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We investigate semileptonic form factors of aDðsÞ meson from a modified soft-wall 4-flavor holographic
model. The model successfully reproduces the masses and decay constants of various mesons, including ρ,
K�, D�, D�

s , a1, K1, f1, D1, Ds1, π, K, η, D, and Ds. Moreover, we study the semileptonic decay processes
Dþ → ðπ; K; ηÞlþνl and Dþ

s → ðK; ηÞlþνl, associated with the vector meson exchange, as well as
Dþ

ðsÞ → Klþνl, associated with the vector and axial vector meson exchange. The form factors fþðq2Þ
for D → π and DðsÞ → K decays agree excellently with experimental and lattice data, outperforming other

theoretical approaches. The fþðq2Þ form factor for Dþ → η is compatible with experimental data, while a
slight discrepancy is observed for Dþ

s → η at large q2. Additionally, we predict the vector form factors
Vðq2Þ and A1ðq2Þ for D → K and Ds → K decays, respectively. The results agree well with other
approaches and lattice data at maximum recoil (q2 ¼ 0).

DOI: 10.1103/PhysRevD.109.026008

I. INTRODUCTION

Semileptonic weak decays of mesons play a vital role in
our comprehension of the standard model (SM) as they
provide the most direct way to determine the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [1,2] elements from
experimental data. In particular, semileptonic DðsÞ meson
decays offer a valuable avenue for investigating the
interactions within the charm sector, where by measuring
the decay rates, it becomes possible to directly determine
the CKMmatrix elements jVcdj and jVcsj. For instance, the
values of jVcdj and jVcsj are found from the measurements
of the decays D → πlμl and D → Klμl, respectively, by
Belle [3], BABAR [4,5], CLEO [6], and BESIII [7]
collaborations. It is worth noting that extracting the
CKM matrix elements is not straightforward, rather, it
includes the nonperturbative strong effects appearing in the
transition from the initial state to the final state, which is
parametrized by the hadronic invariant form factors. More
recently, The BESIII collaboration reports several semi-
leptonic weak decays, such as Dþ → K−πþeþνe [8],

Dþ
s → K0eþνe and Dþ

s → K�0eþνe Decays in Ref. [9],
Dþ

s → ηð0Þeþνe in Ref. [10], and Dþ → ημþνμ in [11].
Since the semileptonic decays include the nonperturbative
hadronic form factors, one cannot use the direct quantum
chromodynamics (QCD), and one needs a nonperturbative
method to carry out the calculations, see Ref. [12] for
listing the theoretical approaches.
Apart from the other nonperturbative approaches, a

holographic QCD model was applied to describe the
structure of the hadrons. Based on the anti–de Sitter/
conformal field theory (AdS=CFT) correspondence dis-
cussed in Refs. [13,14], a bottom-up holographic QCD
model at low energy was established in the works of
Refs. [15–28]. They started from QCD and constructed a
five-dimensional dual with the features of the dynamical
chiral symmetry breaking. Since in the two-flavor system,
the masses of the up and down quarks are small, and an
SUð2Þ flavor symmetry is preserved. However, in the case
of the extension of the model to three flavors [29] and four
flavors [30–34], the flavor symmetry is broken, especially in
the case of including Charm quark. The first attempt to
study the semileptonic decays had been done in Ref. [29],
where the Kl3 form factors that describe the decays K →
πlνl was calculated. More recently, the semileptonic D
meson decays to the vector, axial vector, and scalar mesons
investigated in the hard-wall holographic approach [32].
In the present work, we use 4-flavor bottom-up holo-

graphic framework to study the semileptonic decays. In the
original soft-wall holographic model [16], the quark
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condensate is proportional to the quark mass, which is in
contradiction with QCD, so to overcome the issue, a higher
order potential is added to the 5D action [35]. Therefore,
we adopt the modified 4-flavor soft-wall model [33]
instead of the soft-wall model. Following, we proceed
by calculating the masses and decay constants of the π, K,
η,D,Ds, ρ, K�, ω,D�,D�

s , a1, K1, f1,D1, andDs1 mesons
in the ground state. Furthermore, we compute the form
factors of the semileptonic decays Dþ → ðπ; K; η; K�Þlþνl
and Dþ

s → ðK; η; K�Þlþνl which induced by the decay of
the charm quark to light quark, c → dðsÞlνl. Due to the fact
that the maximum-recoil form factors are essential to
extract the CKM matrix elements, and they are also
observable in the experiment, we compare our determined
value with the experimental and lattice QCD data.
This work is organized as follows. In Sec. II, we revisit

the formalism of the modified soft-wall holographic QCD
model for Nf ¼ 4 flavor and derive the equations of
motion. In Sec. III, we describe the three-point interactions
and deduce the semileptonic form factors from the three-
point functions obtained from the cubic-order 5D action. A
detailed comparison of the numerical results with the
experimental data, lattice QCD, and other theoretical
approaches are provided in Sec. IV. Finally, we briefly
conclude our work in Sec. V.

