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We explore the double copy for self-dual gauge and gravitational fields on self-dual background
spacetimes. We consider backgrounds associated with solutions of the second Plebanski equation and
describe results with different gauge-fixing conditions. Finally we discuss the kinematic and w-algebras
and the double copy, identifying modified Poisson structures and kinematic structure constants in the
presence of the self-dual background. The self-dual plane wave and Eguchi-Hanson spacetimes are studied
as examples and their respective w-algebras derived.

DOI: 10.1103/PhysRevD.109.026009

I. INTRODUCTION

The study of self-dual gauge and gravitational fields has
provided a fertile source of ideas and results in physics
and mathematics. Work some time ago showed that self-
dual theories in a light-cone gauge could be described by
equations for scalar fields [1–9] corresponding to the
positive helicity sectors of Yang-Mills Theory and gravity.
The self-dual sector allows for a simplified study of many
features of the full theories. An area of recent interest is
the investigation of self-dual fields in order to learn more
about the structure of the double copy1 and kinematic
algebras (see Refs. [12–33] for recent more general work
on the double copy and Color-Kinematics Duality). In
[34] it was shown that self-dual Yang-Mills Theory and
gravity have manifest color-kinematics duality, and the
kinematic algebra was identified as that of area-preserving
diffeomorphisms of the plane. In the context of celestial
holography [35–41] this algebra was shown to appear
through the soft and collinear limit of positive helicity
gravitons as (the wedge subalgebra of) w1þ∞ [42]. This
link between kinematic algebras and operator product
expansions (OPEs) in celestial holography [43–56] was
recently discussed in detail in [57].

A natural generalization of this is to study self-duality
conditions on nonflat spacetimes. Some progress has been
made in understanding how the double copy can be applied
to curved backgrounds [58–66], with the case of AdS
receiving particular attention [67–82].
In this paper we study self-duality for the case of self-

dual spacetime backgrounds (see Refs. [65,66,83–85] for
some recent work on this topic). We work with the
spacetime metrics defined by solutions of the second
Plebanski equation, and study the conditions for the
existence of self-dual Yang-Mills Theory fields, and
self-dual metric variations, on these backgrounds. In
the flat space case, dealt with in Sec. II, there are two
formulations of the self-duality conditions which are
related by a simple relabeling of coordinates. A general
self-dual background (Yang-Mills Theory backgrounds
are dealt with in Sec. III and gravity backgrounds in
Sec. IV) does not have this symmetry, and we find that
these two formulations generalize quite differently. The
first class of solutions in gravity backgrounds, which we
call a “matched” gauge, can be seen as generalizing the
flat space solution to curved self-dual backgrounds by
linearly perturbing the Plebanski scalar. We also find a
second class of solutions, which we call a “flipped” gauge,
which requires a Kerr-Schild condition on the background
and leads to a modified Poisson structure coming from the
Plebanski equation in this gauge. We then describe aspects
of the double copy, and kinematic and w-algebras revealed
by these results.
This general formulation is discussed in detail in two

examples: the self-dual plane wave spacetime in Sec. Vand
the Eguchi-Hanson (EH) metric in Sec. VI. These case
studies connect with some of the results developed recently
in twistor space in [84] and [85]. For the self-dual plane
wave background we find that a natural definition of a
“plane wavelike” solution to the wave/Plebanski equation
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1The classical double copy for solutions of the equations of
motion was first explored in [10,11].
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in that spacetime leads to a kinematic algebra with modified
structure constants when compared to the flat background.
Nevertheless these structure constants match the flat-space
case in the holomorphic collinear limit of the two plane
wave solutions and so generate the standard flat-space
w-algebra. The soft generators generating the algebra are,
however, altered and correspond to the expansion of the
particular plane wave solutions adapted to the self-dual
plane wave background. The double copy in our formu-
lation replaces the Lie algebra commutators with Poisson
brackets and leads to a so-called double bracket in the
Plebanski equation. When acting on plane wave solutions,
in flipped gauge, we show this procedure replaces color
structure constants with those from the kinematic algebra
XPWðk1; k2Þ and so gives the expected squaring relation of
the single copy, i.e. XPWðk1; k2Þ2.
In the Eguchi-Hanson background, we express the more

complicated solutions of the wave equation discussed
in [85] in spacetime coordinates. We then show that the
Poisson bracket of two of these plane waves gives an
expression for the deformed kinematic structure constants
XEHðk1; k2Þ, which we define in the holomorphic collinear
limit. The double bracket of two plane waves is then shown
to give the square of this expression, but with additional
terms, demonstrating that in the Eguchi-Hanson back-
ground the kinematic algebra squaring relations are modi-
fied by curvature terms. Since even in the holomorphic
collinear limit XEHðk1; k2Þ differs from the flat-space and
self-dual plane wave cases, we then expect a completely
different “w-algebra” of soft generators. We derive this
algebra of soft generators following the same method as in
the previous cases, by expanding the plane wave solutions,
giving a spacetime realization of the results of [85] coming
from twistor space.

II. FLAT BACKGROUND

We start by setting notation and briefly recalling the
standard results for self-dual Yang-Mills Theory (YM) and
self-dual gravity in a flat background. In this section, we
will generally follow the discussion in [34]. The spacetime
coordinates are taken to be ðu; v; X; YÞ, with the metric

ds2 ¼ 2du dv − 2dXdY: ð2:1Þ

For real coordinates, this implies we are using (2, 2)
signature. The coordinates ðu; v; X; YÞ are related to the
usual ðt; x; y; zÞ as follows:

u¼ tþzffiffiffi
2

p ; v¼ t−zffiffiffi
2

p ; X¼xþyffiffiffi
2

p ; Y¼x−yffiffiffi
2

p ð2:2Þ

and in terms of the coordinates ðt; x; y; zÞ the metric
signature is ðþ;−;þ;−Þ.

