,
omit higher-order contributions from m2. For the mass, we
have

βm2 ¼ −2m2 −
3

16π2
g2 þ 53

18π
Gm2 −

λ4
16π2

: ð6Þ

This beta function admits a fixed point at

m2� ¼ −
9ð3g2 þ λ4Þ

8πð36π − 53GÞ : ð7Þ

At vanishing quartic coupling, this fixed point lies at
negative m2, i.e., in the symmetry-broken regime, unless
G > 36

53
π or g ¼ 0.

For the quartic coupling, we have the leading-order
terms

βλ4 ¼
3

2π2
g4 −

3

4π2
g2λ4 þ

5

16π2
λ24 þ

55

18π
Gλ4: ð8Þ

Here, we already see the key problematic feature from the
two terms ∼g4 and ∼λ24: Because both are positive, we do
not generically expect real fixed points. The two terms ∼λ4
may change this result, and, in fact, the beta function has
zeros at

λ4�;1=2 ¼
2

45

�
27g2 − 110πG

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1701g4 − 5940πg2Gþ 12100π2G2

q �
: ð9Þ

In order for the fixed-point value to be real, the inequality
−1701g4 − 5940πg2Gþ 12100π2G2 ≥ 0 has to be satis-
fied, which it is, if 0 ≤ g2 ≤ 110

189
ð−3þ ffiffiffiffiffi

30
p ÞπG. In par-

ticular, there is no interacting fixed point if G ¼ 0 and the
line of fixed-point candidates parametrized by G in Eq. (5)
lies outside this region. As a result, the fixed-point
candidates in Eq. (9) lie at complex values, unless one
takes g ¼ 0, such that λ4�;1 ¼ 0 and λ4�;2 ¼ − 88π

9
G. A

negative quartic coupling does not automatically imply an
instability of the potential; however, it does imply that
canonically higher order terms become important to sta-
bilize the potential. We focus on a regime in which the
leading-order terms in the potential should suffice, in other
words, a perturbative regime. We thus find, in accordance
with the analysis in [212], that the Abelian Higgs model
with gravity does not feature a nontrivial fixed point with
perturbatively stable potential.

We, therefore, turn to the trivial fixed point, at which the
gauge coupling is asymptotically free and the potential flat. In
this case, the mass parameter remains relevant as long as
G < 36

53
π, which we assume. In contrast, the quartic coupling

is irrelevant. It would, thus, be predicted to vanish at all trans-
Planckian scales, except for a tiny deviation from zero that is
induced, once the mass parameter departs from zero; see
[136]. In the following, we do not explore whether or not the
resultingpotential in the IR is stable. Instead,we focus onlyon
themass parameter and explorewhether, starting from the free
fixed point, we can reach a symmetry-broken regime below
the Planck scale such that cosmic strings could be generated.
To that end, we investigate the beta function for the mass. In
the very far UV, the g4 contribution is negligible, because the
gauge coupling is asymptotically free. In that regime, βm2 is
linear in m2, with a negative coefficient. Thus, the mass can
deviate from zero toward either positive or negative values
and, once it has deviated from zero, continues to grow in
magnitude. At the same time, the gauge coupling starts to
deviate from zero and increase toward its interacting fixed
point value. As long as themass ismore negative thanm�, the
mass can counteract the effect of the growing gauge coupling;
see Fig. 1 and a phase diagram in Fig. 2. To estimate the
resulting scale of the vacuum-expectation value, which we
assume is v ∼m, we set g to its fixed-point value, which
places the critical value for the mass at

m2
crit ¼ −

45

36π − 53G
G: ð10Þ

Toobtain an estimate,weuseG ≈ 1, forwhichm2
crit ¼ −0.75.

This critical value for the dimensionless mass implies that

FIG. 1. We show the key terms in the beta function for the mass:
At g ¼ 0, the fixed point at m2 ¼ 0 is infrared repulsive and the
mass can decrease toward negative values. At g ≠ 0, the
beta function is shifted, so that the mass can only become more
negative, if it exceeds the critical value; negative values
m2 > m2

crit result in growth of the mass toward positive values.
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SSB essentially sets in at the Planck scale,11 placing the
vacuum expectation value of the field roughly at that scale
and, thus, too high to be compatible with bounds from the
CMB and pulsar timing arrays.
Our analysis up to this point is subject to the caveat

of analyzing only the small-coupling regime in m2 and λ4.
It is not excluded that the large-coupling regime admits
symmetry breaking at low enough scales. Going beyond
the previous approximations by dropping the perturbative
condition in m2 and solving the full system of beta
functions, we find no solutions that could change the
previous conclusion. In particular, when taking into
account mass contributions to the beta function of the
quartic coupling, there is no solution with m2� > 0 and
λ4� > 0. Turning to the asymptotically free solution for the
gauge coupling, the system is never driven toward a regime
of SSB below the Planck scale. We shall, therefore, include
extra matter degrees of freedom to search for realizations of
a U(1) SSB in the asymptotically safe landscape.

IV. EXTENDED ABELIAN HIGGS MODEL:
THE EFFECT OF FERMIONS

The results in the previous section motivate us to include
fermions and extend the Abelian Higgs model. In the

presence of fermions, the trans-Planckian potential can be
stable, and fermions can drive the system into a phase of
SSB below the Planck scale, just like top quark fluctuations
drive the electroweak sector of the SM toward the electro-
weak phase transition.
We are not aware of explicit numerical simulations

of the cosmic-string network in this extended model that
establish the effect of the fermion. Depending on its mass, it
could act as an additional decay channel for cosmic strings,
altering the ratio of energy that goes into GWs compared to
classical field radiation. We leave such questions to future
work, because our main focus is on understanding the
asymptotically safe constraints imposed on this model.