II. THE 5D ACTION AND EQUATIONS
OF MOTION

In this section, we revisit the formalism of the four
flavors of soft-wall holographic QCD model [33,34].
The five-dimensional metric defined in the AdS space
is given by,

ds2 ¼ gMNdxMdxN ¼ 1

z2
ðημνdxμdxν þ dz2Þ; ð1Þ

where ημν ¼ diag½−1; 1; 1; 1� is the four-dimensional met-
ric in the Minkowski space, and z is the fifth dimension
and has an inverse energy scale. Note that the Latin indices
M and N run from 0,1,2,3,4, and the Greek indices are
defined as μ, ν ¼ 0; 1; 2; 3. According to the holographic
model, there is a correspondence between the 4D oper-
ators and corresponding 5D gauge fields [15]. The

operators and corresponding gauge fields incorporated
in the chiral dynamics are defined by

JaR=Lμ ¼ ψ̄qR=LγμtaψqR=L → Ra
μ=La

μ

JS ¼ ψ̄qLψqR → X; ð2Þ

where JaR=Lμ is a right/left-handed currents which corre-
spond to the Ra

μ and La
μ gauge fields, and the quark bilinear

ψ̄qLψqR correspond to the complex scalar fields X. Note
that, ta with a ¼ 1; 2;…; N2

f − 1 are the generators of the
SUðNfÞ group. The general five-dimensional action is
written as

SM ¼ −
Z

zm

ϵ
d5x

ffiffiffiffiffiffi
−g

p
e−ϕTr

�
ðDMXÞ†ðDMXÞ þM2

5jXj2

− κjXj4 þ 1

2g25
ðVMNVMN þ AMNAMNÞ

�
; ð3Þ

where DMX ¼ ∂MX − i½VM; X� − ifAM; Xg is the covari-
ant derivative of the scalar field X, M2

5 ¼ ðΔ − pÞðΔþ
p − 4Þ ¼ −3 by taking the conformal dimension of the
scalar field operator Δ ¼ 3 and p ¼ 0, κ is a dimension-
less parameter which can be determined, and ϵ and zm are
the UVand IR limit of the model. The coupling constant g5
is related to the number of color and defined g5 ¼ 2π for
Nc ¼ 3 ([15]). The gauge field strength VMN and AMN are
defined by

VMN ¼ ∂MVN − ∂NVM − i½VM;VN � − i½AM; AN �;
AMN ¼ ∂MAN − ∂NAM − i½VM; AN � − i½AM; VN �; ð4Þ

where the vector and axial vector fields are written in
terms of the right- and left-handed gauge fields as VM ¼
1
2
ðLM þ RMÞ and AM ¼ 1

2
ðLM − RMÞ, respectively. The

fields VM, and Am can be expanded to Va
Mt

a, and Aa
mta,

respectively, and the generators satisfy TrðtatbÞ ¼ 1
2
δab.

The vector, axial, and pseudoscalar fields are described by
4 × 4 matrices,

V ¼ Vata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p K�0 D�−

K�− K̄�0 −
ffiffi
2
3

q
ω0 þ ψffiffiffiffi

12
p D�−

s

D�0 D�þ D�þ
s − 3ffiffiffiffi

12
p ψ

1
CCCCCCCA
; ð5Þ
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A ¼ Aata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p aþ1 Kþ
1 D̄0

1

a−1 − a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p K0
1 D−

1

K−
1 K̄0

1 −
ffiffi
2
3

q
f1 þ χc1ffiffiffiffi

12
p D−

s1

D0
1 Dþ

1 Dþ
s1 − 3ffiffiffiffi

12
p χc1

1
CCCCCCCA
; ð6Þ

π ¼ πata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ ηcffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s − 3ffiffiffiffi

12
p ηc

1
CCCCCCCA
: ð7Þ

Additionally, The complex scalar field in Eq. (3) is
expressed by

X ¼ eiπ
ataX0eiπ

ata ð8Þ

where X0 ¼ 1
2
diag½vlðzÞ; vlðzÞ; vsðzÞ; vcðzÞ� with vl;s;cðzÞ

the vacuum expectation value, and πa is the pseudoscalar
field. Finally, the dilaton field ϕ in Eq. (3) only depends on
the fifth dimension z and explicit form is shown later in this
section.
The equations of motion for each field can be obtained

from varying the action in Eq. (3) with respect to the
corresponding field. In order to find the vacuum expect-
ation value, one needs to remove all the fields and keep
only the background. The zeroth order of the action for the
background field is given by

Sð0Þ ¼ −
1

4

Z
zm

ϵ
d5x

�
e−ϕðzÞ

z3
ð2v0lðzÞv0lðzÞ þ v0sðzÞv0sðzÞ

þ v0cðzÞv0cðzÞÞ −
e−ϕðzÞ

z5

�
3ð2vlðzÞ2 þ vsðzÞ2

þ vcðzÞ2Þ −
κ

4
ð2vlðzÞ4 þ vsðzÞ4 þ vcðzÞ4Þ

��
: ð9Þ

The equation of motion for the scalar vacuum expect-
ation value vl;s;cðzÞ is obtained as