A. Self-dual Yang-Mills theory

A gauge field Aμ ¼ ðAu; Av; AX; AYÞ on flat space with
metric (2.1) is self-dual if its field strength2 satisfies

Fμν ¼
ffiffiffi
g

p
2

ϵμνρσFρσ; ð2:3Þ

where g is the determinant of the metric (2.1). Imposing the
gauge-fixing condition Av ¼ 0, the self-duality condition
above can be satisfied by setting AX ¼ 0 and

Au ¼ ϕX;

AY ¼ ϕv; ð2:4Þ

for a (Lie algebra valued) function ϕðu; v; X; YÞ satisfying
the self-dual Yang-Mills Theory equation

□ϕ − 2½ϕv;ϕX� ¼ 0; ð2:5Þ

where the scalar Laplacian is□ ¼ 2ð∂u∂v − ∂X∂YÞ. In what
follows, we will be using a notation where subscripts on
scalar fields such as ϕ signify partial derivatives. For
example, ϕv ¼ ∂vϕ;ϕXv ¼ ∂X∂vϕ; this should not be con-
fused with the use of subscripts to denote components of
covectors, for example kμ ¼ ðku; kv; kX; kYÞ. If we intro-
duce the Poisson bracket

ff; gg ¼ ∂vf∂Xg − ∂Xf∂vg; ð2:6Þ
then the self-dual Yang-Mills Theory equation becomes

□ϕ − ½fϕ;ϕg� ¼ 0; ð2:7Þ

where we have used a notation suggestive of color-
kinematics duality, as used in [80],

½ff; gg� ≔ ½fv; gX� − ½fX; gv�: ð2:8Þ

For the covector kμ ¼ ðku; kv; kX; kYÞ and coordinate vector
xμ ¼ ðu; v; X; YÞ, with k · x ≔ kμxμ, the plane wave eik·x

satisfies

□eik·x ¼ 0 ð2:9Þ
if kμ is a null vector. In momentum space, the cubic
coupling arising from the self-dual YM equation (2.7)
involves the kinematic structure constants

Xðk1; k2Þ ¼ k1Xk2v − k1vk2X; ð2:10Þ

along with the Lie algebra constants fabc. Explicitly, the
bracket (2.8) of two plane waves and Lie algebra generators
satisfies [34]

2In our conventions Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�.
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½fTaeik1·x; Tbeik2·xg� ¼ Xðk1; k2ÞfabcTceiðk1þk2Þ·x: ð2:11Þ

There is also an alternative gauge-fixing condition
Au ¼ 0, for which the self-duality condition can be satisfied
by setting AY ¼ 0 and

Av ¼ ϕY;

AX ¼ ϕu; ð2:12Þ

for a function ϕðu; v; X; YÞ satisfying the self-dual YM
equation (2.5) but with the coordinates u ↔ v and Y ↔ X
exchanged, that is

□ϕ − 2½ϕu;ϕY � ¼ 0: ð2:13Þ

The flat metric is invariant under this exchange and so
results obtained in this new gauge are trivially related to the
previous gauge by a simple interchange of coordinates.
This is not the case when we consider self-dual back-
grounds in the sections below, since these backgrounds
have no such symmetry, and we will describe the two
different gauges separately. We note that the choosing of a
gauge is a natural step to highlight the kinematic algebra in
our formalism; however, there are other methodologies
which avoid explicitly fixing to a particular gauge for
example in [86].

B. Self-dual gravity

Now we recall the analogous construction for self-dual
gravity, where the metric is taken to be the following
variation from the flat metric:

ds2 ¼ gμνðΨÞdxμdxν
¼ 2dudv − 2dXdY þΨXXdu2

þ ΨvvdY2 þ 2ΨXvdudY; ð2:14Þ

with some function Ψðu; v; X; YÞ. Define the expression

Pleb0ðΨÞ ≔ 2ðΨuv − ΨXYÞ −ΨXXΨvv þ ðΨvXÞ2; ð2:15Þ

where the subscript 0 indicates the flat background,
and define the operator Δ0ðΨÞ by the variation of this
expression as

Δ0ðΨÞðδΨÞ ≔ δðPleb0ðΨÞÞ: ð2:16Þ

Explicitly

Δ0ðΨÞ ¼ 2ð∂uv − ∂XYÞ − ΨXX∂vv þ 2ΨvX∂vX −Ψvv∂XX:

ð2:17Þ

Then the anti-self-dual part of the Weyl tensor is zero
except for the componentC−

uYuY (and components related to
this by the symmetries of the tensor), and we find

C−
uYuY ¼ −

1

4
Δ0ðΨÞPleb0ðΨÞ: ð2:18Þ

The nonvanishing components of the Ricci tensor are
given by

Rab ¼ −
1

2
∂ā∂b̄Pleb0ðΨÞ; ð2:19Þ

where a; b ¼ ðu; YÞ and ū ¼ X; Ȳ ¼ v. Thus the metric
gμνðΨÞ given by (2.14) is Ricci flat and has self-dual Weyl
tensor if the scalar field Ψ satisfies the gravitational
Plebanski equation

Pleb0ðΨÞ ¼ 2ðΨuv −ΨXYÞ −ΨXXΨvv þ ðΨvXÞ2 ¼ 0:

ð2:20Þ

Defining the following gravitational bracket ff·; ·gg
using (2.6)

fff; ggg ¼ 1

2
ðf∂vf; ∂Xgg − f∂Xf; ∂vggÞ; ð2:21Þ

the Plebanski equation (2.20) can be written

□Ψ − ffΨ;Ψgg ¼ 0; ð2:22Þ

revealing the double copy relation [34] ϕ → Ψ, ½f·; ·g� →
ff·; ·gg compared with (2.7). Furthermore, we can consider
the gravitational bracket acting on a pair of plane wave
solutions in flat space and we find the following double
copy structure:

ffeik1·x; eik2·xgg ¼ 1

2
eiðk1þk2Þ·xXðk1; k2Þ2; ð2:23Þ

where the color structure constants in (2.11) have been
replaced by additional kinematic ones. Alternatively, from
(2.11) one may strip off the color structure and isolate the
kinematic algebra as the Poisson bracket of two plane
waves

feik1·x; eik2·xg ¼ eiðk1þk2Þ·xXðk1; k2Þ: ð2:24Þ

As explained in [57], in the context of celestial holog-
raphy the appearance of the “left structure constants”
Xðk1; k2Þ in both YM and gravity implies the chirality
of the operator product expansion in both cases. The second
“right structure constants,” fabc in the YM case and the
second copy of Xðk1; k2Þ in the gravity case, correspond to
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the structure constants of the OPEs. The soft expansion
of the latter may be explored by noting that the null
vector condition k2 ¼ 2ðkukv − kXkYÞ ¼ 0 implies that we
may set

ku
kX

¼ kY
kv

¼ ρ ð2:25Þ

for some ρ. Thus we can write

k · x ¼ ðρY þ vÞkv þ ðρuþ XÞkX: ð2:26Þ

The soft limit of the momentum k then corresponds to
ðkv; kXÞ → 0 at fixed ρ. Expanding eik·x in this limit gives

eik·x ¼
X∞
a;b¼0

ðikvÞaðikXÞb
a!b!

