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We investigate the quasinormal mode (QNM) spectra for scalar and electromagnetic fields over a
covariant loop quantum gravity (LQG) black hole. For the fundamental modes, the LQG effect reduces the
oscillations in the scalar field, however, it induces stronger oscillations in the electromagnetic field
compared to the classical case. Under the scalar field perturbation, the system enjoys faster decaying modes
with more oscillations than the electromagnetic field. Some peculiar phenomena emerge in the QNM
spectra with higher overtones. A notable feature is the substantial divergence observed in the first several
overtones from their Schwarzschild counterparts, with this discrepancy becoming magnified as the
overtone number increases. Another remarkable phenomenon in higher overtones is that the quasinormal
frequencies of the scalar field with l ¼ 0 exhibit an oscillatory behavior as the quantum parameter r0
increases significantly. These oscillations intensify with the rising overtone number. We hypothesize that
this oscillatory pattern may be associated with the extremal effect.
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I. INTRODUCTION

A nonperturbative and background-independent tech-
nique, loop quantum gravity (LQG) [1–4], provides a
scenario for quantizing spacetime structure. This approach
has been successfully applied to quantize symmetry
reduced cosmological spacetimes, known as loop quantum
cosmology (LQC) [5–12]. Effective LQC theory can be
constructed by incorporating two key quantum gravity
effects, namely, the inverse volume correction and the
holonomy correction, which can be achieved using both
the canonical approach [13–18] and the path integral
perspectives [19–25]. The quantum gravity effects in
LQC can be connected to low-energy physics, resulting
in a solvable cosmological model for studying quantum
gravity effects. In particular, the big bang singularity in
classical general relativity (GR) is successfully avoided by
the quantum gravity effects [5–12,26–31], which instead

result in a nonsingular big bounce even at the semiclassical
level [32,33].
Following the same idea in LQC [5–12], several effective

black hole (BH) models with LQG corrections have been
constructed. Up to date, most of the effective LQG-BHs are
implemented through the input of the holonomy correction;
see, for example, [34–44] and references therein. A
common feature of LQG-BHs is that the singularity is
replaced by a transition surface between a trapped and an
antitrapped region, which can be understood as the interior
region of black holes and white holes.
The heart of the holonomy correction is the phase space

regularization technique called polymerization [45]. Because
of this, the effective LQG-BH with holonomy correction is
also known as the polymer BH. The basic idea behind
polymerization is the replacement of the conjugate momen-
tum p with their regularized counterpart sinðλ̄pÞ=λ̄, where λ̄
is a quantity known as the polymerization scale, which is
linked to the area gap. Depending on whether the polym-
erization scale is a constant or phase-space-dependent
function, the polymer BHs are classified into two basic types:

(i) μ0-type scheme: In this scheme, the polymerization
scale is assumed to remain constant over the whole

*Corresponding author: jianpinwu@yzu.edu.cn
†FuguoyangEDU@163.com
‡danzhanglnk@163.com
§phylp@email.jnu.edu.cn
∥xmeikuang@yzu.edu.cn

PHYSICAL REVIEW D 109, 026010 (2024)

2470-0010=2024=109(2)=026010(17) 026010-1 © 2024 American Physical Society

https://orcid.org/0000-0002-2432-0522
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.026010&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1103/PhysRevD.109.026010
https://doi.org/10.1103/PhysRevD.109.026010
https://doi.org/10.1103/PhysRevD.109.026010
https://doi.org/10.1103/PhysRevD.109.026010


phase space [34–38]. This approach has the draw-
back that the final result is reliant on the fiducial
structures, which are introduced in the construction
of the classical phase space. In addition, even in the
low-curvature regimes, significant quantum effects
may manifest, making these models unphysical. To
overcome this drawback, some generalized versions
of the μ0 scheme have been proposed (see, for
example, [46–49]), which partially alleviate the
issues mentioned above.

(ii) μ̄-type scheme: The polymerization scale in the
μ̄-type scheme is chosen to be a function of the
phase space [39–42] such that the dependency on
fiducial structures is removed. Particularly, in the
improved μ̄ scheme with Chiou’s choice [40,41], the
spacetime approaches sufficiently fast the Schwarzs-
child geometry at low curvatures, which cures the
drawback of the μ0 scheme [50–53].

Recently, following the idea of the anomaly-free
polymerization in [54], a novel covariant model of a
spherically symmetric BH with holonomy correction is
proposed in [55,56]. The polymerization scale λ̄ is a
constant in this model, and it is related to a fundamental
length scale r0 by a constant of motion m. The resulting
geometry corresponds to a singularity-free interior
region and two asymptotically flat exterior regions of
equal mass.
In this paper, we will mainly study the properties of the

quasinormal modes (QNMs) of a probe scalar field and a
probe Maxwell field over this covariant polymer BH. As
we all know, during the ringdown phase of binary system
coalescence, the BH emits the gravitational waves (GWs)
with typical discrete frequencies, i.e., quasinormal frequen-
cies (QNFs). According to [57], QNFs encode decaying
scales and damped oscillating frequencies. Certainly,
quantum effects have the imprints in the QNM spectra,
which are expected to be detected in GW observations.
Also, conversely, GW detection will serve as an important
criterion for the correctness of candidate quantum gravity
theories.
Our paper is organized as follows. In Sec. III, we present

a brief discussion on the effective potentials of scalar and
Maxwell fields over the covariant LQG-BH. Section IV is
dedicated to the properties of the QNM spectra. Then, we
further study the ringdown waveform in Sec. V. We present
the conclusions and discussions in Sec. VI. Appendixes A
and B present a detailed derivation of the wave equations
and the QNMs in the eikonal limit.