−
z3

e−ϕ
∂z
e−ϕ

z3
∂zvqðzÞ −

3

z2
vqðzÞ −

κ

2z2
v3qðzÞ ¼ 0; ð10Þ

where q ¼ l; s; c. The solution for the scalar vacuum
expectation value vl;s;cðzÞ that preserves the UV and IR
asymptotic behavior is provided and justified in Ref. [35]

vðzÞ ¼ azþ bz tanh ðcz2Þ; ð11Þ

with the definitions for the parameters a, b, and c as

a ¼
ffiffiffi
3

p
mq

g5
; b ¼

ffiffiffiffiffiffiffi
4μ2

κ

r
− a; c ¼ g5σffiffiffi

3
p

b
;

where mq is the quark mass and σ is the chiral condensate.
It worth noting that the UV and IR asymptotic behavior of
the vðzÞ can be achieved by expanding Eq. (11) at small and
large z as

vðz → 0Þ ¼ azþ bcz3 þOðz5Þ; ð12Þ

vðz → ∞Þ ¼ ðaþ bÞz ¼
ffiffiffiffiffiffiffi
4μ2

κ

r
z: ð13Þ

In the initial soft wall model [16], the dilaton field was
originally characterized by the expression ϕðz→∞Þ¼μ2z2.
Here, the parameter μ is connected to the Regge slope,
establishing the mass scale for the meson spectrum and
ensuring the presence of linear mass trajectories. Moreover,
one can find the dilaton profile by substituting the Eq. (11)
into Eq. (10) and solve for ϕ field [35]. However, in this
approach the profile of the dilaton field exhibits dependence
on the quark flavor and differs for each value of vq. While
this flavor reliance of the dilaton field poses no issue when
exclusively considering light quarks, it becomes evident and
inevitable when addressing heavy quarks like the charm
quark [33]. In Ref. [36] a modified dilaton profile proposed
with a negative quadratic dilaton at UV and a positive
quadratic dilaton at IR which is different from the one
obtained in Ref. [33,35], where positive quadratic dilaton is
required at both UV and IR. In our present study, focusing
solely on the IR asymptotic behavior of the ϕ field suffices
for the numerical computations, thereby obviating the need
to address the flavor-related variability of the dilaton profile.
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The equation of motion for the vector, axial vector, and pseudoscalar mesons can be obtained from the expansion of the
action in Eq. (3) up to the second order,

Sð2Þ ¼−
Z

d5x

�
ηMN e

−ϕðzÞ

z3
ðð∂Mπa−Aa

MÞð∂Nπb −Ab
NÞMab

A −Va
MV

b
NM

ab
V Þþ e−ϕðzÞ

4g25z
ηMPηNQðVa

MNV
b
PQþAa

MNA
b
PQÞ

�
; ð14Þ

where ηMN is the metric in 5-D Minkowski space,
VaðAaÞMN ¼ ∂MVaðAaÞN − ∂NVaðAaÞM. The mass terms
in the action Mab

A and Mab
V are defined by

Mab
A δab ¼ Trðfta; X0gftb; X0gÞ;

Mab
V δab ¼ Trð½ta; X0�½tb; X0�Þ; ð15Þ

where Mab
V is zero for a; b ¼ 1; 2; 3; 8; 15. The vector field

in Eq. (14) satisfies the following equation of motion,

−∂M
e−ϕ

g25z
Va
MN −

e−ϕ

z3
ðMaa

V Va
MÞ ¼ 0: ð16Þ

The gauge choice for the vector field is set to Va
z ¼ 0 and

∂
μVa

μ⊥ ¼ 0 where Va
μ⊥ is the transverse part of the vector

field Va
μ ¼ Va

μ⊥ þ Va
μk. Considering the gauge fixing and

then applying the 4D Fourier transformation, Eq. (16)
reduces to the following

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z −

2g25M
aa
V

z2

�
Va
μ⊥ðq; zÞ ¼ −q2Va

μ⊥ðq; zÞ:

ð17Þ

with Va
μ⊥ðq; zÞ is the 4D Fourier transformation of

Va
μ⊥ðx; zÞ. According to the AdS=CFT principle, it is

allowed to write the transverse part of the vector field in
terms of the bulk-to-boundary propagator and its boundary
value at the UV regime, which acts as a Fourier trans-
formation of the source of the 4D conserved vector current
operator, Va

μ⊥ðq; zÞ ¼ V0a
μ⊥ðqÞVaðq2; zÞ. The boundary con-

ditions for the bulk-to-boundary propagator V0aðq2; zÞ to
satisfies the equation of motion (17) are Vaðq2; ϵÞ ¼ 1 and
∂zVaðq2; zmÞ ¼ 0. Moreover, the bulk-to-boundary propa-
gator can be written as a sum over the meson poles

Vaðq2; zÞ ¼
X
n

−g5faVnψa
VnðzÞ

q2 −ma2
Vn

; ð18Þ

where ψVnðzÞ is a wave function which satisfies
Eq. (17) with the boundary conditions ψVnðϵÞ ¼ 0 and
∂zψVnðzmÞ ¼ 0, and normalized as

R
dz e−ϕ

z ψn
VðzÞψm

V ðzÞ ¼
δnm, and faVn ¼ ∂zψ

a
VnðϵÞ=ðg5ϵÞ is the decay constant of the

nth mode of the vector meson [15].
Similar to the vector field, The axial vector field Aa

μ can
be decomposed to the transverse and longitudinal parts,

Aa
μ ¼ Aa

μ⊥ þ Aa
μk, where the longitudinal part Aa

μk ¼ ∂μϕ
a

has the contribution to the pesudoscalar mesons. The
equation of motion derived from Eq. (3) is given by

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z þ

2g25M
aa
A

z2

�
Aa
μ⊥ðq; zÞ ¼ −q2Aa

μ⊥ðq; zÞ;

ð19Þ

with the conditions Aa
z ¼ 0, and ∂

μAa
μ⊥, respectively. The

bulk-to-boundary propagator of the axial vector field
Aaðq2; zÞ satisfy the boundary conditions Aaðq2; ϵÞ ¼ 0

and ∂zAaðq2; zmÞ ¼ 0, in the UVand IR region, also can be
written as

Aaðq2; zÞ ¼
X
n

−g5faAnψa
AnðzÞ

q2 −ma2
An

; ð20Þ

with the wave function ψa
AnðzÞ, and decay constant of the

axial vector mesons faAn ¼ ∂zψ
a
AnðϵÞ=ðg5ϵÞ.