eab; ð2:27Þ

where the “soft mode generators” are given by
eab ¼ ðρY þ vÞaðρuþ XÞb. To make contact with the
algebras appearing in celestial holography, we now need
to take the collinear limit of the two momentum k1, k2
appearing in the algebra (2.24). To do this we use the
holomorphic collinear limit where ðρ1 − ρ2Þ → 0. This
makes k1 and k2 collinear since

k1 · k2 ¼ ðρ1 − ρ2ÞXðk1; k2Þ; ð2:28Þ

and we are able to take such a holomorphic collinear limit
ðρ1 − ρ2Þ → 0 without the structure constant Xðk1; k2Þ
vanishing due to the fact we are in (2, 2) signature. At
leading order in the holomorphic collinear limit (corre-
sponding to the first term in the OPE expansion in the
celestial holography context) we may set ρ1 ¼ ρ2 ¼ ρ
and substitute the expansion (2.27) into the kinematic
algebra (2.24) to obtain

fea;b; ec;dg ¼ ðad − bcÞeaþc−1;bþd−1: ð2:29Þ

Defining the conventional generatorswp
m¼1

2
ep−1þm;p−1−m

we then find the wedge subalgebra of the w1þ∞ algebra

fwp
m; w

q
ng ¼ ðmðq − 1Þ − nðp − 1ÞÞwpþq−2

mþn : ð2:30Þ

The condition that a and b are integers greater than or equal
to zero translates to the conditions that p,m are half-integers
and satisfy 1 − p ≤ m ≤ p − 1 and p ≥ 1 (similarly for q,
n). This algebra has been studied in the celestial holography
context [42,50,87] where it is generated by the commutation
relations of operators inserting soft gravitons.
As in the YM case, there is another gauge-fixing

condition related to the above by interchanging u ↔ v
and Y ↔ X, with (trivially equivalent) consequent equa-
tions. We reiterate that these different types of gauges will

not be as trivially related once we consider self-dual
backgrounds in the next section.

III. GENERAL SELF-DUAL YM BACKGROUNDS

Our first exploration of self-dual perturbations of self-
dual backgrounds starts with YM backgrounds in flat
space. To begin with we consider a background self-dual
gauge field AðχÞ in the gauge (2.4)

AðχÞ ¼ ðχX; 0; 0; χvÞ; □χ − ½fχ; χg� ¼ 0: ð3:1Þ

Since the gauge field is linear in the scalar χ we can write a
self-dual perturbation on this background as

Aðχ þ ψÞ ¼ ðχX þ ψX; 0; 0; χv þ ψvÞ ¼ AðχÞ þ AðψÞ;
ð3:2Þ

where AðψÞ is the perturbation. The total gauge field
Aðχ þ ψÞmust then satisfy the self-dual YM equation (2.5)

□ðχ þ ψÞ − ½fχ þ ψ ; χ þ ψg� ¼ e□χðψÞ − ½fψ ;ψg� ¼ 0;

ð3:3Þ

where we have used (3.1) and defined a “deformed” scalar
Laplacian

e□χ ¼ □ − 2½fχ; ·g� ¼ Dμ
χDχμ; ð3:4Þ

which is simply the scalar Laplacian in the background
gauge field AðχÞ. The covariant derivative is given by3

Dμ
χ ≔ ∂

μ þ ½AμðχÞ; ·�; ð3:5Þ

when acting on an adjoint valued field. Equation (3.3) is the
analog of (2.5) in a self-dual background YM field.
We will see shortly that the discussion above can be

double copied in two ways. First, we can just double copy
the background gauge field to obtain equations of motion
for self-dual YM on a self-dual gravitational background
(Sec. IVA). Second, we can double copy both the back-
ground and the perturbation, to obtain self-dual gravity
perturbations on a self-dual background (Sec. IV B). In
either case, the scalar Laplacian (3.4) will double copy to a
familiar object.

IV. GENERAL SELF-DUAL BACKGROUND
SPACETIMES

We now turn to generalizing the above results in Sec. II
valid for flat backgrounds to the case of self-dual back-
ground metrics. This leads us to the two possible double

3This is consistent with our conventions for the field strength
since ½Dμ; Dν�ψ ¼ ½Fμν;ψ � for adjoint valued fields ψ .
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copies of the case considered in Sec. III of self-dual YM
fields on self-dual YM backgrounds; these are summarized
in the diagram in (4.27).
We consider self-dual metrics of the form

ds2 ¼ gμνðΦÞdxμdxν
¼ 2dudv− 2dXdY þΦXXdu2 þΦvvdY2 þ 2ΦXvdudY

ð4:1Þ

for a scalar function Φðu; v; X; YÞ satisfying the Plebanksi
equation Pleb0ðΦÞ ¼ 0.
Given a covector kμ ¼ ðku; kv; kX; kYÞ we have

kμkμ ¼ 2kukv − 2kXkY − k2vΦXX − k2XΦvv þ 2kvkXΦXv

¼ 2k̂uk̂v − 2k̂Xk̂Y; ð4:2Þ

where it proves useful to define

k̂u ≔ ku −
1

2
ðkvΦXX − kXΦXvÞ; k̂v ≔ kv;

k̂X ≔ kX; k̂Y ≔ kY −
1

2
ðkvΦXv − kXΦvvÞ: ð4:3Þ

The hatted momenta are those in the tangent space; if we
write the vierbein

eau ¼
�
1;
1

2
ΦXX;−

1

2
ΦXv; 0

�
; eav ¼ ð0; 1; 0; 0Þ;

eaX ¼ ð0; 0; 1; 0Þ; eaY ¼
�
0;
1

2
ΦXv;−

1

2
Φvv; 1

�
; ð4:4Þ

satisfying eaμeνa ¼ gμνðΦÞ, with gμνðΦÞ the metric in (4.1),
then k̂a ¼ eμakμ.