A. Yukawa Abelian Higgs model

The model we explore contains a charged scalar, a
charged Dirac fermion, and an Abelian gauge field. In
our truncation of the dynamics, we neglect nonminimal
couplings and higher-order interactions and include the
following kinetic terms and interactions:

Γk ¼
Z

d4x
ffiffiffi
g

p �
ZϕDμϕðDμϕÞ† þ m̄2

kϕϕ
† þ λ̄4k

4
ðϕϕ†Þ2

þZA

4
FμνFμν þ iZψ ψ̄γμ∇μψ þ iȳkðϕ�ψ̄cψ þ ϕψ̄ψcÞ

�

þ ΓkEH þ Sgf þ ΓkSMþBSM: ð11Þ

As before, the kinetic term for the scalar field contains the
gauge coupling gϕ, i.e., Dμ ¼ ∂μ þ igϕZAAμ. The kinetic
term for the fermions contains both the spin connection ωab

μ

as well as the gauge field, i.e., ∇μ ¼ ∂μ þ 1
8
½γa; γb�ωab

μ þ
geZAAμ. For these charged fermions, a Yukawa coupling to
the charged scalar can then be written using the charge-
conjugated spinor ψc ¼ −iγ2ψ�. Moreover, U(1) symmetry
requires ge ¼ gϕ=2. We set gϕ ¼ g.
In this section, we introduce the cosmological constant in

the gravitational sector, because it is important for the
results in the present section. Thus, our truncation of the
gravitational dynamics is given by

ΓkEH ¼ −1
16πGN

Z
d4x

ffiffiffi
g

p ðR − 2Λ̄Þ: ð12Þ

The gauge-fixing term includes a part that gauge fixes
metric fluctuations and a second part that gauge fixes the
Abelian gauge field:

Sgf ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p �
1

2α0
ðḡμνD̄μAνÞ2þ

1

α
ḡμνF μF ν

�
; ð13Þ

where D̄α is the covariant derivative defined with respect to
the background metric ḡμν, which in our case is just the
Euclidean metric δμν, and

FIG. 2. We show the phase diagram of the gauge coupling and
mass parameter forG ¼ 1 and λ4 ¼ 0, to leading order inm2. The
magenta separatrix that connects the free fixed point in the UV to
the interacting fixed point in the IR separates the two phases, in
which the IR theory features positive m2 (upper region) or
negative m2 (lower region). Trajectories beyond g� (i.e., to the
right) are associated with a Landau pole and are not UV complete,
because quantum gravity fluctuations were not strong enough to
antiscreen the gauge coupling in this regime.

11For a zero-temperature potential with negative mass-squared
parameter of the order of the Planck scale, as we obtain here,
temperature fluctuations are expected to restore the symmetry
only if the temperature is Planckian; thus, the early Universe
would already be in the symmetry-broken phase.
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F μ ¼
�
ḡμνD̄α −

1þ β

4
ḡναD̄μ

�
hνα: ð14Þ

We work in the Landau-deWitt gauge β ¼ α ¼ 0 andin the
Lorenz gauge α0 ¼ 0 and also account for the resulting
Faddeev-Popov ghosts.12 Finally, we introduce dimension-
less couplings ðm; λ4; y; G;ΛÞ through m̄k ¼ mkZϕ,

λ̄4k ¼ λ4Z2
ϕ, ȳk ¼ yZψZ

1=2
ϕ , GN ¼ Gk−2, and Λ̄ ¼ Λk2.

We want to establish under which conditions we can
induce an SSB of the U(1) symmetry through a vacuum
expectation that forms for the scalar at energies below the
Planck scale. As we will see, these conditions depend on
the gravitational fixed-point values. These, in turn, depend
on the matter content of the theory. To investigate whether
there is a set of matter fields that satisfies the conditions, we
add extra degrees of freedom on top of our dynamics. These
are first all SM fields and second additional BSM fields.
None of these fields are coupled to our extended Abelian
Higgs model. Accordingly, we neglect self-interactions in
these sectors and consider only the minimal coupling of
these fields to gravity. This is sufficient to account for their
effect on the gravitational fixed-point values.
The corresponding part of the dynamics, therefore, reads

ΓkSMþBSM ¼
Z

d4x
ffiffiffi
g

p ��
1

4

X
I

gμκgνλtrIFμνFκλ

þ 1

2
gμνDμH†DνH þ i

X
J

ψ̄J∇ψJ

�

þ
�
1

4

XNV−1

j¼1

gμκgνλFj
μνF

j
κλ þ i

XNf−1

i¼1

ψ̄ i∇ψ i

��
:

ð15Þ
The first line includes a sum over the vectors in the three
SM gauge groups, with I ∈Uð1Þ; SUð2=3Þ, and, in the
second line, the Higgs and the SM fermions, with J a
superindex that sums over flavors, colors, and generations.
The covariant derivatives Dμ and ∇μ include the gauge
covariant derivatives with respect to the corresponding SM
gauge groups. For our purposes, the gauge coupling can be
neglected. Similarly, the Yukawa couplings in the SM do
not play a role in our analysis.
In the third line, we include additional vectors and

additional Dirac fermions. Because the extended Abelian
Higgs model already contains degrees of freedom beyond
the SM, our counting of extra fields goes to NV − 1, and
Nf − 1, respectively; i.e., without extra BSM fields in the
third line in Eq. (15), the system already contains one
vector field and one Dirac fermion, in Eq. (11). We assume

that the BSM fermions are all charged under the BSM U(1)
group; i.e., the covariant derivative ∇ in the third line
contains both a spin connection and the Abelian gauge
field. The reason for this choice is that an increasing
number of charged fermions lowers the fixed-point value
for the gauge coupling. This effect will be important, so that
we can achieve a perturbatively stable potential.
At the technical level, we add an important result to the

existing literature on the gravitational impact on Yukawa
couplings: Previous work either used a Yukawa coupling
between a real scalar and Dirac fermions or relied on the
assertion that the quantum-gravity contribution to all
Yukawa couplings is the same, because quantum gravity
is blind to internal symmetries. Here, we test this assumption
explicitly by calculating the quantum-gravity effect. In the
appendixes, we provide details on the calculation.
Our strategy in this section will be as follows: In a first

step, we treat the gravitational couplings as external
parameters and search for viable (partial) fixed points in
the matter sector as a function of these external parameters.
As a result, we obtain a preferred range of values for these
external parameters. In a second step, we investigate
whether gravitational fixed-point values fall into this
preferred range. This investigation treats the number of
fields beyond the SM as variable. We thereby determine a
field content beyond the Standard Model, for which the
scalar potential is locally stable at the fixed point. Finally,
we determine the RG flow starting from this fixed point to
show that the mass parameter is relevant and, thus, a desired
scale of SSB can be accommodated.