And last but not least, the mass spectra of the pseudo-
scalar mesons can be obtained by solving the coupled
equation of motions between the pseudoscalar field π and
the longitudinal part of the axial vector field ϕ,

q2∂zφaðq;zÞþ2g25M
aa
A

z2
∂zπ

aðq;zÞ¼0;

z
e−ϕ

∂z

�
e−ϕ

z
∂zφ

aðq;zÞ
�
−
2g25M

aa
A

z2
ðφaðq;zÞ−πaðq;zÞÞ¼0;

ð21Þ

with the boundary conditions πaðq2; ϵÞ ¼ ϕaðq2; ϵÞ ¼ 0

and ∂zπ
aðq2; zmÞ ¼ ∂zϕ

aðq2; zmÞ ¼ 0. The bulk-to-
boundary propagator for the longitudinal part of the axial
vector field ϕðq2; zÞ and pseudoscalar field πðq2; zÞ are
written as

ϕðq2; zÞ ¼
X
n

g5m2
πnfπnϕ

nðzÞ
q2 −m2

πn
;

πðq2; zÞ ¼
X
n

g5m2
πnfπnπ

nðzÞ
q2 −m2

πn
; ð22Þ

where fπn ¼ −∂zϕnðϵÞ=ðg5ϵÞ is the decay constant of the
nth mode of the psuedoscalar meson.
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It is worth mentioning that the ϵ represents the UV limit
of the model, and the value is small. Although it seems the
decay constants are sensitive to the UV parameter ϵ, they
are not. Following the work of Ref. [30], we provide an
explanation of the determination of the decay constants in
our model. The wave functions in Eqs. (18), (20), and (22)
are normalized and can be written in terms of unnormalized
wave functions as the following,

ψa
VnðzÞ ¼ NVnψa

U;VnðzÞ; ψa
AnðzÞ ¼ NAnψa

U;AnðzÞ
ϕnðzÞ ¼ Nπnϕ

n
UðzÞ; πnðzÞ ¼ Nπnπ

n
UðzÞ; ð23Þ

with the normalization constant defined by

NVn ¼
�Z

dz
e−ϕ

z
ψa
U;VnðzÞψa

U;VnðzÞ
�
−1=2

NAn ¼
�Z

dz
e−ϕ

z
ψa
U;AnðzÞψa

U;AnðzÞ
�
−1=2

Nπn ¼
�Z

dz
e−ϕ

z

�
ð∂zφn

UðzÞÞ2 þ
2g25M

aa
A

z2

× ðφn
UðzÞ − πnUðzÞÞ2

��
−1=2

: ð24Þ

By using the equation of motions, one can expand the
unnormalized wave functions near the UV boundary as

ψa
U;VnðzÞ ¼ z2 þ…; ψa

U;AnðzÞ ¼ z2 þ…

ϕn
UðzÞ ¼ −z2 þ…; πnUðzÞ ¼ −

m2
πn

βaðzÞ z
2 þ…; ð25Þ

where βaðzÞ ¼ 2g2
5
Maa

A

z2 , and the first coefficients are fixed to
1 or −1 to get a positive sign for the decay constants. Now,
we can determine the decay constants as following.

faVn ¼ ∂zψ
a
VnðϵÞ
g5ϵ

¼ NVn

∂zψ
a
U;VnðϵÞ
g5ϵ

¼ 2NVn

g5

faAn ¼ ∂zψ
a
AnðϵÞ
g5ϵ

¼ NAn

∂zψ
a
U;AnðϵÞ
g5ϵ

¼ 2NAn

g5

fπn ¼ −
∂zϕ

nðϵÞ
g5ϵ

¼ −Nπn
∂zϕ

n
UðϵÞ
g5ϵ

¼ 2Nπn

g5
: ð26Þ

From Eq. (26), it is obvious that the decay constants only
depend on the normalization constants, and they are not
sensitive to ϵ.

III. THREE-POINT INTERACTIONS
AND SEMILEPTONIC FORM FACTORS

In this section, the semileptonic form factors of DðsÞ →
ðP;VÞlþνl are derived in the soft-wall holographic model.
The Feynman diagram of the semileptonic decay process of
DðsÞ to a pseudoscalar or a vector meson is shown in Fig. 1,
where the charm quark goes through the process of
c → dðsÞWþ → dðsÞlþνl. The matrix elements of the
semileptonic decays of the DðsÞ meson within the SM is
defined by [37]

MðDðsÞ → ðP;VÞlþνlÞ¼
GFffiffiffi
2

p V�
cqhðP;VÞjq̄γμð1− γ5ÞcjDðsÞi

× ν̄lγ
μð1− γ5Þl; ð27Þ

where GF is a fermi constant, V�
cq elements of a CKM

matrix, and the hadronic and leptonic currents are given by
the terms hðP;VÞjq̄γμð1 − γ5ÞcjDðsÞi and ν̄lγ

