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In this paper, based on the 77 deformed version of dS;/CFT, correspondence, we calculate the
pseudoentropy for an entangling surface consisting of two antipodal points on a sphere and find it is exactly

dual to the complex geodesic in the bulk.
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I. INTRODUCTION

The study of quantum gravity in de Sitter space has
generated much interest in recent years, particularly due to
its potential relevance for inflationary cosmology and
cosmic acceleration. One promising method to comprehend
de Sitter (dS) space is through the dS/conformal field
theory (CFT) correspondence [1]. It is a conjectured
equivalence between a gravitational theory in de Sitter
space and a conformal field theory residing on its boundary.
The dS/CFT correspondence is a generalization of the
well-known AdS/CFT correspondence [2,3], which has
been extensively studied in string theory and provided
numerous insights into extracting the nature of quantum
gravity from its dual CFT. However, the dS/CFT corre-
spondence is not as well understood as the AdS/CFT
correspondence, as there are only limited explicit examples
of CFTs that are dual to de Sitter spacetime. Recently,
a remarkable and explicit example has been constructed
for the dS;/CFT, correspondence [4,5], where the dual
CFT resides on the past/future boundary of de Sitter
spacetime.

Starting with the three-dimensional de Sitter spacetime,
we take a static compact slice X, of constant time. Clearly,
each X, has a Riemannian metric y and a second funda-
mental form K. In the canonical formalism for gravity,
the quantum state residing on X, can be described by
the Hartle-Hawking wave function Wus[y]. Following
Refs. [4,5], and neglecting the contributions of bulk matter
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fields, we could obtain a calculable example of dS;/CFT,
correspondence described by

Yaslr] = Zerrlyl,

t - oo, (1.1)
where Zcgr is the partition function of the dual CFT, living
on X,.

In this paper, we aim to further explore the scenario
described above. Typically, it is not necessary to confine the
slice X, at the future infinity, which leads to a natural
extension of the dS;/CFT, correspondence,

Yas[r] = Zarr[r], (1.2)
where Zgpr is the partition function of the dual quantum
field theory (QFT) living on a finite-volume slice Z,. The
dual QFT could be defined as a two dimensional (2D) CFT
deformed by the TT operator [6-8] that generates a
trajectory in the space of field theory,

%k,g Z(3) = —2x /)2 Py T, (13)

At the first order of the deformation parameter A, the
deformed theory, perturbatively, could be written as

logZ(A) =log Z(A = 0) — 27:&/): d*x\/y(TT),_,

+O(2?), (1.4)
where (TT),_, is defined by the stress tensor of the
undeformed theory as (T7T),_o = (I'T) = [(T**)(T ) —
(T%)?]. In recent years, the T7T deformation has been widely
studied [9-45], due to its integrability and its applications
in holography. Our proposal is a natural extension of
the cutoff-AdS/TT-deformed-CFT correspondence [46]
to de Sitter spacetime. Additionally, the 77-deformed
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version (1.2) of dS;/CFT, is remarkably coincident with
the Cauchy slice holography [47,48], where time serves as
the emergent direction. The 7TT-deformed version (1.2) of
dS;/CFT, is illustrated in Fig. 1. Note that the deformation
parameter 4 is on the order of O(1/¢), and in the limit of
large c, the deformed theory is simply defined by Eq. (1.4).
In this scenario, the 7T flow has been demonstrated to
nonperturbatively match with bulk computations of dS;
with a finite temporal cutoff, analogous to the situation in
AdS/CFT [46]. This justifies our choice of the time ¢ on the
hypersurface %, to be finite. However, beyond the large ¢
limit, one must define the 77T deformed theory using
Eq. (1.3), which generically cannot be solved completely.

