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Generalized global symmetries are a common feature of many quantum field theories decoupled from
gravity. By contrast, in quantum gravity/the Swampland program, it is widely expected that all global
symmetries are either gauged or broken, and this breaking is in turn related to the expected completeness of
the spectrum of charged states in quantum gravity. We investigate the fate of such symmetries in the context
of 7D and 5D vacua realized by compact Calabi-Yau spaces with localized singularities in M theory. We
explicitly show how gravitational backgrounds support additional dynamical degrees of freedom which
trivialize (i.e., “break”) the higher symmetries of the local geometric models. Local compatibility conditions
across these different sectors lead to gluing conditions for gauging higher-form and (in the 5D case) higher-
group symmetries. This also leads to a preferred global structure of the gauge group and higher-form gauge
symmetries. In cases based on a genus-one fibered Calabi-Yau space, we also get an F-theory model in one
higher dimension with corresponding constraints on the global form of the gauge group.
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I. INTRODUCTION

Global symmetries play an important role in the study of
quantum field theory (QFT). They are helpful because they
constrain correlation functions, and (via their anomalies)
provide insight into various nonperturbative phenomena
(see e.g., [1]). On the other hand, there is a general
expectation that in quantum gravity, all such global
symmetries are either gauged or explicitly broken (see
e.g., [2–5]). In this regard, the best one can hope for is that
violations of a given global symmetry are exponentially
suppressed.
In the context of the Swampland program [6,7] (see e.g.,

[8,9] for recent reviews), this amounts to starting with the
symmetry structures of a given low energy effective field
theory and tracking their fate once the effects of gravity are
included. The condition that there are no global sym-
metries is closely tied to the expectation that the spectrum
of a theory is complete, i.e., there is a state of each possible
representation (see e.g., [3,10–12]). This has also been

formalized as the statement that all backgrounds of
quantum gravity are in fact cobordant [5].1

Of course, instead of proceeding from the bottom up, one
can also consider starting with a consistent low energy
effective field theory such as that provided by a string
compactification. With an explicit UV completion in hand,
one can then track the effects of decoupling gravity, and the
eventual emergence of various global symmetries in the
deep infrared of a given QFT sector. This is especially
natural to study in the context of QFTs with generalized
symmetries [25].
In this regard, an interesting question is the global

structure of various gauge and global symmetries which
can arise in such decoupling limits.2 In each case, we get a
spectrum of local and extended operators charged under
various p-form symmetries. Gauging such symmetries
(when nonanomalous) amounts to changing from one global
form of the theory to another [25]. For a D-dimensional
QFT, one way to understand these choices is in terms of a
(Dþ 1)-dimensional symmetry topological field theory
(TFT) with states (i.e., boundary conditions) specifying a
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1For recent developments, see e.g., [13–24].
2For example, in 4D Yang-Mills theory with gauge symmetry

given by the Lie algebra suðNÞ, a priori there are different
choices for the global form of the gauge group, e.g., “the electric
choice” SUðNÞ versus “the magnetic choice” SUðNÞ=ZN .
Gauging the electric 1-form symmetry of SUðNÞ gauge theory
takes us to the SUðNÞ=ZN gauge theory, and gauging the
magnetic 1-form symmetry of SUðNÞ=ZN gauge theory takes
us back to the original electric theory [25,26].
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given global form of the D-dimensional QFT [27–29]. This
can also be geometrized, with the extra dimension viewed
as the “radial direction” of a local string compactification
[30–34] (see also [35,36]). Once gravity is switched on,
however, no such boundary conditions “at infinity” are
available. Somehow, the gravitational theory “chooses” a
global form for the theory. In practical terms, this is
specified by the lightest degrees of freedom in the theory,
which by convention specify an electric global form for the
theory. Heavier, dual objects then specify the magnetic basis
of states. The condition that the gauge group acts faithfully
on the spectrum of states then fixes the global form of these
gauge symmetries (see e.g., [37,38]). One comment here is
that in practice, it is customary to restrict attention to only
the massless degrees of freedom present in the low energy
spectrum. To extract the full global form of the gauge group,
as well as the structure of dynamical extended objects, we
will find it necessary to also consider massive and finite
tension objects.
While our discussion has thus far focused on the specific

case of higher-form symmetries, it has by now been
established that there are many generalizations of these
sorts of considerations, including higher-group structures,
as well as noninvertible symmetries.3 In each of these cases,
it is natural to see how they are explicitly gauged or broken
upon coupling to gravity, and conversely, how such
structures emerge when gravity is switched off.
Our aim in this paper will be to address these issues by

explicitly tracking local singularities in M theory com-
pactified on a Calabi-Yau space. More precisely, we
consider M theory on compact K3 surfaces, and compact
Calabi-Yau threefolds, resulting in 7D and 5D vacua,
respectively. We shall be interested in compact models
which locally support quotient singularities of the form
Cm=ΓSUðmÞ, where ΓSUðmÞ is a finite subgroup of SUðmÞ. In
the case of 7D vacua, these singularities result in 7D
supersymmetric Yang-Mills (SYM) sectors, while in the
case of 5D vacua, we generically obtain 5D superconfor-
mal field theories (SCFTs). For some discussion of
coupling stringy SCFTs to gravity, see e.g., [197–200].
In the case of 7D vacua, the local QFT sectors can

a priori support both line operators from M2-branes
wrapped on noncompact relative 2-cycles of C2=ΓSUð2Þ,
as well as codimension 3 ’t Hooft operators fromM5-branes
wrapped on the same noncompact relative 2-cycles.
Choosing a polarization, i.e., a set of maximally commuting
fluxes, yields a global form for the associated gauge group,
and in the limit where gravity is decoupled, each sector can
support its own global form. Once gravity is included,
however, these different choices are inevitably correlated, as
dictated by a Mayer-Vietoris long exact sequence. We show

that this correlation in fact persists in the deep IR (after
integrating out the massive electric and magnetic states) as it
specifies the data of the set of genuine Wilson and ’t Hooft
operators and emergent higher-form symmetries. This is
accomplished by working with a compact K3 surface with
local orbifold singularities, and we consider in detail
different quotients of T4, as well as some elliptically fibered
K3 surfaces. An important feature of this analysis is that this
procedure automatically selects a global form for the
gauge group.
In the case of 5D vacua, local orbifolds C3=ΓSUð3Þ with a

collapsing divisor generate 5D SCFTs. Such systems can
support higher-form symmetries, as well as higher-group
symmetries and there is by now an algorithmic procedure
for reading off these properties directly from geometry (see
e.g., [32,33,77,106–108,178,201]). These generalized sym-
metries can be extracted from the topology of the boundary
space S5=ΓSUð3Þ. A generic feature of many such systems is
the presence of nontrivial anomalies, which at least super-
ficially obstruct gauging of the associated discrete higher
symmetries. However, taking multiple copies of the same
theory, specific subgroups are anomaly free and as such can
be gauged.4 This is precisely what happens in compact
models coupled to gravity, but it also occurs in limits where
gravity is decoupled but multiple 5D SCFT sectors have
been glued together. This includes the gauging of 1-form
symmetries, and the trivialization of 2-group structures
once multiple 5D SCFTs are coupled together by gauging a
common 0-form flavor symmetry. We demonstrate these
general features by analyzing a few examples of quotients
of T6, as well as elliptically fibered Calabi-Yau threefolds.
For vacua obtained from elliptically fibered Calabi-Yau

compactifications of M theory, there is a dual description in
terms of F theory on the same background, resulting in a
vacuum in one higher dimension. Now, in the case of
F-theory models, there is a well-known procedure for
reading off the gauge group directly from data associated
with the genus-one fibration (see e.g., [79,202–212] as well
as [213] and references therein). Our considerations are
necessarily more topological/coarse, but are consistent with
these considerations. Our analysis can be interpreted as
constraining the global form of the gauge group, which in
F-theory terms involves an analysis of multisections and
additional sections. A general comment here is that in
(Dþ 1)-dimensional F-theory vacua, additional tuning is
required in the accompanying Weierstrass model which is
not required in D-dimensional M-theory vacua, since in
(Dþ 1)-dimensional terms, one can now allow field vac-
uum expectation values (vevs) which only retain Lorentz
invariance in D dimensions.

3The literature has in recent times grown considerably.
For a partial list of recent work, see e.g., [11,15,23–
25,28,30–34,36,39–191], and [192–196] for reviews.

4At a basic level, this is guaranteed because the anomalies in
question are discrete, so taking an appropriate number of copies
renders any putative anomaly for the diagonal symmetry trivial.
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The rest of this paper is organized as follows. In Sec. II
we briefly summarize some of the local building blocks
which comprise our QFT sectors in 7D and 5D vacua. In
Sec. III we present a brief overview of the general
procedure we will follow, namely we consider supergravity
models realized by M theory on a compact background
with localized singularities. In a decoupling limit, each
singularity supports a QFT sector, and the defining data of
defects and symmetry operators in each local patch must
consistently glue together with the other patches. After this,
in Sec. IV we turn to general features of M theory on a K3
surface, and in Sec. V we present some illustrative
examples based on quotients of T4 and elliptically fibered
K3 surfaces. In Sec. VI we discuss 5D examples as realized
by M theory on Calabi-Yau quotients of a T6 and elliptic
models. When available, we also comment on the dual
F-theory interpretation. We present our conclusions and
future directions in Sec. VII. Some additional details on
quotients of T4 and T6 are collected in the Appendices.

II. LOCAL INGREDIENTS

Before proceeding to explicit compact models, let us
briefly review some of the salient features of local models
obtained via geometric engineering. The general setup we
consider here is M theory on a local Calabi-Yau singularity
X . This engineers a relative QFT in

D ¼ 11 − dim X ð2:1Þ

dimensions denoted T X . We assume that X takes the
form of a conical singularity, whereby in particular X is
topologically a cone over its boundary geometry ∂X :

X ¼ Coneð∂XÞ: ð2:2Þ

Further, a singularity of codimension dim X sits at the tip
of the cone and we clearly have a preferred “radial
direction” with respect to which the boundary ∂X sits
“at infinity”. Bulk modes such as those associated to a
lower codimension singularity will generically fill this
radial direction as well as some of the directions of ∂X .
We now discuss heavy defects, topological symmetry

operators, and their geometric realization. We then turn to
the specific singularity structures we will repeatedly
encounter.

A. Heavy defects and symmetry operators

We begin by discussing heavy defects of the QFT T X,
engineered by the local geometry X, which are in turn
constructed by wrapping branes on noncompact cycles of
X . The resulting objects are formally of infinite mass/
tension and realize defects in the QFT.
Given a space X with a singularity at the tip of the cone,

we can construct defects by wrapping branes on relative

cycles which stretch from the tip of the cone out to the
boundary ∂X. It can happen that the singularity is isolated,
but it may also support additional singularities which
stretch from the tip of the cone out to “infinity,” and
these additional singularities are physically interpreted as
flavor loci.
Throughout this paper, we will be in the situation where

there exists a crepant resolution π∶X 0 → X . As such, we
can explicitly enumerate the defects obtained from wrapped
branes, as well as dynamical states obtained from branes
wrapping collapsed cycles. We can wrap a brane on a
relative cycle Hkþ1ðX 0; ∂X 0Þ and these defects are partially
screened by branes wrapping cycles in Hcpct

kþ1ðXÞ. The
resulting quotient Hkþ1ðX 0; ∂X 0Þ=Hcpct

kþ1ðX 0Þ specifies a
collection of unscreened charges. This is the essential
physics behind the “defect group” [30–33].
Geometrically, the defect group capturing the spectrum

of all stable5 branes wrapped on noncompact relative cycles
is given by

D ¼ ⨁
m
DðmÞ; ð2:3Þ

where m denotes the number of the brane world volume
dimensions extending in spacetime, which is the dimen-
sionality of the resulting defect, and

DðmÞ ¼ ⨁
p-branes

⨁
p−k¼m

Hkþ1ðX 0; ∂X 0Þ
Hcpct

kþ1ðX 0Þ : ð2:4Þ

Picking a polarization, i.e., a maximally mutually local set
of extended operators, then provides us with an absolute,
rather than relative theory (in the sense of [27]).
Symmetry operators are obtained by wrapping branes “at

infinity”, i.e., such branes are supported exclusively at the
boundary ∂X of the internal directions. In the case of finite
order discrete symmetries which act on a p-brane wrapped
on a torsional class of (2.4), these symmetry operators are
obtained from magnetic dual q-branes wrapped on torsional
cycles of Hlð∂XÞ which link with the heavy defect in both
the spacetime and ∂X (see [131,132,134] as well as [214]),
while in the case of continuous symmetries, these symmetry
operators are obtained from magnetic dual flux (qþ 1)-
branes (see e.g., [215–217]) wrapped on free cycles of
Hlþ1ð∂XÞ which link in the spacetime, but intersect in ∂X
with the heavy defect [181] (see also [218]).
An important feature of this perspective is that the

topological sector of these branes automatically descends
(upon reduction on the internal cycles) to a topological field
theory attached to the symmetry operator. This gives a
general algorithm for producing nontrivial symmetry oper-
ators and extracting the corresponding fusion rules directly
from the brane construction.

5In principle, they could be stable but not BPS.
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B. Local models

We now discuss in more detail some properties of the
local singular geometries X we shall encounter. We shall
mainly focus on the special case of orbifold singularities

X ¼ Cm=ΓSUðmÞ; ∂X ¼ S2m−1=ΓSUðmÞ; ð2:5Þ

with ΓSUðmÞ a finite subgroup of SUðmÞ. Many of the global
orbifolds we consider will be modeled patchwise on such
finite quotients. In the case of elliptically fibered Calabi-
Yau spaces, similar considerations will apply, up to the
small subtlety of including the data of the elliptic fiber.
In the case X ¼ C2=ΓSUð2Þ, there is an ADE (A-type,

D-type, E-type) classification of possible singularities. It is
well-known that M theory on such spaces gives rise to a 7D
supersymmetric Yang-Mills theory with Lie algebra gADE
of ADE type.6 The global form of the 7D gauge group
depends on the boundary conditions for torsional fluxes “at
infinity” along the asymptotic boundary ∂X, and this in turn
is implicitly dictated by the spectrum of extended operators
one allows in the theory.
The associated defect group D [30–34] is obtained from

M2- and M5-branes wrapped on relative 2-cycles which
extend along the radial direction of C2=ΓSUð2Þ terminating
on torsional 1-cycles of the boundary geometry S3=ΓSUð2Þ.
They are cataloged by elements of

H2ðC2=ΓSUð2Þ; S3=ΓSUð2ÞÞ ≅ H1ðS3=ΓSUð2ÞÞ
≅ Ab½ΓSUð2Þ�≡ Z; ð2:6Þ

which is the Abelianization of ΓSUð2Þ, or equivalently, the
center of the simply connected Lie group with Lie algebra
gADE. The defect group is then

D ¼ Zð1Þ
M2 ⊕ Zð4Þ

M5; ð2:7Þ

where the superscript gives the defect dimension and
therefore the degree of the corresponding p-form symmetry.
The choice of boundary conditions for torsional fluxes then
dictates the global form of the gauge group.
For example, taking ΓSUð2Þ ¼ ZN we get gADE ¼ suðNÞ

and the global form of the group may take the form
SUðNÞ=ZK for some K dividing N. Topological symmetry

operators acting onZð1Þ
M2 andZ

ð4Þ
M5 are constructed fromM5-

branes and M2-branes wrapped on torsional 1-cycles of the
lens space boundary S3=ZN respectively [134].
The other building blocks we shall frequently encounter

are orbifold singularities of the form X ¼ C3=ΓSUð3Þ.
In this case, we get a 5D SCFT provided the resolution
of the singularity includes a collapsing 4-cycle [221,222]

and, depending on the choice of ΓSUð3Þ as well as group
action, we can get many different choices for the singu-
larity. In particular, it can happen that in addition to a
codimension 6 singularity (at the tip of a cone), there can
also be codimension 4 singularities which extend out to the
boundary ∂X ¼ S5=ΓSUð3Þ, associated with 7D SYM
sectors.
In the 5D SCFT, such sectors specify non-Abelian flavor

symmetry factors, namely 0-form symmetries. Neglecting
such factors, the contributions to the defect group are
obtained from wrapping M2-branes on relative cycles

H2ðC3=ΓSUð3Þ; S5=ΓSUð3ÞÞ ≅ H1ðS5=ΓSUð3ÞÞ
≅ AbðΓ=HÞ≡ Z ð2:8Þ

where H is the normal subgroup of Γ generated by all
elements with fixed points on S5 as determined by a
theorem of Armstrong [223] on the fundamental group
of orbit spaces. Dually, M5-branes are wrapped on non-
compact 4-cycles also contributing a copy of Z to the
defect group, overall we have the unscreened line and
surface defects captured by

Zð1Þ
M2 ⊕ Zð2Þ

M5 ⊂ D: ð2:9Þ

Specific algorithms are now available for extracting these
structures (see e.g., [32,33,106,107,201]). There are cor-
responding magnetic dual branes which wrap 3-cycles and
1-cycles at infinity, and these produce the corresponding
topological symmetry operators associated with these
higher-form symmetries [134].
In addition to these higher-form symmetries, there can

also be nontrivial entwinement of these structures via
higher-group structures. For 2-groups, this is an entwine-
ment between 0-form and 1-form symmetries, and amounts
to a failure of associativity in forming various junctions
for the topological 0-form symmetry operators [46]. Such
2-group symmetries have been investigated in 5D SCFTs,
for example, in [77,106–108].
Working in an electric polarization for our 5D SCFT, the

statement that we have a 2-group requires a specific four-
term long exact sequence which is not split:

0 → A → Ã → G̃ → G → 1; ð2:10Þ

with Ã being the “naive” 1-form symmetry as obtained by
excising from the boundary S5=ΓSUð3Þ all singularities. In
terms of the geometric content of the generalized lens
space, we have

A ≅ ðZð1Þ
M2Þ∨ ≅ AbðΓ=HÞ∨; Ã ≅ AbðΓÞ∨; ð2:11Þ

where Z∨ denotes the Pontryagin dual of an Abelian
group Z:

6We do not consider frozen singularities of M theory
[219,220].
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Z∨ ¼ HomðZ → Uð1ÞÞ: ð2:12Þ

Similarly, G is the actual flavor symmetry group and G̃ is
the simply connected naive answer. In practice, this is
captured in geometry by a specific condition on nonsplit-
ness of a short exact sequence associated with the 1-form
symmetries:

0 → A⟶
{

Ã → coker { ⊂ ZðG̃Þ → 1; ð2:13Þ

where ZðG̃Þ is the center of G̃.
Having reviewed some general features of how to

engineer generalized symmetries in M-theory backgrounds,
we now turn to their fate in models coupled to gravity.

III. GLOBAL MODELS: GENERAL
CONSIDERATION

We now present a general overview to our procedure of
coupling local models to gravity. Our aim will be to track
the fate of various generalized symmetries as a single local
model is “glued” to other sectors of a string compactifica-
tion. In subsequent sections we consider specific examples,
mainly in the context of 7D and 5D M-theory backgrounds,
and when applicable, their lifts to F-theory backgrounds.
In this paper we focus on QFT sectors obtained from M

theory on local geometric singularities.7 We obtain light
degrees of freedom from branes wrapped on collapsed
cycles of the singularity. Our main interest here will be to
track the impact of coupling this theory to gravity. It could
happen that there is no such embedding available, and this is
one of the core issues which the Swampland program aims
to address. Additionally, it could also happen that there is
more than one way to recouple a local model to gravity.
To bypass these issues, we shall instead start the other

way around, beginning with a supergravity theory SX as
specified by M-theory compactified on a compact Calabi-
Yau manifold X. This gives rise to a D ¼ 11 − dim X low
energy effective field theory on RD−1;1 with Newton’s
constant set by GN ∼ VolðXÞ−1 in 11D Planck units. In
the special case where X is genus-one fibered, shrinking the
fiber class to zero size results in a dual F-theory background
on S1 × X with the radius of the S1 inversely related to
(a power of) the volume of the elliptic fiber [224–226]. For
D > 4 supersymmetric models, we generically have a
moduli space of vacua so we can tune the geometric moduli
by freezing the asymptotic vacuum expectation values of
these moduli. In particular, we can work in a tuned limit
where the Calabi-Yau X supports various singularities.
For X a K3 surface, the singularities we shall encounter

are codimension 4. In this case, there is a clear geometric

interpretation of each localized singularity X i coupled
together by the “bulk” K3 surface which is the complement
of some neighborhoods containing the singularities. For
each such singularity we can speak of a corresponding local
QFT sector T i. In the process of gluing these singularities
together, we can expect to pick up additional dynamical
states as well as modes of the compact geometry X. For
example, in compact models there can be additional Uð1Þ
gauge group factors which are “shared” across multiple
singularities. We shall see explicit examples of this.
Additionally, we can expect various discrete symmetries
to either be gauged or broken as we glue the local models
back together.
For X a higher-dimensional Calabi-Yau, more general

phenomena are possible. Indeed, in this case we can expect
singularities of various codimension. In particular, we shall
be interested in singularities which are codimension
dim X, namely they are “pointlike” in X. For X a K3
surface, this is essentially all that can occur, but for Calabi-
Yau threefolds consistency of the background/local model
will often require the participation of lower codimension
subspaces.
For example, in engineering a 5D SCFT with a continu-

ous flavor symmetry, we shall often have to contend with a
codimension 6 singularity which arises as an enhancement
within noncompact singular loci of codimension 4. In such
situations, after gluing, the codimension 4 loci are neces-
sarily compactified and could be “shared” between multiple
codimension 6 singularities.
Let us then label each of the codimension dim X sectors

as specifying a local Calabi-Yau geometry X i and an
associated theory T i. The process of taking a decoupling
limit can thus take various stages: One can first decouple
gravity by sending VolðXÞ → ∞. In this limit, it could still
happen that various T i are still coupled together by lower
codimension singularities. Decompactifying these as well,
we can reach a local model in which the interacting degrees
of freedom support a theory T i and other singularities are
either decoupled, or interpreted as nondynamical “bulk
modes” of a higher-dimensional theory.8 Let us note that
these further decoupling limits are not unique; there are
various ways one could consider gluing together a subset of
the T i.
One of the general features of this approach is that

starting from our supergravity theory SX, the resulting
QFTs obtained from decoupling from gravity will often
have emergent global symmetries. We can clearly track
these from the structure of the boundary topology ∂X i,
although in principle there could be other contributions
such as isometries of the extra dimensions, or nongeometric
features of the associated QFT. One of our tasks will be to
identify such emergent symmetries.

7In the case of spacetime filling brane probes of a singularity,
tadpole cancellation of the associated flux introduces additional
constraints. 8For a recent discussion on such examples, see Ref. [178].
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The important feature of each local model T i is that we
can fix the global form of the theory by specifying
boundary conditions on ∂X i. When nonanomalous, we
can also gauge these symmetries and change polarization
to a different global form of the theory. On the other hand,
once we start gluing together these different local geom-
etries, some of these gaugings will automatically occur
since the boundary conditions on distinct local models
such as ∂X i and ∂X j will now end up being identified. One
can also see this from the perspective of the heavy defects
of a local model: Previously infinite tension objects can
now stretch from the singularity in X i to the singularity in
X j along finite volume cycles. In the low energy effective
field theory this amounts to introducing additional dynami-
cal states into the theory. As for the symmetry operators,
branes “wrapped at infinity” will now wrap finite volume
subspaces, which in general will not be of minimal
volume. This is consistent with the fact that we are
gauging some symmetries, and breaking/screening others
by adding extra states.
At this point it is natural to ask in what sense the

supergravity theory SX specifies a canonical choice of
gauge group both for the 0-form as well as higher-form
symmetries of a given model. The main point is that the
lightest degrees of freedom in the theory implicitly specify
the structure of the gauge group. For example, in the context
of Maxwell theory one can invariantly define an “electron”
as the lightest charged state of the gauge theory. In the
context of M-theory backgrounds, the M2-branes are the
electric degrees of freedom whereas the M5-branes are their
dual magnetic counterparts. Provided, however, that the
resulting collection of states obtained after compactification
are mutually local (i.e., there is no flux noncommutativity),
then both serve to determine the global form of the gauge
group. As such, specifying the global form of the gauge
group in a supergravity model in M-theory amounts to
determining how M2- and M5-branes stretch between
various local patches X i. This, in turn, is specified by
the cutting and gluing rules associated with the Mayer-
Vietoris long exact sequence.
In more detail, recall that in the Mayer-Vietoris

sequence, one considers subspaces U and V of X such
that the interiors of U and V cover X. Then, we have the
long exact sequence which relates the homologies of the
local patches to those of the global geometry:

… → Hnþ1ðXÞ → HnðU ∩ VÞ → HnðUÞ ⊕ HnðVÞ
→ HnðXÞ → … ð3:1Þ

in the obvious notation. Refining each subspace to consist
of the various local models, it follows that we can read off
the spectrum of charged states from wrapped branes, and
thus implicitly the global form of the gauge groups in the
M-theory model.

In the related context of F theory on X a genus-one
fibered Calabi-Yau manifold, the global form of the gauge
group is dictated by the Mordell-Weil (MW) group of the
Calabi-Yau, MWðXÞ, which in turn requires determining
the group law for rational sections of the elliptic fiber (see
e.g., [79,202–212] as well as [213] and references therein).
This is known to be a somewhat involved procedure which
depends in a rather delicate way on the structure of the
associated Weierstrass model for the genus-one fibration.
Our method can be viewed as a complementary approach
which can be extracted based on comparatively “coarse”
data of X. Indeed, our method applies even when there is no
globally defined genus-one fibration. That being said, it is
important to note that the relation between the M-theory
and F-theory backgrounds involves a further circle com-
pactification. The generic appearance of Uð1Þ factors in the
M-theory background compared with the tuning required in
F-theory models arises because we can now allow possibly
position dependent vevs of the 6D background which only
preserve 5D Lorentz invariance.