μð1 − γ5Þl,
respectively. The hadronic current can be parametrized
in terms of the invariant form factors, which depend on the
momentum transfer squared (q2). For the case of the
pseudoscalar mesons in the final state, only the vector
current (q̄γμc) contributes to the form factors. The tran-
sition form factors are defined by [38]

hPðp2ÞjVμjDðsÞðp1Þi ¼ Fþðq2Þ
�
Pμ −

M2
1 −M2

2

q2
qμ
�
þ F0ðq2Þ

M2
1 −M2

2

q2
qμ

hVðp2; ϵ2ÞjVμ − AμjDðsÞðp1Þi ¼ −ðM1 þM2Þϵ�μ2 A1ðq2Þ þ
ϵ�2 · q

M1 þM2

PμA2ðq2Þ

þ 2M2

ϵ�2 · q
q2

qμ½A3ðq2Þ − A0ðq2Þ� þ
2iεμνρσϵ�ν2 pρ

1p
σ
2

M1 þM2

Vðq2Þ; ð28Þ

FIG. 1. Feynman diagram for the semileptonic decay of DðsÞ
into a pesudoscalar P (vector V) and lþνl.
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where P ¼ p1 þ p2, q ¼ p1 − p2, M1 and M2 are the
mass of the mesons in the initial and final state, respec-
tively, and ϵ2 is the polarization vector of the final vector
meson. The A3ðq2Þ form factor is not independent and can
be written as a combination between A1ðq2Þ and A2ðq2Þ.
For the present study, we only consider the form factors
associated with the vector meson exchange Fþðq2Þ and
Vðq2Þ, and axial vector meson exchange A1ðq2Þ, since

these are the most important form factors in the limit of
zero lepton mass.
Using the holographic QCD approach, the semileptonic

form factors can be deduced from the three-point func-
tions [29,32]. The cubic terms of the 5D action used to
find the Fþðq2Þ are SðVππÞ, and for Vðq2Þ and A1ðq2Þ are
SðVVπÞ and SðVAπÞ, respectively. The expansion of the
5D action (3) to cubic order is given by,

Sð3Þ ¼ −
Z

d5x

�
ηMN e−ϕðzÞ

z3
ð2ðAa

M − ∂Mπ
aÞVb

Nπ
cgabc þ Va

Mð∂NðπbπcÞ − 2Ab
Mπ

cÞhabc − Va
MV

b
Nπ

ckabcÞ

þ e−ϕðzÞ

2g25z
ηMPηNQðVa

MNV
b
PV

c
Q þ Va

MNA
b
PA

c
Q þ Aa

MNV
b
PA

c
Q:þ Aa

MNA
b
PV

c
QÞfbca

�
ð29Þ

with the following definitions for gabc, habc, and kabc,

gabc ¼ iTrðfta; X0g½tb; ftc; X0g�Þ;
habc ¼ iTrð½ta; X0�ftb; ftc; X0ggÞ;
kabc ¼ −2Trð½ta; X0�½tb; ftc; X0g�Þ: ð30Þ

In the present work, we are interested in the three-point interactions of the Vππ, VVπ, and VAπ. The corresponding part
of the action to these three-point interactions are

SVππ ¼ −
Z

zm

ϵ
d5x

�
ηMN e−ϕðzÞ

z3
ð2ðAa

M − ∂Mπ
aÞVb

Nπ
cgabc þ Va

Mð∂NðπbπcÞ − 2Ab
Nπ

cÞhabcÞ

þ e−ϕðzÞ

2g25z
ηMPηnQðVa

MNA
b
PA

c
QÞfabc

�
ð31Þ

SVVπ ¼
Z

d5x
e−ϕðzÞ

z3
ηMNðVa

MV
b
Nπ

cÞkabc ð32Þ

SVAπ ¼ −
Z

zm

ϵ
d5x

�
2ηMN e−ϕðzÞ

z3
Aa
MV

b
Nπ

cðgabc − hbacÞ þ e−ϕðzÞ

2g25z
ηMPηNQðVa

MNA
b
PA

c
QÞfabc

�
ð33Þ

Similar to the derivation of the electromagnetic form factors using the three point function [33], and semileptonic form
factors in the work of Refs. [29,32], one can obtain the Fþðq2Þ, Vðq2Þ, and A1ðq2Þ as the following,

Fþðq2Þ ¼
Z

dz
e−ϕðzÞ

z

�
fabc∂zϕnaVbðq2; zÞ∂zϕnc −

2g25
z2

ðπna − ϕnaÞVbðq2; zÞðπnc − ϕncÞðgabc − hbacÞ
�
; ð34Þ

Vðq2Þ ¼ ðM1 þM2Þg25
2

Z
dz

e−ϕðzÞ

z3
kabcψa

VnðzÞVbðq2; zÞπncðzÞ; ð35Þ

A1ðq2Þ ¼
Z

dz
e−ϕðzÞ

z

�
M2

1 þM2
2 − q2

2ðM1 þM2Þ
�
fbacAaðq2; zÞψb

VnðzÞϕncðzÞ

−
Z

dz
e−ϕðzÞ

z3
2g25

ðM1 þM2Þ
Aaðq2; zÞψb

VnðzÞπncðzÞðgabc − hbacÞ: ð36Þ
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IV. RESULTS