II. EFFECTIVE QUANTUM-CORRECTED
SCHWARZSCHILD GEOMETRY

In Refs. [55,56], the authors proposed a novel effective
LQG-corrected spherically symmetric black hole model

with holonomy corrections that is covariant. In this section,
we will present a brief review of this model.

A. Effective quantum-corrected Schwarzschild
geometry

In the framework of canonical GR depicted by the
Ashtekar-Barbero variables, a spherically symmetric model
can be fully characterized by four dynamic variables: the
two independent components of a desensitized triad Ẽx and
Ẽφ, along with their corresponding conjugate momenta K̃x

and K̃φ. In this context, x signifies the radial direction,
while φ represents the azimuthal angle. When incorporat-
ing holonomy corrections, the following canonical trans-
formation is employed, as detailed in [55,56]:

Ẽx → Ex; K̃x → Kx; Ẽφ →
Eφ

cosðλ̄KφÞ
;

K̃φ →
sinðλ̄KφÞ

λ̄
: ð1Þ

The parameter λ̄, which can be conveniently taken as
positive without loss of generality, is a dimensionless para-
meter inspired by holonomies. Notably, as λ̄ approaches
zero, the transformation is the identity, representing the
limit where GR is recovered.
Under the transformation (1), the diffeomorphism con-

straint remains unchanged, represented as

D ¼ −Ex0Kx þ EφK0
φ; ð2Þ

where the prime denotes the derivative with respect to x.
However, to ensure an algebra free of anomalies, it is
necessary to perform a linear combination between the
Hamiltonian constraint and the diffeomorphism constraint,
as discussed in [54]. In addition, we also need regularize
the poles cosðλ̄KφÞ ¼ 0. Taking these considerations into
account, a deformed Hamiltonian constraint can be con-
structed as [55,56]

H ¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ̄2

p �
1þ sin2ðλ̄KφÞ

λ̄2

�

−
ffiffiffiffiffiffi
Ex

p
Kx

sin ð2λ̄KφÞ
λ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ̄2

p �
1þ

�
λ̄Ex0

2Eφ

�
2
�

þ cos2ðλ̄KφÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ̄2

p �
Ex0

2Eφ ð
ffiffiffiffiffiffi
Ex

p
Þ0 þ

ffiffiffiffiffiffi
Ex

p �
Ex0

Eφ

�0�
; ð3Þ

along with its smeared form H½f� ≔ R
fHdx. For more

comprehensive details, please refer to [55,56].
By solving the system’s equations of motion, which are

derived from the Poisson brackets of various variables with
the Hamiltonian, we can obtain the following explicitly
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spherically symmetric metric:

ds2 ¼ −Nðt; xÞ2dt2 þ
�
1 −

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exðt; xÞp �

−1 Eφðt; xÞ2
Exðt; xÞ

× ðdxþ Nxðt; xÞdtÞ2 þ Exðt; xÞdΩ2; ð4Þ

where N and Nx represent the lapse and shift functions,
respectively. The parameter r0 represents a new length scale
and is determined by the expression

r0 ¼ 2m
λ̄2

1þ λ̄2
; ð5Þ

wherem stands as a constant of motion. Notably, the length
scale r0 sets a minimum area r20 for this model [55,56]. In
contrast to its classical counterpart, it incorporates the
term 1 − r0=

ffiffiffiffiffiffi
Ex

p
.

We would like to emphasize that different gauge choices
will result in distinct charts and their corresponding line
elements for the same metric, ultimately yielding a con-
sistent spacetime solution. The region containing the BH
along with an asymptotically flat region can be described
using the coordinate system t; x ¼ t; r, in conjunction with
the spherical metric θ;φ. This quantum-corrected space-
time also possesses a maximal analytical extension [55,56],
as depicted in the Penrose diagram shown in Fig. 1. In this
diagram:

(i) Region I corresponds to the asymptotically flat
region with r∈ ðrh;∞Þ. This region includes the
usual conformal infinities, namely, the timelike
infinities denoted as i− and iþ, the null infinities

referred to as J − and J þ, and the spatial infinity
marked as i0.

(ii) Region II is the BH region with r∈ ðr0; rhÞ. It is
evident that the hypersurface r ¼ r0 is a transition
surface between the BH and the white hole (WH)
regions.

(iii) Regions III and IVare regions that cannot be covered
by the coordinate system ðt; r; θ;φÞ; they correspond
to the WH region and another asymptotically flat
region, respectively.

The regions with dashed contours at the bottom and top are
duplicates of the structure in the middle.
In this paper, our primary focus is the study of the QNMs

for the BH part, thus limiting our attention to the exterior
region of this quantum-corrected spacetime, as described
by the following metric [55,56]:

ds2 ¼ −fðrÞdt2 þ 1

gðrÞfðrÞ dr
2 þ r2dΩ2;

fðrÞ ¼ 1 −
2m
r

; gðrÞ ¼ 1 −
r0
r
; ð6Þ

where r∈ ðrh;∞Þ with rh ¼ 2m. Notably, in the limit as
λ̄ → 0, this new length scale tends to zero, i.e., r0 ¼ 0,
thereby restoring the classical Schwarzschild (SS) BH.
Furthermore, as we move to the low-curvature regions, the
quantum gravity effects die off.