A. Iterative gluing vs spectral sequences

In the context of geometries with singularities of differ-
ent codimensions, the process of “cutting and gluing”
includes some additional subtleties. The first challenge
in analyzing higher-dimensional geometries X lies in the
plethora of possibilities for singular strata. We need to
specify how we cut up X or equivalently which localized
field theory sectors we identify as physical building blocks
in our construction.
One option is to consider the finest decomposition

possible including tubular neighborhoods for all singular
substrata individually. These can then be glued together
democratically using the Mayer-Vietoris spectral sequence
(see e.g., Chap. VII, Sec. 4 of [227]).
A second option consists of iteratively gluing “more”

singular substrata to “less” singular substrata and updating
our notion of local model in the process. The penultimate
step then consists of studying the interactions between local
field theory sectors T associated with connected compo-
nents of the singular locus within the global model.
To frame the discussion of these two approaches, let us

introduce some notation. An orbifold X admits a canonical
filtration with strata consisting of points with isomorphic
isotropy groups [228,229]. The isotropy group of a point is
the finite group Γx folding the singularity at x∈X. More
precisely there exists a chart, centered on x, mapping from
the contractible patch Ux ⊂ X and modeled on Rn=Γx
where n ¼ dimR X. The strata XΓI

⊂ X are then defined as
the subspace containing points with isotropy groups iso-
morphic to ΓI labeled by I. For global quotients X ¼ Y=Γ
strata are labeled by subgroups ΓI ⊂ Γ.
The strata XΓI

are (possibly disjoint) manifolds without
boundaries and connected components of well-defined
dimension. We denote the union of strata of codimension

CVETIČ, HECKMAN, HÜBNER, and TORRES PHYS. REV. D 109, 026012 (2024)

026012-6



m or higher as Xm with complement X∘
m ¼ XnXm and

tubular neighborhood Xloc
m consisting of the union of small

contractible sets Ux for x∈Xm. The set of regular points is
the open manifold X°

1. Clearly, for m1 ≥ m2, we have the
inclusions

Xm1
⊆ Xm2

; Xloc
m1

⊆ Xloc
m2
; X∘

m2
⊆ X∘

m1
: ð3:2Þ

Note that Xloc
m deformation retracts to Xm while the

intersection Xloc
m ∩ X∘

m deformation retracts to both ∂Xloc
m

and ∂X∘
m. We now have the covering

X ¼ ðXloc
d ∪ X∘

dÞ ∪ … ∪ ðXloc
1 ∪ X°

1Þ ð3:3Þ

which is the starting point for the analysis based on the
Mayer-Vietoris spectral sequence.9

However, we will mainly take the second approach
which carries more physical intuition. We begin by con-
sidering connected components SingðXÞi of the singular set

SingðXÞ ¼ ∪
ΓI≠1

XΓI
¼ ∐

i
SingðXÞi: ð3:4Þ

Similarly we attach an index to the codimension m
substrata yielding disjoint connected components Xloc

m;i; X
∘
m;i

Xloc
m ¼ ∐

i
Xloc
m;i; X∘

m ¼ ∐
i
X∘
m;i: ð3:5Þ

We then focus on each connected component, i.e., fixed i,
and glue the local model for SingðXÞi from the local models
of its singular substrata of distinct codimension m.
In more detail, we iteratively glue Xloc

n;i to X
loc
n−1;i for fixed

i and this gives a space we denote as Xloc
n;n−1;i which is the

local model of singularities of codimension n and n − 1.
Next, this space is then glued to Xloc

n−2;i and so on. At the kth
iteration of this gluing procedure the space is denoted
Xloc
n;n−k;i. The largest value of k for which we do not produce

the total space X is the final local model and contains a
compact singular locus. In particular this local model has a
smooth boundary.
One advantage of this second approach lies in noting at

which iteration certain symmetry structures dissolve. For
example, 2-group symmetries as studied in [107,108] can
arise when local models exhibit noncompact singular loci.
These are necessarily compactified in the above construc-
tion prior to the iteration where local models glue to a global
model. The gauging and breaking of 2-group symmetries

therefore occurs purely upon gluing local models to local
models in this context.10

Having spelled out some general considerations for how
to analyze the contributions from different singularities, we
now turn to explicit examples. We begin with M theory on
K3 surfaces, where all the singularities are codimension 4.
We then proceed to some examples of M theory on a
Calabi-Yau threefold, where we encounter examples with
codimension 6 as well as codimension 4 singularities.

IV. M THEORY ON A K3 WITH SINGULARITIES

In this section we consider M theory on the background
R6;1 × X, with X a Calabi-Yau twofold, i.e., a K3 surface.
Even though there is a single K3 surface, tuning the metric
moduli will result in distinct low energy behavior. Our aim
in this section will be to develop some general aspects of
how 7D generalized symmetries recouple to gravity. In
Sec. V we turn to some illustrative examples.
At low energies, M theory on a K3 surface results in a 7D

theory with 16 supercharges. Allowing degenerations in the
metric of X, we obtain various codimension 4 singularities,
and as such, 7D supersymmetric Yang-Mills theory sectors.
In addition to these localized gauge theory degrees of
freedom, we also have Abelian vector multiplets which are
“delocalized” across the geometry. In what follows we
focus on torsional contributions to homology which can be
tracked in terms of defects/symmetry operators obtained
from wrapped branes. In particular, we neglect contribu-
tions from “accidental” discrete isometries of the geometry.
The full gauge algebra of the model thus takes the form

gfull ¼ ⨁
i
gi ⊕ uð1Þb; ð4:1Þ

where the gi come from local singularities X i ≅ C2=Γi,
and the uð1Þ factors depend on global data of the model
and b is some integer. We denote tubular neighborhoods
centered on each singularity byUi ⊂ X. TheUi are disjoint
and topologically modeled on balls in X i containing the
origin. For each such gauge theory, there is a correspond-
ing simply connected gauge group G̃i of ADE type. The
global structure of the gauge group depends on the choice
of boundary conditions on each X i. Once we start gluing
into the rest of the compact geometry, the different choices
of consistent boundary conditions will necessarily be
correlated.
One of our tasks will be to track the light degrees of

freedom stretched between these different singularities.
Doing so, we will be able to determine the global form
of the gauge group in the supergravity model. This will be9For example for singular K3 surfaces we have the ADE locus

X4 with local model Xloc
4 consisting of a disjoint collection of

balls, one centered on each point in X4. The covering is then
simply X ¼ X°

4 ∪ Xloc
4 . In this case the two approaches presented

here coincide.

10One can also find new 2-group structures once one has
coupled to gravity, we exhibit some examples of this sort in our
discussion of 5D vacua.
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accomplished in stages. First, we determine the contribution
from the localized non-Abelian gauge groups:

Gloc ¼ G̃loc=Cloc with G̃loc ¼
Y
i

G̃i: ð4:2Þ

With this in place, there can be an extra quotient which also
acts on the remaining centers of Gloc and the Uð1Þ factors:

Gfull ¼
Gloc ×Uð1Þb

CExtra
; ð4:3Þ

for some integer b. In the context of 7D vacua obtained from
M theory on a K3 surface, there are no finite gauge groups
which arise from this procedure.11 Another goal of our
analysis will be to study how the higher-form symmetries
are either gauged or broken/screened in the full compact
model and how different heavy defects become dynamical.

A. An exact sequence for K3 surfaces

To address this question, note that in the compact
geometry X the localized 7D SYM sectors T X i

are coupled
together by the embeddings Ui ↪ X. At the level of
homology two effects occur. First of all, cycles in

⨁
i
H2ðX i; ∂X iÞ ≅ ⨁

i
H2ðUi; ∂UiÞ; ð4:4Þ

which locally support defects, are compactified to curves
by gluing in 2-chains of the bulk K3 surface. Second of all,
cycles in

⨁
i
H1ð∂X iÞ ≅ ⨁

i
H1ð∂UiÞ ð4:5Þ

which locally support symmetry operators, are trivialized
by 2-chains in the bulk K3 which bound the 1-cycles in
the local model. For ADE singularities we have12

H2ðX i; ∂X iÞ ≅ H1ð∂X iÞ and the relevant 2-chains are
identical for both effects, see Fig. 1.
Recall that wrapping M2-/M5-branes on H2ðX i; ∂X iÞ

give heavy defects, while wrapping branes over cycles in
H1ð∂X iÞ give topological symmetry operators (which act
on the heavy defects). Completion in a global model X
determines which collection of defects combine to dynami-
cal objects in SX while trivialization effects determine
which symmetries are gauged in SX. Symmetries not
gauged are broken, as will follow from a canonical (link-
ing/intersection-theoretic) pairing in geometry.
To track these two effects, we introduce the union of

local patches and their complement

Xloc ¼ ∪i Ui; X∘ ¼ XnXloc ð4:6Þ

where i runs over all ADE singularities. Consequently the
bulk geometry away from these patches is smooth and does
not contain singular strata.
Coupling the T i is now determined by how Xloc glues to

X∘. Therefore, we next consider the covering X ¼ Xloc ∪
X∘ for the K3 surface and its associated Mayer-Vietoris

FIG. 1. Both subfigures (1) and (2) show a singular K3 surface X and within it the tubular neighborhoods Ui ⊂ X as black cones.
Subfigure (1) shows cycles γi ∈H1ð∂UiÞ supporting symmetry operators (red) which are bounded by a bulk 2-chain Σijk…. Subfigure
(2) shows cycles σi ∈H2ðUi; ∂UiÞ with boundaries compactified by the same 2-chain Σijk… to a compact curve in X.

11A priori, however, there could be discrete isometries. We
ignore these contributions in what follows.

12It is important to note that here we are stating the relative
homology group for the singular space X i as opposed to its
resolution X 0

i. Because of this, there is no need to “quotient by the
compact cycles”.
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sequence. This long exact sequence contains the exact
subsequence

0⟶H2ðX∘Þ⟶|2 H2ðXÞ⟶
∂2 H1ð∂XlocÞ

≅ ⊕i H1ð∂UiÞ⟶
{2 H1ðX∘Þ⟶ 0 ð4:7Þ

cut out by H2ð∂UiÞ ¼ H1ðXÞ ¼ 0. Recall that in each local
patch, we have an ADE singularity, a corresponding simply
connected ADE Lie group G̃i. This serves to specify a naive
local contribution to the gauge group, which we write as

G̃loc ¼
Y
i

G̃i: ð4:8Þ

Our task will be to determine the overall global gauge
group, which will includeUð1Þ factors, as well as quotients
by finite subgroups, as specified by the Mayer-Vietoris
sequence. The interpretation of each term in this sequence
is shown in Fig. 2.
Our plan in the remainder of this subsection will be to

elaborate on the interpretation of each of these contribu-
tions. In what follows,Gfull refers to the full gauge group of
the 7D supergravity model; we shall often separately
analyze the non-Abelian and Abelian factors. We now
proceed to analyze how the various local models glue into
the bulk geometry:

(i) H1ð∂XlocÞ ≅ ⊕i H1ð∂UiÞ: This homology group
tracks the naive center of the simply connected
Lie group:

G̃loc ≡
Y
i

G̃i: ð4:9Þ

This is because ∂Xloc is the disjoint union of lens
spaces around all of the ADE singularities in X and

H1 for a given lens space labeled by i is equal to
ZðG̃iÞ. As such, we have

H1ð∂XlocÞ ≅ ⊕i H1ð∂UiÞ ≅ ⊕i ZðG̃iÞ ¼ ZðG̃locÞ:
ð4:10Þ

(ii) {1∶ H1ð∂XlocÞ → H1ðX∘Þ is the lift of the embedding
{∶∂Xloc ↪ X∘ to homology. Its kernel determines
which collection of 1-cycles in the boundaries of
individual local models trivialize when embedded
into the bulk X∘. The associated collection of
symmetry operators therefore acts trivially on the
matter constructed from M2-branes wrapped on
cycles in H2ðXÞ. We find

Cfull ≅ ker {1 ≅ Im∂2; ð4:11Þ

where Cfull refers to a center subgroup of G̃full ¼
G̃loc × Uð1Þb which we will quotient out. Combin-
ing with the map ∂2∶ H2ðXÞ → H1ðXlocÞ, we later
show that this quotienting center sits in the short
exact sequence:

0 → Cloc → Cfull → CExtra → 0: ð4:12Þ

(iii) H1ðX∘Þ is isomorphic to Im {1, and thus Cloc,
because {1 is surjective. As alluded to in the item
above, H1ðX∘Þ should also be equal to the center of
the non-Abelian part of the gauge group Gfull. This
follows from the duality relation:

ðTor H2ðXÞÞ∨ ≅ Tor H1ðX∘Þ; ð4:13Þ

which we derive later. This implies that the matter
obtained from Tor H2ðXÞ is acted on by the center
subgroup isomorphic to Tor H1ðX∘Þ and therefore
broken upon compactification.

(iv) H2ðX∘Þ determines Abelian gauge symmetries. This
follows because M2-brane states that wrap vanishing
cycles are necessarily uncharged under the Abelian
gauge symmetries appearing in (4.1). Otherwise,
such uð1Þ’s would participate in gauge symmetry
enhancement and not split off as a direct summand.
The associated cycles therefore can be deformed
away from the singular locus and are contained
purely in X∘. Further, we have rank H2ðX∘Þ ¼ b2,
where b2 ≡ b2ðXÞ is the second Betti number of the
singular K3 surface X. This follows from H1ð∂XlocÞ
being pure torsion. The free part is therefore asso-
ciated with so-called “extra” uð1Þ factors. In (4.1)
we therefore have b ¼ b2. In principleH2ðX∘Þ could
contain a torsion subgroup which would parametrize
extra discrete Abelian gauge symmetries. However,
for K3 surfaces Tor H2ðX∘Þ ¼ 0.

FIG. 2. Simplified interpretation of the key long exact Mayer-
Vietoris subsequences for a 7D M-theory vacuum from a K3
surface X. The distinction between broken and emergent global
symmetries is a question of perspective: H1ðX∘Þ characterizes
symmetries broken by massive states in the UVand consequently
gives the global symmetries emerging in the IR. The distinction
of gauged/trivialized symmetries depends on whether an element
in the image is mapped onto by the torsional/free elements
respectively.
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(v) j2∶ H2ðX∘Þ → H2ðXÞ is the lift of the embedding
j2∶ X∘ ↪ X to homology and its cokernel deter-
mines the normalization for Abelian gauge sym-
metry generators. Given H2ðX∘Þ ≅ Zb2 and

coker j2=Tor H2ðXÞ ≅ Zn1 ⊕ … ⊕ Znb2
ð4:14Þ

then the correct normalization for the kthUð1Þ factor
is 1=nk. We argue this in Sec. IV B 2 from the
viewpoint of the resolved geometry and give a
characterization for elliptically fibered K3 surfaces
(following Shioda’s treatment) in Sec. V C.

(vi) H2ðXÞ determines the completion of the spectrum by
positive mass/tensions states obtained from M2- and
M5-brane wrappings. H2ðXÞ receives no contribu-
tions from vanishing cycles. The homology group
contains both curves in the bulk X∘ and curves
stretching between multiple singularities. Restricting
curves of H2ðXÞ to Xloc results in a collection of
defects. See Fig. 1.

(vii) ∂2∶ H2ðXÞ → H1ðXlocÞ is the boundary map and
determines the charges of the electric and magnetic
states, discussed in the previous bullet point, some of
which are charged under Uð1Þ factors and some are
not. To understand this, consider the decomposition
into naive Abelian and non-Abelian parts

G̃full ≡ G̃loc ×Uð1Þb2 ¼
Y
i

G̃i ×Uð1Þb2 : ð4:15Þ

We then further split the image Im∂2 into torsional
and free parts

Cloc ≅ Imð∂2jTor H2ðXÞÞ ≅ Tor H2ðXÞ;
CExtra ≅ Imð∂2jFree H2ðXÞÞ: ð4:16Þ

Here the free part of H2ðXÞ is defined as Free
H2ðXÞ ¼ H2ðXÞ=Tor H2ðXÞ. Abelian symmetries
are only associated with the free part, and the group
Imð∂2jFree H2ðXÞÞ carries the data of howUð1Þ charges
are correlated with ZðG̃locÞ, or more precisely,
ZðG̃loc=ClocÞ charges. We therefore have that

Gfull ¼
G̃loc=Cloc ×Uð1Þb2

CExtra
ð4:17Þ

which is related to the form of Gfull ¼ G̃full=Cfull via
the short exact sequence:

0 → Cloc → Cfull → CExtra → 0: ð4:18Þ

We discuss this further in Secs. IV B 1 and IV B 2
from the view point of the resolved geometry. We
give an equivalent, more combinatorial, point of view

in Appendices B and A where we do not require
resolutions. Both make completely explicit how Im∂2

is embedded into the center of G̃full.
We now expand on a few of the items listed above. In

particular, we establish (4.13), i.e., that ðTor H2ðXÞÞ∨ ≅
Tor H1ðX∘Þ. This will prove crucial in establishing that all
global symmetries of the local models are either gauged or
broken.
Along these lines, denote the location of the ADE

singularities by xi ∈X, and then start with the identification

H2ðXÞ ≅ H2ðX; fxigÞ ð4:19Þ

which follows from the long exact sequence in relative
homology for the pair ðX; fxigÞ. The collection of neigh-
borhoods Xloc deformation retract to fxig. We therefore
have

H2ðX; fxigÞ ≅ H2ðX;XlocÞ ð4:20Þ

via a deformation equivalence. By excision and Poincaré-
Lefchetz duality we then have

H2ðX;XlocÞ ≅ H2ðX∘; ∂X∘Þ ≅ H2ðX∘Þ: ð4:21Þ

Equation (4.13) then follows from the universal coefficient
theorem. In particular there is a canonical linking pairing

Tor H2ðXÞ × Tor H1ðX∘Þ → Q=Z: ð4:22Þ

This linking is defined much as the standard linking form
on smooth spaces. Observe that one of the groups makes
reference to X∘ and intersection computations are therefore
always away from the singular locus.
Let us further comment that we are evaluating the

sequence (4.7) on a singular K3 surface X, and do not,
in principle, require a crepant resolution for computation.
Also, the sequence and the above analysis relies purely on
singular homology and applies regardless of additional
structure such as an elliptic fibration.
Additionally, one may wonder whether ordinary integer-

valued homology is the correct generalized homology
theory of conserved M-theory charges that one should
consider, similar to how K theory is a better approximation
of type IIA charges than ordinary cohomology. This subtlety
can be mostly ignored for K3 compactifications due to the
fact that even for singular K3’s, the homology is entirely
concentrated in even degrees. This implies that any Atiyah-
Hirzebruch spectral sequence with respect to some gener-
alized homology theory E� collapses at the second page

E2
p;q ¼ HpðX;EqðptÞÞ ⇒ EpþqðXÞ: ð4:23Þ

It now follows from
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HpðX;EqðptÞÞ ≅ HpðX;ZÞ ⊗Z EqðptÞ ð4:24Þ

that such a putative generalized homology theory for
M-theory charges on K3 is essentially captured by the
group HpðX;ZÞ and we remain agnostic as to the possible
constraints or additions introducing by tensoring with E�.

13

Finally, recall that in a D-dimensional QFT, whenever a
n-form symmetry is gauged, a dual quantum m-form
symmetry emerges, m ¼ D − n − 1. For gauge theories,
the gauging of a 1-form symmetry leads to a change in
gauge group topology and is captured by quotients

G̃loc=Cloc ð4:25Þ

which leads to a dual (d − 3)-form symmetry isomorphic to
Cloc. Further, there is an additional quotient by CExtra mixing
Abelian and non-Abelian structures. In the present context
where we have coupled to gravity, this quotient is not to be
interpreted as a gauging but simply as an identification of
redundancies. Consequently the quotient by CExtra does not
give rise to an emergent dual symmetry.
At this point, let us compare our results with expectations

from various quantum gravity/Swampland conjectures. As
one might have anticipated, we find no global symmetries
(see e.g., [2–5]); all symmetries are either gauged or broken.
From the perspective of the sequence (4.7) the absence of
1-form and dual 4-form symmetries is a consequence of its
exactness.
Let us demonstrate this explicitly by tracing through the

field theory manipulations prescribed by the geometry. Our
starting points are the local disjoint ADE geometries with
their associated 7D SYM theories. We consider purely
electric polarizations, then we have a 1-form symmetry
group isomorphic to Tor H1ð∂XlocÞ. By gluing in X∘ we
add compact cycles, this introduces massive matter
which breaks a 1-form symmetry subgroup isomorphic
to Tor H1ðX∘Þ explicitly. We further add additional
Abelian gauge symmetries which trivialize center sym-
metries by absorbing these as subgroups. With this the
only center symmetries not accounted for are a isomorphic
to Tor H2ðXÞ. These are gauged, giving dual magnetic
4-form symmetries, which are broken by M5-branes
wrapped over classes in Tor H2ðXÞ.
Additionally, we observe that the completeness hypoth-

esis (see e.g., [3,10]) is satisfied, but in a rather subtle way;
in passing from local to global models, we observe that a
preferred polarization has been selected by the compact
geometry X, and that there are suitable mutually local states
which populate the relevant charge lattices. Finally, we
observe that in these models the gauge coupling of theUð1Þ
factors is set by the volumes of curves which traverse the

bulk geometry X. As such, decompactifying gravity also
makes these Uð1Þ factors nondynamical, in accordance
with the weak gravity conjecture [232].

B. Resolutions to smooth K3 surfaces

Given a singular K3 surface X with ADE singularities, it
is often convenient to perturb within the metric moduli
space onto the smooth locus. In this case resolution divisors
are small compared to all other curves of the geometry and
we preserve the notion of local models and localized 7D
supersymmetric Yang-Mills theory sectors, albeit on the
Coulomb branch obtained from adjoint Higgsing. We
denote such crepant resolutions of all ADE loci to smooth
K3 surfaces by π∶ X0 → X. Throughout we use primes to
denote data of the resolved geometry.
Many definitions carry over straightforwardly. Let us

introduce the crepant resolutions of the local models
πi∶ U0

i → Ui where now U0
i are modeled on the relevant

ALE spaces [233]. Following the reasoning above we are
again lead to consider the Mayer-Vietoris sequence for the
smooth space X0 which is formulated with respect to the
covering

ðXlocÞ0 ¼ ∪i U0
i; ðX∘Þ0 ≡ X0nðXlocÞ0: ð4:26Þ

Here, we remark that strictly speaking, there are no
singularities in X∘ (we already excised them all), but by
abuse of notation we continue to use a prime to denote the
corresponding space obtained by deleting the local models
(be they singular or resolved). The resolution preserves
topology away from the singularities and we have

Hnð∂ðXlocÞ0Þ¼Hnð∂XlocÞ; HnððX∘Þ0Þ¼HnðX∘Þ: ð4:27Þ

With this we find the Mayer-Vietors sequence for the
covering X0 ¼ ðXlocÞ0 ∪ ðX∘Þ0 to contain the exact sub-
sequence14:

0⟶H2ðX∘Þ ⊕ LE ⟶
|0
2 Γ3;19 ⟶

∂
0
2 H1ð∂XlocÞ

¼ ⊕i H1ð∂U0
iÞ ⟶

{1 H1ðX∘Þ⟶ 0: ð4:28Þ

Here LE denotes the lattice of exceptional curves contracted
by the blowdown/projection π∶ X0 → X and Γ3;19 is the K3
lattice of signature (3,19). As a point of notation, later on we
shall need to make reference to L̄E, the minimal primitive
sublattice of H2ðX0Þ ≅ Γ3;19 containing LE, that is, its
saturation.
We now proceed to extract the global form of the non-

Abelian gauge group by piecing together the local data of
13For a suggestion on what the dual E� might be, see for

example [230,231] which proposes that E� is a twisted coho-
motopy theory.

14Here we use the fact that H2ð∂Ui;ZÞ ¼ 0 and K3 surfaces
are simply connected.
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each singularity. We then show how to include contribu-
tions from “delocalized” Uð1Þ factors.

1. Non-Abelian gauge symmetry

We now determine the global form of the non-Abelian
gauge group:

Gloc ¼ G̃loc=Cloc with G̃loc ¼
Y
i

G̃i; ð4:29Þ

where G̃i is the simply connected ADE group with algebra
gi and center subgroup ZðG̃iÞ. Here Cloc is a central
subgroup of ΠiG̃i acting trivially on the spectrum.
In order to characterize Cloc in terms of resolution data of

π∶ X0 → X we require the notion of a thimble and their
compact representatives [234] which we briefly review
now. The action of individual centers is described using the
associated compact representatives and this allows us to
solve for the group Cloc with overall trivial action.
Thimbles: The thimbles T of an ADE singularity

X ¼ C2=Γ, with associated Lie algebra g, are the relative
2-cycles generating H2ðX ; ∂XÞ. Resolving the ADE sin-
gularity to an ALE space X 0, thimbles are identified with
the generators of

hT0i ¼ H2ðX 0; ∂X 0Þ=H2ðX 0Þ: ð4:30Þ

In the context of the smooth ALE space thimbles admit a
presentation in terms of a rational linear combination of
compact curves with coefficients in Q=Z, that is

T0
c ¼

Xr
k¼1

qkek; qk ∈Q=Z ð4:31Þ

with exceptional curves ek associated with nodes in the
Dynkin diagram of g and intersection matrix given by the
Cartan matrix of g, and r ¼ rank g. We list all compact
representatives in Fig. 3. The compact representatives
(4.31) have the following properties:
(1) Intersections: Let T00

c denote a lift of T0
c to some

rational linear combination of exceptional curves
such that T00

c ¼ T0
c modulo 1. With respect to the

ordinary intersection product we haveT00
c · C∈Z for

all curves C∈H2ðX 0Þ. More precisely wk ¼ T00
c · Ck

belongs to the lattice generated by the weight vector
for some specific representation. The relevant rep-
resentations are the fundamental (A-type), spinor
(Dodd-type), spinor and cospinor (Deven-type), 27
(E6-type), 56 (E7-type). In particular T00

c · Σ ¼ 0
modulo 1 for all curves of the ALE geometry X 0.