A. Self-dual Yang-Mills theory

With a gauge field Aμ ¼ ðAu; Av; AX; AYÞ on this space-
time we can choose the gauge-fixing condition nμAμ ¼ 0,
with null vector nμ ¼ ð0; 1; 0; 0Þ, thus setting

Av ¼ 0: ð4:5Þ

Now we require that the field strength Fμν is self-dual, i.e.
that the anti-self-dual components F−

μν vanish. This
imposes three independent conditions. Two of these are
satisfied if we set

AX ¼ 0;

Au ¼ ϕX;

AY ¼ ϕv; ð4:6Þ

for a scalar field ϕðu; v; X; YÞ, and the final self-duality
condition imposes the equation

□Φϕ − 2½ϕv;ϕX� ¼ 0; ð4:7Þ

where □Φ is the Laplacian in the metric (4.1). This gauge
matches the choice made for the self-dual background
metric, wherein the components of the metric gμν satisfy
gvv ¼ gvX ¼ gXX ¼ 0; we call this gauge thematched gauge.
Equation (4.7) is thus thegeneralization of the self-dualYang-
Mills Theory equation (2.5) to the background (4.1). If we
define the Poisson bracket as in the flat space case

ff; gg ¼ ∂vf∂Xg − ∂vg∂Xf; ð4:8Þ

then the Plebanski equation (4.7) can be written as

□Φϕ − ½fϕ;ϕg� ¼ 0; ð4:9Þ

with ½fϕ;ϕg� defined in (2.8). The equation above can be
viewedas thedouble copyof (3.3)whereweonlydouble copy
the backgroundgauge field. Explicitly, performing the double
copyon only the background χ using ½fχ; ·g� → ffΦ; ·gg, the
scalar Laplacian in gauge theory e□χ (3.4) becomes

e□χ ¼ □ − 2½fχ; ·g� → □ − 2ffΦ; ·gg ¼ □Φ ð4:10Þ

where in the last equality we combined −2ffΦ; ·gg with the
flat scalar Laplacian to give us the curved Laplacian on the
background Φ.
As we have noted earlier, there is also a different gauge

choice which reduces to the gauge-fixing condition Au ¼ 0
in the flat space case, and which has a quite different
structure. We can find self-dual Yang-Mills Theory fields in
this gauge which satisfy a generalized Plebanski equation,
for background metrics which are of course self-dual
themselves, namely

Pleb0ðΦÞ ¼ 0; ð4:11Þ

but also are of the Kerr-Schild form and so satisfy

Φ2
Xv −ΦXXΦvv ¼ 0: ð4:12Þ

The above conditions imply that the flat Laplacian acting
on Φ vanishes i.e. Φuv ¼ ΦXY . The self-dual gauge field in
this case is given by

Au ¼
1

2
ðϕYΦXX − ϕuΦXvÞ;

Av ¼ k̂YðΦÞðϕÞ ≔ ϕY −
1

2
ðϕvΦXv − ϕXΦvvÞ;

AX ¼ k̂uðΦÞðϕÞ ≔ ϕu −
1

2
ðϕvΦXX − ϕXΦvXÞ;

AY ¼ 1

2
ðϕYΦXv − ϕuΦvvÞ; ð4:13Þ
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where the previously defined k̂u and k̂Y are now regarded as
differential operators defined by replacing the unhatted k’s
in their expression by the corresponding derivatives. The
perturbation field ϕ then satisfies a generalized Plebanski
equation in the background Φ given by

□Φϕ − 2½k̂uðΦÞðϕÞ; k̂YðΦÞðϕÞ� ¼ 0: ð4:14Þ

The gauge field above is not adapted to the background
metric in the same fashion as the previous gauge; instead it
features the nontrivial components of the background
metric. Since in the flat space limit it is related to the
previous gauge by the coordinate exchange u ↔ v and
Y ↔ X we call it the flipped gauge.

The commutator term in (4.14) in this flipped gauge
reveals a different algebraic structure connected with the
fact that one can define a curved space Poisson bracket for
this spacetime [88,89]. We can define this by considering
the expression k̂1uk̂2Y − k̂2uk̂1Y and as before replacing the
unhatted k’s in this expression by coordinate derivatives
with respect to the two functions in the Poisson bracket, i.e.

ff; ggΦ ¼ k̂uðΦÞðfÞk̂YðΦÞðgÞ − k̂YðΦÞðfÞk̂uðΦÞðgÞ;
ð4:15Þ

or

fu; vgΦ ¼ −
1

2
ΦXv; fu; XgΦ ¼ 1

2
Φvv; fu; YgΦ ¼ 1;

fv; XgΦ ¼ 1

4
ðΦ2

Xv −ΦXXΦvvÞ; fv; YgΦ ¼ −
1

2
ΦXX; fX; YgΦ ¼ 1

2
ΦXv: ð4:16Þ

The Jacobi identity for the Poisson bracket f; gΦ is satisfied
since the self-dual background Φ satisfies the Plebanski
equation Pleb0ðΦÞ ¼ 0. This Poisson bracket automatically
satisfies the Leibniz rule from the action of the partial
derivatives from which it is constructed (4.13). Further-
more, since the Kerr-Schild condition Φ2

Xv −ΦXXΦvv ¼ 0
is satisfied the bracket fv; Xg vanishes. The symplectic
form connected with the Poisson bracket (4.15) is

ω ¼ 1

2
ΦXvðdu ∧ dv − dX ∧ dYÞ − 1

2
Φvvdv ∧ dY

þ 1

2
ΦXXdu ∧ dX þ du ∧ dY: ð4:17Þ

We observe that ω2 ¼ 0 and is closed, dω ¼ 0 (cf. [89])
when the Kerr-Schild condition and background Plebanski
equation are satisfied.
Using the notation

½ff; gg�Φ ≔ ½k̂uðΦÞðfÞ; k̂YðΦÞðgÞ� − ½k̂YðΦÞðfÞ; k̂uðΦÞðgÞ�;
ð4:18Þ

the condition (4.14) on the field ϕ may then be written

□Φϕ − ½fϕ;ϕg�Φ ¼ 0: ð4:19Þ

B. Self-dual gravity

We now consider self-dual gravity perturbations on the
background metric in (4.1). That is we simply consider the
shifted metric gμνðΦþ ΨÞ given by (4.1) withΦ replaced by
Φþ Ψ. We take the metric gμνðΦÞ to be the background self-

dual spacetime, with Pleb0ðΦÞ ¼ 0. This setup corresponds
to the so called “matched gauge” for the gravity perturbation.
We can then define the gravitational Plebanski function

in the background metric gμνðΦÞ by

PlebΦðΨÞ ≔ □ΦΨþ Ψ2
Xv −ΨXXΨvv; ð4:20Þ

with □Φ the scalar Laplacian in the background metric.
Once again this can be written in terms of the double
bracket notation (2.21)