B. Mass and energy

This section provides a concise overview of the typical
geometric definitions of mass and energy applied to this
solution. This discussion aids in gaining a thorough under-
standing of the model’s parameters. A straightforward
calculation reveals that the Komar mass is a function of
r and is expressed as follows [56]:

MKðrÞ ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r
: ð7Þ

It is readily apparent that the Komar mass approaches the
constant of motionm as it tends to infinity. The dependence
of the Komar mass on r is a consequence of the nonzero
Ricci tensor.
The Hawking mass, equivalently, the Misner-Sharp

mass, also exhibits a dependence on r and can be expressed
as follows [56]:

MHðrÞ ¼ mþ r0
2
−
mr0
r

: ð8Þ

This quantity is consistently positive and, notably, coin-
cides with m solely at the horizon. It is evident that the
presence of a nonzero Ricci tensor exerts distinct influences
on the Komar and Hawking masses.

FIG. 1. Penrose diagram with maximal analytical extension of
the quantum-corrected spacetime.
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Another important quantity is the Arnowitt-Deser-
Misner (ADM) mass. The ADMmass on the hypersurfaces
Σt can be worked out as follows [55,56]:

Mt
ADM ¼ mþ r0

2
: ð9Þ

It is evident that the ADMmass is a geometric invariant and
converges to the Hawking mass in the limit of infinity;
whereas the ADMmass on any hypersurface Στ is given by

Mτ
ADM ¼ r0

2
: ð10Þ

This result is characterized by the parameter r0 and
recovers the one in the GR limit.
Additionally, we can calculate the Geroch energy. It is

noteworthy that the Geroch energy on the hypersurface Σt
is found to coincide with the Hawking energy. Meanwhile,
the Geroch energy on Στ equals the ADM mass of Στ, as
expressed by

Eτ
GðrÞ ¼

r0
2
: ð11Þ

An important point to highlight is that the Geroch mass is a
quasilocal quantity.
We are also interested in the surface gravity κ, which is

given by

κ ¼ 1

4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
2m

r
: ð12Þ

This fulfills the typical relation jκj ¼ r−2MKjr¼2m. It is
worth noting that, in the limit where r0 → 2m, the surface
gravity becomes zero, akin to the extremal Reissner-
Nordström spacetime. The existence of a minimum area
results in the surface gravity being smaller than that of a
Schwarzschild BH with mass m.

III. SCALAR AND MAXWELL FIELDS
OVER THE LQG-BH

We focus on the perturbations of the massless scalar field
Φ and electromagnetic field Aμ over this LQG black hole
and study their response. Notice that, in the following, we
shall setm ¼ 1=2 without loss of generality, which leads to
the horizon located at rh ¼ 1. We write down the covariant
equations for the test scalar field and electromagnetic field
as follows:

1ffiffiffiffiffiffi−gp ðgμν ffiffiffiffiffiffi
−g

p
ΦμÞ;ν¼ 0; ð13Þ

1ffiffiffiffiffiffi−gp ðgαμgσν ffiffiffiffiffiffi
−g

p
FασÞ;ν¼ 0; ð14Þ

where Fασ ¼ ∂αAσ − ∂σAα is the field strength of the
Maxwell field. After the separation of variables, the afore-
mentioned equations can be packaged into the Schrödinger-
like form (for more details, see Appendix A),

∂
2Ψ
∂r2�

þ ðω2 − VeffÞΨ ¼ 0; ð15Þ

where r� is the tortoise coordinate and Veff is the effective
potential,

Veff ¼ fðrÞ lðlþ 1Þ
r2

þ 1 − s
r

d
dr�

fðrÞ
ffiffiffiffiffiffiffiffiffi
gðrÞ

p
; ð16Þ

with l being the angular quantum numbers. s ¼ 0 and s ¼ 1
correspond to the scalar field and electromagnetic field,
respectively. Figures 2 and 3 demonstrate the effective
potentials as a function of r� for scalar and electromagnetic
fields with different l and r0. It is found that both effective
potentials are positive, indicating the LQG black hole is
stable under scalar and electromagnetic perturbations.
Furthermore, we would like to compare the differences
in effective potentials between scalar and electromagnetic
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FIG. 2. The effective potentials Vsðr�Þ of the scalar field for different r0 with fixed l.
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fields. It is easy to find that, for the electromagnetic field
(s ¼ 1), the second term in Eq. (16) vanishes, such that all
the peaks of the effective potentials Vel have the same
height for different r0 (see Fig. 3). However, for the scalar
field, i.e., s ¼ 0, the second term in Eq. (16) survives and
the height of the effective potential Vs depends on r0. In
particular, with increasing r0, the height of Vs decreases
(Fig. 2). The shape of the effective potentials shall
definitely result in different properties of the QNMs.

IV. QUASINORMAL MODES

In this section, we investigate the QNMs spectra and
specially focus on the effects from quantum gravity
corrections. The nature of determining the QNMs is to
solve the eigenvalue problem. To this end, we will impose a
purely outgoing wave at infinity and purely ingoing wave at
the horizon as follows:

horizon∶ ∂tΨ − ∂r�Ψ ¼ 0;

infinity∶ ∂tΨþ ∂r�Ψ ¼ 0: ð17Þ

By solving Eq. (15) with the aforementioned boundary
conditions, numerous techniques have been developed
to determine the QNMs spectra, such as the Wentzel-
Kramers-Brillouin (WKB) method [58–63], Horowitz-
Hubeny method [64], continued fraction method [65],
asymptotic iteration method [66–68], pseudospectral
method [69,70], and so on. In this paper, we will solve
the eigenvalue problem using the pseudospectral method.
For more applications of the pseudospectral method in
determining the QNMs in black hole physics, we can
refer the reader to [71–80] and references therein. It is
convenient to work in the Eddington-Finkelstein coordi-
nate, which makes the wave equation (15) linear in the
frequency. To achieve this goal, it is direct to make a
transformation as

r → 1=u and Ψ ¼ e−iωr�ðuÞψ : ð18Þ

Then, the wave equation (15) turns into the following form:

ψ 00ðuÞ þ
�
f0ðuÞ
fðuÞ þ

g0ðuÞ
2gðuÞ þ

2iω

u2fðuÞ ffiffiffiffiffiffiffiffiffi
gðuÞp �

ψ 0ðuÞ

−
1

u

�
2iω

u2fðuÞ ffiffiffiffiffiffiffiffiffi
gðuÞp þ VeffðuÞ

u3fðuÞ2gðuÞ þ
f0ðuÞ
fðuÞ þ

g0ðuÞ
2gðuÞ

�

× ψðuÞ ¼ 0: ð19Þ

Combined with the boundary conditions (17), one can
solve Eq. (19) by the pseudospectral method.
Now, we evaluate the QNM spectra for various values of

the free parameter r0 to explore the LQG effects on these
spectra, as well as the differences between them and those
of the Schwarzschild BH (r0 ¼ 0). Figures 4 and 5 show
the QNFs as functions of r0 for both the scalar field and
electromagnetic field, respectively, showcasing multiple
overtone numbers. We also provide the values of the
QNFs for some specific parameter r0 in Tables I–IV. We
first summarize the properties of the fundamental modes
(n ¼ 0) as follows.

(i) For the scalar field, the real parts of the QNF, Reω
decreases with increasing r0 (left plots in Fig. 4).
This means that the LQG effect reduces the oscil-
lations in comparison to the Schwarzschild black
hole. By contrast, Reω of the electromagnetic field
exhibits an inverse tendency. That is, when r0
increases, so does Reω. As a result, the LQG effect
produces stronger oscillations in the electromagnetic
field than that of the Schwarzschild black hole.

(ii) Whether for the scalar or electromagnetic field, the
imaginary part of QNF Imω always lives in the
lower half-plane, and their absolute values are less
than that of the Schwarzschild black hole. Therefore,
the system is stable in the presence of scalar or
electromagnetic field perturbations, and the LQG
effect results in slower decaying modes.

(iii) When we fix r0, the scalar field has larger absolute
values of Reω or Imω than the electromagnetic
field (see Figs. 4 and 5). This indicates that, in
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FIG. 3. The effective potentials Velðr�Þ of the electromagnetic field for different r0 with fixed l.
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FIG. 4. QNFs as a function of r0 for the scalar field perturbation.
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comparison to the electromagnetic field, the system
under scalar field perturbation enjoys faster
decaying modes with greater oscillations.

Next, we delve into an investigation of the properties of
the QNM spectra with higher overtones. It is found that
higher overtones exhibit some peculiar properties, differing
significantly from those of the fundamental modes. We will
now summarize their key properties.

(i) For both the scalar field and the electro-
magnetic field, the first several overtones exhibit a

substantially higher rate of deviation from their
Schwarzschild values when compared to the funda-
mental mode, and this deviation rate increases with
the overtone number (see Figs. 4 and 5, as well as
Tables I–IV). Especially, for the scalar field with
l ¼ 0, the real oscillation frequency of the second
overtone falls by more than 6 times its Schwarzs-
child limit, but the fundamental mode just slightly
changes. This emergence of the outburst of over-
tones can be attributed to differences in the region

TABLE I. The QNM spectra for the scalar field perturbation for l ¼ 0 with different n and r0.

n ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

0 0.220910–0.209792i 0.220578–0.208911i 0.200799–0.164527i 0.172186–0.133779i
1 0.172223–0.696106i 0.172273–0.692920i 0.160438–0.534669i 0.117132–0.465373i
2 0.151564–1.202642i 0.151650–1.196552i 0.126266–0.921455i 0.102060–0.826914i
3 0.142272–1.705216i 0.141476–1.699571i 0.076951–1.314823i 0.098727–1.175255i
4 0.134739–2.211987i 0.133115–2.201015i 0.053109–1.808749i 0.094052–1.519302i
5 0.129639–2.712112i 0.129003–2.704325i 0.098367–2.213623i 0.083108–1.869088i

TABLE II. The QNM spectra for the scalar field perturbation for l ¼ 1 with different n and r0.

n ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

0 0.585872–0.195320i 0.585765–0.194632i 0.579649–0.158265i 0.571522–0.122834i
1 0.528897–0.612515i 0.529378–0.610151i 0.547089–0.487735i 0.539232–0.374106i
2 0.459079–1.080267i 0.460200–1.075690i 0.502191–0.843179i 0.476752–0.643355i
3 0.406517–1.576596i 0.408055–1.569596i 0.461392–1.216781i 0.394074–0.946941i
4 0.370218–2.081524i 0.372040–2.072076i 0.426854–1.597881i 0.317781–1.289254i
5 0.344154–2.588236i 0.346193–2.576352i 0.395550–1.981462i 0.263692–1.650819i

TABLE III. The QNM spectra for the electromagnetic field perturbation for l ¼ 1 with different system
parameters n and r0.

n ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

0 0.496527–0.184975i 0.496879–0.184421i 0.513377–0.152855i 0.523384–0.117771i
1 0.429031–0.587335i 0.430079–0.585304i 0.476434–0.474099i 0.490764–0.358757i
2 0.349547–1.050375i 0.351295–1.046207i 0.427459–0.825862i 0.427304–0.616791i
3 0.292353–1.543818i 0.294508–1.537311i 0.385422–1.197325i 0.341172–0.908634i
4 0.253105–2.045090i 0.255501–2.036119i 0.351646–1.576036i 0.259632–1.241057i
5 0.224562–2.547950i 0.227824–2.536499i 0.322640–1.956797i 0.199813–1.593456i