FIG. 3. We list the ADE Dynkin diagrams and their thimbles. We list compact representatives, dropping the subscript “(c)”. For D2n
Dynkin diagrams, we have two thimbles corresponding to the spinor and cospinor representations. For the E8 Dynkin diagram the
thimbles are trivial and this case is therefore not considered. The ei are the exceptional curves introduced by the resolution of the ADE
singularity to an ALE space.
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(2) Linkings: Following point (1) thimbles T0
c ∈

H2ðX 0;Q=ZÞ have vanishing intersection with all
compact curves modulo 1. Intersections modulo 1
between thimbles therefore give a well-defined
pairing. This pairing is perfect and an extension
of the linking pairing of the boundary ∂X 0 to the bulk
X 0. Given two thimbles T0

1;T
0
2 with boundaries γ1,

γ2 and compact representatives T0
c;1;T

0
c;2 we have

lðγ1; γ2Þ ¼ T0
c;1 ·T

0
c;2 ð4:32Þ

with linking form l∶TorH1ð∂X 0Þ×TorH1ð∂X 0Þ→
Q=Z on ∂X 0 ¼ S3=Γ.

(3) Computation: Let Ξ be the intersection matrix of the
ALE space (i.e., minus the Cartan matrix of the Lie
algebra g) and denote by S, A, B three integral
matrices such that AΞB ¼ S where S is the Smith-
normal form of Ξ. The matrix S is diagonal with
integral entries which are either 1 or the order of the
simple factors of the center subgroup of the asso-
ciated simply connected ADE Lie group. The
columns of A determine the expansion of thimbles
in compact curves (see Fig. 3).

It is often convenient to consider local neighborhoods of
ADE singularities which are not modeled onX ¼ C2=Γ but
rather on the elliptic fibration E ↪ XE → C with a single
Kodaira type singularity at a marked point of the base. We
have an isomorphism of thimbles

Tor H2ðX ; ∂XÞ ≅ Tor H2ðXE; ∂XEÞ ð4:33Þ

whenever geometries engineer identical ADE gauge alge-
bras. Thimbles of XE are referred to as Kodaira thimbles
and constructed from vanishing cycles of the elliptic
fibration modulo identifications due to monodromy (see
e.g., [107,234] for further discussion). Their compact
representatives are identical to those given in Fig. 3.
To see how the compact representatives of thimbles

enter our previous discussion, we begin by making the
homology groups of the singular geometry X explicit
using the resolved data. One immediate consequence of
comparing (4.7) with (4.28) is

H2ðX0Þ
LE

≅ H2ðXÞ; ð4:34Þ

as this quotient is invariant under the contraction of the
lattice LE and therefore computes the second homology
groups of the singular geometry. In particular, denoting by
L̄E the minimal primitive sublattice of H2ðX0Þ ≅ Γ3;19

containing LE (its saturation), we have

L̄E=LE ¼ Tor L̄E=LE ≅ Tor H2ðXÞ: ð4:35Þ

Let eα denote the exceptional curves of π∶ X0 → X then we
can give L̄E as the collection of all rational linear
combinations of exceptional curves contained in the
integral K3 lattice

L̄E ¼ fpαeα ∈Γ3;19jeα ∈LE; pα ∈Qg ð4:36Þ

from which we now derive the presentation

Tor H2ðXÞ ≅ L̄E ⊗ Q=Z ¼ fqαeαjpαeα ∈ L̄E;

qα ¼ ½pα�∈Q=Zg: ð4:37Þ

The nontrivial point is that (4.37) is generated by linear
combinations of thimbles T0

c;i, i.e., only specific rational
linear combinations (mod 1) occur in (4.37). This is
geometrically clear, namely the combinations occurring
are such that the corresponding Ti glue as shown in the
right subfigure of Fig. 1 to an element of Tor H2ðXÞ.
Next we express via thimbles the center action of

ΠiG̃i whose center is the product of the centers ZðG̃iÞ
running over all ADE singularities. A state obtained from
an M2-brane wrapped on the curve C∈H2ðX0Þ with
restriction σi ¼ C ∩ U0

i is rotated by ZðG̃iÞ with phase

exp ½2πiliðγi; ∂σiÞ� ð4:38Þ

where li is the linking pairing on the boundary ∂U0
i ¼

S3=Γi where Γi is the finite group folding the ith ADE
singularity. By property (2) of thimbles this phase is
equal to

exp½2πiT0
c;i · C� ð4:39Þ

where T0
c;i is the compact representative of the thimble T0

i

of the neighborhood Ui.
Compact representatives T0

c;i have vanishing intersec-
tion with exceptional curves modulo 1 by property (1) of
thimbles and therefore we see that elements of Cloc are
geometrically characterized as linear combinations of
thimbles which have vanishing intersections with all
curves in X0 modulo 1.
With this characterization we now show that

Cloc ≅ Tor H2ðXÞ ð4:40Þ

by showing that one side embeds into the other and vice
versa. We begin with showing that Tor H2ðXÞ is a subgroup
of Cloc. Consider the class ½Σ�∈H2ðX0Þ=LE ≅ Tor H2ðXÞ,
which is a sum of thimbles, and an arbitrary representative Σ
thereof, which is an integral element of the K3 lattice. By
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integrality Σ · C∈Z for any representative and therefore
½Σ� · C ¼ 0 modulo 1 for any curve C in the K3 lattice.
Conversely, consider a linear combination of thimbles

with vanishing intersection for all curves C modulo 1.
Consider some lift of these thimbles from coefficients in
Q=Z to Q, resulting in a linear combination of exceptional
curves with rational coefficients. Inserting the latter into
the intersection pairing we obtain a linear form on the K3
lattice mapping intoZ. By self-duality of the K3 lattice the
inserted linear combination of exceptional curves with
rational coefficients must have been an integral element of
the K3 lattice. The initial collection of thimbles therefore
describes an element in L̄E=LE ≅ Tor H2ðXÞ.
Summarizing, we have now established that for the

non-Abelian factors of the gauge group Gfull¼ðGloc×
Uð1Þb2Þ=CExtra, the contribution from the localized ADE
singularities takes the form

Gloc ¼
Y
i

G̃i=Cloc; ð4:41Þ

where Cloc is given by

Cloc ¼ Tor H2ðXÞ ¼ L̄E=LE: ð4:42Þ

2. Abelian gauge symmetries

We now determine the global form of the gauge group

Gfull ¼ ðGloc ×Uð1Þb2Þ=CExtra; ð4:43Þ

via resolution data. Here CExtra is a central subgroup of
Gloc ×Uð1Þb2 acting trivially on the spectrum and we
denote the Lie algebra of GADE by gADE.
The generators of uð1Þb2 are associated in the singular

space X with equivalence classes of free 2-cycles generat-
ing the homology quotient

H2ðXÞ=Tor H2ðXÞ ≅ Zb2 : ð4:44Þ

Blowing up, we find by (4.34) and (4.35), this quotient
extends as

H2ðX0Þ=L̄E ≅ H2ðXÞ=Tor H2ðXÞ: ð4:45Þ

In order to identify the generators of uð1Þb2 in the smooth
geometry note that the contraction X0 → X produces the
gauge algebra gloc × uð1Þb2 only if the states enhancing
gauge symmetry are uncharged under uð1Þb2. These states
result from M2-branes wrapped on the exceptional lattice
LE. Therefore, the supergravity 3-form expanded along an

irreducible curve Π generates an Abelian subalgebra of
uð1Þb2 , denoted as uð1ÞΠ, precisely when

Π∈L⊥
E ≡ fl∈H2ðXÞ such that l · LE ¼ 0g; ð4:46Þ

i.e., the collection of classes in H2ðXÞ which do
not intersect any of the exceptional curves obtained
from blowups. So, consider two generators Π;Π0 ∈L⊥

E

equivalent in H2ðX0Þ=L̄E. Then the difference Π − Π0 is an
element of L̄E ∩ L⊥

E and by the nondegeneracy of the
pairing on LE we conclude Π ¼ Π0. In every class
½Π�∈H2ðX0Þ=L̄E there thus exists a unique irreducible
curve Π∈ ½Π� ∩ L⊥

E .
We can make the generators of uð1Þb2 more explicit

noting the tautology H2ððX∘Þ0Þ ⊂ L⊥
E. This follows simply

from the fact that the exceptional curves are confined to the
subset excised from X0 and therefore cannot intersect cycles
in ðX∘Þ0. However, generally we only have

H2ððX∘Þ0Þ ⊂ L⊥
E ð4:47Þ

and the failure of equality is measured by the cokernel of the
map |02 taken as a map into H2ðX0Þ=L̄E, i.e., restricted such
that the mapping is Zb2 → Zb2 . The appropriate geomet-
rization of the generators of uð1Þb2 are therefore rescaled
linear combinations of the generators of H2ððX∘Þ0Þ. If the
cokernel is isomorphic to

Zn1 ⊕ … ⊕ Znb2
ð4:48Þ

then the appropriate rescaling is by 1=nk for various
generators, the resulting fractional cycles need not be
contained in the K3 lattice. Given these rescaled generators
we can now perform a further change of basis, if necessary,
yielding fractional cycles which we denote by πk which do
not intersect pairwise, only intersect the exceptional curves
and generate uð1Þb2 . Here the index runs as k ¼ 1;…; b2.
We constructed πk from H2ðX∘Þ ¼ H2ððX∘Þ0Þ and can

therefore consider it in both the smooth and singular
geometry. First, consider X0 and note that there are no
integral homology representatives for a πk in the K3 lattice,
it is not a cycle in the smooth geometry, however nk copies
thereof is. Second, consider X and note that πk is a cycle,
albeit with the feature that all its representatives contain
orbifold points modeled on (real) surface singularities C=Γi
with i∈ Ik for the index set Ik running over all ADE
singularities contained in πk. These cycles are stuck at the
ADE loci and cannot be deformed away from these. In the
singular geometry we have that restricting to local models
gives a collection of thimbles
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πkjXloc ¼ −
X
i∈ Ik

niTi: ð4:49Þ

Upon resolving X0 → X, it therefore follows that (with
coefficients in Q=Z)

π̄k þ
X
i∈ Ik

niT0
c;i ð4:50Þ

has vanishing intersection with all curves of the K3 lattice.
Here π̄k is the proper transform of πk. This Q=Z combi-
nation of cycles does not belong to the K3 lattice, however
it nonetheless specifies a Uð1Þ rotation and an element in
the center of ΠiG̃i acting trivially on all states of the
spectrum. This combination therefore belongs to CExtra and
further we find overall

CExtra ≅ coker |02=L̄E ≅ coker |2=Tor H2ðXÞ: ð4:51Þ

C. Decoupling gravity and emergent global symmetries

Having embedded various QFT sectors in a model
coupled to 7D supergravity, it is instructive to consider
the opposite limit where we now decouple gravity, namely
we send the 7D Newton’s constantGN ∼ VolðXÞ−1 → 0. In
this limit, we observe that the various bulk Uð1Þ sym-
metries obtained from reduction of the 3-form potential on
compact 2-cycles also become nondynamical, and as such
can formally be identified with “global symmetries”. More
precisely, theseUð1Þ factors are delocalized across all of X,
and as such they can be viewed as free vector multiplets.
In addition to these delocalized contributions, we of

course also observe the appearance of various local
singularities, as obtained from the individual X i local
models. Observe that for each of these local geometries,
we have a boundary ∂X i, and our analysis of gluing into the
bulk has implicitly specified a bulk profile for the 11D
fields as they reach this boundary. In particular, the
specification of these boundary conditions means that
the decoupling limit has already singled out a “preferred”
polarization for the defect group, and a global form for the
gauge group.
For each such local model there is a corresponding

symmetry topological field theory (SymTFT) which cap-
tures the various generalized symmetries and their anoma-
lies (see e.g., [27–29]). In the context of a string
construction, one can start from the topological terms of
a higher-dimensional theory and perform a reduction on the
boundary geometry [34].
In the present case where we have multiple local sectors,

we can again straightforwardly determine the symmetry
topological field theory (TFT) for the localized sectors
from the local models Xloc following the procedure laid out
in [34]. This results in a disjoint union of symmetry TFTs
ordinarily associated to 7D SYM theories. The 8D TFT

action has a term of the schematic form B2 ∧ dC5, which
controls the braiding statistics for wrapped M2- and M5-
branes. There are additional cubic terms which also mix
with a continuous Uð1Þ 2-form symmetry associated with
the instanton density (as obtained from reduction of the
11D Chern-Simons term). We refer the interested reader
to [34] for additional discussion.
Observe, however, that when completing Xloc to the

global model X any obvious notion of a symmetry TFT
breaks down. That being said, we can also consider an
intermediate limit where we retain some of the data of X as
obtained from gluing all the X i to a common boundary
associated with X∘.
The first step lies in identifying the asymptotic boundary

of Xloc. Initially these are a collection of disjoint lens
spaces, however, to capture the IR emergent symmetries we
should view Xloc as a subset of X. We can enlarge Xloc until
it gives a partition of X and now the lens spaces partially
overlap and are shared between the different components of
Xloc. The asymptotic boundary is thus more appropriately
viewed to be the 3D deformation retract of X∘, or
equivalently (at the level of topological structures), as
simply X∘.
The bulk geometry X∘ supports the extra Abelian Uð1Þ

factors and therefore constitutes a partially nontopological
boundary condition for the symmetry TFT formulated with
respect to Xloc. In particular, this means that our path
integral will also include a sum over possible configura-
tions for theseUð1Þ fields. Observe that in passing from the
global to the local model, the map H2ðXÞ → H1ðXlocÞ of
line (4.7) specifies how these Uð1Þ factors will descend to
torsional elements associated with the defect group of a
single local singularity.
Now, as Xloc is disjoint, the 8D bulk data of the latter is

simply the direct sum of TFTs for each localized sector (see
Fig. 4). However, because all components of ∂Xloc embed
into X∘ these disjoint unions share a common 7D boundary

FIG. 4. The IR symmetry TFT is a junction of the symmetry
TFTs of the local models with partially nontopological boundary
conditions at the junction. The boundary conditions are therefore
physical boundary conditions associated with the 7D SYM
degrees of freedom localized at the ADE singularities and labeled
by Lie algebras gi and partially physical boundary conditions
determined by the Abelian bulk physics of X∘. On the right we
give our sketch for the symmetry TFT associated with a
connected component of Xloc.
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at “infinity” and overall we are left with a junction of
symmetry TFTs.

V. M THEORY ON SPECIFIC K3 SURFACES:
ILLUSTRATIVE EXAMPLE

To illustrate some of the general considerations just
presented, we now turn to some illustrative examples for M
theory on a K3 surface. Indeed, by tuning the hyperkähler
moduli of the K3 surface, we can reach examples with
various localized singularities. It is then instructive to ask
how specific local models embed in global examples. We
begin with a treatment of T4=Z2, and then briefly turn to
further examples of quotients of T4; additional details on
these examples are deferred to the Appendices. As another
class of examples, we also consider elliptically fibered K3
surfaces. In these cases we can also consider F theory on
the same background, which results in an 8D vacuum.

A. X =T4=Z2

To illustrate these general considerations, we now treat in
detail the case X ¼ T4=Z2. Resolving the local A1 singu-
larities of this geometry produces the Kummer surface. The
involution generating Z2 acts on each of the four circles of

T4 ¼ S11 × S12 × S13 × S14 ð5:1Þ

with two fixed points by reflection along an axis. In total
there are therefore 24 ¼ 16 fixed points which in X project
to an A16

1 ADE singularity.
We first lay out a convenient parametrization of the

problem and review the relevant topological structures. We
introduce the labels

α¼ðα1;α2Þ∈fð1;2Þ;ð1;3Þ;ð1;4Þ;ð2;3Þ;ð2;4Þ;ð3;4Þg
β¼ðβ1;β2Þ; β1< β2; α1;α2;β1;β2 all distinct ð5:2Þ

which determine a decomposition of T4 into two two-tori

T2
α ¼ S1α1 × S1α2

T2
β ¼ S1β1 × S1β2 : ð5:3Þ

For each choice of α we obtain an elliptic pencil

T4=Z2 → T2
α=Z2 ≡ P1

α ð5:4Þ

with generic fiber T2
β which at four points of P

1
α degenerates

to a copy of T2
β=Z2 ≡ P1

β. See the right panel in Fig. 5. We
also introduce the label

I ∈Z4
2 ¼ fði; j; k; lÞji; j; k; l∈Z2; i; j; k; l ¼ 0; 1g ð5:5Þ

which gives a parametrization of the fixed points. Given an
elliptic pencil πα we label the fixed points by pairs
Iα; Iβ ∈Z2

2. Given Iα, Iβ we construct the associated value
for I by prescribing its entries at position αi, βi to be the ith
value of Iα, Iβ respectively. For example, if α ¼ ð1; 2Þ and
Iα ¼ ð0; 0Þ and Iβ ¼ ð1; 1Þ then the associated index is
I ¼ ð0; 0; 1; 1Þ. The index Iα runs over the four orbifold
points in P1

α, while Iβ runs over the fixed points projecting
to the point labeled by Iα.
The pencils lifts to the smooth surface X0 and the

labeling of fixed points lifts to a labeling of exceptional
curves. For a given α we obtain the so-called double
Kummer pencil (see Fig. 5),

FIG. 5. The quotient T4=Z2 and its resolution presented as a fibration with base T2=Z2 ≅ P1
α. The exceptional fibers are four copies of

the resolution of a Kodaira type I�0 fiber. The external nodes of the associatedD4 Dynkin diagram are exceptional curves. Blowing these
down results in an A4

1 singularity marked with black dots (right).
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πα∶ X0 → T2
α=Z2 ≡ P1

α

πβ∶ X0 → T2
β=Z2 ≡ P1

β: ð5:6Þ

Overall we have three double Kummer pencils collecting a
total of six distinct elliptic pencils. The resolution X0 → X
replaces the degenerate fibers P1

β;P
1
α by Kodaira type I�0

fibers, that is a collection of five rational curves with
adjacency matrix given by minus the Cartan matrix of the
affine D4 Dynkin diagram. The external nodes are excep-
tional curves. With respect to the elliptic pencil πα we label
the 16 exceptional curves as

eIα;Iβ ; Iα; Iβ ∈Z2
2: ð5:7Þ

The proper transform of the central node of the I�0 fiber is
denoted FIα and projects to the point in P1

α determined by
Iα, see Fig. 6.
By the Z2 quotient we find the generic fiber T2

β to be a
double covering of the degenerate fibers P1

β. In the resolved
geometry the exceptional curves extend this relation to [235]

2FIα þ
X
Iβ ∈Z2

2

eIα;Iβ ¼ T2
β: ð5:8Þ

There are 6 × 4 ¼ 24 such relations parametrized by α and
Iα. The 16 exceptional curves eIα;Iβ and 24 curves FIα

generate the K3 lattice. Here the curve FIα is the proper
transform of the fiber projecting to the fixed point in T2

α=Z2

labeled by Iα (see Fig 6).
A crucial consequence of the relation (5.8) is that

fractional linear combinations of exceptional curves are
also integral classes of the K3 lattice. This follows by
taking the difference of (5.8) for two different values of Iα
for fixed α (and therefore fixed β). We have

FIα − FI0α ¼
1

2

 X
I0β ∈Z2

2

eI0α;I0β −
X
Iβ ∈Z2

2

eIα;Iβ

!
∈Γ3;19; ð5:9Þ

which is argued for from a different point of view by
Nikulin in [236]. This construction gives 6 × ð4

2
Þ ¼ 36

fractional linear combinations of 8 exceptional curves
which are actually integral classes in the K3 lattice.
We next give the intersection matrices for various

2-cycles. The curves of the double Kummer pencil
intersect as

FIα · eI0α;I0β ¼ δIα;I0α ; FIβ · eI0α;I0β ¼ δIβ ;I0β ; ð5:10Þ

following Shioda and Inose [235]. The exceptional
curves and the curves FIα ; FIβ of the pencils have self-
intersections

eIα;Iβ · eIα;Iβ ¼ FIα · FIα ¼ FIβ · FIβ ¼ −2 ð5:11Þ

and the generic torus fibers have intersections

FIα · T
2
α ¼ 1; FIβ · T

2
β ¼ 1; T2

α · T2
β ¼ 2: ð5:12Þ

See Fig 7 for a pictorial presentation for an example with
fixed α.
This completes the framing of the problem. We now

compute the continuous non-Abelian gauge groupGloc of M
theory compactified on T4=Z2. Geometrically, this trans-
lates into computing Tor H2ðXÞ, and applying (4.40)
and (4.29) with G̃loc ¼ SUð2Þ16.
Different aspects of this computation are discussed from

the viewpoint of affine geometry (see Chap. VIII of [237])
and from a lattice perspective (see Chap. 14.3 of [238]).
In the physics literature there is the treatment of
Refs. [239,240] which centers on studying orbifold con-
formal field theories with K3 target space.
We present a method of computation suitable for

generalizations away from the Kummer case. We note
that (4.37) can simply be computed by determining the

FIG. 6. Exceptional I�0 fiber labeled by Iα ∈Z2
2. The label

Iβ ∈Z2
2 runs over all values.

FIG. 7. Double Kummer pencil for the elliptic pencils
T4=Z2 → P1

α and T4=Z2 → P1
β. The choice of α determines β,

there are six choices for α. We display intersections for the choice
α ¼ f1; 2g and β ¼ f3; 4g.

GENERALIZED SYMMETRIES, GRAVITY, AND THE … PHYS. REV. D 109, 026012 (2024)

026012-17



number of linearly independent fractional combinations (5.9) over Z2. This rather simple perspective generalizes very
concretely and straightforwardly to other examples, see Appendix B.
For this we need to consider the coefficient matrix of the right-hand side of (5.9), whose double is

MT4=Z2 ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

1 1 −1 −1 1 1 −1 −1 0 0 0 0 0 0 0 0

1 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0 1 1 −1 −1 0 0 0 0

1 −1 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0

1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0

1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0

1 1 0 0 1 1 0 0 −1 −1 0 0 −1 −1 0 0

1 0 1 0 1 0 1 0 −1 0 −1 0 −1 0 −1 0

1 1 0 0 −1 −1 0 0 1 1 0 0 −1 −1 0 0

1 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1 0

1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0

1 1 1 1 0 0 0 0 0 0 0 0 −1 −1 −1 −1
1 1 0 0 1 1 0 0 0 0 −1 −1 0 0 −1 −1
1 0 1 0 1 0 1 0 0 −1 0 −1 0 −1 0 −1
1 1 0 0 0 0 −1 −1 1 1 0 0 0 0 −1 −1
1 0 1 0 0 −1 0 −1 1 0 1 0 0 −1 0 −1
1 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1
0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 1 1 0 0 1 1 −1 −1 0 0 −1 −1 0 0

0 1 0 1 0 1 0 1 −1 0 −1 0 −1 0 −1 0

0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1 0 0

0 1 0 1 −1 0 −1 0 0 1 0 1 −1 0 −1 0

0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0

0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 1 1 0 0 1 1 0 0 −1 −1 0 0 −1 −1
0 1 0 1 0 1 0 1 0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 −1 −1 0 0 1 1 0 0 −1 −1
0 1 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1
0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1
0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð5:13Þ
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with 16 columns associated to exceptional curves and 36
rows expanding the fractional combinations in (5.9) with
respect to these. Next, compute the Smith normal form
(SNF) which is block diagonal with blocks (in the obvious
notation):

SNFðMT4=Z2
Þ ¼ ðM2016×20ÞT;

M2 ¼ diagðId5×5; 2Id5×5; 06×6Þ; ð5:14Þ

and recall that MT4=Z2
is double the coefficient matrix and

that we are working with mod 1. Therefore the object of
interest is ð1=2ÞSNFðMT4=Z2

Þmod 1 which has 5 nontrivial
entries. We conclude that

L̄E=LE ¼ Tor H2ðXÞ ≅ Z5
2: ð5:15Þ

The global form of the non-Abelian continuous gauge
symmetry is therefore

Gloc ¼ SUð2Þ16=Z5
2; ð5:16Þ

where the embedding of Z5
2 ↪ Z16

2 is described (in a
redundant characterization) by the rows of the coefficient
matrix MT4=Z2

. It is interesting to note that Gloc appears in
the dual description of heterotic string on T3 [241].15

Now we turn to compute the global form of the full
continuous gauge group including Abelian factors. For this
we make the generators and ma ps in the exact sequence
(4.7) explicit. We begin by characterizing the homology
groups. Let us denote the five linearly independent, half
integral exceptional generators of the K3 lattice descending
to generators L̄E=LE as tk with k ¼ 1;…; 5. Denote by Fα

the curves FIα for fixed Iα and varying α. Then, as was
already demonstrated in [242] explicitly by Taimanov

Γ3;19 ¼ hFα; eI; tki ð5:17Þ

and contracting the exceptional lattice we have

H2ðXÞ ≅ hFα; tki ≅ Z6 ⊕ Z5
2: ð5:18Þ

The groups H2ðX∘Þ and H1ðX∘Þ ≅ Z5
2 were computed by

Spanier [243] and in the conventions laid out here note that
the former is generated by the invariant 2-cycles T2

α

H2ðX∘Þ ≅ hT2
αi ≅ Z6: ð5:19Þ

Next consider H1ð∂XlocÞ whose 1-cycles γI ¼ ∂UI ∩ TI
are in correspondence with ADE thimbles whose compact
representatives are T0

c;I ¼ eI=2, so by the listing in Fig. 3
we have

⨁
I ∈Z4

2

hγIi ≅ ⨁
I ∈Z4

2

hT0
c;Ii ≅ ⨁

I ∈Z4
2

�
1

2
eI

�
Q=Z

≅ Z16
2 : ð5:20Þ

Now we discuss the maps. The map |2 is simply given by
decomposing generic torus fiber following (5.8). Let us
note here that exactness of the sequence then follows from
noting that torsional generators in degree two stretch
between ADE singularities as depicted in Fig 1. The
map ∂2jTor H2ðX;ZÞ is given by (5.9) and is extended to
the map ∂2 by generalizing to intersection with the ADE
boundaries ∂Ui.
Let us next make the discussion in Sec. IV B 2 on the

Abelian gauge symmetries explicit in this example. We
have, in the notation introduced there,

Πα ¼ T2
α; πα ¼ FIα ; παjXloc ¼ −

1

2

X
Iβ ∈Z2

2

eIα;Iβ ð5:21Þ

and the correctly normalized Uð1Þ generators are

FIα þ
1

2

X
Iβ ∈Z2

2

eIα;Iβ ¼
1

2
T2
α: ð5:22Þ

Next note that the double of (5.22) for two different values
of Iα for fixed α lie in the same homology class by (5.8) and
consequently the number of Uð1Þ factors is 6 ¼ b2ðXÞ as
counted by α. The map j2∶ Z6 → Z6 ⊕ Z5

2 does not map
into Z5

2 and is multiplication by 2 otherwise. Consequently
Uð1Þ charges are quantized with q ¼ 1=2.
We summarize the above discussion. The sequence (4.7)

reads

0⟶
{2 hT2

αi⟶
|2 hFα;tki⟶

∂2 ⨁
I∈Z4

2

�
1

2
eI

�
Q=Z

⟶
{1 H1ðX∘Þ⟶|1 0

ð5:23Þ

which gives the exact sequence of groups

0⟶
{2 Z6 ⟶

|2 Z6 ⊕ Z5
2 ⟶

∂2 Z16
2 ⟶

{1 Z5
2 ⟶

|1
0: ð5:24Þ

The continuous gauge group is therefore:

Gfull ¼
ðSUð2Þ16=Z5

2Þ ×Uð1Þ6
Z6

2

: ð5:25Þ

The embedding of Z6
2 follows from (5.22). For each Uð1Þ

factor (which are labeled by α) there is a corresponding Z2

quotient by the diagonal center of four SUð2Þ factors
labeled by Iβ and −1∈Uð1Þα.