PlebΦðΨÞ ¼ □ΦΨ − ffΨ;Ψgg; ð4:21Þ

illustrating the double copy structure compared with
Eq. (4.9). Alternatively, (4.21) can be viewed as the double
copy of (3.3), where we double copy both the YM back-
ground and the perturbation. Now one can check that the
Plebanski equation satisfies the following identity:

Pleb0ðΦþ ΨÞ ¼ Pleb0ðΦÞ þ PlebΦðΨÞ: ð4:22Þ

This immediately gives the gravitational Plebanski equa-
tion in the background metric as simply

PlebΦðΨÞ ¼ 0: ð4:23Þ

This follows since the identity (4.22) shows that if Φ leads
to a self-dual metric then Φþ Ψ does as well if the
Plebanski equation for Ψ in a Φ metric background (4.23)
is satisfied. The above conclusions can be confirmed
explicitly. The relevant nontrivial component of the anti-
self-dual part of the Weyl tensor for the metric gμνðΦþΨÞ
is given by
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C−
uYuYðgμνðΦþ ΨÞÞ

¼ −
1

4
Δ0ðΦþ ΨÞPleb0ðΦþ ΨÞÞ

¼ −
1

4
Δ0ðΦþ ΨÞðPleb0ðΦÞ þ PlebΦðΨÞÞ

¼ −
1

4
Δ0ðΦþ ΨÞðPlebΦðΨÞÞ

¼ 0 ð4:24Þ
where we have used the self-duality of the background
metric, with Pleb0ðΦÞ ¼ 0, and imposed the condition
(4.23). It is also immediate that the variations of the
Plebanski function (4.20) are related to variations of the
flat Plebanski function; if we define the variation

ΔΦðΨÞðδΨÞ ≔ δΨðPlebΦðΨÞÞ; ð4:25Þ

then as differential operators

ΔΦðΨÞ ¼ Δ0ðΦþΨÞ; ð4:26Þ

as expected. A similar argument, based on (2.19), shows
Ricci flatness of the shifted metric.
In summary, we have shown the following commuting

triangle of double copy relations for equations of motion in
the matched gauge:

ð4:27Þ

The diagonal arrow above is just the usual self-dual flat
space double copy applied to the sum of the background
and perturbation fields χ þ ψ in (3.2). The double copy
properties of backgrounds and perturbations have been
studied beyond the self dual context in [60].
We can also consider the flipped gauge for which the

natural double copy of the bracket in (4.18) replaces the
YM commutator with the Poisson brackets f; gΦ of (4.15)4

fff; gggΦ ≔
1

2
ðfk̂uðΦÞðfÞ; k̂YðΦÞðgÞgΦ

− fk̂YðΦÞðfÞ; k̂uðΦÞðgÞgΦÞ: ð4:28Þ

These double brackets have a related curved space
Plebanski equation of the form

□ΦΨ − ffΨ;ΨggΦ ¼ 0; ð4:29Þ

which may be regarded as the double copy of (4.19). We
discuss these brackets further in the examples below. It
would be interesting to know if these equations are related
to the conditions required for the self-duality of the
curvature of metrics on self-dual backgrounds. One might
also study self-dual backgrounds satisfying the Kerr-Schild
condition Φ2

Xv ¼ ΦXXΦvv more generally. While we have
not found answers to these questions in the general case, the
study of interesting examples reveals more structure, as we
will see in the following.

V. THE SELF-DUAL PLANE WAVE SPACETIME

Plane wave backgrounds have been the object of some
interest recently in the area of amplitudes, kinematic algebras
and the double copy (see, for example, [58,59,83,84,90–92]
and references therein). Here we study the self-dual plane
wave metric

ds2PW ¼ 2dudv − 2dXdY þ 2FðvÞdY2; ð5:1Þ

where FðvÞ is a function related to the wave profile.
This metric is an example of the general form (4.1)

considered earlier and is also Kerr-Schild; we simply set
Φ ¼ ΦðvÞ with Φvv ¼ 2FðvÞ. The self-dual plane wave
metric is Ricci flat and has self-dual Weyl tensor; the only
nonvanishing components of the self-dual part of the Weyl
tensor being CvYvY ¼ −2F00½v� and those related to this by
the symmetries of this tensor.

A. Self-dual Yang-Mills Theory

A self-dual gauge field in the matched gauge on this
spacetime is given by

Aμ ¼ ðAu; Av; AX; AYÞ ¼ ðϕX; 0; 0;ϕvÞ; ð5:2Þ

where, in order to solve the self-duality conditions, the
scalar field ϕðu; v; X; YÞ must satisfy the plane wave
background Plebanski equation

□PWϕ − 2½ϕv;ϕX� ¼ 0; ð5:3Þ

with □PW the Laplacian in the metric (5.1). Using the
Poisson bracket ff; gg ¼ fvgX − fXgv which is the same as
the flat space case, we can write (5.3) as

□PWϕ − ½fϕ;ϕg� ¼ 0; ð5:4Þ

where the double bracket notation (2.8) is defined as usual.
There is also the flipped self-dual gauge field solution in

this background, from (4.13) which can be used to
elucidate the algebraic structure of self-dual perturbations
on the self-dual plane wave background. We find

4Other double brackets may be defined by dropping the Φ
terms inside the brackets in (4.28) and/or using the flat space
Poisson bracket.
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Aμ ¼ ð0;ϕY þ FðvÞϕX;ϕu;−FðvÞϕuÞ; ð5:5Þ

where the field ϕ satisfies

□PWϕ − 2½ϕu;ϕY þ FðvÞϕX� ¼ 0: ð5:6Þ

This leads us to the modified Poisson bracket in the plane
wave background

ff; ggPW ¼ fuðgY þ FðvÞgXÞ − ðfY þ FðvÞfXÞgu; ð5:7Þ

and the rewriting of (5.6) as

□PWϕ − ½fϕ;ϕg�PW ¼ 0: ð5:8Þ

We are now tasked with finding the analog of plane wave
solutions to the wave equation in flat space, but for
solutions to the wave equation in the background (5.1).
Such solutions then act as generators of our kinematic
Poisson algebra. We begin by constructing a null vector in
flat space kμ satisfying kukv − kXkY ¼ 0 so that (as before)
ku ¼ ρkX; kY ¼ ρkv for some ρ. Then for the functionGðvÞ
given by the indefinite integral of FðvÞ, i.e. G0 ¼ F, we
may define the quantity