B. The gauge-Yukawa sector

As a first step in our analysis, we decouple the scale
dependence of the gauge-Yukawa sector from that of the
scalar couplings by setting the scalarmass parameter to zero.
Then, βg depends only on g and the gravitational couplings;
and βy depends only on g, y, and the gravitational couplings.
In comparison to the AbelianHiggsmodel, the beta function
of the gauge coupling receives an extra contribution from
the BSM Dirac fermions. We use the relation βg ¼ g

2
ηA

[123,124]. Therefore, in the perturbative approximation (see
Appendix B for full expressions),

βg¼
�

5G
18πð1−2ΛÞ2−

5G
9πð1−2ΛÞ

�
gþ g3

48π2
þNf

g3

48π2
:

ð16Þ

The fixed-point solutions are g� ¼ 0 and

g2� ¼
40π

3

ð1 − 4ΛÞ
ð1 − 2ΛÞ2

G
Nf þ 1

; ð17Þ

which is positive if Λ < 1=4 and G > 0. The comparison to
the Abelian-Higgs case is straightforward. The interacting

12For the Abelian gauge sector, the Faddeev-Popov ghosts
decouple from the gauge field. They do not, however, decouple
from gravity, and, thus, their fluctuations contribute to the scale
dependence of the gravitational couplings.
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fixed point exists only in the presence of gravity. The gauge
coupling is relevant around the Gaussian fixed point
and irrelevant around the interacting one, producing an
upper bound for the gauge coupling at the Planck scale, just
as before. The difference between the two cases lies in
the contribution of the fermions; as their number increases,
the interacting fixed point lies closer and closer to the
Gaussian one.
Next, the beta function for the Yukawa coupling is

βy2 ¼
y4

π2
−

3g2

16π2
y2

þ
�

15G
8πð1 − 2ΛÞ2 −

7G
12πð3 − 4ΛÞ þ

7G
8πð3 − 4ΛÞ2

�
y2:

ð18Þ

By substituting the value of the interacting fixed point g�
above, we find y2� ¼ 0 and an interacting fixed point

y2� ¼ π2Δ ·G; ð19Þ

as long as Δ > 0, for

Δ ¼ −
aþ bNf

6πð1þ NfÞð8Λ2 − 10Λþ 3Þ2 ; ð20Þ

where a¼1016Λ3−1577Λ2þ665Λ−39 and b ¼ 56Λ3þ
103Λ2 − 235Λþ 96. The dependence on Nf in Δ arises
from the fixed-point value of the gauge coupling, Eq. (17).
As Fig. 3 shows, this condition is always satisfied if
Λ < Λ⋆;crit, where Λ⋆;crit is a function of Nf that becomes
increasingly more negative with increasing Nf. For in-
stance, for Nf ¼ 1, Λ⋆;crit ¼ −0.10, while for Nf ¼ 50,
Λ⋆;crit ¼ −2.38.
The critical exponents associated with the Yukawa

coupling at the interacting fixed point, θy2 , and at the
Gaussian fixed point, θy2;0, are related to each other,
θy2;0 ¼ −θy2 , where

θy2 ¼ −ΔG: ð21Þ

Therefore, the Yukawa coupling is an irrelevant (relevant)
direction around the interacting (Gaussian) fixed point,
whenever the interacting fixed points exists. Conversely, if
Δ is negative, the Gaussian fixed point is the only solution
and the Yukawa direction is irrelevant, predicting a
vanishing Yukawa coupling in the IR. From Fig. 3, we
see that these critical exponents are much smaller than one.
This supports a set of results that indicate that asymptoti-
cally safe gravity-matter systems are near perturbative and,
thus, characterized by critical exponents close to the
canonical scaling dimensions. Furthermore, our choice
of truncation, which is based on neglecting canonically

higher-order interactions, is thereby a self-consistent
approximation of the full system. Finally, the perturbative
approximation is well suitable, as the anomalous dimension
of the gauge coupling is zero at the fixed-point solution for
g; see Eq. (16).
zIn what follows, we focus on the fixed point that is

interacting in the gauge and the Yukawa coupling.
Because this fixed point is infrared attractive in these
two couplings, RG trajectories that start out at one of the
other fixed points ðg� ¼ 0; y� ≠ 0Þ, ðg� ≠ 0; y� ¼ 0Þ, or
ðg� ¼ 0; y� ¼ 0Þ are pulled toward the interacting fixed
point. Thus, our analysis covers also such crossover
trajectories, i.e., trajectories which start out at a (partially)
free fixed point but end up near the interacting fixed point
at the Planck scale.