15We leave a detailed matching between our global gauge
group results and the heterotic calculations for future work.
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B. Further orbifold examples

We now turn to some further examples of orbifolds of
tori. Here, we specify some further orbifold group actions,
and specify the resulting gauge group for these models.
Additional details of these computations are deferred to the
Appendices.
We now consider the orbifolds X ¼ T4=Zn with n ¼ 2,

3, 4, 6. To frame the following discussion we begin by
introducing notation. We split T4 ¼ T2

1 × T2
2, and we

specify T2
k as a quotient C=Λτk , with Λτk is the lattice

generated by 1 and τk, the complex structure modulus of the
T2
k. Denote by zk the local coordinate on T2

k. Consider the
Zn orbifold action ðz1; z2Þ ↦ ðωz1;ω−1z2Þ with ω a
primitive nth root of unity. This group action is well
defined precisely when τi ¼ τ for n ¼ 3, 4, 6 (for n ¼ 2
there are no constraints) and

τ ¼

8>><
>>:

e2πi=6 ðn ¼ 3Þ
e2πi=4 ðn ¼ 4Þ
e2πi=6 ðn ¼ 6Þ

ð5:26Þ

which implies τl ¼ τ̄ ¼ 0 mod τ; 1 for all integers l∈Z.
Next, we determine the subset Fk ⊂ T2

k with nontrivial
stabilizers. The points in Fk with stabilizer subgroup Zm ⊂
Zn where mjn are grouped into orbits by the group action
Zn=Zm ≅ Zn=m. Each orbit is mapped to a single point in
T2
k=Zn. With this the subset F ⊂ T4 containing all points

with nontrivial stabilizers takes the form:

F ¼ fðf1; f2Þjfi ∈Fig ⊂ T4 ð5:27Þ

and again points with identical stabilizer group are grouped
into orbits mapped to a single orbifold point of A-type in
T4=Zn. The rank of the singularity is determined by the
stabilizer group while the number of singular points is
determined by the number of orbits. We have

Fk¼
�
0;
1

2
;
τi
2
;
1þτi
2

�
ðn¼2Þ

Fk¼
�
0;
eπi=6ffiffiffi

3
p ;

2eπi=6ffiffiffi
3

p
�

ðn¼3Þ

Fk¼
�
0;
1

2
;
i
2
;
1þ i
2

�
ðn¼4Þ

Fk¼
�
0;
eπi=6ffiffiffi

3
p ;

2eπi=6ffiffiffi
3

p ;
1

2
;
eπi=3

2
;
1þeπi=3

2

�
ðn¼6Þ ð5:28Þ

which we depict for n ¼ 3, 4, 6 in Fig. 8. In fact the
stabilizer subgroups of each point are determined uniquely
by the integer m. Straightforwardly we now determine the
fundamental domain of T2

k=Zn as a subset of the funda-
mental domain of T2

k (see Fig. 9). It follows that

T2
k=Zn ≅ P1

k ð5:29Þ

is topologically a sphere with 4, 3, 3, 3 orbifold points for
k ¼ 2, 3, 4, 6 respectively. Grouping elements in F with
nontrivial stabilizer subgroups into orbits (see Appendix B
for details), we next determine the A-type singularities of
T4=Zn to be

FIG. 9. Fundamental domains for T2
k=Zn for n ¼ 3, 4, 6. We give the sides to be identified by labeling these as standard with> and≫.

Topologically T2
k=Zn is a sphere.

FIG. 8. Fundamental domains for T2
k=Zn for n ¼ 2, 3, 6. Points fixed by some subgroups Zm ⊂ Zn with mjn are marked black and

labeled by m ≥ 2. The group action Zn groups points labeled by m into orbits containing n=m points.
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⊕i gi ¼

8>>>>><
>>>>>:

A16
1 ðn ¼ 2Þ

A9
2 ðn ¼ 3Þ

A4
3 ⊕ A6

1 ðn ¼ 4Þ
A5 ⊕ A4

2 ⊕ A5
1 ðn ¼ 6Þ:

ð5:30Þ

Next view T4=Zn as a fibration. Consider the double
elliptic pencil

πk∶ T4=Zn → T2
k=Zn ≡ P1

k ð5:31Þ

with generic two-torus fiber F k which at orbifold points z
of the base is folded to the sphere F k;z ¼ π−1k ðzÞ. We
collect such exceptional fibers into the set Sk ¼ fF k;zg
which in the crepantly resolved geometry lift to S0k
containing collections of rational curves whose adjacency
matrix is captured by an extended Dynkin diagram,
explicitly16

S0k ≅

8>>>><
>>>>:

D4 ⊕D4 ⊕D4 ⊕D4 ¼ I�0 ⊕ I�0 ⊕ I�0 ⊕ I�0 ðn¼ 2Þ
E6 ⊕E6 ⊕E6 ¼ IV� ⊕ IV� ⊕ IV� ðn¼ 3Þ
E7 ⊕E7 ⊕D4 ¼ III� ⊕ III� ⊕ I�0 ðn¼ 4Þ
E8 ⊕E6 ⊕D4 ¼ II� ⊕ IV� ⊕ I�0 ðn¼ 6Þ:

ð5:32Þ

In Fig. 10 we depict the relevant extended Dynkin diagrams
and mark the collection of nodes resulting from resolutions
of the A-type singularities listed in (5.30).
Let us now turn to the explicit form of the gauge groups

for different choices of orbifolds. We collect much of the
discussion in the appendices, including combinatorial per-
spectives based on affine structures, Appendix B and A, and
equivariant cohomology computations, Appendix C. The
equivariant cohomology computations are readily applicable

to non-Abelian group actions which we analyze in detail in
Appendix C. We note here, that the analysis based on
equivariant cohomology carries less physical intuition and
obscures data contained in the maps of the key exact
sequence (4.7). However, often this approach is computa-
tionally more convenient.
Case X ¼ T4=Z2: We find the exact sequence

0⟶
{2 Z6 ⟶

|2 Z6 ⊕ Z5
2 ⟶

∂2 Z16
2 ⟶

{1 Z5
2 ⟶

|1
0: ð5:33Þ

The continuous gauge group is

Gfull ¼
ðSUð2Þ16=Z5

2Þ ×Uð1Þ6
Z6

2

: ð5:34Þ

The quotient by Z5
2 on the non-Abelian group G̃loc ¼

SUð2Þ16 is determined by the rows of the matrix MT4=Z2

given in (5.13). The quotient by Z6
2 including the Abelian

factors follows from (5.8).
Case X ¼ T4=Z3: We find the exact sequence

0⟶
{2 Z4⟶

|2 Z4 ⊕ Z3
3⟶

∂2 Z9
3 ⟶

{1 Z3
3⟶

|1
0: ð5:35Þ

The continuous gauge group is

Gfull ¼
ðSUð3Þ9=Z3

3Þ ×Uð1Þ4
Z3

3

: ð5:36Þ

The quotient by Z3
3 on the non-Abelian group G̃loc ¼

SUð3Þ9 is determined by the rows of the matrix MT4=Z3

given in (B17). The quotient by Z3
3 including the Abelian

factors follows from a relation analogous to (5.8).
Case X ¼ T4=Z4: We find the exact sequence

0⟶
{2 Z4 ⟶

|2 Z4 ⊕ Z4 ⊕ Z2
2 ⟶

∂2 Z4
4 ⊕ Z6

2 ⟶
{1 Z4

⊕ Z2
2⟶

|1
0: ð5:37Þ

The continuous gauge group is

Gfull ¼
ð½SUð4Þ4 × SUð2Þ6�=Z4 × Z2

2Þ ×Uð1Þ4
Z2

4 × Z2
2

: ð5:38Þ

FIG. 10. Extended ADE Dynkin diagrams of type D4, E6, E7, E8 and their Kac labels. The node marked P1 is the proper transform of
the exceptional fibers in T4=Zn → T2

k=Zn. Contracting exceptional curves is equivalent of collapsing the A-type subgraphs marked in
the figure which for D, E type results in a sphere with 4, 3, 3, 3 singular points respectively. The Kac label of P1 is geometrized as n.

16For example consider the E8 summand for n ¼ 6 which
projects to 0∈T2

k=Z6. In the singular limit it contracts to a sphere
P1 with three orbifold points of type A5, A2, A1. The minimal
resolution correspondingly attaches chains of 5, 2, 1 spheres to
this central P1 as shown on the right of Fig 10.
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The quotient by Z4 × Z2
2 on the non-Abelian group G̃loc ¼

SUð4Þ4 × SUð2Þ6 is determined by the rows of the matrix
MT4=Z4

given in (B13). Explicit computations show that
this quotient actually only acts on the SUð4Þ4 factor (see
Appendix C). The quotient by Z2

4 × Z2
2 including the

Abelian factors follows from a relation analogous to (5.8).
Case X ¼ T4=Z6: We find the exact sequence

0!{2 Z4⟶
|2 Z4 ⊕Z3 ⊕Z2⟶

∂2 Z6 ⊕Z4
3 ⊕Z5

2⟶
{1 Z6⟶

|1
0:

ð5:39Þ

The continuous gauge group is

Gfull ¼
ð½SUð6Þ × SUð3Þ4 × SUð2Þ5�=Z3 × Z2Þ ×Uð1Þ4

Z3
6 × Z2

:

ð5:40Þ

The quotient by Z3 × Z2 on the non-Abelian group G̃loc ¼
SUð6Þ × SUð3Þ4 × SUð2Þ5 follows from the rows of the
matrix MT4=Z6

given in (B14). The quotient by Z3
6 × Z2

including the Abelian factors follows from a relation
analogous to (5.8).

C. Mordell-Weil group and the Shioda map

The next class of examples we consider are elliptically
fibered K3 surfaces X → P1 with section σ and generic
fiber E. The crepant resolution X0 → X gives the fibra-
tion π∶ X0 → P1.
In the limit where the volume of the elliptic fiber

degenerates to zero size, we obtain a dual description in
terms of F theory on S1 × X, with the S1 decompactifying,
namely an 8D background. Our considerations are topo-
logical, and thus somewhat more coarse than the delicate
factorization conditions which need to be imposed in an
F-theory model to ensure the existence of various Uð1Þ
factors (additional sections of the Mordell-Weil group) and
finite quotients (multisections of the genus-one model). We
can view our M-theory analysis as providing a set of
candidate enhancement points which might be reached
by a further tuning of the associated Weierstrass model.
Indeed, from the perspective of the 8D model compactified
on a circle, we are allowing position dependent scalar vevs
which only retain 7D Lorentz invariance. As such, less
tuning is required.
It is well-known in the F-theory literature that the global

form of the gauge group is determined by the Mordell-Weil
group MWðπÞ [79,202–212] (for reviews see [213,244]).
Instead of discussing explicit elliptic examples we show
how the formalism laid out there arises as a specialization
of Sec. IV B 1. In particular, we explain how this data is
captured by the exact sequence (4.7).

The argument proceeds via the group homomorphism Φ
mapping from the Mordell-Weil group into the Néron-
Severi group of the fibration

Φ∶ MWðπÞ → NSðX0ÞQ; ð5:41Þ

known as the Shioda map [245]. The group NSðX0Þ is the
group of divisors modulo algebraic equivalence and inter-
sections between divisors gives NSðX0Þ the structure of an
integral lattice, NSðX0ÞQ ≡ NSðX0Þ ⊗ Q denotes the exten-
sion of this lattice to the rational numbers.
The fibration and resolution determine the so-called

trivial sublattice T of NSðX0Þ which is generated by the
zero section and all irreducible components of the elliptic
fibers, that is the exceptional curves, and the fiber itself

T ¼ hσ;Ei ⊕ LE ⊂ NSðX0Þ: ð5:42Þ

The Shioda map satisfies ImΦ⊥T [245] and Shioda further
proved the splitting NSðX0ÞQ ≅ T ⊕⊥ ImΦ resulting in the
identification

Free MWðπÞ ≅ ImΦ ≅ NSðX0ÞQ=TQ: ð5:43Þ

Here Free MWðπÞ ¼ MWðπÞ=Tor MWðπÞ. Let us there-
fore consider ImΦ mod T more closely. Shioda explicitly
defined

ΦðsÞ ¼ s− σ− ðs · σ− σ · σÞE−
X
i

ðetiÞA−1
i ðs · eiÞ ð5:44Þ

where i runs over all exceptional reducible fibers, each
with ni þ 1 components, which are labeled by the indices
α; β ¼ 0;…; ni and where the 0th label identifies the affine
node of the Dynkin diagram associated with the ith
exceptional fiber, further

ei ¼ ðei1;…; einiÞ
s · ei ¼ ðs · ei1;…; s · einiÞ

ðAiÞαβ ¼ eiα · eiβ; α; β ≠ 0; ð5:45Þ

where eiα is the αth exceptional curve of the ith exceptional
fiber and Ai is minus the Cartan matrix associated with the
ith exceptional fiber, i.e., the intersection matrix of eiα for
fixed index i. The image of the Shioda map modulo the
trivial lattice is therefore

ΦðsÞ ¼ s −
X
i

ðetiÞA−1
i ðs · eiÞ

¼ s −
X
i

X
αβ

eiβðA−1
i Þαβs · eiα mod T ð5:46Þ

where mod T determines the overall coefficients multi-
plying the exceptional curves eiβ to be mod 1. The torsion
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subgroup of the Mordell-Weil group is in the kernel of the
Shioda map, as it is a group homomorphism over Q, and
therefore we have for t∈Tor MWðπÞ

t¼
X
i

ðetiÞA−1
i ðs · eiÞ ¼

X
i

X
αβ

eiβðA−1
i Þαβs · eiα mod 1:

ð5:47Þ

Next, we compute the inverse matrices A−1
i mod 1. For

example, we have for Kodaira type IV� fibers with Lie
algebra E6 the inverse

A−1
E6

¼

0
BBBBBBBBB@

2
3

1
3

0 2
3

1
3

0

1
3

2
3

0 1
3

2
3

0

0 0 0 0 0 0

2
3

1
3

0 2
3

1
3

0

1
3

2
3

0 1
3

2
3

0

0 0 0 0 0 0

1
CCCCCCCCCA

mod 1: ð5:48Þ

By inspection we clearly see that rows and columns are
multiples of the thimble

TE6
¼ 1

3
e1 þ

2

3
e2 þ

1

3
e4 þ

2

3
e5 ð5:49Þ

with coefficients mod 1. For example, the first row and
column are 2TE6

mod 1, and the second row and column
are TE6

. Here we follow the numbering conventions laid
out in Fig. 3. This holds true for all other ADE-types across
all ranks and we derive that t∈Tor MWðπÞ is related by
the Shioda map with an integral linear combinations of
thimbles

t ¼
X
i

mðtÞ;iT0
c;i mod 1; mðtÞ;i ∈ZNi

: ð5:50Þ

With this we find compact representatives of ADE thim-
bles to determine, in each fiber, the possible fractional
linear combination of exceptional curves the Shioda map
can map onto. Clearing denominators we find that the
collection of integers mðtÞ;i are valued in ZNi

where Ni is
the smallest positive integer such that NiT0

c;i ¼ 0 mod 1.
With this we further conclude Tor MWðπÞ ¼ L̄E=LE,

replicating (4.35) and making contact with our previous
formalism via (4.37). We leave a purely F-theoretic analysis
of the full Mordell-Weil group, including the free part, as an
exercise to the reader.
Let us note how the two sequences

0→H2ðX∘Þ⟶|2 H2ðXÞ→ coker |2 → 0

0→ FreeMWðπÞ→MWðπÞ⟶jTor TorMWðπÞ→ 0 ð5:51Þ

differ. First, the rank of H2ðX∘Þ sets an upper bound for
the number of Abelian symmetries that can be tuned in the
F-theory model. Second, let us consider the mapping of
individual generators when a tuning has occurred. In this
case we have a class in H2ðX∘Þ which contains a represen-
tative that is horizontal with respect to the fibration π. Both
groups clearly count “extra” Uð1Þ’s. However, |2 maps into
H2ðXÞ with a cokernel generically larger than Tor MWðπÞ
and we recall that coker|2 contains information on how
Uð1Þ charges are to be normalized, see Sec. IV B 1.
To explain this distinction from the F-theory perspective,

consider a rational section s generating a free class of the
Mordell-Weil group and an exceptional fiber Fi of X0. The
section s can then intersect Fi in an exceptional curve which
is not the affine node. An integer multiple ns however can
intersect a different exceptional curve and the smallest
positive integer Ni such that Nis intersects the affine node
and then results in a cycle which, when the exceptional
curves are contracted, does not pass through the ith
singularity. Taking the lowest common multiple N ¼
lcmiðNiÞ we find that Ns passes through no ADE singu-
larity giving an element of H2ð∂X∘Þ. The cokernel of |2
modulo Tor H2ðXÞ then determines the list of all such
integers N via the order of its subgroups.
Shioda, realizing this structure, introduced in [245] the

group MWðπÞ0, the subgroup of the Mordell-Weil group of
finite index consisting of those sections which pass through
the same irreducible component in each fiber as the zero
section σ. He further introduced the essential sublattice of
NSðX0Þ as the orthogonal complement of the trivial lattice T

EssðπÞ ¼ T⊥: ð5:52Þ

With this lattice we have MWðπÞ0 ≅ EssðπÞ and we have
that the normalization data (4.51), restricted to the tuned
Abelian gauge symmetries, takes the form in our notation

EssðπÞ�=EssðπÞ ð5:53Þ

where EssðπÞ� is the lattice dual to EssðπÞ.

D. Example: Sen limits for T4=Z2

The metric moduli space of K3 surfaces is connected and
we can therefore pass from the Kummer surface T4=Z2 to
its resolution and then to an elliptic degeneration limit
described by Sen [246,247]. We track these steps in
topology and demonstrate how our formalism is smoothly
deformed onto elliptic data in this example. We use the
notation of Sec. VA.
Consider the fibration πα∶ X → P1

α which has 4 sections
FIβ satisfying παðFIβÞ ¼ P1

α for all Iβ ∈Z2
2. Consider the

resolution X0 → P1
α then the proper transforms of FIβ

intersects 4 exceptional curves eIα;Iβ which project to 4

distinct points in P1
α labeled by Iα ∈Z2

2.
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The Sen limit with respect to the fibration πα and a
choice of section Fβ ≡ FI0β

with fixed β is now described at

the level of topology by contracting all exceptional curves
except eIα;I0β for fixed I0β. The 4 curves FIα which are of

finite volume in T4=Z2 are also contracted. This results in
an elliptic fibration XE → P1

α and 4 degenerate fibers
topologically given by the curves eIα;I0β . The 4 sections

FIβ are collapsed onto the section Fβ. Each curve eIα;I0β
contains a single singularity of ADE type D4, more
precisely it is a Kodaira type I�0 singular fiber. See Fig. 11.
We now determine the gauge group associated with this

geometry by M theory. For this we track the 24 curves FIγ
through the deformation from X0 to XE. These determine
torsional cycles following (5.9). Let us concretely consider
the case α ¼ ð1; 2Þ and take the Sen limit labeled by
I0β ¼ ð0; 0Þ, all other cases follow from relabeling. Then we
have the degenerations

γ ¼ ð12Þ∶ fFIγg → ∅

γ ¼ ð13Þ; ð23Þ; ð24Þ; ð14Þ∶ fFIγg → fFð1Þ
γ ; Fð2Þ

γ g
γ ¼ ð34Þ∶ fFIγg → fFβg ð5:54Þ

where Iγ with γ ¼ ð12Þ indexes the vertical curves col-
lapsed by the limit, with γ ¼ ð34Þ indexes the four sections
which are degenerated to the zero section and other values
of γ gives mixed cases. Torsional 2-cycles of XE for this
new lattice of vanishing cycles are computed as in (5.9) as
differences of the curves on the right-hand side in (5.54).

The relevant combinations are Fð1Þ
γ − Fð2Þ

γ of which there
are four and of which two are independent [the analysis

proceeds via a coefficient matrix as in (5.13) and its Smith
normal form]. We deduce

Tor H2ðXEÞ ≅ ht1; t2i ≅ Z2
2: ð5:55Þ

The torsional cycles Fð1Þ
γ − Fð2Þ

γ stretch diagonally between
all D4 singularities (orientations can be neglected as we are
working over Z2). See Fig. 12. The non-Abelian gauge
group is now

Gloc ¼ Spinð8Þ4=Z2
2 ð5:56Þ

where Z2
2 is the diagonal of the Spin(8) factors.

The free 2-cycles follow immediately, we have the
section Fβ, the fiber class (equivalently eIα;I0β for some

Iα, different choices are homologous) and four classes FðiÞ
γ

(for some fixed i, different choices differ by torsion) with
γ ¼ ð13Þ; ð23Þ; ð24Þ; ð14Þ, therefore

FIG. 12. Cycles FðiÞ
γ projected to the base P1

α with α ¼ ð1; 2Þ.
The black dots are the projection of the four I�0 fibers and labeled
by their values for Iα ∈Z2

2. This follows studying the intersection

of the lifts FðiÞ
γ to the smooth geometry with the curves EI .

FIG. 11. The Sen limit of the resolution ðT4=Z2Þ0 to an elliptic model with four D4 singularities (right). The exceptional fibers in
ðT4=Z2Þ0 are four copies of the resolution of a Kodaira type I�0 fiber which we degenerate to the associated elliptic surface singularity by
shrinking all but one of the edge nodes in each exceptional fiber of the left-hand side.
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H2ðXEÞ ≅ Z6 ⊕ Z2
2: ð5:57Þ

The boundary map ∂2 also follows in much the same way.
The fiber class and Fβ are in the kernel. Conventions can be

chosen such that the cycle FðiÞ
γ is mapped for γ ¼ ð13Þ; ð24Þ

and γ ¼ ð23Þ; ð14Þ to the spinor and cospinor thimble of the
relevant D4 singularity. There are thus four factors of Z2

[two spinor (s), two cospinor (c)] sitting diagonally in the

center ZðsÞ
2 × ZðcÞ

2 of pairs of Spin(8) factors which can be
undone by Uð1Þ rotations. We therefore find overall

Gfull ¼
Spinð8Þ4=Z2

2 ×Uð1Þ4
Z4

2

× Uð1Þ2 ð5:58Þ

in M theory.
We can also move via circle compactification to F heory.