Qkðu; v; X; YÞ ≔ ðρY þ vÞkv þ ðρuþ XÞkX þ 1

ρ
GðvÞkX

¼ k · xþ 1

ρ
GðvÞkX: ð5:9Þ

Then one can show that the vector Kμ ¼ ∇μQk is null,
KμKμ ¼ 0, divergence free, ∇μKμ ¼ 0 (which is just the
wave equation on Qk), and geodesic, Kν∇νKμ ¼ 0, where

∇μ is the covariant derivative in the plane wave metric. One
consequence is that any function ofQk is annihilated by the
Laplacian, in particular

□PWeiQkðu;v;X;YÞ ¼ 0: ð5:10Þ

Whence the function eiQkðu;v;X;YÞ satisfies the wave equation
in the plane wave background and furthermore reduces to
the usual plane wave eik·x in the flat space limit. The
Poisson bracket of two of these solutions is

feiQ1 ; eiQ2g

¼ eiðQ1þQ2Þ
�
k1Xk2v − k1vk2X þ k1Xk2X

ðρ1 − ρ2Þ
ρ1ρ2

FðvÞ
�

≕ eiðQ1þQ2ÞXPWðk1; k2Þ; ð5:11Þ

leading to a modification of the structure constants defining
the kinematic algebra compared to the flat space case. This
modification is however subleading in the holomorphic
collinear limit so we expect it to not alter the w-algebra,
which we confirm in the next section.
This result, and hence also the w-algebra in (5.20), also

holds if one uses the flipped gauge Poisson bracket (5.7),
although in that case it is more natural to write the function
(5.9) in terms of ku and kY as follows:

Qkðu; v; X; YÞ ¼ ðY þ ρ̃vÞkY þ ðuþ ρ̃XÞku þ ρ̃2GðvÞku
ð5:12Þ

where ρ̃ ≔ 1=ρ. The flipped Poisson bracket of two plane
waves is then

feiQ1 ; eiQ2gPW ¼ eiðQ1þQ2Þðk1Yk2u − k1uk2Y þ k1uk2uðρ̃1 − ρ̃2ÞFðvÞÞ
¼ eiðQ1þQ2Þð−ρ1ρ2ÞXPWðk1; k2Þ: ð5:13Þ

B. Self-dual gravity

The gravitational analog of the discussion above in the
matched gauge is based on the metric

ds2PWG ¼ 2dudv − 2dXdY þ 2FðvÞdY2 þ ΨvvdY2

þΨXXdu2 þ 2ΨvXdudY: ð5:14Þ

This metric has vanishing Ricci tensor and self-dual
Weyl tensor if the following Plebanski equation is
satisfied:

□PWΨþΨ2
vX − ΨvvΨXX ¼ 0; ð5:15Þ

where □PW is the Laplacian in the self-dual background.
Employing the double bracket notation (2.21) as usual we
have

□PWΨ − ffΨ;Ψgg ¼ 0; ð5:16Þ
revealing the double copy structure compared with (5.3).
If we apply the double bracket to two of the plane waves

(5.9) we find

ffeiQ1 ; eiQ2gg ¼ eiðQ1þQ2Þ 1
2

�
XPWðk1; k2Þ2

−
ik1Xk2Xðk1Xρ1 þ k2Xρ2ÞF0ðvÞ

ρ1ρ2

�
ð5:17Þ
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which is not just the simple square of the relation (5.11).
Despite this, we can still derive a w-algebra as follows.
Similarly to the flat space case, we may expand the above
solutions to the wave equation in powers of soft momenta
variables kv, kX to find

eiQkðu;v;X;YÞ ¼
X∞
a;b¼0

ðikvÞaðikXÞb
a!b!

eab; ð5:18Þ

where we have defined eab¼ðρYþvÞaðρuþXþ 1
ρGðvÞÞb

in the self-dual plane wave background. Defining the
modified w generators

wp
m≔

1

2
ep−1þm;p−1−m

¼1

2
ðρYþvÞp−1þm

�
ρuþXþ1

ρ
GðvÞ

�
p−1−m

; ð5:19Þ

in analogy with the flat space case. We recover the standard
w1þ∞-algebra for these modified generators, working to
leading order in the holomorphic collinear limit

fwp
m; w

q
ng ¼

�
mðq − 1Þ − nðp − 1Þ

�
wpþq−2
mþn : ð5:20Þ

Wemay also consider the flipped gaugewith its modified
Poisson bracket (5.7) which satisfies a double copy relation
analogous to (2.23) acting on two solutions eiQkðu;v;X;YÞ.
First we define a modified double bracket

fff; gggPW ¼ 1

2

�
ffu; gY þ FðvÞgXgPW

− ffY þ FðvÞfX; gugPW
�
; ð5:21Þ

then we find the expected double copy of (5.13), that is

ffeiQ1 ; eiQ2ggPW ¼ 1

2
eiðQ1þQ2Þð−ρ1ρ2XPWðk1; k2ÞÞ2:

ð5:22Þ

Interestingly, in contrast to the matched double bracket
(5.17) of plane waves, the above does exhibit a simple
squaring relation when compared to the single bracket
(5.13). As mentioned before, we can also define analogous
soft generators w̃p

m in the flipped gauge, now as coefficients
of kau and kbY . One can then show that these generators
also satisfy the w1þ∞ algebra (5.20), but now with the
bracket (5.7).

VI. THE EGUCHI-HANSON SPACETIME

We now move on to consider a more complicated
example, the Eguchi-Hanson spacetime. This is self-dual,
and in the form (4.11) has the scalar function

ΦEH ¼ mv2

2Y2ðuv − XYÞ ; ð6:1Þ

with m a constant, satisfying the Plebanski equation in flat
space

Pleb0ðΦEHÞ ¼ 0: ð6:2Þ
The full metric is then

ds2EH ¼ gμνðΦEHÞdxμdxν

¼ 2dudv − 2dXdY þ mv2

ðuv − XYÞ3 du
2

þ mX2

ðuv − XYÞ3 dY
2 −

2mvX
ðuv − XYÞ3 dudY ð6:3Þ

and satisfies the Kerr-Schild condition.
We now repeat the methods laid out for the general case

and the plane wave example but now with the function
ΦEH. We will encounter a much richer algebraic structure
than was found in the self-dual plane wave background,
reproducing in spacetime some of the results recently
described via twistor space in [85].