C. The scalar sector

Here, we search for UV fixed points with a fixed-point
potential that is stable about the origin, i.e., m2� > 0 and
λ4� > 0, such that m2 is driven to negative values in the IR,
signaling the onset of SSB. The beta functions for m2 and
λ4 are

βm2 ¼ −2m2 −
3g2

16π2
þ y2

2π2
þ
�
−
3g2

8π2
þ y2

2π2
þ λ4
8π2

�
m2

þ
�

5G
2πð1− 2ΛÞ2 þ

G
6πð3− 4ΛÞ þ

7G
2πð3− 4ΛÞ2

�
m2;

ð22Þ

FIG. 3. We show a contour plot for Δ > 0 in the ðΛ; NfÞ plane.
The line between the dark green and white regions defines Λ⋆;crit,
the critical value of Λ for a fixed number of Dirac fermion fields
Nf . In the colored region, an interacting fixed point for the
Yukawa coupling exists, and the critical exponents θy2 , computed
around the interacting fixed point, are negative. We notice that, as
Nf increases, the absolute value of the critical exponent decreases
(for a fixed value of G).
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βλ4 ¼
5λ24
16π2

þ 3g4

2π2
−
8y4

π2
þ
�
−
3g2

4π2
þ y2

π2

�
λ4

þ
�

5G
2πð1 − 2ΛÞ2 þ

G
3πð3 − 4ΛÞ þ

4G
πð3 − 4ΛÞ2

�
λ4

þ
�
9g2

8π2
−
15λ4
16π2

−
50G

3πð3 − 4ΛÞ −
25G

πð3 − 4ΛÞ2
�
m2λ4:

ð23Þ

We demand a perturbatively stable scalar potential and
thereby constrain the gauge and Yukawa couplings.
We split the analysis in two parts. First, we investigate
simplified stability conditions which encode the leading-
order behavior of these beta functions. We then explore
for which number of fermions Nf the conditions are
satisfied. Second,wego beyond leading order and determine
fixed-point solutions with perturbatively stable potential
numerically.

1. At leading order

To leading order in the mass and quartic coupling, the
conditions m2� > 0 and λ4� > 0 become

Criterion 1∶ −
3g2

16π2
þ y2

2π2
> 0; ð24Þ

Criterion 2∶ þ 3g4

2π2
−
8y4

π2
< 0: ð25Þ

These conditions highlight that gauge boson fluctuations
and fermion fluctuations counteract each other. Fermion

fluctuations generate a positive fixed-point value for
the mass, because their contribution to βm2 is positive.
Furthermore, fermionic fluctuations generate a positive
fixed-point value for the quartic coupling.
The conditions given by Eqs. (24) and (25), therefore,

determine the region in the ðg2; y2Þ space where the scalar
potential is stable about the origin, depicted on the left-
hand side plot in Fig. 4, where we see that criterion 2 (in
green) is slightly more stringent than criterion 1 (in the
yellow region only the first criterion is satisfied, while in
the green region both are satisfied). Next, we show the
fixed-point values for g and y as a function of Nf, with G
and Λ treated as external parameters. A key result of our
study is that, unless Nf is very large and the cosmological
constant is sufficiently negative, the conditions cannot be
fulfilled.
Next, we substitute the fixed-point solutions g2� and y2�

fromEqs. (17) and (19) in Eqs. (24) and (25). Because g2� and
y2� are both proportional to G, G drops out of the analysis,
and we find constraints in the ðNf;ΛÞ plane; cf. the right-
hand side in Fig. 4. The constraints are satisfied only below a
negative threshold value for Λ, depending on the number of
fermions. The larger Nf is, the less negative the threshold
becomes. FromEqs. (24) and (25), we also find that criterion
1 is satisfied for Nf ≥ 17 while criterion 2 is satisfied for
Nf ≥ 22, no matter how small the cosmological constant is,
which is consistent with the flat horizontal directions of the
threshold curves in that plot.
We come to the important conclusion that the minimal

and most predictive scenario—an Abelian Higgs model
with only one Dirac fermion with a fully interacting fixed
point—is excluded under the assumptions underlying our

FIG. 4. We show in green the region where the two criteria in Eqs. (24) and (25) are satisfied. In yellow, only the first criterion is
satisfied. On the left, we show these regions in the ðg2; y2Þ plane and the fixed points ðg2�; y2�Þ as a function of Nf for G ¼ 1;Λ ¼ −2.5
(red, dot-dashed line), G ¼ 1;Λ ¼ −10 (blue, solid line), and G ¼ 5;Λ ¼ −10 (purple, dashed line). The arrow indicates in which
direction Nf increases. With square markers, we show the fixed points for Nf ¼ 1; 10; 20; 40 (the fixed point for Nf ¼ 1 is shown only
in the blue, solid line curve). On the right, we show the regions where the criteria are satisfied in the ðΛ; NfÞ plane.
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analysis.13 At least 22 Dirac fermions are necessary in order
to reduce the fixed-point value for g sufficiently in
comparison to the fixed-point value for y. Next, we drop
the simplifying assumptions underlying Eqs. (24) and (25)
to test the robustness of this conclusion.

2. Beyond leading order

Instead of working to leading order in the mass and
quartic coupling in their beta functions, Eqs. (22) and (23),
we now solve for the zeros of the two beta functions
numerically, still under the assumption of negligible mass
parameter in the gauge-Yukawa sector, using the interacting
fixed-point solutions for g� and y�.
We thereby confirm Nf ¼ 22 as the lower bound on the

number of extra Dirac fermions. In addition, we also
confirm that the critical value of Λ depends on Nf and
is less negative for larger Nf; cf. Fig. 5. At the quantitative
level, important differences arise. We find that if Nf < 22,
there are no positive solutions for m2� and λ4�, as is
consistent with the simplified criteria. With 22 up to 41
Dirac fermions, we find positive solutions for λ4� below a
certain threshold of Λ, as in the simplified case, but now
there are only real solutions for m2� in a small vertically
oriented strip on the ðΛ; GÞ plane, for very large negative

values of Λ. For Nf ¼ 42, there are solutions for any
Λ < −7.2. The threshold becomes less negative by includ-
ing even more fermions.
Therefore, dropping the simplified conditions makes

the conditions for a perturbatively stable scalar potential
more challenging to meet: At least 42 Dirac fermions are
necessary. This result is quite unappealing for the descrip-
tion of a U(1) SSB below the Planck scale in the asymptotic
safety landscape.