The gauge group becomes

Gfull;F-theory ¼ ðSpinð8Þ4=Z2
2 ×Uð1Þ4Þ=Z4

2; ð5:59Þ

i.e., we lost the Abelian Kaluza-Klein factor associated via
the zero section to the metric and the Abelian factor
associated with the fiber which becomes a 2-form gauge
field. These results match those derived in [79,248] via
string junction analysis of the Mordell-Weil group of the
elliptic model.
Finally, let us give the sequence (4.7) for the above

discussion

0→ hT2
γi⟶

|2 hT2
β;Fβ;F

ðiÞ
γ ; t1; t2i⟶

∂2 ⨁
Iα∈Z2

2

hðT0
cÞðsÞIα

; ðT0
cÞðcÞIα

i

⟶
{1 H1ðX∘Þ→ 0 ð5:60Þ

where T2
β ¼ E is the elliptic fiber and ðT0

cÞðc;sÞ are compact
representatives of the spinor and cospinor thimbles [which
we write by isomorphisms as (5.20)]. This gives the exact
sequence

0 → Z2 ⊕ Z4⟶
|2 Z2 ⊕ Z4 ⊕ Z2

2⟶
∂2 ðZ2

2Þ4 ⟶
{1 Z2

2 → 0:

ð5:61Þ
VI. M THEORY ON A CALABI-YAU

THREEFOLD: 5D VACUA

We now turn to examples of 5D vacua as obtained from
M theory on a Calabi-Yau threefold. There are many
possible compact models, as well as local canonical
singularities. In the 5D effective theory, such singularities
can be interpreted as 5D SCFT sectors. It is worth noting
that while there has been substantial progress in classifying
5D SCFTs (see e.g., [249–255] and [256] for a review),
there is as yet no systematic classification of canonical
singularities for threefolds available. As a general comment,
in what follows we again focus on contributions to defects

and symmetry operators obtained from wrapped branes. As
such, contributions from discrete isometries will generally
be deferred to future work.
With this in mind, we shall mainly focus on some simple

illustrative examples of Calabi-Yau threefolds with 5D
SCFT sectors. One case of interest which readily embeds in
compact models is the local geometry C3=Z3. An example
of this sort, and the nondecoupling between different
sectors in a 5D global model was considered in [200].
Our aim here will be to show how various global symmetry
structures of each canonical singularity couple to gravity
and are trivialized.
As another example, we consider singularities of the

formC3=Z4. In this case we have both codimension 4 and 6
singularities, the latter arising as enhancement along the
former, and the former supported on a noncompact cone
C=Z2 ⊂ C3=Z4. In any global model the locus of codi-
mension 4 singularities is necessarily compactified
whereby the corresponding non-Abelian flavor symmetry
is gauged. The local model C3=Z4 engineers a 5D SCFT
with a 2-group symmetry and embedding in a compact
model allows us to track the fate of this generalized
symmetry once coupled to gravity.
As a last class of examples we consider elliptic Calabi-

Yau threefolds π∶X → Fn with Hirzebruch surface base and
tune a non-Higgsable cluster on the base curve of self-
intersection −n. Such geometries can exhibit a nontrivial
Mordell-Weil group MWðπÞ and engineer 5D gauge
theories, and it is well known that MWðπÞ determines
the global form of the gauge group. The torsional, discrete
subgroup thereof, in these particular examples, was dis-
cussed in [58] and here we reproduce and extend their
results via cutting and gluing arguments.
Before proceeding to these specific examples, let us

make a few additional comments on some features of these
5D models which apply in general.
Much as in our discussion of 7D vacua, we can also

analyze possible emergent global symmetries as gravity is
decoupled. Indeed, we can start from the compact geometry
X and consider the decompactification limit where the 5D
Newton’s constant GN ∼ VolðXÞ−1 → 0. There are various
ways we can achieve this when there is more than one
Kähler modulus, and this is indeed the case in the models
we consider. We can of course fully decouple each of the
local models, and when we do so, we observe the emer-
gence of local models, with their corresponding symmetry
TFTs. In each symmetry TFTwe encounter terms in the 6D
action of the schematic form B2 ∧ dC3, as dictated by the
braiding statistics of wrapped M2- and M5-branes wrapped
on internal cycles. There are additional terms, as obtained
from reduction of the topological terms of the 11D super-
gravity action, see [34] for additional discussion. One can
also consider multiple sectors which are coupled to one
another, as specified by including nontopological boundary
conditions, much as in our analysis of Sec. IV.
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Another interesting feature of these 5D supergravity
models is the generic appearance of 5D Abelian Chern-
Simons terms (see Appendix E). Following [160], it was
found that in a pure field theory limit with such terms, there
is a global 2-form symmetry which suffers from an Aharony-
Bergman-Jefferis-type anomaly. Constructing the associated
symmetry operators, there is a close analog to the analysis of
[114,117] where the associated symmetry operators can
support a fractional quantum Hall state. The resulting fusion
rules thus yield a noninvertible symmetry. On general
grounds, one expects such noninvertible symmetries to be
absent in gravity, if only because one does not expect global
symmetries.17

It is nevertheless informative to see how this works in
practice. Although one might wish to contemplate an
“approximate” global symmetry which appears in the
infrared, the divergence of the 2-form current is now of
the schematic form d � j2 ∼ F ∧ F þ TrðR ∧ RÞ þ…
where TrðR ∧ RÞ refers to the Pontryagin density of the
tangent bundle and the “...” may also include various non-
Abelian gauge group factors. Such factors do not permit the
construction of the same sort of “fractionalized states” used
in [114,117,160]. Additionally, there is not even a clean
decoupling limit where this 2-form symmetry really
emerges; in the limit where gravity decouples the Uð1Þ
factors again become nondynamical anyway, so there is no
2-form current we can construct in the first place.18

That being said, the appearance of these Chern-Simons
couplings also generically leads to the appearance of a
continuous (gauged) 2-group symmetry. This is because we
have gauged Uð1Þ 1-form and 2-form symmetries from
reduction of the (magnetic) M-theory 6-form potential on
harmonic 4-forms and 3-forms on X. The Chern-Simons
terms produce a nontrivial 2-group structure which one
might formally wish to call a “3-group” (even though the
structure is isomorphic to a 2-group).
Having stated these general considerations, we now turn

to some explicit examples.

A. Example: T6=Z3

The first Calabi-Yau threefold example we consider is
X ¼ T6=Z3. M theory on this Calabi-Yau orbifold engi-
neers 27 copies of the 5D Seiberg SCFT E0 [257], each
localized at codimension 6 (i.e., pointlike) singularities in
X. We now discuss how the higher symmetry structures of
these 27 local SCFT sectors trivialize and correlate when
completed to the global model X. In the process we
determine the extra, delocalized Uð1Þ symmetries stretch-
ing between the local models.

1. Local models

In order to prepare the discussion let us briefly supply
some further details on the geometry T6=Z3, which we will
be cutting apart, and establish notation. Much computa-
tional detail is postponed to Appendix D 1 to which we
make reference throughout.
To formulate the quotient split the six-torus as

T6 ¼ T2
1 × T2

2 × T2
3; ð6:1Þ

where each two-torus of complex structure τk ¼
expð2πi=3Þ is parametrized by the complex coordinate
zk where k ¼ 1, 2, 3. The Z3 group action is zi ↦ ωzi with
root of unity ω3 ¼ 1 preserving each of the three two-tori.
Overall there are 27 fixed points in T6 which projected to X
give 27 singularities. Each singularity is modeled locally on
X ¼ C3=Z3. We note that the orbifold admits a crepant
resolution X0 → X in which each local copy of C3=Z3 is
replaced with the line bundle Oð−3Þ → P2 [258].
We begin by discussing the generalized global sym-

metries of the SCFT sectors associated with each local
model X ¼ C3=Z3 whose smooth, asymptotic boundary is
∂X ¼ S5=Z3. The homology groups of the latter are

HnðS5=Z3Þ ≅ fZ;Z3; 0;Z3; 0;Zg: ð6:2Þ

We focus on the contributions to the defect group obtained
from M2-branes wrapped on cones of torsional 1-cycles,
and their magnetic duals obtained from M5-branes
wrapped on cones of torsional 3-cycles:

D ⊃ ðZ3Þð1ÞM2 ⊕ ðZ3Þð2ÞM5; ð6:3Þ

where the raised index denotes the spacetime dimension-
ality of the defect and the lowered index the membrane
used to construct it. One can in principle also consider M5-
branes wrapped on the torsional 1-cycle, which would
result in a defect charged under a discrete 4-form symmetry
ðZM5Þð4Þ, as well as over the entire space X , which would
result in a defect charged under a continuous 0-form

symmetry Uð1Þð0ÞM5. The 4-form symmetry is dual to a
−1-form symmetry as associated with a discrete parameter
which is decoupled from the SCFT. Likewise, the Uð1Þ 0-
form symmetry is also decoupled. In what follows, we
therefore ignore these contributions. As a passing remark,
there is also a Z3 symmetry which comes from permuting
the three coordinates of C3. This also decouples, and so we
again ignore it in both the local and global models.
Restricting attention to the 1-form and magnetic dual

2-form symmetries, observe that the corresponding operators
for the 1-form symmetries are constructed (see [134]) from
M5-branes wrapping the torsional 3-cycles “at infinity”,
while the operators for the 2-form symmetries are

17Additionally, it is expected that gravitational instantons
explicitly break noninvertible symmetries to a maximal invertible
symmetry [12].

18Gravity giveth and gravity taketh away.
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constructed fromM2-branes wrapping the torsional 1-cycles
“at infinity”.
With defect and symmetry operators in hand the next

step lies in fixing a choice of polarization, as specified by a
maximal collection of mutually local subsets of defects or,
equivalently, a maximal subset of commuting symmetry
operators. In principle there can be anomalies in the field
theory which obstruct certain choices, and a convenient
way to catalog the possible consistent choices is to consider
the associated symmetry TFT.
Indeed, the E0 SCFT has a pure 1-form symmetry

anomaly, which follows from the topological terms of
11D supergravity and the topological invariant:

lðS3=Z3 · S3=Z3; S3=Z3Þ ¼
1

3
ð6:4Þ

where l and “·” denote the linking form and intersection
pairing on S5=Z3 respectively. Here the intersection com-
putes as S3=Z3 · S3=Z3 ¼ S1=Z3 which is the generator of
H1ð∂XÞ and (6.4) follows. Alternatively, crepantly resolv-
ing X , this anomaly can be recast as the triple intersection
of the fractional divisor P2=3 which yields (see [34])

P2=3 · P2=3 · P2=3 ¼ 1

3
: ð6:5Þ

It follows that for a single copy of the E0 theory only
electric polarizations are consistent.
Multiple copies of the E0 theory however contain

diagonal, anomaly free subgroups and in such cases mixed
polarizations/gaugings of 1-form symmetry subgroups are
possible. We will see that the global geometry X naturally
specifies such diagonal subgroups among its 27 local
sectors.

2. Gluing to global models

We now proceed to glue together various local models to
each a compact model, again making heavy use of the
Mayer-Vietoris sequence. For this we consider local,
contractible neighborhoods UI in X centered on the 27
singularities, labeled by I∈Z3

3, and introduce our notion of
local model

Xloc ¼ ∪
I
UI; X∘ ¼ XnXloc: ð6:6Þ

The sequence is now formulated with respect to the
covering X ¼ Xloc ∪ X∘. In particular we extract two exact
subsequences:

0→H4ðX∘Þ⟶|4 H4ðXÞ⟶
∂4 H3ð∂XlocÞ⟶{3 Tor H3ðX∘Þ→ 0

0→H2ðX∘Þ⟶|2 H2ðXÞ⟶
∂2 H1ð∂XlocÞ⟶{1 Tor H1ðX∘Þ→ 0:

ð6:7Þ

This parallels the K3 analysis, which resulted in (4.7),
however, now we derive a pair of dual sequences, rather
than a self-dual sequence: the symmetry operators appear-
ing in one sequence act on defects appearing in the other.
Before analyzing the physics of (6.7) we evaluate the

sequences. First note that clearly Hnð∂XlocÞ ≅ Z27
3 for both

n ¼ 1, 3 from the 27 singularities C3=Z3 by (6.2). We
compute

HnðT6=Z3Þ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Z n ¼ 6

0 n ¼ 5

Z9 ⊕ Z4
3 n ¼ 4

Z2 n ¼ 3

Z9 ⊕ Z17
3 n ¼ 2

0 n ¼ 1

Z n ¼ 0;

ð6:8Þ

in Appendix D 1 generalizing the discussion of Sec. V B.
There we also argue

H2ðX∘Þ ≅ Z9; H4ðX∘Þ ≅ Z9; ð6:9Þ

and compute coker |4 ¼ Z10
3 and coker |2 ¼ Z23

3 . Putting
everything together we thus find the pair of sequences to
evaluate as

0→H4ðX∘Þ⟶|4 H4ðXÞ⟶
∂4 H3ð∂XlocÞ⟶{3 TorH3ðX∘Þ→ 0

0→ Z9⟶
|4 Z9 ⊕ Z4

3⟶
∂4 Z27

3 ⟶
{3 Z17

3 → 0

0→H2ðX∘Þ⟶|2 H2ðXÞ⟶
∂2 H1ð∂XlocÞ⟶{1 TorH1ðX∘Þ→ 0

0→ Z9⟶
|2 Z9 ⊕ Z17

3 ⟶
∂2 Z27

3 ⟶
{1 Z4

3 → 0: ð6:10Þ

These results pass the duality check

Tor H1ðX∘Þ ≅ ðTor H4ðXÞÞ∨ ≅ Tor H4ðXÞ
Tor H3ðX∘Þ ≅ ðTor H2ðXÞÞ∨ ≅ Tor H2ðXÞ ð6:11Þ

which follows from the long exact sequence in relative
homology, excision, deformation retraction and Poincaré-
Lefschetz duality, much as in (4.13). Equivariant cohomol-
ogy computations are consistent with these results.
The duality relations (6.11) make the physics strikingly

clear. In the field theory sector of the compactification we
have 27 candidate 1-form and 2-form symmetry operators
resulting from M5- and M2-branes wrapped on H3ð∂XlocÞ
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andH1ð∂XlocÞ respectively. Upon gluing the local sectors to
the bulk X∘ we introduce dynamical particles and strings
via M2-branes and M5-branes wrapping the cycles

M2’s∶ H2ðXÞ ≅ Z9 ⊕ Z17
3 ; M5’s∶H4ðXÞ ≅ Z9 ⊕ Z4

3:

ð6:12Þ

The torsional factors break 17 copies of the candidate
1-form symmetries and 4 copies of the candidate 2-form
symmetries. The free factors absorb another Z6

3 each. We
therefore produce the 0-form gauge group

Gfull ¼
Z27

3 =Z4
3 ×Uð1Þ9
Z6

3

≅
Z23

3 ×Uð1Þ9
Z6

3

≅ Z17
3 ×Uð1Þ9;

ð6:13Þ

which involves an overall quotient by Z10
3 ≅ Im ∂4. The

Z4
3 ≅ Tor H4ðXÞ quotient is generated by cycles which

stretch between 18 (divisible by 3) singularities and are
therefore non-anomalous and can be readily gauged (as
predicted by the geometry). The maps |2; |4 again deter-
mine normalizations. Lastly, there is also aZ3 permutation
symmetry of the different T2 factors which we have
suppressed.
For completeness, let us now enumerate the various

p-form gauge groups in the compact model. The case
p ¼ 0 was already covered in (6.13) and we now discuss
the cases p ¼ 1, 2. The respective gauge symmetry groups
are read off straight from geometry and reduction of the
6-form potential on harmonic representatives of H4ðXÞ
and H3ðXÞ:

Gð1Þ
full ¼ Z4

3 × Uð1Þ9 ð6:14Þ

Gð2Þ
full ¼ Uð1Þ2: ð6:15Þ

The objects charged under the 1-form symmetry are
effective strings (1-branes) obtained from M5-branes
wrapped on H4ðXÞ, and the objects charged under the
2-form symmetry are membranes (i.e., 2-branes) obtained
from M5-branes wrapped on H3ðXÞ.
We now confirm that in the model coupled to gravity, all

of the above symmetries are indeed gauged or broken. For
this, start by considering 27 decoupled E0 theories with
electric polarization and overallZ27

3 1-form symmetry. Now,
extend the field theory sector according to the gluing
prescription above and introduce matter breaking the
1-form symmetry subgroup Z17

3 leaving a 1-form symmetry
group Z10

3 . Further, we are also asked to introduce a Uð1Þ9
gauge theory sector and this absorbs a Z6

3 1-form symmetry
group exactly as in the discussion around (4.25). The
remaining Z4

3 1-form symmetry is gauged and dualized
to a quantum magnetic Z4

3 2-form symmetry. The geometry

then accounts for the absence of this symmetry as well since
it is explicitly broken by the dynamical strings given by
M5-branes wrapping TorH4ðXÞ ¼ Z4

3. Overall no global
symmetries remain.

B. Example: T6=Z4

In this section we analyze the orbifold T6=Z4. Singular
strata now occur in both codimension 4 and 6, the structure
of which is summarized in Fig. 13. M theory on T6=Z4

engineers 16 5D SCFT sectors with local geometry C3=Z4.
These exhibit four suð2Þ4 flavor symmetries and the
embedding into the global geometries compactifies the
flavor branes of each suð2Þ4 group into a single locus
gauging it in the process. Further there are 6 copies of 7D
SYM theory with Lie algebra suð2Þ compactified to 5D on
a T2. We will again be interested in how the global model
trivializes and correlates the higher symmetry structures of
the local SCFT sectors. Further, we again determine the
extra, delocalized Uð1Þ symmetries stretching between the
local models.
To frame the analysis to follow let us lay out notation and

introduce various local models. As before split the six-torus
T6 into three two-tori T2

k here with complex structure τk ¼ i
and complex coordinate zk where k ¼ 1, 2, 3. TheZ4 group
action is

ðz1; z2; z3Þ ↦ ðωz1;ωz2;ω−2z3Þ ð6:16Þ

with ω ¼ i. The orbifold T6=Z4 contains six two-tori T2

worth of A1 singularities and four spheres T2=Z2 worth of
A1 singularities which enhance at four points to codimen-
sion 6 singularities (see e.g., [259] for additional discus-
sion). There are therefore a total of 16 singularities modeled
on C3=Z4. With this we find the local models centered on
codimension 4 singularities to take one of two forms:

FIG. 13. Illustration of T6=Z4 (blue oval). There are six A1

singularities with topology T2, and four A1 singularities with
topology T2=Z2 ≅ P1 (black diamonds). Each of the latter
codimension 4 singularities have four enhanced singularities
locally of the form C3=Z4 (red stars). Overall there are thus 16 5D
SCFT sectors throughout the geometry.
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X ð1Þ
4 ¼ ðC2 × T2Þ=Z4 ¼ ðC2=Z2 × T2Þ=Z2;

X ð2Þ
4 ¼ C2=Z2 × T2 ð6:17Þ

while the local models centered on the codimension 6
singularities are

X 6 ¼ C3=Z4: ð6:18Þ

Four copies of X6 admit a gluing to one copy of X ð1Þ
4 .

1. Local models

We now discuss the physics of the various local models.
Codimension six local models: C3=Z4

The building block X 6 is the local model for the
16 codimension 6 singularities contained in T6=Z4. In
M theory X6 engineers a (relative) 5D SCFT which we
denote as

T C3=Z4
− ½suð2Þ�; ð6:19Þ

and on its Coulomb branch, choosing an electric polariza-
tion, this theory admits a presentation as the 5D gauge
theory SUð2Þ0. The SCFT has flavor symmetry group
SOð3Þ (above we denoted its algebra suð2Þ ≅ soð3Þ) which
participates in the 2-group symmetry19:

0 → Z2 → Z4 → SUð2Þ → SOð3Þ → 1: ð6:20Þ

The geometry detects the centers of these groups via

0 → H1ð∂XÞ∨ → H1ð∂X ∘Þ∨
→ H1ð∂TKÞ∨ → H2ð∂X ∘Þ∨ → 0

0 → Z2 → Z4 → Z2 → 0 → 0 ð6:21Þ

where ∨ denotes the Pontryagin dual, as homology groups
characterize defects and symmetry groups are the dual
objects acting on defects. Here ∂X ∘ denotes the local model
boundary minus the codimension 4 singularities K ⊂ ∂X
and TK ⊂ ∂X is a tubular neighborhood of the codimension
4 singularities. The sequence 0 → Z2 → Z4 → Z2 → 0
therefore states that taking two copies of a 5D defect is
not trivial, rather it gives a 7D flavor defect [91]. For further
details see [106,107].
Codimension four local models: ðC2=Z2 × T2Þ=Z2

We begin by discussing the physics of the building block

X ð1Þ
4 . In M theory X ð1Þ

4 engineers a (relative) theory which
we denote as

ð6:22Þ

where the four codimension 4 loci contained in four copies
ofX6 ¼ C3=Z4 glue to a single compact locus T2=Z2 of A1

singularities. The flavor branes in each copy of X6 are
compactified and the flavor symmetry is therefore gauged,
resulting in the central node above.
Let us derive the spectrum of defects from geometry. The

asymptotic boundary of X ð1Þ
4 can be considered as a

fibration over the singular locus

∂X ð1Þ
4 ¼ ðS3=Z2 × T2Þ=Z2 → T2=Z2 ð6:23Þ

with generic fibers given by lens spaces S3=Z2. There are
four orbifold points in T2=Z2 where the fiber folds to
S3=Z4 and going around any of these the fiber is twisted by
−1∈Z2. From here we compute via a Mayer-Vietoris
sequence

Hnð∂X ð1Þ
4 Þ ¼ fZ;Z4 ⊕Z3

2;Z;Z⊕Z4 ⊕Z3
2;0;Zg: ð6:24Þ

Let us identify the 1-cycle generators of H1ð∂X ð1Þ
4 Þ in

order to visualize the above result. Consider the four
exceptional fibers ðS3=Z4Þi which contain the Hopf fibers
γi ¼ ðS1=Z4Þi, where i ¼ 1, 2, 3, 4. Each of these generates
a copy of Z4 within its exceptional fiber. Now, for all i, the
double 2γi is homologous to the Hopf fiber of the generic
lens space fiber S3=Z2 and therefore we have 2γi − 2γj ¼ 0

in the boundary. With this it follows

H1ð∂X ð1Þ
4 Þ≅ hγ1;γ2;γ3;γ4i=h2γi −2γji≅Z4 ⊕Z3

2 ð6:25Þ

immediately giving the result.
Now, the full defect group straightforwardly follows

from (6.24). We again focus on the torsional contributions
to the 1-form and 2-form symmetries:

D ⊃ ðZ4 ⊕ Z3
2Þð1ÞM2 ⊕ ðZ4 ⊕ Z3

2Þð2ÞM5; ð6:26Þ

with notation as in line (6.3).
Let us now focus on line defects and discuss the

consequence of the 2-group symmetry (6.20) when gluing
four copies of X6 to X ð1Þ

4 . For this, we trace the geometric
data of (6.21) through the gluing. The first observation is

that the boundary ∂X ð1Þ
4 does not glue from the boundaries

of ð∂X6Þi, as this would contain singular loci, but rather

ð∂X °
6Þ1 ∪ ð∂X °

6Þ2 ∪ ð∂X °
6Þ3 ∪ ð∂X °

6Þ4 ¼ ∂X ð1Þ
4 : ð6:27Þ

19In principle there are can be an additional correlated action
on the R-symmetry group. This is known to occur in other related
examples such as various 6D and 4D SCFTs [125].
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To make this manifest we can decompose the base T2=Z2

of (6.23) into 4 patches which each contain an orbifold
point. The fibration restricted to each patch is then
topologically a copy of ∂X °

6. The 1-cycles γi generate
H1ðð∂X °

6ÞiÞ and we can thus rewrite (6.25) as

H1ð∂X ð1Þ
4 Þ ≅ ⨁

4

i¼1

H1ðð∂X °
6ÞiÞ=h2γi − 2γji: ð6:28Þ

This also immediately suggests a physically more intuitive
presentation. Let us introduce the 5D line operator, con-
structed via an M2-brane wrapping as

W ¼ M2ðConeð2γiÞÞ ð6:29Þ

which is independent of the index i. This is the Wilson line
in the fundamental representation of the gauged flavor
symmetry. We also introduce the lines

Li ¼ M2ðConeðγiÞÞ ð6:30Þ

which are the line defects localized to each codimension
6 singularity. From the perspective of any codimension
6 singularity the line W is the 7D flavor line obtained as
W ¼ 2Li. However, after the gluing, the flavor symmetry is
gauged and W is a genuine 5D line defect.
The 2-group structure now tells us how the flavor line

defects extend 5D line defects Li. Indeed, observe that we
have

hW;L1; L2; L3; L4i ≅ Z4 ⊕ Z2 ⊕ Z2 ⊕ Z2

≠ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2; ð6:31Þ

that is, we get a Z4 summand as obtained from the
extension 0 → Z2 → Z4 → Z2 → 0 rather than just aZ2 ⊕
Z2 summand, as indicated in the bottom line.
Codimension four local models: C2=Z2 × T2

The physics of the local model X ð2Þ
4 ¼ C2=Z2 × T2 is

simply that of 7D suð2Þ SYM theory compactified on T2.
All defects follow from

Hnð∂X ð2Þ
4 Þ≅fZ;Z2⊕Z2;Z⊕Z2

2;Z⊕Z2;Z2;Zg ð6:32Þ

which follows from the Künneth formula.