In this section, we show the numerical results for the
meson masses and decay constants of the vector, axial
vector, and pseudoscalar mesons at the ground state and the
form factors of the semileptonic decay process of DðsÞ
mesons to a pseudoscalar or vector mesons within the
framework of Nf ¼ 4 holographic QCD.
Firstly, let us set the parameters of the model. The

parameters of the model that can be found from the fitting
to the experimental data are μ,mu,ms,mc, σu, σs, σc, κ, and
zm. The value of μ is found to be 430� 5, 3 MeV from the
fitting of the experimental masses of the ground and higher
excited states of the ρ meson, where the uncertainty comes
from the masses of the rhos meson. Since the pion decay
constant and pion mass are related to the light quark mass
and condensate by the Gell-Mann-Oakes-Renner (GOR)
relation, f2πm2

π ¼ 2mqσ, the measured value of the pion
decay constant fπ ¼ 92.4� 7 MeV and pion mass mπ ¼
139.57039� 0.00018 MeV were used to adjust the up
quark mass and up quark condensate. Similarly, we use the
GOR relation to fix the values of ms and σs from the
measured mass and decay constant of the kaon. After fixing
μ, mu, and σu, one can use the experimental value of the a1

meson mass,ma1 ¼ 1230� 40, to determine the value of κ.
For the parameters of the charm sector, the mass mc and
charm quark condensate σc are found from the fitting of the
model with the experimental value of the masses mηc and
mχc1 . Following the work of Refs. [33,34], the value of zm is
fixed at 10 GeV. It is worth mention that, the UV limit of
the model is at the boundary of the AdS space, for the sake
of numerical calculations we choose a small value for the
holographic coordinate z at ϵ ¼ 0.001 MeV, and the
physics does not depend on ϵ. The numerical values of
the parameters are provided in Table I.
By using the parameters in Table I, one can obtain the

ground state mass and decay constants of the vector, axial
vector, and pseudoscalar mesons. Table II presents the
results of the masses and decay constants. The holographic
QCD model is based on the large Nc expansion, so the
uncertainty of about 10%–20% is expected. The uncer-
tainties of the observables in Table II are less than 7%,
which is smaller than the expected uncertainties coming
from the large Nc expansion. For that reason, we will not
include the uncertainties in the observables obtained in the
proceeding. It is worth noting that the SUð4Þ flavor
symmetry is explicitly breaking due to the different values
of the quark masses and condensates. And the consequence
of the flavor symmetry breaking is the difference between
the masses of the strange and charmed mesons with the
light flavor mesons. However, in the vector sector the mass
Maa

V in Eq. (17) is zero for a ¼ 1; 2; 3; 8; 15, and this
returns the same masses for the ρ, ω, and J=Ψmesons. This
issue solved for the J=Ψ meson by adding an auxiliary
heavy field to the action, which only include the contri-
bution of the charm quark to explicitly break the SUð4ÞV to

TABLE II. The predicted masses and decay constants calculated from the hQCD compared to experimental or
lattice data. The measured value of the mass of the vector, axial vector, and pseudoscalar mesons, and decay constant
of the pseudoscalar mesons are taken from the particle data group (PDG) [39]. The measured value of the decay
constant of the ρ and a1 mesons are taken from Refs. [40] and [41], respectively. For the masses and decay constants
used to find the input parameters of the model, the word (fit) is used.

Meson Mass (MeV) Measured (MeV) Decay constant (MeV) Measured (MeV)

ρ (Fit) 775.26� 0.23 288.5� 3.6 345� 8
K� 860.1� 10.5 891.67� 0.26 288.3� 3.3
D� 1914.9� 54.3 2006.85� 0.05 413.4� 24.6
D�

s 1911.4� 51.2 2112.2� 0.4 427.8� 28.3
a1 (Fit) 1230� 40 351.3� 17.7 354� 13
K1 1287.7� 66.3 1253� 7 348.3� 18.8
f1 1287.97� 65.9 1281.9� 0.5 346.8� 19.3
D1 2641.5� 20.7 2422.1� 0.6 502.1� 6.2
Ds1 2657.6� 14.9 2459.5� 0.6 475.7� 5.2
π (Fit) 139.57039� 0.00018 (Fit) 92.4� 7
K (Fit) 497.611� 0.013 (Fit) 110� 5
η 740.5� 0.9 547.862� 0.017 126.3� 3.4
D0 2032.7� 11.8 1864.86� 0.05 199.3� 2 149.8� 5

Ds 2114.3� 9.8 1968.35� 0.07 197.7� 1.3 176.1� 4

TABLE I. The values of the free parameters with the unit of
MeV. The uncertainties come from the experimental measure-
ments of masses and decay constants used in the fitting.

mu ¼ 3.2� 0.2 σu ¼ ð296.2� 7.9Þ3 μ ¼ 430� 5.3
ms ¼ 142.3� 2 σs ¼ ð259.8� 4Þ3 κ ¼ 30� 4

mc ¼ 1597.1� 1.9 σc ¼ ð302� 1Þ3 zm ¼ 10000
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SUð3ÞV [34]. Since the contributions of ω and J=Ψmesons
are not important for scope of the current work, we did not
include the auxiliary field in the 5D action.
Furthermore, we investigate the form factors of the

following semileptonic decay processes, Dþ →
ðπ; K; η; K�Þlþνl and Dþ

s → ðK; η; K�Þlþνl. From the
experimental point of view, the semileptonic decays are
important to find the elements of the CKM matrix. For that
reason, it is important to determine the maximum-recoil
values of Fþðq2 ¼ 0Þ, and Vðq2 ¼ 0Þ and A1ðq2 ¼ 0Þ for
Dþ

ðsÞ → ðπ; K; ηÞlþνl, and Dþ
ðsÞ → K�lþνl, respectively.