D. Yukawa Abelian Higgs model
and extra vectors

We are now finally in a position to include the gravi-
tational fixed-point values, because we have mapped out
where in the space of gravitational fixed-point values
necessary conditions for the extended Abelian Higgs model
to form cosmic strings are fulfilled.
If we focus on just the Newton coupling, adding extra

fermions beyond the Standard Model endangers asymptotic
safety. This is because fermions enter βG with the opposite
sign of gravitational fluctuations; i.e., they screen the
Newton coupling, whereas gravitational fluctuations anti-
screen it [146,175,176,210,213–219].
When the cosmological constant is added, there is a

systematic uncertainty associated to the gravitational fixed-
point values under the impact of matter, and different
approximations may result in somewhat different conclu-
sions; see the discussion in [117] and references therein.
We work in the so-called background-field approximation,
in which the background diffeomorphism symmetry of the

FIG. 5. We show regions in the ðΛ; NfÞ plane according to the signal of the fixed-point values of the mass and quartic couplings.
In both plots, in the green region, the scalar potential is stable around the origin; i.e., both m2 and λ4 admit positive fixed-point
solutions. In yellow (visible only in the left-hand side plot), only the mass coupling admits a positive fixed point. In gray, only the quartic
coupling. In the left plot, we enlarge the region shown in the right plot, where we can see that there is a small window of negative values
of Λ so that stability is achieved, for 21 < Nf < 42. However, it is only when Nf ≥ 42 that we achieve a threshold for Λ, below which
stability is achieved. The value of the threshold increases as the number of fermion fields increases. To produce these plots, we can setG
to any positive constant value, because the regions remain unchanged as we alter G (it changes the value of the fixed points but not their
signs).

13There is a way to circumvent this result, by choosing the fixed
point at which the gauge coupling vanishes and only the Yukawa
coupling is interacting. This comes at the cost of introducing an
extra free parameter, namely, the low-energy value of the gauge
coupling, which in this case is bounded only from above.
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setting takes center stage.14 In that setting, the effect of
extra fermions can be compensated by adding extra vectors
beyond the Standard Model, as one can see from βG
according to [136,146]:

βG ¼ 2G −
�
31

24π
þ 5ð3 − 2ΛÞ
6πð1 − 2ΛÞ2 −

ð9 − 8ΛÞ
6πð3 − 4ΛÞ

�
G2

−
�
4ðNV − 1Þ − 2Nf þ 1

6π

�
G2: ð26Þ

Here, the effect of SM fields (12 vectors, four real
scalars, and 45 Weyl spinors) and the Abelian Higgs Model
(one vector and two real scalars) is already included, and
ðNV − 1Þ and Nf denotes the number of vectors and
fermions, respectively, that are additionally included. For
the cosmological constant, we work with the following beta
function:

βΛ ¼ −2Λþ ð368Λ4 − 372Λ3 þ 320Λ2 − 225Λþ 36Þ
24πð1 − 2ΛÞ2ð3 − 4ΛÞ G

þ
�
29þ 2Nf − ðNV − 1Þ

2π

�
G

−
�
4ðNV − 1Þ − 2Nf þ 1

6π

�
ΛG: ð27Þ

We find that, as long as Nf > 42, there will always
be an allowed window for NV where G� > 0 and the
scalar potential is stable about the origin. While vector
fields compensate the fermionic contributions in βG
[120,146,210,216,219,220], they also decrease the fixed-
point value of the cosmological constant. As the stability of
the scalar potential depends on a negative threshold for Λ,
vector fields can spoil the stability of the scalar potential if
the fixed-point value Λ� surpasses that threshold. In parti-
cular, for Nf ¼ 42, a solution ðG� > 0;Λ� < 0; m2� > 0;
λ4� > 0Þ exists only for 21 ≤ NV ≤ 24. Therefore, in our
computation we need at least 41 more Dirac fermions and
20 more vector fields on top of the Yukawa-Abelian-Higgs
extension to the SM.
However, the only reason to introduce this plethora of

extra degrees of freedom is to satisfy the criteria of a stable
fixed-point potential in the extended Abelian Higgs model.
They do not serve any other physical purpose. In particular,

the extra vectors cannot be obtained within a GUT setting,
because the extra scalar fields contained in such a setting
drive the fixed-point values out of the regime in which the
stability conditions on the scalar potential hold.
We conclude that an Abelian Higgs sector is not easily

included in an asymptotically safe gravity-matter setting.
This does not rule out cosmic strings. First, one may give
up on the highest degree of predictivity and accept addi-
tional free parameters. Then, one can choose a fixed point
at which the gauge coupling is asymptotically free. From
this fixed point, RG trajectories exist which do not manage
to cross over to the interacting fixed point at the Planck
scale and at which the gauge coupling is automatically
smaller. Then, one has only to satisfy the condition that the
Yukawa coupling has an interacting fixed point, which is
achievable with fewer extra degrees of freedom; see,
e.g., [143].
Second, a genuine GUT setting may contain sponta-

neously broken U(1) sectors. Because the characterization
of asymptotically safe GUTs is quite challenging, if one
aims to go beyond more qualitative statements about
the degree of predictivity [212,221] and truly characterize
the scalar potential [222], we refrain from attempting an
analysis of cosmic strings from asymptotically safe GUTs
in this work. Additionally, PTA data put stringent bounds
on GUTs that predict stable cosmic strings, as the vacuum
expectation value v is bounded to be v ≲ 4.6 × 1014 GeV,
which sets an upper bound on the GUT scale that is lower
than typical GUT scales.
Third, if the additional degrees of freedomwe find in our

analysis are accepted, one obtains an asymptotically safe
extended Abelian Higgs model with a stable fixed-point
potential. The fixed-point potential has one free parameter
and one dependent quantity in our analysis. The mass
parameter is a relevant perturbation of the fixed point and
is, thus, a free parameter of the low-energy theory.
The quartic coupling is an irrelevant perturbation and
can, thus, be calculated as a function of the mass parameter.
To show that the order of magnitude for the vacuum
expectation value v, that a cosmic-string interpretation
of the NANOGrav data would suggest, can be obtained, we
briefly study RG flows from the fixed-point regime into
the IR.