2. Gluing local models

Let us combine all codimension 4 local models into

Xloc ¼ ∪
4

k¼1
X ð1Þ

4;k ∪ ∪
6

l¼1
X ð2Þ

4;l ð6:33Þ

where the contribution from the X ð1Þ
4;k collects the 16

codimension 6 singularities modeled on C3=Z4 into groups

of four. Codimension six singularities are grouped accord-
ing to which connected component of the codimension 4
locus they embed into. For X ¼ T6=Z4 we now consider the
Mayer-Vietoris sequence for the covering X ¼ Xloc ∪ X∘,
where X∘ is the complement of all singularities.
Above we computed the homology groups for Xloc. In

Appendix D 2 we discuss in detail the fibration

T4=Z2 ↪ T6=Z4 → T2=Z2; ð6:34Þ

which is induced by projection onto the third two-torus.
This fibration presents T6=Z4 as a fibration of Kummer
surfaces away from four orbifold points where the Kummer
surface T4=Z2 folds to T4=Z4. Using the homology groups
for these fibers as computed in Sec. V B, we derive in
Appendix D 2 the homology groups

HnðT6=Z4Þ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Z n ¼ 6

0 n ¼ 5

Z5 ⊕ Z4 ⊕ Z4
2 n ¼ 4

Z4 ⊕ Z4
2 n ¼ 3

Z5 ⊕ Z4 ⊕ Z17
2 n ¼ 2

0 n ¼ 1

Z n ¼ 0

ð6:35Þ

with Betti-numbers bn ¼ f1; 0; 5; 4; 5; 0; 1g. Finally, we
also require the homology groups of X∘ to complete all
entries of the Mayer-Vietoris sequence. For this we con-
sider duality relations. First, note that, by Poincaré-
Lefschetz duality and deformation retraction,

HnðX∘Þ ≅ H6−nðX∘; ∂X∘Þ ≅ H6−nðX; SingðXÞÞ ð6:36Þ

for all n. Here the singular set SingðXÞ consists of six two-
tori T2 and four spheres T2=Z2. We thus obtain

HnðSingðXÞÞ ≅ fZ6 ⊕ Z4;Z12 ⊕ 0;Z6 ⊕ Z4; 0; 0; 0; 0g
ð6:37Þ

and from here we deduce, via the long exact sequence in
relative homology for the pair ðX; SingðXÞÞ and the
universal coefficient theorem,

Tor HnðX∘Þ ≅ ðTor H5−nðXÞÞ∨ ≅ Tor H5−nðXÞ: ð6:38Þ

We emphasize that (6.38) implies, as in all cases
analyzed prior and via identical arguments, that no global
symmetries of the field theory sector remain after gluing.
We now determine the gauge groupGfull. First let us give

the naive answer:

G̃⋆
full ¼ ½Z3

2 × Z4 × SUð2Þ�4 × SUð2Þ6 ×Uð1Þ5; ð6:39Þ
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where the Uð1Þ5 follows from b4 ¼ 5. Note that we have
already identified via (6.31) the subgroup Z2 ⊂ Z4 as the
center of SUð2Þ and hence we can improve our naive
starting point

G̃full¼½Z3
2×ðZ4×SUð2ÞÞ=Z2�4×SUð2Þ6×Uð1Þ5: ð6:40Þ

Next, we utilize the trivialization of all global symmetries
as derived from (6.38). From a field theory perspective,
starting in the local models, we have that completing the
local models to a global model introduces magnetic strings
which break a magnetic 2-form symmetry group

Tor H4ðXÞ ≅ Z4 ⊕ Z4
2 ð6:41Þ

and therefore we improve the naive answer to

G̃full

Tor H4ðXÞ
¼ ½Z3

2× ðZ4 ×SUð2ÞÞ=Z2�4×SUð2Þ6
Tor H4ðXÞ

×Uð1Þ5:

ð6:42Þ

Similarly the compact geometry adds dynamical electric
particles breaking a 1-form symmetry subgroup

Tor H2ðXÞ ≅ Z4 ⊕ Z17
2 ð6:43Þ

and hence we have an additional quotient

Gfull ¼ ðGloc ×Uð1Þ5Þ=CExtra;

Gloc ¼
½Z3

2 × ðZ4 × SUð2ÞÞ=Z2�4 × SUð2Þ6
Z4 ⊕ Z4

2

ð6:44Þ

such that the center of Gloc=CExtra is isomorphic to
Tor H2ðXÞ, thus CExtra ≅ Z2

4 ⊕ Z3
2. The extension problem

in this computation is the same as that of the Mayer-
Vietoris sequence at the entries Tor H2ðXÞ and H1ð∂XlocÞ
and is solved there.
In addition to the gauge group (0-form symmetry), we

also have various p-form gauge symmetries. These follow
straightforwardly from geometry. We have the 1-form and
2-form gauge groups:

Gð1Þ
full ¼ Z4 × Z4

2 ×Uð1Þ5; ð6:45Þ

Gð2Þ
full ¼ Z4

2 ×Uð1Þ4: ð6:46Þ

The objects charged under the 1-form symmetry are M5-
branes wrapped on 4-cycles (1-branes, i.e., strings) and
those charged under the 2-form symmetry are M5-branes
wrapped on 3-cycles (2-branes, i.e., membranes).
One can again explicitly check that there are no

global symmetries remaining in the model with gravity
switched on.

C. Example: Elliptic Calabi-Yau threefolds

We now consider M theory on elliptically fibered Calabi-
Yau threefolds π∶X → Fn where the base is a Hirzebruch
surface, presented as the projectivization of a holomorphic
rank 2 bundle,

Fn ¼ PðOP1ð0Þ ⊕ OP1ð−nÞÞ: ð6:47Þ

From here it follows immediately that we can view the
Hirzebruch surface as glued from two holomorphic line
bundles, cut off at some finite radius R,

Fn ¼ OP1ð−nÞjr≤R ∪S3=Zn
OP1ðnÞjr≤R ð6:48Þ

along their common lens space boundary. The curves of the
geometry are b�; f� with base curves b� of OP1ð�nÞ and
one-point compactifications of the fiber classes f�, respec-
tively. These curves are related as

bþ · b− ¼ 0; f� · b� ¼ 1; f� · f� ¼ 0;

fþ ¼ f−; bþ ¼ b− þ nf− ð6:49Þ

which is often presented as in Fig. 14.
We now focus on the cases n ¼ 3, 4, 6, 8 where Kodaira

type IV; I�0; IV
�; III� singularities can be realized along the

curve b− [37,58]. These singularities are necessarily
accompanied by Kodaira singularities which project to
the OP1ðnÞ half of the base away from b−. These may
intersect, locally enhancing. Generically, however, we
obtain pairs of degenerations ðΦ−;ΦþÞ of Kodaira type
Φ� localized to the two halves of (6.48) given by

ðIV; I1 ⊕ I3Þ; ðI�0; I2 ⊕ I2 ⊕ I2Þ;
ðIV�; I1 ⊕ I3Þ; ðIII�; I1 ⊕ I2Þ ð6:50Þ

giving rise to the non-Abelian pairs of gauge algebras20

FIG. 14. Curves of the Hirzebruch surface Fn.

20All Kodaira fibers are split, so we get simply laced Lie
algebras.
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ðsuð3Þ; suð3ÞÞ; ðsoð8Þ; suð2Þ3Þ;
ðe6; suð3ÞÞ; ðe7; suð2ÞÞ: ð6:51Þ

The monodromy about the discriminant lociΦ� necessarily
agree, we denote the common monodromy on 1-cycles as
Mn. In particular the singularitiesΦ� are not mutually local
as 7-brane loci in F theory.
Let us now define our notation for the local model and

the bulk geometries:

Xloc ¼ π−1ðOP1ðnÞjr≤R0<RÞ∐π−1ðOP1ð−nÞjr≤R0<RÞ
≡ Xlocþ ∐Xloc

−

X∘ ¼ XnXloc; ð6:52Þ

which is defined in terms of the natural decomposition of
the base Fn lifted to the total space via the projection π. The
radius R0 < R is chosen such that the singular loci
supporting Φ� are fully contained in Xloc

� respectively.
Note that this decomposition differs slightly from those
chosen throughout the paper, instead of taking tubular
neighborhoods of the singularities, we have taken the
preimage of contractible base patches containing discrimi-
nant components. The physical reasoning is that the 5D
local gauge theory physics in each component of Xloc is
well understood.
It now follows that X∘ deformation retracts to an elliptic

fibration over S3=Zn with monodromy Mn along the Hopf
circle of S3=Zn. Further X∘; ∂Xloc

� are topologically equiv-
alent. As demonstrated in [107,234], this is sufficient to
compute:

Hkð∂Xloc
� Þ≅HkðX∘Þ

≅ fZ;Zn ⊕ Γn;Z;Z⊕Zn ⊕ Γn;0;Zg ð6:53Þ

where Γn ≅ Z3;Z2
2;Z3;Z2 for n ¼ 3, 4, 6, 8 respectively.

We first focus on the torsional subgroups of (6.53). Upon
inclusion into the bulk Xloc the 1- and 3-cycles generating Γn
trivialize due to monodromy effects, while the 1- and 3-
cycles generating Zn trivialize as these are generated by the
Hopf circle of S3=Zn. We thus obtain the discrete defect and
symmetry operators which act on these defects. First, we
have 1-form symmetries from M5-branes wrapped on tor-
sional 3-cycles of H3ðXloc

� Þ, and line defects charged under
these symmetries from M2-branes wrapped on relative
homology cycles of H2ðXloc

� ; ∂Xloc
� Þ. Additionally, one can

also consider the magnetic dual 2-form symmetry operators
from M2-branes wrapping torsional 1-cycles of H1ð∂Xloc

� Þ
and the corresponding heavy defects from M5-branes
wrapping relative homology cycles of H4ðXloc

� ; ∂Xloc
� Þ.

Clearly, defects and symmetry operators constructed from
wrappings of Γn are associated with the gauge theory
dynamics of Φ�, in addition to these we have operators
constructed from the universal Zn contribution.

Next, consider free classes in (6.53) of degrees 2 and 3.
The universal factor of Z is generated in degree 2 by the
fiber class and in degree 3 by the zero section (restricted to
the boundary). These give rise, in particular, to 2- and 3-
form Uð1Þ symmetries whose symmetry operators are F4
flux branes wrapped on these free homology cycles
following [181], while M5-branes wrapped over the zero
section restricted to cycles in Xloc

� give defect operators
charged under these symmetries.
We now consider the global model and how defects

compactify, see Fig. 1. For this note the isomorphisms

Hkð∂Xlocþ Þ ≅ HkðX∘Þ ≅ Hkð∂Xloc
− Þ ð6:54Þ

which implies that we can glue any pair of defects with
identified boundaries to compact cycles in X. To make this
concrete, consider the Mayer-Vietoris sequence with cover-
ing X ¼ Xloc ∪ X∘. Let us first focus on the entries:

… → H4ðX∘Þ ⊕ H4ðXlocÞ⟶{4 H4ðXÞ⟶
∂4 H3ð∂XlocÞ

⟶
ð{3;|3Þ

H3ðX∘Þ ⊕ H3ðXlocÞ → …: ð6:55Þ

One consequence of (6.54) and the preceding discussion is
that the mapping

∂4∶H4ðXÞ→H3ð∂XlocÞ≅H3ð∂Xlocþ Þ⊕H3ð∂Xloc
− Þ ð6:56Þ

has diagonal image with

Im∂4 ¼ Z ⊕ Zn ⊕ Γn ≅ H3ðX∘Þ: ð6:57Þ

In order to discuss the effect of this on the gauge group
Gfull, define G̃− to be the simply connected Lie groups with
algebra g−. Define G̃þ to be the gauge group of the local
model Xlocþ , in an electric polarization, which can have
additional Abelian contributions beyond the non-Abelian
contribution made explicit in (6.51).
Next, note that the discrete group Γn is the center of G̃−.

With this, (6.57) now implies how the gauge groups of Xloc
�

combine, overall we have the gauge symmetry

Gfull ¼
G̃þ × G̃−

Γn
× Zn ×Uð1Þ: ð6:58Þ

These results are closely related to results in [58,83] which
focus on the torsional subgroup of the Mordell-Weil group
Tor MWðπÞ, and in the cases above, was computed to be
isomorphic to Γn giving an alternative argument for the Γn
quotient. Further, for example when n ¼ 3, the homology
class of the torsional Z3 section τ was computed in [58],
modulo 1, to:
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½τ� ¼ −ðDðZ3Þþ þDðZ3Þ− Þ

DðZ3Þ
� ¼ 1

3
ðDð1Þ

� þ 2Dð2Þ
� Þ ð6:59Þ

where DðiÞ
� are Cartan divisors. We note that this result

generalizes (5.50) and we see that torsional sections admit
representations as a fractional linear combination of center
divisors, where the latter were introduced in [234]. Given
our previous analysis we can also note that there is no
quotient involving the Uð1Þ factor as this is associated with
the zero section which does not intersect the singularities.
Let us now proceed to studying the gauging and breaking

of symmetries. For this consider the terms

… → H2ðX∘Þ ⊕ H2ðXlocÞ⟶{2 H2ðXÞ⟶
∂2 H1ð∂XlocÞ

⟶
ð{1;|1Þ

H1ðX∘Þ ⊕ H1ðXlocÞ → … ð6:60Þ

and we conclude Im∂2 ≅ Γn ⊕ Zn via similar arguments as
above. We also have H1ðX∘Þ ≅ Γn ⊕ Zn and so conclude
via duality relations similar to (6.11) that all discrete 1-form
and 2-form symmetries in the local models are either
gauged or explicitly broken by particles/strings resulting
from M2-branes wrapped on compact 2-cycles or M5-
branes wrapped on compact 4-cycles respectively.

VII. CONCLUSIONS

Global symmetries provide important constraints on the
structure of quantum field theories. In the context of stringy
realizations of quantum field theories, it is natural to ask
about the fate of these structures in models coupled to
gravity. There are general expectations from the Swampland
program which suggest that specific degrees of freedom
must enter in order to be compatible with constraints from
quantum gravity. In this paper we have explained how local
structures associated with generalized symmetries such as
the spectrum of defects and topological symmetry operators
embed in compact models. We have used this to extract the
global form of the gauge group in 7D and 5D M-theory
vacua, as well as how global symmetries can emerge in the
deep infrared. When the compactification geometry has an
elliptic fibration, these same backgrounds can also be used
to define F-theory vacua in one higher dimension, and our
results agree with methods based on the structure of the
Mordell-Weil group of the elliptic model. In the case of 5D
vacua, we have also seen how to consistently gauge/glue
together various local models, tracking the fate of higher
symmetries including examples with 0-form, 1-form and 2-
group structures. We now conclude by discussing some
avenues for future investigation.
In our analysis we did not consider frozen singularities

(see e.g. [219,220,260]), but in principle our analysis can be
extended to these cases as well. These situations are also
interesting because they generate 7D N ¼ 1 vacua with

gauge group rank smaller than 22. It would be interesting to
apply the techniques of our paper to obtain the global form
of the gauge groups for these cases as well.
While our analysis has primarily focused on quotients of

tori and elliptically fibered Calabi-Yau manifolds, it would
be natural to consider more general Calabi-Yau spaces
with local singularities, as well as brane probes of these
singularities. For example, some aspects of generalized
symmetries, and the interplay with Verlinde’s metastable
monopole [261] were recently studied in [181]. It would be
quite interesting to analyze the same higher symmetries in
the related global models.
Additional physical and geometric phenomena will occur

when the compactification manifold has more than six real
dimensions. For example, it would be interesting to consider
G2-holonomy backgrounds. Examples include quotients of
T7, so our methods will likely apply to these situations as
well. Further, twisted connected sum constructions of G2-
holonomy spaces (see e.g., [262–264]) naturally lend
themselves to our cutting and gluing analysis as their
construction runs precisely via such operations. In the case
of Calabi-Yau fourfolds we can also expect to encounter
terminal singularities (see e.g., [265,266]). This will likely
give rise to new features in both M- and F-theory vacua
which would be interesting to explore in detail.
One of the main assumptions made throughout this work

is that our compactification results in asymptotic
Minkowski spacetime, as will occur when compactifying
on a manifold of special holonomy. More broadly, how-
ever, one can consider the consequences of switching on
various fluxes, which results in more general backgrounds.
Consistent truncations of such warped compactifications
often result in anti–de Sitter vacua. It would be interesting
to investigate related gluing constructions of higher sym-
metries in this more general setting.
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APPENDIX A: RESOLUTIONS
AND COMBINATORICS FOR T4=Zn

In this appendix we discuss in further detail the geometry
of the orbifolds T4=Zn discussed in Sec. V. The goal of this
appendix is to formulate the general homology analysis
using methods of resolution, as made explicit for the
example T4=Z2 in Sec. VA. One result of this analysis
is again that thimbles constitute the fundamental building
blocks to keep track of. This simplifies the combinatorial
problem and straightforwardly allows us to formulate
results directly in the singular geometry, as demonstrated
starting from (A8). Some more technical computations in
this analysis were separated into Appendix B.

1. Resolutions

We pick up the analysis initiated in Sec. VA by first
arguing that the rational curves contained in an exceptional
fiber belonging to S0k, introduced below (5.31), are homolo-
gous to the generic fiber when weighted by the Kac labels
of the associated extended Dynkin diagram. For z∈T2

k=Zn

with stabilizer subgroup of order mz we have

F k ¼ mzF k;z: ðA1Þ

In the crepantly resolved geometry this relation is corrected
by exceptional curves. Let zi denote the singular points of
F k;z which lift to mzi points

F k ¼ mzP1
k;z þ

X
i

mziezi ðA2Þ

where P1
k;z is the proper transform of F k;z and ezi denotes a

sum of exceptional curves. If ezi contracts to an A-type
singularity of rank Ni then we have, explicitly studying the
resolution as in [239],

ezi ¼
XNi

l¼1

lei;l ðA3Þ

where the curves fei;lg are the standard set of exceptional
curves with self-intersection (−2) intersecting with adja-
cency matrix of A-type of rank Ni. The final curve ei;Ni

is
the exceptional curve intersecting P1

k;z once. The numbers
mz and mzil are the Kac labels for the extended Dynkin

diagram associated with the exceptional fiber in S0k pro-
jecting to z.
Note that ezi=Ni mod 1 is an A-type thimble. This pattern

holds true more generally, that is (A1) is extended by
collections of exceptional curves organized by thimbles.
The key relation in the above discussion is (A2) which

runs over all points z; z0 ∈P1
k lifting to singular fibers listed

in (5.32). From there we derive that fractional linear
combinations of exceptional divisors

1

gcdðmz;mz0 Þ
ðmzP1

k;z −mz0P1
k;z0 Þ

¼ 1

gcdðmz;mz0 Þ
X
i

ðmziezi −mz0i
ez0iÞ ðA4Þ

are integral classes of the K3 lattice of ðT4=ZnÞ0. The
right-hand side descends to a collection of compact
representatives for A-type thimbles when reducing coef-
ficients modulo 1.
The rational curves contained in exceptional fibers or

equivalently the vertical curves of the elliptic double pencil
only span a subset of the K3 lattice. It was argued in [239]
that global sections of the elliptic double pencil complete
the previously discussed set of curves to a generating set of
the full K3 lattice.
We now consider the cases n ¼ 3, 4, 6. The case n ¼ 2

is highly symmetric and studied in detail in Sec. VA
and [236]. Begin by noting that the linear equation

zi ¼ αz̄j þ β ðA5Þ

with i, j ¼ 1, 2 and i ≠ j, is well defined on T4 whenever α
is an integer power of the complex structure parameter τ or
vanishing.21 For arbitrary β the equation cuts out a two-
torus parametrized by either zi or zj. This two-torus is fixed
by Zn whenever β is a fixed point of the Zn action and
descends to a curve in T4=Zn. However, whenever the
stabilizer of β is nontrivial then we find collections of such
curves which are grouped into orbits by Zn. Curves
grouped into a single orbit now descend to a single curve
in T4=Zn. We denote the order of the stabilizer subgroup of
β by Nβ and introduce

Cij
αβ ¼ fðzi; zjÞ∈T4=Zkjzi ¼ αz̄j þ β;

α ¼ τm;m∈Z; Nβ ≠ 1g ðA6Þ

where ω is the primitive nth root of unity generating the Zn
group action. It was shown in [239] that the proper
transform of Cij

αβ can be oriented such that intersections
with the curves (A3) are non-negative and that such curves

21The case α ¼ 0 leads to vertical curves for one of the elliptic
pencils previously discussed.
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form the center nodes of affine Dynkin diagrams, as
previously the case for P1

k. Further, the collections of
curves contributing to the same Dynkin diagram of curves,
weighted by the corresponding Kac labels, are homologous
when the slopes α of the central nodes agree but constants β
differ. This follows by tracing the corresponding homotopy
in T4 (shifts of β) through the Zn quotient. Such homotopic
collection of curves can again be equated in homology, as
in (A4) for cases with α ¼ 0, and solving for the central
nodes Cij

αβ we again find fractional linear combinations
of exceptional curves which are integral classes of the
K3 lattice.
Let LE denote the sublattice of the K3 lattice

H2ððT4=ZnÞ0;ZÞ spanned by all exceptional curves and
L̄E the smallest primitive sublattice containing LE. The set
of exceptional curves together with fractional linear com-
binations of these derived from the elliptic double pencil as
in (A4) together with the fractional linear combinations
discussed in the previous paragraph generate L̄E. We have

Tor H2ðT4=Zn;ZÞ ≅ L̄E=LE: ðA7Þ

The elements of L̄E=LE are linear combinations of A-type
thimbles, as for example already noted in (A4). The
generators of Tor H2ðT4=Zn;ZÞ are glued together from
thimbles.
We now step through a number of different examples.

We begin by revisiting the orbifold T4=Z2, and then turn to
T4=Z3. The examples T4=Zn with n ¼ 4, 6 can be analyzed
in a similar fashion but carry less symmetry as n is
not prime.

2. Combinatorics and affine structures

We now formulate the results of the computation
sketched above in the singular geometry. The connection
follows immediately from (A4) whose right-hand side is a
difference of integer multiples of thimbles. There is one
thimble per singularity and hence, including the multiplic-
ities, these constitute the geometric units of the computa-
tion. Passing to the noncompact presentation of the
thimbles, see (4.30), we can then make statements in the
singular geometry with contracted exceptional curves.
Case X ¼ T4=Z2:
The fixed points carry the structure of an affine vector

space modeled on Z4
2. Upon a choice of origin we can

therefore label the SUð2Þ factors and their centers by
I ∈Z4

2. Next, we introduce the set of planes

H ¼ fHkl
ij ⊂ Z4

2jI ∈Hkl
ij ⇔ positions i; j

of I have values k; l respectivelyg ðA8Þ

where k; l∈ f0; 1g and i; j∈ f1; 2; 3; 4g. EachHkl
ij contains

four indices. There are 24 ¼ 4 × 6 planes. Two planes are

parallel whenever their values for i, j agree but values for
k, l differ.
We discuss the quotients from this affine perspective.

The quotient in (5.34) on non-Abelian factors is then
formulated as

Z5
2 ≅ hdiagðZH

2 ;Z
H0
2 Þ⊂ SUð2Þ16jH;H0∈H parallel planesi

ðA9Þ

where ZH
2 ;Z

H0
2 is the diagonal subgroup of SUð2Þ centers

labeled by I ∈H;H0 respectively. The Abelian factors
admit a labeling by classes [H] of parallel planes as
determined by (5.22). The second quotient in (5.34) is by

Z6
2 ≅ hdiagðZ½H�

2 ;Z2Þ ⊂ ðSUð2Þ16=Z5
2Þ ×Uð1Þ½H�jH∈Hi:

ðA10Þ

Note that quotients of Gloc always involve 8 center
subgroups of the SUð2Þ factors, i.e., the torsional cycles
depicted in Fig. 1 stretch between 8 singularities. Quotients
on the Uð1Þ’s involve 4 center subgroups.
Case X ¼ T4=Z3:
The fixed points carry the structure of an affine vector

space modeled on Z2
3. Upon a choice of origin we can

therefore label the SUð3Þ factors and their centers by
I ∈Z2

3. Next, we introduce the set of lines

L¼ fL ⊂ Z2
3jL is the graph of an affine linear equationg

ðA11Þ

of which there are 12 ¼ 3 × 4. Each L contains three
indices. Two lines are parallel if they do not intersect.
We discuss the quotients from this affine perspective.

The quotient in (5.36) on non-Abelian factors is by

Z3
3 ≅ hdiagðZL

3 ;−ZL0
3 Þ ⊂ SUð3Þ9jL;L0 ∈L parallel linesi

ðA12Þ

where ZL
3 ;Z

L0
2 is the diagonal subgroup of the center of the

SUð3Þ factors labeled by I ∈L;L0 respectively. Here − ZL0
3

denotes the conjugate of ZL0
3 . The Abelian factors admit a

labeling by classes [L] of parallel lines up to a redundancy
we now explain.
Consider the Abelian factorsUð1Þ½L� naively labeled by a

class of parallel lines. Then we derive a quotient by

Z4
3 ≅ hdiagðZ½L�

3 ;Z3Þ ⊂ ðSUð3Þ9=Z3
3Þ ×Uð1Þ½L�jL∈Li;

ðA13Þ

which does not match the Z3
3 quotient in (5.36). However,

we have Z6
3 ≅ coker |2 and therefore there exists a sub-

group Z0
3 ⊂ Z4

3 (the diagonal) which is trivial in the center

GENERALIZED SYMMETRIES, GRAVITY, AND THE … PHYS. REV. D 109, 026012 (2024)

026012-35



of SUð3Þ9 mod (A12). Therefore Z0
3 is removed only from

the Abelian factors and Uð1Þ4½L�=Z0
3 ¼ Uð1Þ4 where the

Uð1Þ4 is the Abelian factor appearing in (5.36).
Note that quotients of Gloc always involve 6 center

subgroups of the SUð3Þ factors, i.e., the torsional cycles
depicted in Fig. 1 stretch between 6 singularities. Quotients
on the Uð1Þ’s involve 3 center subgroups.
Case X ¼ T4=Z4: The fixed points do not carry the

structure of an affine vector space, however we can find
12 ¼ 3 × 4 planes, which we group into parallel triplets

G1 ¼ ffz1 ¼ fg ⊂ Xjf∈F0g;
G2 ¼ ffz2 ¼ fg ⊂ Xjf∈F0g;
G3 ¼ ffz1 þ z�2 ¼ fg ⊂ Xjf∈F0g;
G4 ¼ ffz1 þ τz�2 ¼ fg ⊂ Xjf∈F0g ðA14Þ

where F0 is the set consisting of the three orbifold points of
T2=Z4. Again parallel planes do not share points. Here τ ¼ i
and the group action maps as ðz1; z2Þ ↦ ðiz1;−iz2Þ
whereby each plane is well defined.
The quotient by Z4 ⊕ Z2

2 on the non-Abelian group
Gloc ¼ SUð4Þ4 × SUð2Þ6 follows from the rows of the
matrix MT4=Z4

given in (B13). Note from there we can
conclude thatZ4 ⊕ Z2

2 embeds purely into the center of the
SUð4Þ4 factor:

Gfull ¼
ðSUð4Þ4=Z4 × Z2

2Þ × SUð2Þ6 ×Uð1Þ4
Z2

4 × Z2
2

: ðA15Þ

The Uð1Þ factors are in correspondence with classes of
parallel planes Gi. Planes are subsets of Gi with fixed
f∈F0, i.e. in the corresponding fibration with base T2=Z4

they project to the same f∈T2=Z4. Two planes are parallel
if they are subsets of the same Gi but with respect to distinct
fixed points in F0. The Z2

4 ⊕ Z2
2 quotient involving the

Abelian factors derives by considering any one represen-
tative of a parallel class and evaluating (A2).
Note this is the first instance with nontrivial multiplic-

ities mz as introduced in (A4), see Appendix B for further
details. Further, the quotients of GADE involve either 2 or 4
center subgroups of the SUð4Þ factors, i.e., the torsional
cycles depicted in Fig. 1 stretch between 2 or 4 singular-
ities. Quotients on the Uð1Þ’s involve 3 or 4 center
subgroups of SUð2Þ6 × SUð4Þ4, see (B10).
Case X ¼ T4=Z6: The fixed points do not carry the

structure of an affine vector space, however we can find
12 ¼ 3 × 4 planes, which we group into parallel triplets
which again take the form (A14) where, however, F0 is
replaced with the set of the three orbifold points of T2=Z6

and now τ ¼ expð2πi=6Þ.
The quotient by Z3

6 ⊕ Z2 on the non-Abelian group
SUð6Þ × SUð3Þ4 × SUð2Þ5 follows from the rows of the

matrix MT4=Z6
given in (B14). For the Abelian quotient

similar remarks hold as in the T4=Z4 example.
Again note the multiplicitiesmz are relevant as discussed

in Appendix B. Further, the quotients of GADE involve
either 5 or 6 center subgroups, i.e., the torsional cycles
depicted in Fig. 1 stretch between 5 or 6 singularities.
Quotients on the Uð1Þ’s involve 3 or 4 center subgroups.