Regarding the vector form factor for Dþ
ðsÞ → K�lþνl, it is

more favorite to take the ratio between Vðq2 ¼ 0Þ and
A1ðq2 ¼ 0Þ, rv ¼ Vð0Þ=A1ð0Þ [9]. The comparison of the
maximum-recoil values at q2 ¼ 0 with the experimental
data, lattice QCD, and other theoretical approaches, e.g.,
light-cone sum rules (LCSR) [42–45], covariant light-front
quark model (CLFQM) [46–48], constituent quark model
(CQM) [49], covariant confined quark model (CCQM)
[12], relativistic quark model (RQM) [50] are presented in
Table III.
For the case of the pion in the final state, the form factor

fD→πþ ð0Þ is consistent with the experimental data and
lattice QCD with a small discrepancy of 6.75% and 9%,
respectively. Meanwhile to compare our full form factor
with the others qualitatively, we normalize the form factors
with the maximum-recoil values of Fþðq2 ¼ 0Þ. The result
of the form factor for Dþ → πlþνl is shown in Fig. 2,
where we compare our calculation with the experimental
data [7], lattice QCD data [51], and different theoretical
approaches like LCSR, CLFQM, CQM, CCQM and
heavy-light chiral perturbation theory (HLχPT) (See
Ref. [55] and the references therein). The result of
Fþðq2Þ is in excellent agreement with the experiment
and Lattice QCD and has a better reproduction compared
to other theoretical approaches.
In the case of DðsÞ → K, the form factor at zero

momentum has more discrepancy compare to D → π,
which is 20%. This can be related to the fact that the mass
of the kaon is not well reproduced in the model as shown in
Table II. However, as shown in Fig. 3, the normalized form

factor Fþðq2Þ aligns very well with the experimental and
lattice QCD data and outperforming other theoretical
approaches, such as LCSR, CLFQM, CQM, CCQM,
HLχPT and large energy effective theory (LEET) (see
the caption of Fig. 3 for the references).
The Experimental form factors of Dþ → ηð0Þlþνl are

reported by the BESIII collaborations in Refs. [10,11]. In
the current analysis, we only study Dþ → ηlþνl, and if one
wants to consider the η0 in the holographic QCD, theUð1ÞA
axial anomaly should be considered [58]. The compatibility
of the form factors of the Dþ → η decay with the
experimental data [11] and other theoretical frameworks
can be seen in Fig. 4. However, the result of the Dþ

s → η
has some discrepancy with the experimental data [10] and
grows faster at large q2. The discrepancy of the Dþ

s → η

also can be seen from Table III for fDs→η
þ ð0Þ. It is worth

noting that similar incompatibility with the experimental
data has also been reported by other approaches such as
LCSR, CLFQM, CQM, CCQM and even lattice QCD has
discrepancy with 25%.

TABLE III. Comparison of the maximum-recoil values of the form factors with the different theoretical approaches, lattice QCD, and
experimental data.

FFs hQCD LCSR [42] LCSR [43] LCSR [44] LCSR [45] CLFQM [46] CQM [49] CCQM [12] RQM [50] LQCD Experiment

fD→πþ ð0Þ 0.58 0.65 0.635 � � � � � � 0.66 0.69 0.63 0.64 0.64 [51] 0.622 [7]
fD→Kþ ð0Þ 0.57 0.76 0.661 � � � � � � 0.79 0.78 0.78 0.716 0.73 [51] 0.725 [7]

fDs→K
þ ð0Þ 0.57 � � � 0.820 � � � � � � 0.66 0.72 0.60 0.674 0.77 [52] 0.72 [9]

fD→η
þ ð0Þ 0.31 � � � 0.556 0.552 0.429 0.71 � � � 0.67 0.547 � � � 0.39 [11]

fDs→η
þ ð0Þ 0.66 � � � 0.611 0.520 0.495 0.76 0.78 0.78 0.443 0.564 [53] 0.45 [10]

rD→K�
V 1.40 � � � 1.385 � � � � � � 1.36 1.56 1.22 1.524 1.468 [54] 1.41 [8]

rDs→K�
V

1.53 � � � 1.309 � � � � � � 1.55 1.82 1.40 1.61 � � � 1.67 [9]

FIG. 2. The semileptonic form factor Fþðq2Þ for D → πlþνl.
Our result (solid red line) is compared with the experimental data
(blue square) [7], lattice data (cyan triangle) [51], CLFQM
(purple triangle) [46], LCSR (green triangle) [42], and HLχPT
(yellow triangle) [56].
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Finally, we predict the vector form factors associated with
the vector meson exchange Vðq2Þ and axial vector meson
exchange A1ðq2Þ. As mentioned before, it is more interest-
ing to compare their ratios at maximum recoil. From the
experimental side, the form factors of D → K� and Ds →
K� are not reported for the full range of momentum.
However, Only the ratio of rD→K�

V and rDs→K�
V are measured.