E. RG flows

Having identified an interacting fixed point with a
perturbatively stable potential, we are now in a position
to ask whether a regime of SSB, as required for cosmic-
string formation, can be reached in the IR. Of the four
matter couplings (gauge coupling, Yukawa coupling, scalar
mass parameter, and scalar quartic coupling), only the
scalar mass parameter is a free parameter, because it is the
only relevant perturbation of the fixed point. Following our
previous discussion, the minimal model requires Nf ¼ 42
and NV ¼ 21.

14Because the region of parameter space that supports a stable
potential lies at large negative values of Λ, fixed-point values in
the so-called fluctuation approximation ultimately lead to quali-
tatively similar conclusions: In that approximation, gravitational
fixed-point values do not lie in that region, irrespective of the
number of matter fields. In our setting, a sufficiently large number
of extra fermions and vectors give access to that region but also
give rise to a highly contrived model. Ultimately, the conclusion
appears to hold, and cosmic strings from SSB in an Abelian
Higgs model are challenging to accommodate in asymptotically
safe gravity.
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We obtain the RG trajectory of the six couplings
ðg; y2; m2; λ4; G;ΛÞ solving the set of beta functions
numerically in the perturbative approximation. Their beta
functions are given by Eqs. (16), (18), (22), (23), (26),
and (27), respectively. In order to set the scale of SSB, we
use the relation between the vacuum expectation value v
and the string tension Gμ in Eq. (1).
The result is shown in Fig. 6. On the left, we show

the mass parameter as a function of the RG scale k
for three different string tensions log10ðGμÞ¼−10.56,
log10ðGμÞ¼−10.10, and log10ðGμÞ ¼ −9.71, correspond-
ing, respectively, to the central value of the monochromatic
stable-cosmic-string model and the upper bounds for the
monochromatic and the numeric stable-cosmic-string mod-
els analyzed in [27]. They correspond to the symmetry-
breaking scales v ¼ 1.7 × 1014 GeV, v ¼ 2.8 × 1014 GeV,
and v ¼ 4.4 × 1014 GeV, respectively, following Eq. (1).
The choice for these values is illustrative here to show how a
cosmic-string interpretation of theNANOGrav data could be
realized in asymptotic safety.15

Since the mass is a relevant parameter around its
interacting fixed point, we are free to set the SSB scale
at these values. In contrast, the quartic coupling is an

irrelevant parameter, and there is a unique trajectory
(prediction) that connects its UV fixed-point value to the
IR. We show the trajectory of the mass coupling corre-
sponding to the central value of Gμ, together with the other
couplings, in the right-hand side in Fig. 6. We identify the
scale of SSB with the scale at which the mass parameter
crosses zero. This is an order-of-magnitude estimate, and
the precise value of v depends on the parameters in the
scalar potential. Our work indicates that the nature of the
strings is type ii (scalar-to-gauge mass ratio β ¼ 1.6 at
v ¼ 1.7 × 1014 GeV), which is consistent with Eq. (1),
since β is sufficiently close to the critical value. To
determine these more accurately, the RG flow needs to
be continued into the regime of SSB, where additional
contributions proportional to the running v occur in the beta
functions. Here, we do not perform this analysis, because
our point is just to show that the free parameter of the
setting can indeed be used to choose the SSB scale close to
the scale indicated by a cosmic-string interpretation of the
PTA data.

V. CONCLUSIONS

We conclude that cosmic strings from a spontaneously
broken Abelian gauge theory are not easily accommodated
within asymptotically safe quantum gravity.
First, in the Abelian Higgs model, the scalar potential is

not locally stable about the origin in field space. This calls
into question whether the Abelian Higgs model, UV
completed by the coupling to quantum gravity, is a stable
theory. While full potential stability may be achieved by
nonperturbative effects, encoded in higher-order operators,
a semiperturbative UV completion without such higher-
order operators is ruled out. In particular, in this case the
UV theory would be already in the symmetry-broken
regime, which likely results in a Planckian value of the
vacuum expectation value of the scalar field.

FIG. 6. On the left, we plot the RG flow of the mass coupling as a function of the RG scale k, for three different choices of string tension
following [27] [the solid green curve corresponds to the central value of the monochromatic stable-cosmic-string model, log10ðGμÞ ¼
−10.56, the dashed magenta curve corresponds to the upper bound of the monochromatic stable-cosmic-string model,
log10ðGμÞ ¼ −10.10, and the dot-dashed magenta curve corresponds to the upper bound of the numeric cosmic-string model,
log10ðGμÞ ¼ −9.71]. On the right, we plot the trajectory of the six (rescaled) couplings ðg; y2; m2; λ4; G;ΛÞ, for that central value ofGμ.

15In field-theoretical simulations of Abelian-Higgs cosmic
strings, the scalar-to-gauge mass ratio β ¼ ðm2

ϕ=m
2
AÞ ¼ λ4=2g2

characterizes the dynamics of the string network: in type-i (type-
ii) strings, β < 1 (β > 1), there is attractive (repulsive) interaction
between parallel vortices [62,192], affecting loop formation.
The SSB scale v depends on the string tension according to
v ¼ ðGμ=BðβÞÞ1=2, where the critical case Bð1Þ ¼ 1 gives Eq. (1)
[223] and, for other values of β, its precise value must be
evaluated with a field-theoretical cosmic string simulation.
In general, BðβÞ grows monotonically with log β for type-ii
strings [62,224], which is the type of string predominantly
investigated in cosmological applications [225], effectively low-
ering the resulting SSB scale. For works on type-i strings, see, for
instance, [226,227].
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Second, in an extended Abelian Higgs model including
a Yukawa coupling to a fermion, we investigate con-
straints on the gauge and Yukawa coupling which arise
from demanding local stability of the potential. We find
that those constraints can be fulfilled by the fixed-point
values of those couplings at the interacting fixed point but
only in a particular region of the gravitational parameter
space. The gravitational fixed-point values fall into this
region only if the matter content of the theory is extended:
The fixed-point values do not lie in this region when the
matter fields corresponding to the extended Abelian Higgs
model and the Standard Model are included, but only
when a relatively large number of extra degrees of
freedom are added. An alternative to introducing so many
new fields is to introduce a new free parameter, namely,
the low-energy value of the gauge coupling. This can be
done by starting the RG flow at a partially interacting
fixed point, at which the gauge coupling is asymptotically
free (and, thus, relevant).
Neither of the two options—new degrees of freedom or