APPENDIX B: COMPUTATIONAL
DETAILS ON T4=Zn

In this appendix we give details on the computations
described in Appendix A. See also Appendix C where
computations are revisited and checked from an equivariant
perspective. Let us begin with the cases n ¼ 4, 6. These
cases are technically more involved as they do not exhibit
the affine structures present for cases n ¼ 2, 3 which rely
on n being prime. We start with labeling conventions for the
ADE singularities.
We label the A4

3 ⊕ A6
1 singularities of T4=Z4 as

ðA3ÞIJ
ðA1ÞIJ; ðA1Þþ; ðA1Þ− ðB1Þ

where I; J∈Z2, i.e., I; J ¼ 0, 1 (see Fig. 15).
We label the A5 ⊕ A4

3 ⊕ A5
1 singularities of T4=Z6 as

ðA5Þ
ðA2Þz1¼0; ðA2Þz2¼0; ðA2Þþ; ðA2Þ−
ðA1Þz1¼0; ðA1Þz2¼0; ðA1Þþ; ðA1Þ0; ðA1Þ−: ðB2Þ

See Fig. 16.

FIG. 15. We table pairs of fixed points of T2=Z4. In T4=Z4 their
stabilizers are subgroups of Z4, we list the orders of these
subgroups. These pairs are grouped into orbits as indicated.
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Next we determine maximal sets of singularities which
are parallel. We say that a set of singularities is maximal if
there exists a fibration π∶ T4=Zn → T2=Zn such that all
singularities are contained in the same fiber and, con-
versely, all singularities in that fiber are contained in the set.
Two maximal sets are called parallel if they are maximal
sets with respect to the same fibration π and disjoint.
Maximal sets are of ADE type, i.e. resolving the singu-
larities we find the structures depicted in Fig. 10.
The maximal sets of E7 type for T4=Z4 are

z1 ¼ ½0�∶ ðA3Þ00; ðA3Þ01; 2ðA1Þ01
z2 ¼ ½0�∶ ðA3Þ00; ðA3Þ10; 2ðA1Þ00

z1 þ z̄2 ¼ ½0�∶ ðA3Þ00; ðA3Þ11; 2ðA1Þþ
z1 þ τz̄2 ¼ ½0�∶ ðA3Þ00; ðA3Þ11; 2ðA1Þ− ðB3Þ

and

z1 ¼ ½ð1þ iÞ=2�∶ ðA3Þ10; ðA3Þ11; 2ðA1Þ10
z2 ¼ ½ð1þ iÞ=2�∶ ðA3Þ01; ðA3Þ11; 2ðA1Þ11

z1 þ z̄2 ¼ ½ð1þ iÞ=2�∶ ðA3Þ10; ðA3Þ01; 2ðA1Þ−
z1 þ τz̄2 ¼ ½ð1þ iÞ=2�∶ ðA3Þ10; ðA3Þ01; 2ðA1Þþ ðB4Þ

while the maximal sets of D4 type for T4=Z4 are

z1 ¼ ½1=2�∶ 2ðA1Þ00; 2ðA1Þ11; 2ðA1Þþ; 2ðA1Þ−
z2 ¼ ½1=2�∶ 2ðA1Þ01; 2ðA1Þ10; 2ðA1Þþ; 2ðA1Þ−

z1 þ z̄2 ¼ ½1=2�∶ 2ðA1Þ01; 2ðA1Þ01; 2ðA1Þ00; 2ðA1Þ11
z1 þ τz̄2 ¼ ½1=2�∶ 2ðA1Þ01; 2ðA1Þ01; 2ðA1Þ00; 2ðA1Þ11:

ðB5Þ

The maximal sets of E8 type for T4=Z6 are

z1 ¼ ½0�∶ ðA5Þ; 2ðA2Þz1¼0; 3ðA1Þz1¼0

z2 ¼ ½0�∶ ðA5Þ; 2ðA2Þz2¼0; 3ðA1Þz2¼0

z1 þ z̄2 ¼ ½0�∶ ðA5Þ; 2ðA2Þþ; 3ðA1Þþ
z1 þ τz̄2 ¼ ½0�∶ ðA5Þ; 2ðA2Þ−; 3ðA1Þ− ðB6Þ

and maximal sets of E6 type for T4=Z6 are

z1 ¼
h
eπi=6=

ffiffiffi
3

p i
∶ 2ðA2Þz2¼0; 2ðA2Þþ; 2ðA2Þ−

z2 ¼
h
eπi=6=

ffiffiffi
3

p i
∶ 2ðA2Þz1¼0; 2ðA2Þ−; 2ðA2Þþ

z1 þ z̄2 ¼
h
eπi=6=

ffiffiffi
3

p i
∶ 2ðA2Þz1¼0; 2ðA2Þz2¼0; 2ðA2Þ−

z1 þ τz̄2 ¼
h
eπi=6=

ffiffiffi
3

p i
∶ 2ðA2Þz1¼0; 2ðA2Þz2¼0; 2ðA2Þþ

ðB7Þ

and maximal sets of D4 type for T4=Z6 are

z1 ¼ ½1=2�∶ 3ðA1Þz2¼0; 3ðA1Þþ; 3ðA1Þ0; 3ðA1Þ−
z2 ¼ ½1=2�∶ 3ðA1Þz1¼0; 3ðA1Þþ; 3ðA1Þ0; 3ðA1Þ−

z1 þ z̄2 ¼ ½1=2�∶ 3ðA1Þz1¼0; 3ðA1Þz2¼0; 3ðA1Þ0; 3ðA1Þ−
z1 þ τz̄2 ¼ ½1=2�∶ 3ðA1Þz1¼0; 3ðA1Þz2¼0; 3ðA1Þþ; 3ðA1Þ0:

ðB8Þ

In both cases we included multiplicities given by the
orbit size, i.e. n=r where r is the rank of the singularity.
Next we organize the above into matrices. We pick two

ordered bases

B4 ¼ fðA3Þ00; ðA3Þ01; ðA3Þ10; ðA3Þ11; ðA1Þ00; ðA1Þ01;
× ðA1Þ10; ðA1Þ11; ðA1Þþ; ðA1Þ−g

B6 ¼ fðA5Þ; ðA2Þz1¼0; ðA2Þz2¼0; ðA2Þþ; ðA2Þ−;
× ðA1Þz1¼0; ðA1Þz2¼0; ðA1Þþ; ðA1Þ0; ðA1Þ−g ðB9Þ

with respect to which the above maximal sets (B3), (B4),
(B5) respectively take the form

FIG. 16. We list pairs of fixed points of T2=Z6. In T4=Z6 their
stabilizers are subgroups of Z6, we list the orders of these
subgroups. These pairs are grouped into orbits as indicated.
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Eð1Þ
7 ½T4=Z4� ¼

0
BBB@
1 1 0 0 0 2 0 0 0 0

1 0 1 0 2 0 0 0 0 0

1 0 0 1 0 0 0 0 2 0

1 0 0 1 0 0 0 0 0 2

1
CCCA

Eð2Þ
7 ½T4=Z4� ¼

0
BBB@
0 0 1 1 0 0 2 0 0 0

0 1 0 1 0 0 0 2 0 0

0 1 1 0 0 0 0 0 0 2

0 1 1 0 0 0 0 0 2 0

1
CCCA

D4½T4=Z4� ¼

0
BBB@
0 0 0 0 2 0 0 2 2 2

0 0 0 0 0 2 2 0 2 2

0 0 0 0 2 2 2 2 0 0

0 0 0 0 2 2 2 2 0 0

1
CCCA ðB10Þ

while the maximal sets (B6), (B7), (B8) respectively take
the form

E8½T4=Z6� ¼

0
BBB@
1 2 0 0 0 3 0 0 0 0

1 0 2 0 0 0 3 0 0 0

1 0 0 2 0 0 0 3 0 0

1 0 0 0 2 0 0 0 0 3

1
CCCA

E6½T4=Z6� ¼

0
BBB@
0 0 2 2 2 0 0 0 0 0

0 2 0 2 2 0 0 0 0 0

0 2 2 0 2 0 0 0 0 0

0 2 2 2 0 0 0 0 0 0

1
CCCA

D4½T4=Z6� ¼

0
BBB@
0 0 0 0 0 0 3 3 3 3

0 0 0 0 0 3 0 3 3 3

0 0 0 0 0 3 3 0 3 3

0 0 0 0 0 3 3 3 3 0

1
CCCA: ðB11Þ

Now we subtract parallel maximal sets, taking multi-
plicity into account. Multiplicities are determined by the
ratio between the generic fiber volume and the exceptional

fibers of ADE type. This generalizes (5.13). We have the coefficient matrices

MT4=Z4
¼ JoinfEð1Þ

7 ½T4=Z4� − Eð2Þ
7 ½T4=Z4�;

2Eð1Þ
7 ½T4=Z4� −D4½T4=Z4�;

2Eð2Þ
7 ½T4=Z4� −D4½T4=Z4�g

MT4=Z6
¼ Joinf2E8½T4=Z6� − E6½T4=Z6�;
3E8½T4=Z6� −D4½T4=Z6�g: ðB12Þ

Here join refers to the operation of stacking all rows into a single matrix with the same number of columns. Explicitly
we have

MT4=Z4
¼

0
BBBBBBBBBBBBBBBBBBBBBBB@

ðA3Þ00 ðA3Þ01 ðA3Þ10 ðA3Þ11 ðA1Þ00 ðA1Þ01 ðA1Þ10 ðA1Þ11 ðA1Þþ ðA1Þ−
1 1 −1 −1 0 2 −2 0 0 0

1 −1 1 −1 2 0 0 −2 0 0

1 −1 −1 1 0 0 0 0 2 −2
1 −1 −1 1 0 0 0 0 −2 2

2 2 0 0 −2 4 0 −2 −2 −2
2 0 2 0 4 −2 −2 0 −2 −2
2 0 0 2 −2 −2 −2 −2 4 0

2 0 0 2 −2 −2 −2 −2 0 4

0 0 2 2 −2 0 4 −2 −2 −2
0 2 0 2 0 −2 −2 4 −2 −2
0 2 2 0 −2 −2 −2 −2 0 4

0 2 2 0 −2 −2 −2 −2 4 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

ðB13Þ

and
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MT4=Z6
¼

0
BBBBBBBBBBBBBBB@

ðA5Þ ðA2Þz1¼0 ðA2Þz2¼0 ðA2Þþ ðA2Þ− ðA1Þz1¼0 ðA1Þz2¼0 ðA1Þþ ðA1Þ0 ðA1Þ−
2 4 −2 −2 −2 6 0 0 0 0

2 −2 4 −2 −2 0 6 0 0 0

2 −2 −2 4 −2 0 0 6 0 0

2 −2 −2 −2 4 0 0 0 0 6

3 6 0 0 0 9 −3 −3 −3 −3
3 0 6 0 0 −3 9 −3 −3 −3
3 0 0 6 0 −3 −3 9 −3 −3
3 0 0 0 6 −3 −3 −3 −3 9

1
CCCCCCCCCCCCCCCA

ðB14Þ

where we appended our labeling conventions. Computing the Smith normal form we find

SNFðMT4=Z4
Þ ¼

�
M4 07×3
05×7 05×3

�
; M4 ¼ diagð1; 2; 2; 4; 4; 4; 4Þ

SNFðMT4=Z6
Þ ¼ ðM608×2Þ; M6 ¼ diagð1; 6; 6; 6; 6; 6; 6; 6Þ ðB15Þ

where Mn are quadratic subblocks and 0n×m denotes a block of zeros of dimension n ×m. From here we divide by n, take
the result modulo 1 and conclude

Tor H2ðT4=Z4Þ ≅ Z4 ⊕ Z2
2; Tor H2ðT4=Z6Þ ≅ Z6: ðB16Þ

The attentive reader has noticed that we have not considered all curves of the form (A6). Rather, we have only taken a
minimal independent set of such curves in order to not overload presentation.
Finally, let us give, for completeness and in less detail, the matrix for the case T4=Z3 where no multiplicities have to be

taken into account. It reads

MT4=Z3
¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 −1 −1 −1 0 0 0

1 1 1 0 0 0 −1 −1 −1
0 0 0 1 1 1 −1 −1 −1
1 0 −1 −1 1 0 0 −1 1

1 −1 0 0 1 −1 −1 0 1

0 −1 1 1 0 −1 −1 1 0

1 −1 0 −1 0 1 0 1 −1
1 0 −1 0 −1 1 −1 1 0

0 1 −1 1 −1 0 −1 0 1

1 −1 0 1 −1 0 1 −1 0

1 0 −1 1 0 −1 1 0 −1
0 1 −1 0 1 −1 0 1 −1
1 −1 0 0 1 −1 −1 0 1

1 0 −1 −1 1 0 0 −1 1

0 1 −1 −1 0 1 1 −1 0

1 −1 0 −1 0 1 0 1 −1
1 0 −1 0 −1 1 −1 1 0

0 1 −1 1 −1 0 −1 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðB17Þ

from which one computes Tor H2ðT4=Z3Þ ¼ Z3
3.
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APPENDIX C: NON-ABELIAN QUOTIENTS T4=Γ
AND EQUIVARIANT COHOMOLOGY

In this appendix we consider quotients of the form
X ¼ T4=Γ for Γ a non-Abelian finite group and compute
the homology groups appearing in Mayer-Vietoris
sequence

0 → H2ðX∘Þ⟶|2 H2ðXÞ⟶
∂2 H1ð∂XlocÞ

≅ ⊕i H1ð∂UiÞ⟶
{1 H1ðX∘Þ → 0 ðC1Þ

for all possible Γ such that X is K3 manifold. Rather than
applying the algebro-geometric techniques we used to
determine these homology groups when Γ was Abelian,
we present an alternative method that expresses each of the
homology groups in the exact sequence (C1) as equivariant
cohomology groups. We believe the methods employed
here can be of wider use for calculating homology groups
of orbifolds that arise from finite group quotients. After
reviewing the classification of quotients for T4=Γ, for Γ
non-Abelian, we employ equivariant methods to, in par-
ticular, express H2ðXÞ in terms of (twisted) cohomology
groups of the classifying space BΓ, and end this appendix
with calculating the global form of the gauge groups for the
7D supergravity theories that arise from compactifying M
theory on T4=Γ.
The most general possible finite groups Γ such that T4=Γ

is Calabi-Yau are [267]:

Γ ¼ Z2; Z3; Z4; Z6; D4; D5; T ðC2Þ

which, in addition to the cyclic quotients studied in the
main body of this paper, include the binary dihedral groups
DN forN ¼ 4, 5 as well as the binary tetrahedral group T .22

A new feature relative to the Abelian cases is that depend-
ing on how D4 and T act on T4, we may have different
ADE singularities on T4=Γ. The group D4 has three
possible actions23 on T4 so we denote them by D4, D0

4,
and D00

4 , while T has two possible actions which we denote
by T and T 0. The ADE singularity structure is summarized
in Table I (see Lemma 3.19 of [267] and Table 18 of [260]).
Describing now theD4 actions on T4, first let us write T4

as C2=Λ under the following identifications:

C2=Λ∶ ðz1; z2Þ ∼ ðz1 þ 1; z2Þ ∼ ðz1; z2 þ 1Þ
∼ ðz1 þ i; z2Þ ∼ ðz1; z2 þ iÞ: ðC3Þ

Then the unprimedD4 action on this T4 is generated by the
following elements:

α4∶ ðz1;z2Þ↦ ðiz1;−iz2Þ; δ∶ ðz1;z2Þ↦ ð−z2;z1Þ: ðC4Þ

The primed D4 actions are on the four-tori T4 with a
different complex structure than in (C3). D0

4 acts on C2=Λ0

which is defined by the identifications

C2=Λ0∶ ðz1; z2Þ∼ ðz1 þ 1; z2Þ∼ ðz1 þ
ffiffiffi
2

p
i; z2Þ

∼ ðz1; z2 þ
ffiffiffi
2

p
iÞ∼ ðz1 þ λ; z2 þ iλÞ; ðC5Þ

where λ≡ 1=
ffiffiffi
2

p þ i, while D00
4 acts on C2=Λ00 which is

defined by

C2=Λ00∶ ðz1; z2Þ∼ ðz1þ 1; z2Þ∼ ðz1; z2þ
ffiffiffi
2

p
Þ

∼ ðz1; z2þ iÞ∼ ðz1þ λ; z2þ i=
ffiffiffi
2

p
Þ: ðC6Þ

The action of D0
4 and D00

4 can both be defined by the
generators:

α4∶ ðz1; z2Þ ↦ ðiz1;−iz2Þ;

δ̃∶ ðz1; z2Þ ↦
�
−z2 þ

ð1þ iÞ
2

; z1

�
; ðC7Þ

where ðz1; z2Þ are to be understood as coordinates onC2=Λ0

and C2=Λ00 respectively.
TheD5 action on on T4 is relatively simple, as it acts on a

T4 with the complex structure C2=Λ shown in (C3) and is
given by

α6∶ ðz1;z2Þ↦ ðζz1;ζ−1z2Þ; δ∶ ðz1;z2Þ↦ ð−z2;z1Þ: ðC8Þ

with ζ ¼ expð2πi=6Þ.
Moving on to the T and T 0 actions on T4, the former can

be defined on C2=Λ with complex structure (C3) with
generators α4 and δ appearing in (C4) along with the
additional generator of order three

TABLE I. Collection of complex codimension 2 ADE singu-
larities for each T4=Γ. This immediately tells us the non-Abelian
part of the gauge algebra of the 7D supergravity associated to M
theory compactified on T4=Γ, with the full gauge algebra having
an additionaluð1Þ3 factor in these cases so that the total rank is 22.

X ADE Singularities

T4=D4 D2
4 ⊕ A3

3 ⊕ A2
1

T4=D0
4 D4

4 ⊕ A3
1

T4=D00
4 A6

3 ⊕ A1

T4=D5 D5 ⊕ A3
3 ⊕ A2

2 ⊕ A1

T4=T E6 ⊕ D4 ⊕ A4
2 ⊕ A1

T4=T 0 A5 ⊕ A2
3 ⊕ A4

2

22In our conventions, DN is an order 4N − 8 group isomorphic
to Z2N−4 ⋊Z2 and is a double cover of the dihedral group, the
symmetries of an (N − 2)-gon. The group T is an order 48
isomorphic to D4 ⋊Z3 and is the double cover of the tetrahedral
group, the symmetries of a tetrahedron.

23Up to isomorphisms and moving in connected regions of K3
moduli space that do not resolve the ADE singularities.
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μ∶
1

1 − i

�
1 i

1 −i

�
ðC9Þ

acting on ðz1; z2ÞT. The T 0 action can be defined on either
the C2=Λ0 or C2=Λ00 complex structures of T4, and is
generated by the α4 and δ̃ appearing in (C7) as well as μ̃
which is defined as the composition of μ with an affine
translation:

μ̃∶
	
ðz1; z2Þ ↦

�
z1 þ

1þ i
2

; z2 þ
−1þ i

2

�

∘μ: ðC10Þ

For more details on non-Abelian orientation-preserving
actions of T4 see Sec. 3 of [267].
We now move on to detailing a method for determining

the groups appearing in (C1) for each non-Abelian quotient
using equivariant cohomology. The advantage of this
method is that it is computationally efficient as it reduces
the homology computations to twisted cohomology of the
classifying spaces BΓ, while on the other hand it leaves a
hands-on definition of the homology classes of T4=Γ harder
to obtain, an aspect which is beyond the scope of this
Appendix.
To understand how the homology groups of X ¼ T4=Γ

and X∘ ¼ ðT4=ΓÞ∘ can be determined from the equivariant
cohomology groups associated to Y ¼ T4, we first note that
we can excise the fixed points of the Γ action on Y ¼ T4 to
give a space Y∘ ¼ ðT4Þ∘ which is acted on by Γ freely. The
equivariant cohomology groups of Y∘ with respect to Γ are
therefore isomorphic to the singular cohomology groups of
the smooth quotient X∘ ¼ Y∘=Γ, we have:

H�
ΓðY∘Þ ¼ H�ðX∘Þ: ðC11Þ

Now let us denote the collection of neighborhoods of
fixed points in Y of the Γ action by Y loc. Topologically, Y loc

is a collection of balls centered on the fixed points. We now
have via the excision property of (co)homology, equiv-
alence of relative equivariant and singular cohomologies
for free actions, and finally Poincaré-Lefschetz duality the
three isomorphisms24:

H�
ΓðY;Y locÞ ≅H�

ΓðY∘;∂Y locÞ ≅H�ðX∘;∂XlocÞ ≅H4−�ðX∘Þ:
ðC12Þ

The relative cohomology group H�
ΓðY; Y locÞ sits in the long

exact sequence of equivariant relative homology for the
pair ðY; Y locÞ which is given by

… → Hk
ΓðY; Y locÞ → Hk

ΓðYÞ → Hk
ΓðY locÞ

→ Hkþ1
Γ ðY; Y locÞ → …: ðC13Þ

We simplify from here by noting that Y loc deformation
retracts onto fixed points and lifting this retraction to
ðY loc × EΓÞ=Γ we find

Hk
ΓðY locÞ ¼ ⨁

i
HkðBΓiÞ ðC14Þ

where Γi ⊂ Γ is the subgroup of the action fixing the
respective fixed point. As for the equivariant cohomology
groups Hk

ΓðYÞ, fortunately these were calculated in many
cases in [260] using the Serre spectral sequence for the
fibration ðY loc × EΓÞ=Γ → BΓ.
Combining all of the above we find the exact sequence

… → ⨁
i
Hk−1ðBΓiÞ → H4−kðX∘Þ → Hk

ΓðYÞ

→ ⨁
i
HkðBΓiÞ → …; ðC15Þ

where we let HlðX∘Þ ¼ 0 if l < 0. With this, the compu-
tation of the homology groups of X∘ is in many cases
reduced to determining the maps of this sequence.
Note that X∘ deformation retracts to a three-dimensional

space and therefore Hk
ΓðY; Y locÞ ¼ 0 for k ≥ 4 which

implies

Hk
ΓðYÞ ≅ ⨁

i
HkðBΓiÞ ðk ≥ 4Þ: ðC16Þ

Further, for discrete subgroups of SUð2Þ we have
HkðBΓiÞ ¼ 0 for odd k and H2ðBΓiÞ ¼ AbðΓiÞ which
splits the remaining exact subsequence into two pieces
given by

0→H0
ΓðYÞ→ ZN →H3ðX∘Þ→H1

ΓðYÞ→ 0

0→H2ðX∘Þ→H2
ΓðYÞ→⨁

i
Γab
i →H1ðX∘Þ→H3

ΓðYÞ→ 0

ðC17Þ

where N is the number of fixed points. This simplifies
further by noting that H3

ΓðYÞ ¼ H1
ΓðYÞ ¼ 0 for our torus

quotients according to [260], so then have

0 → H2ðX∘Þ → H2
ΓðYÞ → ⨁

i
Γab
i → H1ðX∘Þ → 0 ðC18Þ

matching (4.7) in all entries but H2
ΓðYÞ where instead it

reads H2ðXÞ. We therefore propose that

H2
ΓðYÞ ≅ H2ðXÞ ðC19Þ

which agrees with the available results in [239,260].
We now provide a basic summary of our equivariant

cohomology calculations, most of which already appear
in [260] with the exception of the case Γ ¼ T . The24We use integer coefficients unless stated otherwise.