TABLE IV. The QNM spectra for the electromagnetic field perturbation for l ¼ 2with different system parameters
n and r0.

n ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

0 0.915191–0.190009i 0.915392–0.189392i 0.924716–0.155637i 0.930332–0.120325i
1 0.873085–0.581420i 0.873735–0.579444i 0.901934–0.472399i 0.911143–0.362898i
2 0.802373–1.003175i 0.803766–0.999483i 0.862549–0.803573i 0.873233–0.611234i
3 0.725190–1.460397i 0.727327–1.454593i 0.816205–1.152343i 0.817382–0.869439i
4 0.657473–1.943219i 0.660188–1.935080i 0.770903–1.515796i 0.745134–1.142754i
5 0.602986–2.439431i 0.606126–2.428886i 0.730157–1.888692i 0.661207–1.437692i
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near the event horizon between the Schwarzschild
BH and the LQG-corrected BH (see Figs. 2 and 3).
Similar phenomena have been observed in alternative
geometries beyond the Schwarzschild BH, including
the Reissner-Nordström BH, Bardeen BH, and the
higher-derivative gravity model [81–86].

(ii) A remarkable phenomenon is seen wherein the
QNFs of the scalar field with l ¼ 0 exhibit an
oscillatory behavior when the quantum parameter
r0 increases significantly for higher overtones. The
oscillations intensify with an increase in the over-
tone number. Similar oscillatory behaviors are also
observed in Reissner-Nordström and Kerr BHs
when these BHs approach the extremal case, as
noted in [81]. We hypothesize that this oscillatory
behavior may be linked to the extremal effect and,
as such, warrants further investigation. Additionally,
we suspect that similar oscillatory patterns may
emerge in the case of a scalar field with high l
and in the context of the electromagnetic field when
the overtone number is sufficiently high. Unfortu-
nately, our current numerical techniques constrain us
from calculating QNFs for higher overtone numbers
at this time. We hope to address this issue in the near
future.

(iii) In Fig. 6, the phase diagram ωR − jωIj is presented.
The trajectory depicted in the phase diagram di-
verges from the Schwarzschild QNMs and spirals
toward a stable point. This discovery aligns with the
findings in [87]. This phenomenon actually reflects
the previously mentioned oscillatory behavior and
has also been observed in the context of the
Reissner-Nordström and Kerr BHs [81,88].

Finally, we will discuss the properties of the QNMs in the
eikonal limit (l → ∞). In [89], Cardoso et al. have demon-
strated that, in the eikonal limit, QNMs may be connected
with the behavior of null particles trapped on the unstable
circular geodesic of the spacetime, which have been vali-
dated in most static, spherically symmetric, asymptotically
flat spacetime. The Reω is determined by the angular

velocity Ωc at the unstable null geodesic [90–94], whereas
the Imω is connected to the Lyapunov exponent λ [95,96].
In the LQG-BH background, we can calculate the QNMs in
the eikonal limit, which is given by

ω ¼ Ωcl − i

�
nþ 1

2

�
jλj: ð20Þ

For the detailed calculation, we can refer to Appendix B.
It is found that, as SS-BH, the angular velocity Ωc is
completely determined by the black hole mass,

Ωc ¼
1

3
ffiffiffi
3

p
m
: ð21Þ

Therefore, the Reω is independent of the LQG parameter
r0. While the Lyapunov exponent λ is given by

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2c
fðrcÞ

�
d2

dr2�

fðrÞ
r2

�����
r¼rc

s
; ð22Þ

where rc is the radius of the photon sphere. Obviously, the
Lyapunov exponent is affected by the LQG correction. The
left plot in Fig. 7 shows the Lyapunov exponent λ as a
function of r0. We see that the Lyapunov exponent
decreases with r0 increasing. Correspondingly, the abso-
lution value of Imω is suppressed by the LQG effect (see
the right plot in Fig. 7).
We notice that since the real part of QNF is independent

of the LQG parameter r0 in the eikonal limit, we expect
that, as l increases, the difference in Reω between the LQG-
BH and SS-BH will be suppressed and vanish. Figure 8
validates the argument that, as l increases, the difference
rapidly decreases and goes to zero.

V. RINGDOWN WAVEFORM

In this section, we will study the time evolution of the
scalar and electromagnetic perturbations, which help us to
further know the total contributions from overtones. Here,

0.11 0.12 0.13 0.14 0.15 0.16 0.17
ωR

0.50
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0.70

|ωI |
l=0, n=1

0.04 0.06 0.08 0.10 0.12 0.14
ωR

0.9

1.0
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1.2

|ωI |
l=0, n=2

FIG. 6. QNFs of the scalar field perturbation with n ¼ 1 (left) and n ¼ 2 (right) for r0 range from 0 to 0.99. The red points represent
the r0 ¼ 0 (SS-BH) and the blue points correspond to 19r0 ¼ 1; 2;…; 18.
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we will use the finite difference method (FDM) technique
to implement the dynamical evolution. For more details on
the FDM, refer to Refs. [73,97–100] and references therein.
To this end, we write the wave equation in difference
form as

−
ðΨiþ1;j − 2Ψi;j þ Ψi−1;jÞ

△t2
þ ðΨi;jþ1 − 2Ψi;j þ Ψi;j−1Þ

△r2�
− VjΨi;j þOð△t2Þ þOð△r2�Þ ¼ 0; ð23Þ

where △t and △r� are the time and radial intervals,
respectively, which are defined by t ¼ i△t and r� ¼ j△r�.
The Vj is the discrete form of the effective potential (16).
Then, the iterate formula is derived as

Ψiþ1;j ¼ −Ψi−1;j þ
△t2

△r2�

�
Ψi;jþ1 þΨi;j−1

�
þ
�
2 − 2

△t2

△r2�
−△t2Vj

�
Ψi;j: ð24Þ

Notice that the Courant-Friedrichs-Lewy condition for
instability requires that △t=△r� < 1. Using the iterate
formula (24) with the initial Gaussian distribution Ψðr�;
t < 0Þ ¼ 0 andΨðr�; t ¼ 0Þ ¼ exp− ðr�−aÞ2

2b2 , one can obtain
the ringdown profiles.