new free parameters—is particularly appealing, because
both are introduced only to circumvent the previous,
negative result in the Abelian Higgs model.
In summary, the setting in which an asymptotically safe

gravity-matter model gives rise to a spontaneously broken
U(1) gauge theory is contrived. The added fields do not
serve any phenomenological purpose beyond circum-
venting the negative result in the simpler model. The
minimal extra field content does not constitute typical
matter content of grand unified theories. We thus conclude
that a stochastic GW background from cosmic strings is not
easily reconciled with asymptotically safe gravity-matter
models. If we focus on models which do not contain
auxiliary degrees of freedom or auxiliary free parameters,
whose only purpose is to circumvent constraints from
simpler models, then cosmic strings from an asymptotically
safe Abelian Higgs model (with or without a Yukawa
sector) are ruled out within the near-perturbative regime of
asymptotic safety.
Interestingly, the most recent NANOGrav and EPTA

datasets admit the conclusion that stable cosmic strings are
not favored by the data [27,33]. While this cannot be
interpreted as a strong hint for asymptotically safe gravity,
it is an observation that fits with the results of our study. We
stress that a different observational outcome, namely, data
that favor a stable-cosmic-string interpretation, would have
been challenging to accommodate in asymptotically safe
gravity and could, thus, have been interpreted as a hint
against asymptotic safety.
In the future, it will be highly interesting to explore

whether other BSM settings which give rise to stochastic
GW backgrounds, e.g., through first-order phase transi-
tions, can be accommodated in asymptotically safe

gravity-matter models [228]. In this way, PTA data may
potentially be used to probe not just particle physics beyond
the SM, but even quantum gravity.
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APPENDIX A: FUNCTIONAL
RENORMALIZATION GROUP

In this work, we search for asymptotic safety in a
gravity-matter system using the functional renormalization
group. For reviews, see [107–114,229,230]. The advantage
of this formalism lies in the relatively straightforward
computation of the scale dependence of the couplings
of the theory with a (formally) one-loop exact flow
equation [104,105]

k∂kΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1k∂kRk�: ðA1Þ

Here, the superscript (2) in Γð2Þ
k denotes two functional

derivatives with respect to the fields, STr is the supertrace
(þ1 for bosonic and −1 for fermionic fields), and RkðpÞ is
an IR regulator that is introduced in the generating func-
tional Γk to suppress quantum fluctuations with momenta p
smaller than k. This functional Γk is the flowing action that
interpolates between the bare action (in the limit k → ∞,
i.e., when all quantum corrections are suppressed) and the
full quantum effective action (in the limit k → 0, i.e., when
all quantum fluctuations had been taken into account), in a
Wilsonian-like approach to the path integral [231]. This
equation was applied to gravity for the first time by Reuter
in his seminal work [106].
The regulator term is diagonal in field space and quadratic

in the fields. For each one of the fields, the kernel is

Rkðp2Þ ¼ ðΓð2Þ
k ðp2Þ − Γð2Þ

k ð0ÞÞh;ϕ;A¼0rkðp2=k2Þ: ðA2Þ

In this work, we chose the Litim regulator [232], given by

rkðyÞ ¼
�
1
y − 1

�
θð1 − yÞ for bosons and rkðyÞ ¼

�
1ffiffi
y

p − 1
�
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θð1 − yÞ for fermions. It respects all global symmetries
under which the flowing action is invariant.
The flowing action Γk contains all operators

that are compatible with the symmetries of the theory.
Since there are an infinite number of such operators, in
practice, we truncate Γk for computational purposes and
systematical uncertainties are thus introduced. We base our
truncation on the assumption of near-perturbative behavior;
seethe discussion in the main text. Thus, our truncation
includes only canonically relevant and marginal couplings.

APPENDIX B: BETA FUNCTIONS

In this section, we report the full expressions for the beta
functions and anomalous dimensions, which are computed
using the flow equation of the functional renormalization
group, Eq. (A1). The dynamics is given by Eq. (11).

1. Anomalous dimensions

The anomalous dimensions computed from Zϕ, ZA, and
Zψ are

ηϕ ¼ −
g2ϕð6 − ηAÞ

32π2ð1þm2Þ −
g2ϕð6 − ηϕÞ

32π2ð1þm2Þ2 þ
y2ð4 − ηψÞ

8π2
þ Gð8 − ηϕÞ
48πð3 − 4ΛÞð1þm2Þ2

þ Gð8 − ηhÞ
16πð3 − 4ΛÞ2ð1þm2Þ þ

2Gð6 − ηhÞm2

πð3 − 4ΛÞ2ð1þm2Þ −
12Gm4

πð3 − 4ΛÞ2ð1þm2Þ2 ; ðB1Þ

ηA ¼ g2ϕ
24π2ð1þm2Þ4 þ

g2eð4 − ηψÞNf

24π2
−

5Gð8 − ηAÞ
36πð1 − 2ΛÞ þ

5Gð6 − ηhÞ
18πð1 − 2ΛÞ2 −

5Gð8 − ηhÞ
36πð1 − 2ΛÞ2 ; ðB2Þ

ηψ ¼
g2eð5−ηAÞ

80π2
−
g2eð4−ηψÞ

64π2
þ y2ð5−ηϕÞ
20π2ð1þm2Þ2−

25Gð6−ηhÞ
96πð1−2ΛÞ2þ

3Gð6−ηψÞ
40πð3−4ΛÞþ

351Gð7−ηhÞ
560πð3−4ΛÞ2−

3Gð6−ηhÞ
16πð3−4ΛÞ2 : ðB3Þ

In the main text, we employed a perturbative approximation (equivalent to a one-loop perturbative computation), in
which we neglect the contributions of anomalous dimensions from regulator insertions. Therefore, we set ηϕ, ηA, and ηψ to
zero on the right-hand side of the above equations. The main advantage is to preserve the polynomial form of the beta
functions, after substituting the anomalous dimension.