GENERALIZED SYMMETRIES, GRAVITY, AND THE … PHYS. REV. D 109, 026012 (2024)

026012-41



E2-page of the Serre spectral sequence ðY loc × EΓÞ=Γ →
BΓ is given by

Ep;q
2 ¼ HpðBΓ; ðHqðT4;ZÞÞΓÞ ðC20Þ

where the subscript Γ indicates the Γ-module structure
inherited from the action on T4. A crucial feature to make
note of is that Lemma 3.4 of [267] implies that the D4-
module structure of HqðT4;ZÞ has identical D0

4- and D00
4-

module structure, and likewise its T - and T 0-module
structures are identical. This is not surprising since the
extra affine transformations in the primed actions do not
affect the k-forms on T4.
Next, note that for pþ q ¼ 2, we have Ep;q

2 ¼ Ep;q
∞

because for Γ any ADE subgroup of SUð2Þ,HkðBΓ;ZÞ¼0

for odd k and HkðBΓ;Zn
ΓÞ ¼ 0 for k even if Zn

Γ is a
nontrivial irreducible Γ-module. So from (C19) we have
that

H2ðT4=ΓÞ ¼H0ðBΓ;ðZÞ6ΓÞ⊕H1ðBΓ; ðZÞ4ΓÞ⊕H2ðBΓ;ZÞ:
ðC21Þ

We list these cohomology groups with (un)twisted coef-
ficients in the table in II. Detailing now how these groups
are derived, first notice that the group H2ðBΓ;ZÞ, where Z
is a trivial Γ-module, is simply AbðΓÞ. The group
H0ðBΓ; ðZ6ÞΓÞ on the other hand consists of Γ-invariant
elements of ðZ6ÞΓ where the Γ action is the induced action
on H2ðT4;ZÞ.
The groups H1ðBΓ; ðZ4ÞΓÞ require a little more discus-

sion. If Γ ¼ Zk, let us single out a generator α∈Zk. Then if
we consider the following (not necessarily exact) sequence
of maps

Z4⟶
d0 Z4 ⟶

d1 Z4 ðC22Þ

where d0 ¼ 1 − α and d1 ¼ 1þ αþ α2 þ � � � þ αk−1, then
we have that

H1ðBZk; ðZ4ÞZk
Þ ¼ Kerd1

Imd0
: ðC23Þ

For the groups D4þn, we start with the fact that these can
be presented as extensions of Z2

0⟶Z4þ2n⟶D4þn⟶Z2⟶ 0: ðC24Þ

This implies a fibration structure on BD4þn of the form

BZ4þ2n ↪ BD4þn ⟶BZ2 ðC25Þ

so we can calculate H1ðBD4þn; ðZÞ4D4þn
Þ using the Serre

spectral sequence which collapses at the second page to

H1ðBD4þn; ðZÞ4D4þn
Þ

¼ H1ðBZ2; ½H0ðBZ4þ2n; ðZÞ4Z4þ2n
Þ�
Z2

Þ
⊕ H0ðBZ2; ½H1ðBZ4þ2n; ðZÞ4Z4þ2n

Þ�
Z2
Þ:

Notice that the Z4þ2n-module structure onH1ðT4;ZÞ ¼ Z4

is induced from itsD4þn-module structure, and furthermore
that

H1ðBZ2; ½H0ðBZ4þ2n; ðZÞ4Z4þ2n
Þ�
Z2;

Þ ¼ 0 ðC26Þ

because there are no Z4þ2n invariant generators of Z4. One
may also calculate twisted cohomology groups for BD4þ2n
using a method similar to (C23), see for instance equations
(254) and (255) of [260].25

Moving on to the binary tetrahedral group T , we can use
the presentation

0⟶D4 ⟶T ⟶Z3⟶ 0 ðC27Þ

to see that we have the following fibration structure of
classifying spaces:

BD4 ↪ BT ⟶BZ3: ðC28Þ

We can again use the Serre spectral sequence, as well as the
fact that H0ðBD4; ðZÞ4D4

Þ ¼ 0, to conclude that

TABLE II. Cohomology groups of BΓ with twisted coeffi-
cients given by Γ-modules ðZÞ6Γ ≡H2ðT4;ZÞ and ðZÞ4Γ ≡
H1ðT4;ZÞ whose module structure is induced from the Γ action
on T4. The sum of the groups each row is equal to H2ðT4=Γ;ZÞ.
The module structure of the unprimed actions of D4 and T are
identical to the primed actions which is why we do not
distinguish these in the table.

T4=Γ H0ðBΓ; ðZÞ6ΓÞ H1ðBΓ; ðZÞ4ΓÞ H2ðBΓ;ZÞ
T4=Z2 Z6 Z4

2
Z2

T4=Z3 Z4 Z2
3

Z3

T4=Z4 Z4 Z2
2

Z4

T4=Z6 Z3 0 Z6

T4=D4 Z3 Z2
2 Z2

2

T4=D5 Z3 0 Z4

T4=T Z3 0 Z3

25We observe that our table entry H1ðBD4; ðZÞ4D4
Þ ¼ Z2

2 does
not match that found in Table (260) of [260] [note that they use
Uð1Þ coefficients for the T4 cohomology groups]. We argue that
their result of “Z2” is not possible sinceD4 clearly acts on a basis
of 1-cocycles given by fdz1; dz2; dz̄1; dz2g in a reducible manner
(i.e. (anti)-holomorphicity conditions of forms preserved). This
implies that H1ðBD4; ðZÞ4D4

Þ must take the form G2 for some
Abelian group G.
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H1ðBT ; ðZÞ4T Þ ¼ H0ðBZ3; ðH1ðBD4; ðZÞ4D4
ÞÞ

Z3
Þ: ðC29Þ

We can calculate the rhs of by noting that

ðH1ðBD4; ðZÞ4D4
ÞÞZ3

¼ ðZ2
2ÞZ3

ðC30Þ

where the Z3 module structure is induced by the well-
known triality automorphism of the Klein group. There are
no (nontrivial) elements in Z2

2 invariant under the Z3

automorphism, so therefore H1ðBT ; ðZÞ4T Þ ¼ 0.
We now briefly comment on how our equivariant results

can be used to match with the homology groups of T6=Z3

and T6=Z4 in the main text. For the former case, we
compute

H4ðT6=Z3Þ ¼ H1
Z3
ðT6Þ

¼ H2ðBZ3;ZÞ ⊕ H1ðBZ3; ½H1ðT6Þ�Z3
Þ

⊕ H0ðBZ3; ½H2ðT6Þ�Z3
Þ

¼ Z3 ⊕ Z3
3 ⊕ 0; ðC31Þ

while in the latter we have

H4ðT6=Z4Þ ¼ H2
Z4
ðT4Þ

¼ H2ðBZ4;ZÞ ⊕ H1ðBZ4; ½H1ðT6Þ�Z4
Þ

⊕ H0ðBZ4; ½H2ðT6Þ�Z4
Þ

¼ Z4 ⊕ Z4
2 ⊕ Z5: ðC32Þ

These follow from the collapsing of the Serre spectral
sequence in low cohomological degree and indeed match
our results forH4ðT6=Z3Þ andH4ðT6=Z4Þ in the main text.
However, understanding nontrivial differentials in the
spectral sequence (C20) is required to compare with
H2ðT6=Z3Þ and H3ðT6=Z3Þ in (6.8) which is beyond the
scope of this work.

1. 7D Gauge groups for non-Abelian Γ
We are now in a position to write down the global form

of the 7D gauge groups for M-theory compactified on
T4=Γ for all possible non-Abelian actions Γ. This is
equivalent to stating the collection of representations of
massive charged particles and charged monopole 3-branes.

Since H1ðT4=ΓÞ ¼ 0 in all cases, these two types of
massive excitations are guaranteed to be mutually local.
Even though the equivariant method does not give a hands-
on definition of the 2-cycles in T4=Γ, we find that the maps
in (C1) can be fixed by exactness of the sequence.
Case X ¼ T4=D4: We find the exact sequence

0⟶
{2 Z3 ⟶

|2 Z3 ⊕ Z4
2 ⟶

∂2 ðZ2 ⊕ Z2Þ2 ⊕ Z3
4

⊕ Z2
2⟶

{1 Z4
2 ⟶

|1
0: ðC33Þ

The continuous gauge group is

Gfull ¼
ð½Spinð8Þ2 × SUð4Þ3 × SUð2Þ2�=Z4

2Þ ×Uð1Þ3
Z2

2 × Z4

:

ðC34Þ

Case X ¼ T4=D0
4: We find the exact sequence

0⟶
{2 Z3⟶

|2 Z3 ⊕ Z4
2⟶

∂2 ðZ2 ⊕ Z2Þ4 ⊕ Z3
2⟶

{1 Z4
2⟶

|1
0:

ðC35Þ

The continuous gauge group is

Gfull ¼
ð½Spinð8Þ4 × SUð2Þ3�=Z4

2Þ ×Uð1Þ3
Z3

2

: ðC36Þ

Case X ¼ T4=D00
4: We find the exact sequence

0⟶
{2 Z3⟶

|2 Z3 ⊕Z4
2⟶

∂2 Z6
4 ⊕Z2⟶

{1 Z4
2⟶

|1
0: ðC37Þ

The continuous gauge group is

Gfull ¼
ð½SUð4Þ6 × SUð2Þ�=Z4

2Þ ×Uð1Þ3
Z2

4 × Z2

: ðC38Þ

Case X ¼ T4=D5: We find the exact sequence

0⟶
{2 Z3 ⟶

|2 Z3 ⊕ Z4⟶
∂2 Z4 ⊕ Z3

4 ⊕ Z2
3

⊕ Z2⟶
{1 Z4 ⟶

|1
0: ðC39Þ

The continuous gauge group is

Gfull ¼
ð½Spinð10Þ × SUð4Þ3 × SUð3Þ2 × SUð2Þ�=Z4Þ ×Uð1Þ3

Z2
12 × Z2

: ðC40Þ

Case X ¼ T4=T : We find the exact sequence

0⟶
{2 Z3 ⟶

|2 Z3 ⊕ Z3⟶
∂2 Z3 ⊕ Z2

2 ⊕ Z4
3 ⊕ Z2 ⟶

{1 Z3⟶
|1

0: ðC41Þ

The continuous gauge group is
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Gfull ¼
ð½E6 × Spinð8Þ × SUð3Þ4 × SUð2Þ�=Z3Þ × Uð1Þ3

Z3
6

:

ðC42Þ

Case X ¼ T4=T 0: We find the exact sequence

0⟶
{2 Z3 ⟶

|2 Z3 ⊕ Z3 ⟶
∂2 Z6 ⊕ Z2

4 ⊕ Z4
3 ⟶

{1 Z3⟶
|1

0:

ðC43Þ

The continuous gauge group is

Gfull ¼
ð½SUð6Þ×SUð4Þ2×SUð3Þ4�=Z3Þ×Uð1Þ3

Z2
12×Z6

: ðC44Þ

APPENDIX D: HOMOLOGY GROUPS HnðT6=Z3Þ
AND HnðT6=Z4Þ

In this appendix we give details on the computations of
the homology groups HnðT6=Z3Þ and HnðT6=Z4Þ.

1. HnðT6=Z3Þ
We now determine the homology groups HnðT6=Z3Þ.

For this we first determine all fibrations of the form

T6=Z3 → T2=Z3; T6=Z3 → T4=Z3; ðD1Þ

with generic two- and four-torus fiber respectively. In both
cases the base is an invariant two- and four-torus folded by
the Z3 action and the fibration is realized by orthogonal
projection (the Z3 action is an isometry). For notational
conventions see (6.1).
We begin by studying the set of fibrations T6=Z3 →

T2=Z3. The possible bases are lines

LðiÞ
α ðfj; fkÞ∶ zj ¼ αjzi þ fj; zk ¼ αkzi þ fk ðD2Þ

parametrized by zi where fi; j; kg ¼ f1; 2; 3g and fj, fk
are each one of the three fixed points on T2

j ; T
2
k respectively.

Further we have αi; αj ∈ f0; 1; τ; τ2g with τ ¼ expð2πi=3Þ
and α ¼ ðαj; αkÞ. Requiring the line LðiÞ

α ðfj; fkÞ to be
invariant under the Z3 action fixes possible constant terms
to be fixed points fj, fk. The parameters α are constrained
by zi, zj, zk taking values modulo 1; τ. The map from labels
ði; α; fj; fkÞ to lines is not injective.
At fixed points zi ¼ fi of T2

i the values for zj, zk also

compute to fixed points. To every line LðiÞ
α ðfj; fkÞ we thus

associate a line in Z3
3 consisting of three fixed points. We

denote such a line by LIJK ¼ fI; J; Kg with I; J; K ∈Z3
3

labeling the fixed points. For convenience let us label

LðiÞ
α ðfj; fkÞ by the fixed the singularities it contains, that is

write LIJK for the same object. Note that here lines include

affine lines, they are not required to contain the ori-
gin zi ¼ 0.
Let us consider a fixed fibration T6=Z3 → LIJK for a

given line LIJK . Let us denote the generic four-torus fiber
by T4

IJK. At the ith fixed point of the line LIJK the four-torus

fiber is folded to the divisor DðiÞ
IJK ¼ T4

IJK=Z3 and in
homology we have

T4
IJK ¼ 3DðiÞ

IJK; i ¼ 1; 2; 3: ðD3Þ

Now consider the crepant resolution ðT6=Z3Þ0. The lines
intersect the exceptional divisors P2

I in points and therefore
we have the fibration ðT6=Z3Þ0 → LIJK for any line LIJK .
Now resolution introduces exceptional curves and the
relation (D3) is extended to

T4
IJK ¼ 3DðiÞ

IJK þ
X

H∈DðiÞ
IJK

P2
H; i ¼ 1; 2; 3 ðD4Þ

where H runs over the 9 fixed points contained in

DðiÞ
IJK ⊂ X. In Eq. (D4) we more precisely have the proper

transform of DðiÞ
IJK but to avoid additional notational

elements we do not include this in the notation. The crucial
part of Eq. (D4) is that the left-hand side is independent of
i. We thus find the integral cycles

1

3

0
@ X

H∈DðiÞ
IJK

P2
H −

X
H0 ∈Dði0Þ

IJK

P2
H0

1
A ¼ Dði0Þ

IJK −DðiÞ
IJK ∈H4ðX0Þ:

ðD5Þ

Note the analogous structure in (5.9).
We can rephrase this result as follows. Consider the

planes in Z3
3 orthogonal to the lines LIJK . Planes are

parallel whenever they do not share a point. Orthogonal to a
given line there are three parallel planes. The relation (D5)
is then the difference of the exceptional divisors associated
with fixed points in two parallel planes.
We now study the set of fibrations of the form

T6=Z3 → T4=Z3. The possible bases are the planes

PðkÞ
α;f∶ zk ¼ αizi þ αjzj þ fk ðD6Þ

parametrized by zi, zj and otherwise with notation as
introduced above. Most comments made for T6=Z3 →
T2=Z3 generalize and we do not repeat them.
The important observation is now that the computation

proceeds as for the case T4=Z3 (or T4=Z2). We take the
affine perspective reducing the problem to combinatorics.
We compute
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coker |2 ¼ Z23
3 ; Tor H2ðXÞ ≅ Z17

3 ;

coker |4 ¼ Z10
3 ; Tor H4ðXÞ ≅ Z4

3; ðD7Þ

where the maps |n appear in the sequence (6.7).

2. HnðT6=Z4Þ
Here we discuss the homology groups HnðT6=Z4Þ. We

compute these via a cutting and gluing construction. This
computation differs from the computation ofHnðT6=Z3Þ as
now codimension 4 and 6 singularities occur simultane-
ously and we are unaware of a reduction of the analysis to a
counting problem, as in all other cases analyzed throughout
this paper.
Let us set up the cutting and gluing problem. The Z4

action on T6 ¼ T2
1 × T2

2 × T2
3 with coordinates ðz1; z2; z3Þ

and complex structures ði; i; iÞ respectively is ðz1; z2; z3Þ∼
ðiz1; iz2;−z3Þ. We consider the fibration

π∶ T6=Z4 → B ¼ T2
3=Z2 ðD8Þ

whose base is topologically a two-sphere with four orbifold
points. The generic fiber F ¼ ðT2

1 × T2
2Þ=Z2 degenerates at

these points to F=Z2 ¼ ðT2
1 × T2

2Þ=Z4. Next we decom-
pose the base B into four disks

B ¼ D1 ∪ D2 ∪ D3 ∪ D4 ðD9Þ

each centered on a orbifold point and containing exactly
one orbifold point. The disks are chosen such that they
overlap in contractible patches. This decomposition lifts to
a covering

T6=Z4 ¼U1 ∪ U2 ∪ U3 ∪ U4; Uk ¼ π−1ðDkÞ ðD10Þ

to which we now iteratively apply the Mayer-Vietoris
sequence.
Before we set up this Mayer-Vietoris sequence we

analyze the quotient map

q∶ F ¼ ðT2
1 × T2

2Þ=Z2 → F=Z2 ¼ ðT2
1 × T2

2Þ=Z4 ðD11Þ

for its properties feature repeatedly throughout the sequen-
ces. First, consider its lift q4 to homology in degree 4,
which is clearly given by multiplication by 2. Next,
consider its lift q2 to homology in degree 2, which is a map

q2∶ H2ðFÞ ≅ Z6 ⊕ Z5
2 → H2ðF=Z2Þ ≅ Z4 ⊕ Z4 ⊕ Z2

2:

ðD12Þ

Here Z2 acts on H2ðFÞ acting on free and torsional
generators separately. Any two-sphere generating a free

class in H2ðF=Z2Þ is of the form T2=Z4 while those in
H2ðFÞ are topologcially T2=Z2. Therefore free generators
are related by multiplication by 2 and therefore

q2jfree∶ Z6 → Z4; ker q2jfree ¼ Z2;

coker q2jfree ¼ Z4
2 ðD13Þ

The torsional subgroup Tor H2ðFÞ ≅ Z5
2 is in turn gen-

erated by elements separately labeled by 8 of the 16
singularities in F. The Z2 action fixes 4 of the 16
singularities and permutes the other 12, see Sec. VA.
Writing out generators explicitly we conclude

q2jtor∶ Z5
2 → Z4 ⊕ Z2

2; ker q2jtor ¼ Z2
2;

coker q2jtor ¼ Z2; ðD14Þ

and therefore find overall

im q2 ≅ Z4 ⊕ Z3
2; ker q2 ≅ Z2 ⊕ Z2

2;

coker q2 ≅ Z5
2: ðD15Þ

The map q0 is the identity map and q1, q3 are trivial.
Let us now consider the Mayer-Vietoris sequence gluing

U1,U2 to the unionU1 ∪ U2. The intersectionU12 ¼ U1 ∩
U2 retracts to F while both U1, U2 retract to F=Z2. The
patches U1, U2 are topologically identical and the map

Qn∶ HnðFÞ → HnðU1Þ ⊕ HnðU2Þ ðD16Þ

in the sequence is therefore diagonal and given by
Qn ¼ ðqn; qnÞ. Therefore we compute

HnðU1 ∪ U2Þ ≅ fZ;0;Z4 ⊕ Z4 ⊕ Z7
2;Z

2 ⊕ Z2
2;Z⊕ Z2g

ðD17Þ

and clearly we also have HnðU1 ∪ U2Þ ≅ HnðU3 ∪ U4Þ.
Next we glue U12 ¼ U1 ∪ U2 to U34 ¼ U3 ∪ U4 along

U12 ∩ U34. The latter retracts to a fibration of F over a
circle linking two of the four orbifold points in B.
Encircling each orbifold point F is glued to itself by a
Z2 twist. The monodromy about two points is therefore
trivial and the intersection therefore retracts to the direct
product F × S1, therefore by Künneth’s formula

HnðU12 ∩U34Þ≅ fZ;Z;Z6 ⊕Z5
2;Z

6 ⊕Z5
2;Z;Zg: ðD18Þ

The Mayer-Vietoris sequence with the above
simplifications is
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0 ⊕ 0 ⟶
|6 H6ðT6=Z4Þ →

→ H4ðFÞ ⊗ H1ðS1Þ ⟶
{5

0 ⊕ 0 ⟶
|5 H5ðT6=Z4Þ →

→ H4ðFÞ ⟶
{4 H4ðU1 ∪ U2Þ ⊕ H4ðU3 ∪ U4Þ ⟶

|4 H4ðT6=Z4Þ →

→ H2ðFÞ ⊗ H1ðS1Þ ⟶
{3 H3ðU1 ∪ U2Þ ⊕ H3ðU3 ∪ U4Þ ⟶

|3 H3ðT6=Z4Þ →

→ H2ðFÞ ⟶
{2 H2ðU1 ∪ U2Þ ⊕ H2ðU3 ∪ U4Þ ⟶

|2 H2ðT6=Z4Þ →

→ H1ðS1Þ ⟶
{1

0 ⊕ 0 ⟶
|1 H1ðT6=Z4Þ → 0 ðD19Þ

which immediately givesH0ðT6=Z4Þ≅Z andH1ðT6=Z4Þ≅
0 and H6ðT6=Z4Þ ≅ Z. As before we have that U1 ∪ U2

and U3 ∪ U4 are topologically identical and the maps {n are
therefore diagonal. Let us now study these maps in turn.
The map {2∶ Z6 ⊕ Z5

2 → ðZ4 ⊕ Z4 ⊕ Z7
2Þ2 has image

and kernel as the map Q2, therefore

ker {2 ≅ Z2 ⊕ Z2
2; coker {2 ≅ Z4 ⊕ Z4 ⊕ Z17

2 ; ðD20Þ

and due to S1 ⊂ B we conclude H2ðT6=Z4Þ ≅
Z5 ⊕ Z4 ⊕ Z17

2 . The map {4∶ Z → ðZ ⊕ Z2Þ2 has image
and kernel as the map Q4, therefore

ker {4 ≅ 0; coker {4 ≅ Z ⊕ Z3
2; ðD21Þ

from which we conclude H5ðT6=Z4Þ ≅ 0. The map
{3∶ Z6 ⊕ Z5

2 → ðZ2 ⊕ Z2
2Þ2 follows from the monodromy

action on H2ðFÞ discussed following (D12). Denote by
σ ∈H2ðFÞ a generator invariant under this action. The
3-cycle σ × S1 can then be contracted and vanishes in
H2ðFÞ ⊗ H1ðS1Þ. Denote by ρi ∈H2ðFÞ with i ¼ 1, 2
two generators interchanged by the action. In this case ρ1 −
ρ2 is inverted and necessarily collapses at both orbifold
points contained in either U1 ∪ U2 or U3 ∪ U4. Fibering
ρ1 − ρ2 over a line connecting the orbifold points constructs
a 3-cycle. The two 3-cycles ρi × S1 both map to this 3-cycle
(or the inverse thereof) upon contracting S1 to a line running
between the orbifold base points. We have the split

H2ðFÞ ¼ H2ðFÞþ ⊕ H2ðFÞ− ¼ ðZ2 ⊕ Z2Þ ⊕ ðZ4 ⊕ Z4
2Þ

ðD22Þ

where the first, second summand are associated with σ’s, ρ’s
respectively. We conclude

im {3 ≅ Z2 ⊕ Z2
2; ker {3 ≅ Z4 ⊕ Z3

2;

coker {3 ≅ Z2 ⊕ Z2
2; ðD23Þ

from which we derive, together with (D20) and (D21), the
two short exact sequences

0 → Z ⊕ Z3
2 → H4ðT6=Z4Þ → Z4 ⊕ Z3

2 → 0

0 → Z2 ⊕ Z2
2 → H3ðT6=Z4Þ → Z2 ⊕ Z2

2 → 0: ðD24Þ

Identifying the cycles we conclude H3ðT6=Z4Þ ≅ Z4 ⊕ Z4
2

and H4ðT6=Z4Þ ≅ Z5 ⊕ Z4 ⊕ Z4
2. The latter matches with

equivariant cohomology computations. Notice that we have
the duality check H4ðT6=Z4Þ ≅ H1ððT6=Z4Þ∘Þ with the
latter readily computable by equivariant methods. Overall
we find the result given in (6.35).

APPENDIX E: 5D ABELIAN CHERN-SIMONS
COUPLINGS

In this appendix we collect the 5D Abelian Chern-
Simons Couplings for 5D vacua obtained from M theory
on T6=Z3 and T6=Z4. These follow from reduction of the
11D supergravity coupling C ∧ G ∧ G. Let us note that we
can also extract mixed Uð1Þ-gravity-gravity Chern-Simons
couplings from reduction of the C3 ∧ X8ðRÞ term.

1. T6=Z3

Consider first M theory on X ¼ T6=Z3. The Uð1Þ9
gauge group factor in Gfull is accompanied by Chern-
Simons terms

KIJK

24π2

Z
5D

AIFJFK; KIJK∈Z; I;J;K¼ 1;…;9; ðE1Þ

where we have normalized such that KIJK are the integer-
valued K-matrix coefficients. These follow from reduction
of the 11D supergravity term:

−
1

6ð2πÞ3
Z

C3 ∧ G4 ∧ G4 ðE2Þ

and are computed by triple intersection numbers among the
generators of Free H2ðXÞ. We can compute these inter-
section numbers noting that H2ðX;ZÞ ¼ Z9 correspond to
Z3 invariant 2-forms of H2ðT6Þ which are given by

ωi|̄ ≔
i
2
dzi ∧ dz̄|̄: ðE3Þ
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We relabel these 2-forms as ωI with I ¼ 1;…; 9 defined by I ¼ 3ði − 1Þ þ |̄. The Chern-Simons levels are then

KIJK ¼
Z
T6=Z3

ωI ∧ ωJ ∧ ωK: ðE4Þ

They are computed using ½VolT6 � ¼ 3∈Z ≅ H6ðT6=Z3;ZÞ, where VolT6 is the volume form on T6, and explicitly read

KIJK ¼
�
3 ðI; J; KÞ ¼ ð1; 5; 9Þ; ð1; 6; 8Þ; ð2; 4; 9Þ; ð2; 6; 7Þ; ð3; 4; 8Þ; ð3; 5; 7Þ þ permutations

0 Otherwise
ðE5Þ

2. T6=Z4

Consider next M theory on T6=Z4. The Abelian Chern-Simons levels of the Uð1Þ5 factor can be computed in the same
way as in the T6=Z3 example, relying again on the free part Z5 ⊂ H2ðXÞ being generated by Z4 invariant 2-forms of T6. If
we define

ω1 ¼
i
2
dz1 ∧ dz̄1;

ω2 ¼
i
2
dz1 ∧ dz̄2;

ω3 ¼
i
2
dz2 ∧ dz̄1;

ω4 ¼
i
2
dz2 ∧ dz̄2;

ω5 ¼
i
2
dz3 ∧ dz̄3; ðE6Þ

then we have a CS action (E1) with K matrix

KIJK ¼
Z
T6=Z4

ωI ∧ ωJ ∧ ωK ¼
�
4 ðI; J; KÞ ¼ ð1; 4; 5Þ; ð2; 3; 5Þ þ permutations

0 Otherwise:
ðE7Þ

where I; J; K ¼ 1;…; 5.
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