In general, there are three different stages in time-
evolution profile: initial outburst, quasinormal ringing,
which depends only on the black hole’s characteristics
and is very important for GW observations [57,101–103],
and the late tail, which exhibits the power-law behavior
for the asymptotically flat spacetimes or exponential
behavior for asymptotically de Sitter spacetimes. We will
focus on the properties of the latter two stages in this
section.
Figures 9 and 10 display the time-domain profile for

both the scalar field and the electromagnetic field, respec-
tively. In comparison to the SS-BHs, the LQG-BHs
exhibit weaker oscillations and a slower decay rate during
the intermediate time, primarily dominated by the funda-
mental mode. As expected, this observation aligns with
the characteristics revealed by the fundamental mode
presented in Tables I–IV. In the asymptotically late times,
the quasinormal ringing is suppressed, and both LQG-BH
and SS-BH follow the same power-law tail as ΨðtÞ ∼
t−ð2lþ3Þ [104–106].
In addition, we use the Prony method as described

in [107] to calculate the fundamental mode. We will select
the data from the time-domain profile during the inter-
mediate time. We have presented the results for both the
scalar field and electromagnetic field in Tables V and VI,
respectively. These findings align with the outcomes
obtained by directly solving the eigenvalue problem, as
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FIG. 8. The difference of QNFs of scalar field with r0 ¼ 1=2 between the LQG-BH and SS-BH. Left: n ¼ 0. Right: n ¼ 1.

0.2 0.4 0.6 0.8 1.0
r0

–0.18

–0.16

–0.14

–0.12

|/2

38.60 38.65 38.70 38.75
–0.20

–0.18

–0.16

–0.14

–0.12

Re

Im

l=100,n=0

FIG. 7. Left: the Lyapunov exponent λ as a function of the LQG-corrected parameter r0. Right: the QNFs for different r0 for large l.
The red points represent the r0 ¼ 0 (SS-BH) and the blue points correspond to 19r0 ¼ 1; 2;…; 18.
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presented in Tables I–IV. In theory, we can fit the higher
overtone QNFs after subtracting the contribution of the fun-
damentalmode if the quasinormal ringing stage is sufficiently
prolonged. Nevertheless, in real-world applications, fitting

the higher overtones can be challenging due to their rapid
damping, causing them to become nearly indistinguishable
fromnumerical errors.We intend to undertake this analysis in
the near future.

SS BH
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FIG. 10. The semilog plot of the time evolution of the electromagnetic field jΨelðrÞj for different r0 with fixed l. Here, we have fixed
the tortoise coordinate r� ¼ 5.

TABLE VI. The fundamental modes of the electromagnetic field perturbation for various values of l and r0, which
are determined using the Prony method.

l ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

1 0.49626–0.18372i 0.49660–0.18319i 0.51305–0.15239i 0.52317–0.11786i
2 0.91495–0.19021i 0.91516–0.18959i 0.92474–0.15566i 0.93038–0.12032i

TABLE V. The fundamental modes of the scalar field perturbation for various values of l and r0, which are
determined using the Prony method.

l ω (r0 ¼ 0) ω (r0 ¼ 1=100) ω (r0 ¼ 1=2) ω (r0 ¼ 9=10)

0 0.22114–0.21068i 0.22055–0.20984i 0.20155–0.16416i 0.17251–0.13331i
1 0.58588–0.19513i 0.58577–0.19443i 0.57966–0.15821i 0.57122–0.12296i
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FIG. 9. The semilog plot of the time evolution of the scalar field jΨsðrÞj for different r0 with fixed l. Here, we have fixed the tortoise
coordinate r� ¼ 5.
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VI. CONCLUSION AND DISCUSSION

With the rapid development of GW detection techniques,
detection of the quantum gravity effect is expected. To
extract substantial information from GW detectors, one
must thoroughly know the main features and behaviors
of the QNM for LQG-BHs. As the first step, we investi-
gate the QNM for both the scalar field and the electro-
magnetic field over the covariant LQG-BH proposed
in [55,56].
First, we focus on the fundamental modes. It is found

that the system is always stable under scalar field or
electromagnetic field perturbations, and the LQG effect
results in faster decaying modes. The difference is that the
LQG effect reduces the oscillations in the scalar field,
however, it enhances oscillations in the electromagnetic
field. In addition, we find that the system under the scalar
field perturbation enjoys faster decaying modes with more
oscillations than the electromagnetic field.
Some peculiar phenomena emerge in the QNM spectra

with higher overtones. A noteworthy characteristic is the
pronounced deviation observed in the first several over-
tones from their Schwarzschild counterparts, with this
deviation increasing as the overtone number rises.
Particularly noteworthy is the case of the scalar field with
l ¼ 0, where the real oscillation frequency of the second
overtone decreases by more than 6 times its Schwarzschild
limit, while the fundamental mode undergoes only minor
changes. This observation is also reflected in the trajectory
within the ωR − jωIj phase diagram, which spirals toward a
stable point. This emergence of the outburst of overtones
can be attributed to disparities in the region near the
event horizon between the Schwarzschild BH and the
LQG-corrected BH. Another notable phenomenon in
higher overtones is the presence of oscillatory behavior
in the QNFs of the scalar field with l ¼ 0 as the quantum
parameter r0 experiences a significant increase. These
oscillations become more pronounced with a higher over-
tone number. This oscillatory pattern may be associated
with the extremal effect.
Finally, we note some open questions deserving further

exploration.
(i) It would be interesting to extend our investigation to

the Dirac field and see if the peculiar property still
emerges in the QNM spectra.