It is clear that the 7T deformation is irrelevant in the
renormalization group sense. This implies that the TT
deformation leads to no consequence in IR but does affect
UV physics. Among the various deformable physical
quantities in the UV region, a particularly important one
is the entanglement entropy. In the dS/CFT correspon-
dence, the dual CFTs turn to be nonunitary [1,4,5,49]. To
characterize the degrees of freedom in a nonunitary CFT,
complex-valued entanglement entropies, namely, pseu-
doentropy [41-43,50-59], are needed. In other words,
|

i) = {2

where R[y] is the Ricci scalar, A = £32 is the cosmological
constant of the de Sitter spacetime, and I is the
momentum conjugate to the metric y,,;:

IR

et = —j =
Yoy 162Gy

(K — Kep™).

(2.2)

Vs (1] = Zerr [1]

Vs [v2] = Zarr 2]

(T, — ety - —7

CFT on a large-volume slice

<=> =

o

QFT on a finite-volume slice

<=

The TT-deformed version of the dS;/CFT, correspondence, with the Lorentzian time ¢ in the global coordinates of the dS;

the pseudoentropy can be viewed as a well-defined entan-
glement entropy in the TT-deformed version of the
dS;/CFT, correspondence. It is then interesting to explore
how the holographic entanglement entropy [60,61] behaves
in the T7T-deformed version of the dS;/CFT,. In this paper,
our main goal is to calculate the entanglement entropy in
the TT-deformed field theory and compare it with geo-
desics in the dS; bulk.

In Sec. II, we give a brief review of the TT deformed
version of dS/CFT. In Sec. III, we calculate the pseudoen-
tropy for an entangling surface consisting of two antipodal
points on a sphere S?, and we find that the entanglement
entropy does perfectly match the length of the complex
geodesic connecting these antipodal points in dSs.

II. WHEELER-DEWITT EQUATION
AND TT FLOW

We first briefly review the T7 deformed version of
dS/CFT in this section. In the canonical formalism
of three-dimensional pure gravity, the Hartle-Hawking
wave function ¥[y] should obey the Wheeler-DeWitt
equation

<Rwy—mw}@w1=o, @.1)

167TGN

|
The standard quasilocal stress tensor can be defined as

2 6 2i
o = = -, (2.3)

NN

which coincides with the field-theoretic definition. To
require the finiteness of the quasilocal stress tensor at
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the future infinity X, one needs to perform a canonical
transformation [48,62],

- 1
Y = S ¥, 2.4
P < 8GNl qs /E x\/?) ( )

167TGNde
dety

{ZH“+
\/}711

By using the quasilocal stress tensor, the equation is simply

S
1671'GN

Rly] +1i4nGytas (T T, — TTY).  (2.7)

On the other hand, in the 7T deformed field theory, when
the deformation parameter A is small,l one can rewrite
Eq. (1.3) as

IOg ZQFT = IOg ZCFT — 277,%/ sz\/]?<TT> (28)
z

By the definition of the trace of the stress tensor

0
1e = 270 % 16007, (2.9)
\/}75yab

and the famous Weyl anomaly

(T8)crr = =54 Rl (2.10)

a)CFT = ~ 50 7l .
the trace flow equation for deformed theory is
a\ ¢ 7l ab a b

(T8) = =5 Rl =2 (1) (Tu) = (TE(TL). (2.11)

Here, all stress tensors emanate from the deformed theory
residing on a 2-sphere. This alignment is in accordance
with the capability of 7T deformation to be defined on
compact backgrounds [7,10,37]. Relating to Eq. (2.7), we
immediately find the identifications between field-theoretic
quantities and gravitational quantities

3¢
c=—iB = _icys, A=—i8Gylys = —ilgs.

2.12

'Our approach is limited to perturbation theory because a
nonperturbative completion of the 77 deformation (1.3) is
unknown. In our analysis, we operate under the assumption that
the Zamolodchikov’s factorization formula remains valid in the
context of dS/CFT, particularly when considering the large ¢
limit.