A. Self-dual Yang-Mills Theory

Consider firstly self-dual Yang-Mills Theory in an
Eguchi-Hanson background. From the results earlier, a
gauge field Aμ in the matched gauge Av ¼ 0 has self-dual
field strength if in addition AX ¼ 0, Au ¼ ϕX and AY ¼ ϕv,
with ϕ satisfying the Plebanski equation in the EH back-
ground

□EHϕ − 2½ϕv;ϕX� ¼ 0; ð6:4Þ

where □EH is the Laplacian in the metric (6.3). In the case
at hand, the EH Plebanski equation can be written in terms
of the flat space Poisson bracket (2.6) as

□EHϕ − ½fϕ;ϕg� ¼ 0: ð6:5Þ

The alternative flipped gauge (4.13) in the Eguchi-
Hanson case comes from the null vectormμ ¼ ð1; 0; 0; v=XÞ
and gauge-fixing condition mμAμ ¼ 0 and sets

Au ¼
mv

2ðuv − XYÞ3 ðvϕY þ XϕuÞ;

Av ¼ k̂YðΦEHÞðϕÞ ¼ ϕY þ mX
2ðuv − XYÞ3 ðXϕX þ vϕvÞ;

AX ¼ k̂uðΦEHÞðϕÞ ¼ ϕu −
mv

2ðuv − XYÞ3 ðXϕX þ vϕvÞ;

AY ¼ −
mX

2ðuv − XYÞ3 ðvϕY þ XϕuÞ: ð6:6Þ

This gauge field has self-dual field strength if the scalar field
ϕ satisfies
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□EHϕ − 2½k̂uðΦEHÞðϕÞ; k̂YðΦEHÞðϕÞ� ¼ 0: ð6:7Þ
Using the notation

½ff; gg�EH ≔
�
fu −

mv
2ðuv − XYÞ3 ðXfX þ vfvÞ; gY

þ mX
2ðuv − XYÞ3 ðXgX þ vgvÞ

�
þ ðf ↔ gÞ;

ð6:8Þ
equation (6.7) may be written [cf. (4.9)]

□EHϕ − ½fϕ;ϕg�EH ¼ 0: ð6:9Þ

The deformed Poisson bracket (4.15) in the Eguchi-Hanson
metric is then

ff; ggEH ¼ k̂uðΦEHÞðfÞk̂YðΦEHÞðgÞ
− k̂YðΦEHÞðfÞk̂uðΦEHÞðgÞ; ð6:10Þ

and we note that the terms quadratic in m in the above
Poisson bracket in fact drop out.
To find the equivalent of plane wave solutions in the EH

backgroundwe introduce anull covectorkμ ¼ ðku; kv; kX; kYÞ
whose components satisfy kukv ¼ kXkY so that as before we
may write

ku
kX

¼ kY
kv

¼ ρ ð6:11Þ

for some parameter ρ. As was the case for the self-dual plane
wave,we look for solutions to theEHwave equationwhich are
of an exponential form and return the usual eik·x planewave in

the flat space limit m → 0. Following [85], we define the
function

Rkðu; v; X; YÞ ≔ ðk · xÞ2 −mðvkv þ XkXÞ2
2ðuv − XYÞ2

¼ ððρY þ vÞkv þ ðρuþ XÞkXÞ2

−
mðvkv þ XkXÞ2
2ðuv − XYÞ2 : ð6:12Þ

Then the vector Kμ ¼ ∇μRk is null, KμKμ ¼ 0, divergence
free, ∇μKμ ¼ 0 (which is just the wave equation on Rk), and
geodesic, Kν∇νKμ ¼ 0, where ∇μ is the covariant derivative
in the EHmetric. One consequence is that any function ofRk is
annihilated by the Laplacian, in particular

□Φe
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rkðu;v;X;YÞ

p
¼ 0; ð6:13Þ

where ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rkðu;v;X;YÞ

p
gives the standard plane wave eik·x in the

flat space limitm → 0. Note the qualitative difference between
the Eguchi-Hanson function Rk, which is quadratic in the null
momentakμ, versusQk in the self-dual planewavebackground
which is linear in kμ.
We can now perform the Poisson bracket of two of the

solutions ei
ffiffiffiffi
Rk

p
to the wave equation with momenta k1, k2,

using the form of Rk on the second line of (6.12). We work
in the holomorphic collinear limit ρ1 ¼ ρ2 ¼ ρ which is all
that is needed to recover a w-algebra. This gives

fei ffiffiffiffi
R1

p
; ei

ffiffiffiffi
R2

p g ¼ eið
ffiffiffiffi
R1

p þ ffiffiffiffi
R2

p ÞXEHðk1; k2Þ ð6:14Þ

where here

XEHðk1; k2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p ðk1Xk2v − k1vk2XÞ
�
ðk1 · xÞðk2 · xÞ −

mðvk1v þ Xk1XÞðvk2v þ Xk2XÞ
2ðuv − XYÞ2

�
; ð6:15Þ

and dot products k · x here mean ðρY þ vÞkvþ
ðρuþ XÞkX. The final factor may be compared to the
right-hand side of (6.12). Equation (6.14) may be viewed as
the Eguchi-Hanson background version of the expression
in Eq. (2.11). We note that the kinematic algebra has
modified kinematic structure “constants” compared to the
flat-space case and the modification survives in the hol-
omorphic collinear limit so we expect the w-algebra to also
be modified. As in the plane wave case, the Poisson bracket
relation (6.14) also holds if we use the Eguchi-Hanson
flipped bracket (6.10), up to an overall factor which also
appeared in (5.13).

B. Self-dual gravity

For the case of self-dual gravity, a perturbation of the EH
metric in the matched gauge is given by gμνðΦEH þΨÞ ¼
gμνðΦEHÞ þ gμνðΨÞ and has vanishing anti-self-dual com-
ponents of the Weyl tensor except for

CEH−
uYuY ¼ −

1

4
ΔΦEH

ðΨÞðPlebΦEH
ðΨÞÞ: ð6:16Þ

Thus, the perturbed EH metric has self-dual Weyl tensor if
the EH Plebanski equation is satisfied. The EH Plebanski
equation for self-dual gravity in this case is given by
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PlebΦEH
ðΨÞ ¼ □EHΨ −ΨXXΨvv þ ðΨvXÞ2