(ii) It is definitely interesting and valuable to further
study the QNM spectrum of the gravity perturba-
tions. It provides us a platform for detecting quan-
tum gravity effects using the GW detector. In
addition, we can examine if the isospectrality still
holds in this LQG-BH model.

(iii) In [108], the anomalous decay rate of QNMs of a
massive scalar field is observed. Depending on
how large the mass of the scalar field is, the decay
timescales of the QNMs either grow or decay
with increasing angular harmonic numbers. This

anomalous behavior is seen in much larger class
models beyond a simple massive scalar field; see
Refs. [109–113] and references therein. It will be
interesting to see how the LQG effect affects this
anomalous behavior.

(iv) We can also construct an effective rotating LQG-BH
solution using the Newman-Janis algorithm, starting
with this spherical symmetric LQG-BH, and study
the LQG effects on its QNM spectrum and shadow,
allowing us to constrain the LQG parameters using
the GW detector and the Event Horizon Telescope.

We plan to investigate these questions and publish our
results in the near future.
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APPENDIX A: WAVE EQUATIONS

In this appendix, we will derive the wave equations for
the scalar and electromagnetic fields in detail. First, we
shall provide a generic version of the wave equation in a
static spherically symmetric spacetime. The cases of scalar
and electromagnetic fields are then discussed in detail.
Because the spacetime is static spherically symmetric,

we can separate variables using the spherical function and
write the radial equation in the form

�
KðrÞSðrÞΨ̂0ðrÞ�0 þ�

ΛF ðrÞ þKðrÞ ω2

SðrÞ
�
Ψ̂ðrÞ ¼ 0;

ðA1Þ

where Ψ̂ is the radial part of the wave function, the
coefficient functions fK;F ;Sg only depend on the radial
coordinate r, and Λ is the separation constant. After
introducing the tortoise coordinate r� and redefining the
wave function as

dr�
dr

¼ 1

SðrÞ ; Ψ̂ðrÞ ¼ Ψffiffiffiffiffiffiffiffiffiffi
KðrÞp ; ðA2Þ
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Eq. (A1) can be recast into the following form:

d2Ψðr�Þ
dr2�

þ �
ω2 − Veffðr�Þ

�
Ψðr�Þ ¼ 0: ðA3Þ

The above formula provides a general transformation from
the usual wave equation to its Schrödinger-like counterpart.
In the following, we will go over the specific form of

the wave equations for scalar and electromagnetic fields.
For the scalar field equation, we perform the separation as
Φðt; r; θ;ϕÞ ¼ P

l;m Ψ̂ðrÞe−iωtYlmðθ;ϕÞ, where Ylmðθ;ϕÞ
are the spherical harmonics. When the particular form of
the LQG-BH background (6) is substituted into the wave
equation (A1), one obtains

�
r2fðrÞ

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
Ψ̂0ðrÞ�0 þ�

r2ω2

fðrÞ ffiffiffiffiffiffiffiffiffi
gðrÞp −

lðlþ 1Þffiffiffiffiffiffiffiffiffi
gðrÞp �

Ψ̂ðrÞ ¼ 0:

ðA4Þ

We can read off the coefficient functions by comparing
Eq. (A4) to Eq. (A1),

KðrÞ ¼ r2; S ¼ fðrÞ
ffiffiffiffiffiffiffiffiffi
gðrÞ

p
: ðA5Þ

The Schrödinger-like version of the wave equation is then
easily given as

∂
2Ψ
∂r2�

þ ðω2 − VsÞΨ ¼ 0; ðA6Þ

Vs ¼ fðrÞ lðlþ 1Þ
r2

þ 1

2r
d
dr

fðrÞ2gðrÞ: ðA7Þ

For the electromagnetic field, we can expand the gauge
field Aμ in vector spherical harmonics [114,115],

Aμðt; r; θ;ϕÞ ¼
X
l;m

0
BBB@
2
6664

0

0
almðrÞ
sin θ ∂ϕYlm

−almðrÞ sin θ∂θYlm

3
7775þ

2
6664

plmðrÞYlm

hlmðrÞYlm

klmðrÞ∂θYlm

klmðrÞ∂ϕYlm

3
7775
1
CCCAe−iωt; ðA8Þ

where the first term is the odd (axial) perturbation and second term is the even (polar) perturbation. Then, in the following,
we will show how to derive the odd and the even perturbation equations.
When we switch on the odd electromagnetic field perturbation, we can explicitly write down the radial equation as

�
fðrÞ

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
a0lmðrÞ

�0 þ�
ω2

fðrÞ ffiffiffiffiffiffiffiffiffi
gðrÞp −

lðlþ 1Þ
r2

ffiffiffiffiffiffiffiffiffi
gðrÞp �

almðrÞ ¼ 0: ðA9Þ

It is easy to find that K ¼ 1 and S ¼ fðrÞ ffiffiffiffiffiffiffiffiffi
gðrÞp

. Thus, we have

Vodd ¼ fðrÞ lðlþ 1Þ
r2

; ðA10Þ

where Ψ ¼ almðrÞ.
For the even perturbation of the electromagnetic field, the radial equation becomes

p00
lmðrÞ þ qðrÞp0

lmðrÞ þ iω
�
h0lmðrÞ þ qðrÞhlmðrÞ

�þ lðlþ 1Þ
r2fðrÞgðrÞ

�
plmðrÞ þ iωklmðrÞ

� ¼ 0;