(T, — TIGIT)) —

which leads a shift on the momentum

Hab — Hab+ \/77 yah‘

2.5
]67TGNl/ﬂds ( )

Therefore, the Wheeler-DeWitt equation could be rewritten as

de
167TGN

RM}%M=0- (2.6)

|
where the Brown-Henneaux central charge [63] turns to be
imaginary valued in the de Sitter context [49] and the
deformation parameter is also imaginary valued. The
deformation parameter A remains unrelated to the time
variable ¢ due to our selection of the seed CFT residing on
the hypersurface X;, as opposed to X . It is noteworthy that
these distinct choices of the seed CFT are connected
through a straightforward Weyl rescaling on the hypersur-
face. Furthermore, the momentum constraint for the Hartle-
Hawking wave function,
DW= 2V, W] =0, (2.13)
can be easily interpreted as the conversation law of the
stress tensor in field theory,
V,(T%) = 0. (2.14)
The wave function W[y] should be invariant under diffeo-
morphisms of %, given that D? serves as the generator of
diffeomorphisms. In simpler terms, ¥[y] is a function on the
space of metrics modulo diffeomorphisms. Even though the
dual field theory is nonunitary, the dynamical inner product
(P|¥) is Hermitian and positive semidefinite, which
indicates that we still have the bulk unitarity [47,48].

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY

First, we briefly introduce the pseudoentropy. Dividing
the total system into two subsystems A and B, the
pseudoentropy is defined by the von Neumann entropy,

SA = —Tr[TA IOgTA], (31)
of the reduced transition matrix
ly) (wl]
T4 = Tr , 3.2
A g [<¢|w> (3:2)

where |y) and |¢) are two different quantum states in the
total Hilbert space that is factorized as H = H, ® Hp.
For a generic QFT living on a curved surface X, the
pseudoentropy could be captured by the replica method
[64,65] in path integral formalism. Denoting the manifold
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corresponding to (¢|y) as X and the manifold correspond-
ing to Try(z4)" as X,,, the pseudoentropy for the subsystem
A reads

lim ——log |2
ST °g{<zz>n]’
where Zy is the path integral over the manifold £ and S,
can be regarded as a well-defined entanglement entropy in
the dS; context. For an example, one can compute the
pseudoentropy for subsystem A, which corresponds to an
interval, in a nonunitary QFT residing on a sphere S?, as
depicted in Fig. 2.

To capture the pseudoentropy, we first need to calculate
the partition function for a field theory. Specifically, one
saddle solution for the Hartle-Hawking wave function

(3.3)

Wgsy] is the Euclidean sphere S?, where the corresponding
metric of de Sitter spacetime is given by

ds? = £3(—di® + cosh?tdQ2), (3.4)

where dQ3 = d6* 4 sin’0d¢? is the metric of a 2D unit
sphere and the spacelike boundary at time ¢ is a Euclidean

sphere S? with the radius r = 4 /’“ﬁ% cosh ¢. In this section,

we will calculate the pseudoentropy of the 7T deformed
field theory living on a sphere S? with a radius r. To be
precise, we focus on the case in which an entangling
surface consists of two antipodal points on this sphere, as
shown in the right panel in Fig. 3. Following Ref. [10], for a
field theory living on a sphere with the metric

FIG. 2. The subsystem A within a nonunitary QFT residing on a 2-sphere, with black points indicating the codimension-2 entangling

surface.
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FIG. 3.

Left panel: geodesics connecting to the entangling surface in the dSs. The red line denotes one spacelike geodesic, and two

green lines denote two timelike geodesics. The purple line denotes a spacelike interval A on the 2-sphere. Right panel: the entangling

surface consists of two antipodal points on the 2-sphere.
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ds®> = r*(d6* + sin’0d¢?), (3.5)
the stress tensor takes the form?
Tab = Y yp» (36)

where a could be determined by substituting Eq. (3.6) into
the trace flow equation (2.11),

1 Ac
1—4/1+—
) < + 12r2>

_ i 1— l_ﬂdSCdS.
ﬂlds 127”2

(3.7)

4 A
log Zopr = ia {r(y/rz—%gds‘—O -

It is worthy to note that, since r/+/r* — Adgscqs/12 > 1, the function tanh™!