¼ □EHΨ − ffΨ;Ψgg ¼ 0; ð6:17Þ

using the double bracket (2.21). Similarly for the Ricci
tensor one finds that its components vanish except for REH

ab
with a; b∈ ðu; YÞ and for these components

REH
ab ¼ −

1

2
∂ā∂b̄PlebΦEH

ðΨÞ; ð6:18Þ

where ū ¼ X; Ȳ ¼ v.
The nontrivial form of the single bracket (6.14) suggests

that the double copy, realized by using a double bracket,
may involve more than just the square of Xðk1; k2Þ. This
proves to be the case; the double brackets of two plane
wave solutions ei

ffiffiffiffi
Rk

p
in the EH background in the hol-

omorphic collinear limit give a double copy-type formula

ffei ffiffiffiffi
R1

p
;ei

ffiffiffiffi
R2

p gg¼1

2
eið

ffiffiffiffi
R1

p þ ffiffiffiffi
R2

p ÞXEHðk1;k2Þ2þ… ð6:19Þ

[cf. (2.23) in the flat space case] where XEHðk1; k2Þ is given
in (6.15) and the terms indicated by dots are more
complicated expressions which multiply ðR1Þ−1=2; ðR2Þ−1=2
and ðR1R2Þ−1=2 and are of order m, m2 or m3 and hence
vanish in the flat space limit m → 0. These results suggest
that in general the double copy and related kinematic
algebra on curved space backgrounds are not just given by
a simple squaring operation of the relevant curved space
term, as seen in the first term on the right-hand side of
Eq. (6.19), but can involve other curvature corrections.
We now consider the soft expansion of the solution

ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rkðu;v;X;YÞ

p
in powers of the soft momentum variables kY ,

ku and once again work in the holomorphic collinear limit
where ρ1 ¼ ρ2 ¼ ρ. We define functions Xg, Yg, Zg which
give the coefficients of k2v; k2X and kvkX in the function Rk

Xg ¼ ðρY þ vÞ2 − mv2

2ðuv − XYÞ2 ;

Yg ¼ ðρuþ XÞ2 − mX2

2ðuv − XYÞ2 ;

Zg ¼ ðρY þ vÞðρuþ XÞ − mXv
2ðuv − XYÞ2 ; ð6:20Þ

which satisfy

Xgk2v þ Ygk2X þ 2ZgkvkX ¼ ðk · xÞ2 −mðvkv þXkXÞ2
2ðuv−XYÞ2 ¼ Rk;

ð6:21Þ

and the discriminant constraint

XgYg − Z2
g ¼ −

mρ2

2
: ð6:22Þ

The quantities Xg, Yg, Zg correspond to the X, Y, Z of [85].
The parameter c2ðλÞ in that reference is related to ours

by c2ðλÞ ¼ m2ρ2

2
.

One can then expand the plane wave ei
ffiffiffiffi
Rk

p
in powers of

the variables kv, kX
5 and the Poisson bracket of the

coefficients in this expansion generates a w-type algebra.
Due to the constraint (6.22) one can define a new basis of
generators V2p;2q ≔ Xp

g Y
q
g ; V2pþ1;2qþ1 ≔ Xp

g Y
q
gZg, and the

Poisson brackets of these generate the underlying algebra

fV2p;2q; V2r;2sg ¼ 4ðps − qrÞV2pþ2r−1;2qþ2s−1;

fV2p;2q; V2rþ1;2sþ1g ¼ 2ðpð2sþ 1Þ − qð2rþ 1ÞÞV2pþ2r;2qþ2s þ 2mρ2ðps − qrÞV2pþ2r−2;2qþ2s−2;

fV2pþ1;2qþ1; V2rþ1;2sþ1g ¼ ðð2pþ 1Þð2sþ 1Þ − ð2qþ 1Þð2rþ 1ÞÞV2pþ2rþ1;2qþ2sþ1 þ 2mρ2ðps − qrÞV2pþ2r−1;2qþ2s−1:

ð6:23Þ

The full celestial chiral algebra of self-dual gravity on an Eguchi-Hanson background can then be written in terms of
sums of these generators (see Ref. [85]).
We can also consider the double brackets of the flipped gauge (4.28) in the EH background which are

given by

fff; gggEH ≔
1

2

	
fu −

mv
2ðuv − XYÞ3 ðvfv þ XfXÞ; gY þ mX

2ðuv − XYÞ3 ðvgv þ XgXÞ



EH
þ ðf ↔ gÞ; ð6:24Þ

5The authors of [85] consider the quantity cosð ffiffiffiffiffiffi
Rk

p Þ since they also impose the Z2 symmetry required by global considerations. This
involves the same basic generators.
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and using these in the holomorphic collinear limit we find a
double copy-type formula like (6.19) with the same leading
term, but with different subleading terms. As in the plane
wave case, we could expand the solution (6.12) in terms of
k2u, k2Y and kukY instead to define analogous soft generators
X̃g, Ỹg and Z̃g. These then satisfy the same algebra as (6.23)
but with the flipped Poisson bracket (6.10).

VII. CONCLUSIONS

We have studied the self-duality of gauge and gravita-
tional fields on the self-dual background spacetimes
defined by solutions of Plebanski’s second equation. In
light-cone gauges we showed that the conditions for self-
duality could be reduced to second order scalar equations
generalizing the flat space equations. We found two classes
of general solutions. One, which we called a “matched”
gauge, was a direct generalization of the flat space solutions
to the curved self-dual backgrounds under consideration.
The other involves a Kerr-Schild condition on the gravi-
tational background, which we called the “flipped” gauge,
and can be seen as the curved space versions of flipped flat
space solutions. We discussed the double copy and kin-
ematic algebra in these two cases. Finally, we studied two
examples in more detail—the self-dual plane wave space-
time and the Eguchi-Hanson metric—connecting with
some recent results from [84,85], and noting that in the
EH background the kinematic algebra squaring relations
are modified by curvature terms.
There are a number of avenues of research which follow

from this. It would be interesting to explore more examples
in detail, and investigate perturbative solutions to the
equations where direct solutions prove difficult. In order

to gain further insight into possible double copy and
kinematic algebra structures more generally, gravitational
analogs of the flipped gauge self-dual YM solution,
Eq. (4.13), could be studied further, in general and in
particular examples. Specifically, it would be interesting to
try and prove the conjectured double copy relation in
(4.29), which we explored through explicit examples in
Secs. V and VI. Plebanski-type conditions of the generic
form □ϕ − ffϕ;ϕgg ¼ 0 for the different double brackets
given above would be expected to feature. In radiative
spacetimes this should connect with the very recent
analysis of self-dual deformations in [84], which relates
these to twistor sigma models and maximal helicity
violating generating functionals. It would also be interest-
ing to explore applications to known deformations of the
Plebanski equations such as those involving Moyal brack-
ets (cf. [12,85] and references therein). The application of
the formalism used recently for self-dual YM in [93] could
also be explored in self-dual backgrounds.

No new data were generated or analyzed during this
study.
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