2. Beta functions—Matter sector

For the beta function of the gauge coupling, due to Ward-Takahashi identities [123,124], we use

βg ¼
g
2
ηA: ðB4Þ

The beta function of the Yukawa coupling is

βy ¼
g2eð6 − ηAÞy

32π2
þ 3g2eð5 − ηψÞy

80π2
−
Gð6 − ηψÞy
5πð3 − 4ΛÞ þ

Gð7 − ηψÞy
56πð3 − 4ΛÞ þ

Gð6 − ηψÞm2y

5πð3 − 4ΛÞð1þm2Þ −
2Gð6 − ηϕÞm2y

3πð3 − 4ΛÞð1þm2Þ2

þ 12Gð7 − ηϕÞm2y

35πð3 − 4ΛÞð1þm2Þ2 þ
5Gð6 − ηhÞy
12πð1 − 2ΛÞ2 þ

Gð6 − ηhÞy
2πð3 − 4ΛÞ2 −

36Gð7 − ηhÞy
35πð3 − 4ΛÞ2 þ

9Gð8 − ηhÞy
64πð3 − 4ΛÞ2

−
2Gð6 − ηhÞm2y

πð3 − 4ΛÞ2ð1þm2Þ þ
36Gð7 − ηhÞm2y

35πð3 − 4ΛÞ2ð1þm2Þ : ðB5Þ

In the limit of vanishing mass (perturbative one-loop approximation), we obtain the nontrivial result that the gravitational
contribution to βy for our Yukawa term—invariant under U(1) symmetry—is the same as it is for a Yukawa term between a
real scalar and an uncharged Dirac fermion, computed in [140,141]. This result follows the general pattern that gravitational
contributions are “blind” to internal symmetries.
The beta functions of the mass parameter and quartic coupling are, respectively,

βm2 ¼ ðηϕ − 2Þm2 −
g2ϕð6 − ηAÞ

32π2
−

ð6 − ηϕÞλ4
96π2ð1þm2Þ2 þ

ð5 − ηψÞy2
10π2

þ 5Gð6 − ηhÞm2

12πð1 − 2ΛÞ2 þ
Gð6 − ηhÞm2

2πð3 − 4ΛÞ2 −
2Gð6 − ηhÞm4

πð3 − 4ΛÞ2ð1þm2Þ −
2Gð6 − ηϕÞm4

3πð3 − 4ΛÞð1þm2Þ2 ; ðB6Þ
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βλ4 ¼ 2ηϕλ4 þ
ð6 − ηAÞg4

4π2
þ 5ð6 − ηϕÞλ24
96π2ð1þm2Þ3 −

8ð5 − ηψ Þy4
5π2

þ 5Gð6 − ηhÞλ4
12πð1 − 2ΛÞ2 þ

Gð6 − ηhÞλ4
2πð3 − 4ΛÞ2 −

8Gð6 − ηϕÞλ4m2

3πð3 − 4ΛÞð1þm2Þ2

−
8Gð6 − ηhÞλ4m2

πð3 − 4ΛÞ2ð1þm2Þ þ
8Gð6 − ηϕÞλ4m4

πð3 − 4ΛÞð1þm2Þ3 þ
12Gð6 − ηhÞλ4m4

πð3 − 4ΛÞ2ð1þm2Þ2 þ
80G2ð6 − ηhÞm4

3ð1 − 2ΛÞ3 þ 64G2ð6 − ηhÞm4

ð3 − 4ΛÞ3

−
256G2ð6 − ηϕÞm6

3ð3 − 4ΛÞ2ð1þm2Þ2 −
512G2ð6 − ηhÞm6

ð3 − 4ΛÞ3ð1þm2Þ þ
1024G2ð6 − ηϕÞm8

3ð3 − 4ΛÞ2ð1þm2Þ3 þ
1024G2ð6 − ηhÞm8

ð3 − 4ΛÞ3ð1þm2Þ2 : ðB7Þ

3. Beta functions—Gravity sector

The beta functions of the gravitational parameters G and Λ are given by the following expressions from [136]:
βG ¼ 2Gþ G2β0G −G2M1ðw; s; vÞ and βΛ ¼ −2Λþ Gβ0Λ −GM2ðw; s; vÞ −GΛM1ðw; s; vÞ, where

β0G ¼ −
31

24π
−

5ð3 − 2ΛÞ
6πð1 − 2ΛÞ2 þ

ð9 − 8ΛÞ
6πð3 − 4ΛÞ ; ðB8Þ

β0Λ ¼ þ 368Λ4 − 372Λ3 þ 320Λ2 − 225Λþ 36

12πð1 − 2ΛÞ2ð3 − 4ΛÞ ; ðB9Þ

computed in the Landau-deWitt gauge, whereas M1ðw; s; vÞ and M2ðw; s; vÞ are matter contributions [146] given by

M1ðw; s; vÞ ¼ −
s
6π

−
w − 4v
6π

; ðB10Þ

M2ðw; s; vÞ ¼ −
s
4π

þ w − v
2π

; ðB11Þ

where w denotes the number of Weyl fermions, s the number of scalar fields, and v the number of vector fields. For the
Standard Model, w ¼ 45, s ¼ 4, and v ¼ 12. These beta functions are computed in the background approximation.
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