Noticing that rd,y,, = 2y., One obtains the equation for
the partition function

e / d’x\/yT¢

.8 5 AdsCds
=1— -————=r, 3.8
s <\/ r-—p ) G3¥

and the partition function thus reads

(3.9)

fats (]|
12 \/ rz—/ldscds/lz
(r/\/r* — dgscas/12) is indeed complex valued.

Focusing on the principal branch of the inverse hyperbolic function, one then obtains

4 Ags€
1 7 i 2 _ S ds _ _
og QFT llds |:r< r 2 r

The real part % is consistent with the result in Ref. [5],

nc
|ZCFT|2 = eXP( 3ds>,

since the deformation parameter is imaginary valued and
the TT deformation only affects the imaginary part of log Z.
Utilizing the replica method introduced in Ref. [10], in the
case where the entangling surface consists of two antipodal
points on the 2-sphere, the n-sheeted cover is simply

(3.11)

ds* = g,pdx®dx’ = r*(d0? + n’sin’0d¢?),  (3.12)
and the pseudoentropy reads
1 V4
Sy =1 1 =
TaiTont Lzl)"]
119 ) logz (3.13)
=(1l-n— .
on &4 n=1

Noting that nd, g,y = 29,4, the variation of logZ, with
respect to n can be expressed as

d
IOgZQFT (314)

— 2 Ta
on "ln=1 /dx\/_

2Generally, for vacuum states in QFTs living in a d-dimen-
sional maximally symmetric space, the stress tensor satisfies
(T, (x)) = 1(8)g,,(x), where (©) is an x-independent constant.

AdgsCds _1< r ﬂ
coth +
12 \/ rz—ﬂdscds/lz 6

TTC4s

(3.10)

|
We could thus obtain the pseudoentropy S, for an
entangling surface of two antipodal points on a sphere S

rd
TTCy4s

— —i %8S coth! < 4 ) +
3 \/ rz—ldscds/12 6

o )
Substituting r = \/%g“‘scosh t, the entanglement entropy

of two antipodal points on a S? is thus given by

(3.15)

Cds Cds
Sy=—nm—-1—1.

: : (3.16)

On the other hand, in the dS; bulk, the geodesic distance
between two points at the same time (¢,0; = 0, ¢ = 0) and
(1,0 = m,¢ = 0) is given by

0,—0,;
D(0,,0,) = ¢ysarcos {1 — 2cosh?tsin? <%H

= fdsﬂ' — 2ifdst. (317)
According to the Ryu-Takayanagi formula [60],
Refs. [5,55] have determined that the complex-valued
extremal surface comprises one spacelike geodesic and
two timelike geodesics, as illustrated in Fig. 3. The two
timelike geodesics connect the entangling surface and the
de Sitter horizon, respectively, while the spacelike geodesic
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links the end points of the two timelike geodesics on the de
Sitter horizon. Furthermore, the length of the spacelike
geodesic is proportional to the real part of the pseudoen-
tropy, whereas the total length of the two timelike geodesics
is proportional to the imaginary part of the pseudoentropy.
Related works on the complex-valued extremal surface
have also been proposed in Refs. [66—68]. Using the
identifications (2.12), the Ryu-Takayanagi formula gives

D@i,é’ C . C

1
4Gy, 6 3 (3.18)

which exactly is equal to the entanglement entropy
equation (3.16).

Therefore, as promised, we verified that, for a static finite
volume slice S? in dSs, the pseudoentropy for an entan-
gling surface consisting of two antipodal points is precisely
equal to the complex geodesic in the dS; bulk.
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