−iωp0
lmðrÞ þ ω2hlmðrÞ þ

lðlþ 1Þ
r2

fðrÞ�−hlmðrÞ þ k0lmðrÞ
� ¼ 0; ðA11Þ

where qðrÞ ¼ 2
r þ g0ðrÞ

2gðrÞ. After introducing a new variable

Ψ̂ðrÞ ¼ −p0
lmðrÞ − iωhlmðrÞ; ðA12Þ

FU, ZHANG, LIU, KUANG, and WU PHYS. REV. D 109, 026010 (2024)

026010-12



Eq. (A11) can be reduced to

ðr4fðrÞgðrÞ3=2Ψ̂0ðrÞÞ0 þ
�
r4ω2

ffiffiffiffiffiffiffiffiffi
gðrÞp

fðrÞ − lðlþ 1Þr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞ þ 1

2
JðrÞ

r �
Ψ̂ðrÞ ¼ 0; ðA13Þ

where JðrÞ ¼ r2
ffiffiffiffiffiffiffiffiffi
gðrÞp ðrf0ðrÞð4gðrÞ þ rg0ðrÞÞ þ fðrÞ×

ð4gðrÞ þ rð6g0ðrÞ þ rg00ðrÞÞÞÞ. Thus, the coefficient func-
tions are K ¼ r4

ffiffiffiffiffiffiffiffiffi
gðrÞp

and S ¼ fðrÞ ffiffiffiffiffiffiffiffiffi
gðrÞp

and then
we have

Veven ¼ fðrÞ lðlþ 1Þ
r2

: ðA14Þ

We find that the effective potentials for odd and even
electromagnetic field perturbations are the same. Therefore,
we will use Vel to signify the effective potential of the
electromagnetic field rather than Vodd and Veven.

APPENDIX B: QNMs IN THE EIKONAL LIMIT

In this appendix, we will show the connection between
the QNMs in the eikonal limit and the behavior of a null
particle trapped on the unstable circular geodesic. For a null
particle, the Lagrange is1

Lðx; ẋÞ ¼ 1=2gμνẋμẋν: ðB1Þ

We start with the spherically symmetric geometry (6).
Thanks to the symmetry, one can only consider the geo-
desics in the equatorial plane: θ ¼ π=2. Then the
Lagrangian (B1) becomes

2L ¼ −fðrÞṫ2 þ ṙ2

fðrÞgðrÞ þ r2ϕ̇2; ðB2Þ

where the dot represents the derivative with respect to the
affine parameter τ. In this system, there are two constants of
the motion, which are

Pt ¼ −fðrÞṫ ¼ −E; Pϕ ¼ r2ϕ̇ ¼ L: ðB3Þ

Using the canonical transform and combining the above
equations (B2) and (B3), we have the following reduced
Hamiltonian system:

2H ¼ Eṫþ ṙ2

fðrÞgðrÞ þ Lϕ̇: ðB4Þ

Since the Hamiltonian H satisfies the constraint H ¼ 0,
we have

ṙ2 þ Veff ¼ 0; ðB5Þ

where the effective potential is

Veff ¼ gðrÞ
�
L2

r2
fðrÞ − E2

�
: ðB6Þ

Because ṙ2 > 0, the photon can only emerge in the area of
negative potential. When the angular momentum is small,
the photon will fall from infinity into the black hole.
However, for the large angular momentum, the photon will
escape the bondage of the black hole and go back to
infinity. Therefore, the critical circular orbit for the photon
can be derived from the unstable conditions

Veff ¼ 0;
∂Veff

∂r
¼ 0;

∂
2Veff

∂r2
< 0: ðB7Þ

From the above conditions, we can obtain the equation for
the critical radius rc,

2fcðrÞ ¼ rcf0cðrÞ: ðB8Þ

Correspondingly, we have the critical impact para-
meters bc,

bc ¼
L
E
¼ rcffiffiffiffiffiffiffiffiffiffiffi

fcðrÞ
p : ðB9Þ

Then, the shadow radius Rs and Lyapunov exponents λ can
be calculated as follows:

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ η2

q
¼ bc ¼ 3

ffiffiffi
3

p
m; ðB10Þ

λ ¼
ffiffiffiffiffiffiffiffi
V 00
eff

2ṫ2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2c
fðrcÞ

�
d2

dr2�

fðrÞ
r2

�����
r¼rc

s
; ðB11Þ

where fζ; ηg are the celestial coordinates. We find that the
shadow radius reduces to the one of the SS-BH [118,119].
This means that the LQG effect does not change the shape
of the shadow. However, the LQG correction affects the
Lyapunov exponent λ.
On the other hand, we shall use the first order WKB

approximation to obtain the analytic form of the QNMs in
the eikonal limit (l → ∞). In this limit, the last term of the
effective potential (16) can be ignored, resulting in the
following form of the effective potential:

V∞ðrÞ ¼ fðrÞ l
2

r2
: ðB12Þ1For the calculation details of the geodesic of a null particle,

please refer to [89,90,116,117].
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Remembering that the potentials (B6) and (B12) are the same, therefore, in the eikonal limit, the QNMs may be obtained by
the multiples of the frequency and the instability timescale of the unstable circular null geodesic [89],

ω ¼ Ωcl − i

�
nþ 1

2

�
jλj; ðB13Þ

where Ωc is the angular velocity and can be worked out as

Ωc ¼
ϕ̇

ṫ
¼ 1

bc
: ðB14Þ
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