Meanwhile the lattice QCD community calculated the D →
K� form factor. As shown in Table III, our results of rD→K�

V

and rDs→K�
V are well aligned with the experimental data. The

results of theD → K� andDs → K� form factors are shown
in Figs. 5 and 6, respectively. From Fig. 5, we can see that at
the low value of q2, our results are within the range of the
other approaches and well consistent with lattice data [54].
However, by going to the high q2, the form factors Vðq2Þ
and A1ðq2Þ are raised faster than other approaches. Similar
feature can be seen for Ds → K� as shown in Fig. 6,

especially for the case of Vðq2Þ. This can be regarded as a
signal that, there maybe a missing information for the vector
form factors associated with the vector meson exchange
Vðq2Þ and axial vector meson exchange A1ðq2Þ using the
holographic QCD model.

V. CONCLUSIONS

In this study, we utilized a modified soft-wall holo-
graphic model with four flavors to comprehensively
investigate various aspects of mesons, including their
spectra, decay constants, and semileptonic form factors.
By fitting the model parameters to experimental meson
masses, we successfully determined the mass and decay
constants of vector mesons (ρ, K�, D�, and D�

s), axial
vector mesons (a1, K1, f1, D1, and Ds1), and pseudoscalar
mesons (η, D, Ds). In the vector sector, we calculated
the decay constants of K�, D�, and D�

s mesons and

FIG. 3. Results of Fþðq2Þ for the decay of DðsÞ to kaon. Left: our result for D → Klþνl (solid red line), the experimental data (blue
square) [7], lattice data (cyan triangle) [51], CLFQM (purple triangle) [46], LEET (orange triangle) [57], LCSR (green triangle) [42],
and HLχPT (yellow triangle) [56]. Right: Ds → Klþνl form factor (Solid red line) compared to the experimental data (Blue) [9],
CLFQM (purple) [46], LCSR (green) [43], CCQM (magenta) [12], and CQM (orange) [49].

FIG. 4. Form factor Fþðq2Þ forDþ
ðsÞ → η in the present work (red), experimental data (blue) forD [11] andDs [10], CCQM (magenta)

[12], CQM (orange) [49], CLFQM (cyan) [46], LCSR (green) [43], LCSR (black) [44], and LCSR (brown) [45].
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compared the result for the ρ meson with experimental
data, revealing a discrepancy of approximately 16%.
However, in the axial vector sector, the decay constant
of the a1 meson exhibited excellent agreement with
experimental data. Moreover, we predicted the decay
constants of the η meson in our model, while we obtained
the decay constants of D and Ds mesons and compared
them with the lattice data. Moreover, in our model, the
flavor symmetry is explicitly broken due to the different
values of the quark masses and condensates.
Furthermore, for three-point functions, we studied the

form factors fþðq2Þ of the following semileptonic decay
processes, Dþ → ðπ; K; ηÞlþνl and Dþ

s → ðK; ηÞlþνl
which associate with the exchange of a vector meson,
and Vðq2Þ and A1ðq2Þ of the Dþ

ðsÞ → K�lþνl decays

associated with the vector and axial vector meson exchange,
respectively. The result of the form factor for Dþ → πlþνl,
fþðq2Þ shows excellent agreement with the experimental
data, and it is comparable with lattice QCD and other

theoretical approaches. Likewise, the normalized form
factor fþðq2Þ of the DðsÞ-to-kaon is very well consistent
with the experimental and lattice data and has a better
reproduction compared to other theoretical approaches;
however, there is a 20% discrepancy for DðsÞ → K at zero
momentum compare to experimental data. Another semi-
leptonic decay process is Dþ

ðsÞ → ηlþνl, similar to the form

factors of the pion and kaon, the normalized fþðq2Þ for the
Dþ → η is compatible with data; however, a little deviation
from the experimental data can be seen forDþ

s → η. Finally,
we predicted the vector form factors Vðq2Þ and A1ðq2Þ for
the decays D → K� and Ds → K�. Our results agreed well
with other approaches and lattice data at maximum-recoil
fþð0Þ but increase dramatically at high momentum trans-
fers, particularly for Ds → K�. These results gave us a
signal that, there might be a missing dynamics at high
momentum transfers, and in the future, we should deeply
investigate these decay channels.

FIG. 6. Ds → V form factors Vðq2Þ and A1ðq2Þ. The references for VχQM, CLFQM, and HLχPT are similar to the one mentioned in
Fig. 5. LCSR is taken from Ref. [43].

FIG. 5. Comparison of the form factors Vðq2Þ (red) and A1ðq2Þ (red) for D → K� with different theoretical approaches. Lattice data
(cyan) from Ref. [54], LEVχQM (yellow) from Ref. [55], CLFQM (purple) from Ref. [46], and HLχPT (yellow) from Ref. [56].
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In the future it would be interesting to extend the
calculation of the semileptonic form factors of the B
mesons, which contain the bottom quark using the holo-
graphic QCD model. Finally, we think that the model can
be further improved by using an explicit expression of the
dilaton profile, which respect the linear confinement and
spontaneous chiral symmetry breaking. We hope to dig
down to these topics in the future works.
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