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We show that there is a remarkable phase in quantum gravity where gravitational scattering amplitudes
mediated by virtual gravitons can be calculated explicitly in effective field theory, when the impact
parameter b satisfies LPl ≪ b ≲ RS, with RS being the Schwarzschild radius. This phase captures collisions
with energies satisfying

ffiffiffi
s

p
≫ γMPl (with γ ∼MPl=MBH) near the horizon. We call this the black hole

eikonal phase, in contrast to its flat space analog where collisions are trans-Planckian. Hawking’s geometric
optics approximation neglects gravitational interactions near the horizon, and results in thermal occupation
numbers in the Bogoliubov coefficients. We show that these interactions are mediated by graviton
exchange in 2 → 2 scattering near the horizon, and explicitly calculate the S-matrix nonperturbatively in
MPl=MBH. This involves a resummation of infinitely many ladder diagrams near the horizon, all mediated
by virtual soft gravitons. The S-matrix turns out to be a pure phase upon this resummation and is agnostic
of Planckian physics and any specific ultraviolet completion. In contrast to the flat-space eikonal limit,
the black hole eikonal phase captures collisions of extremely low energy near the horizon.

DOI: 10.1103/PhysRevD.109.026007

I. INTRODUCTION AND A SUMMARY
OF RESULTS

Hawking argued that semiclassical black hole physics is
well-approximated by the propagation of free quantum
fields in the presence of a fixed classical background,
and therefore that they reliably describe the state of
radiation [1,2]. The supposition is therefore that the
gravitational effect of quantum radiation is described by
an adiabatic change of the background. In stark contrast
to this picture, ’t Hooft has long argued that strong
gravitational interactions between the infalling matter
and outgoing Hawking quanta dramatically change the
observations of the external observer [3–5]; the claim
therefore being that the radiation is not sufficiently
described by quantum radiation on a fixed background
and that quantum coherence is in fact preserved. If this
claim is to be true, the natural question to then ask is, how
must Hawking’s calculation be modified to include these
strong gravitational interactions? An educated guess might
be that this must be via the inclusion of graviton exchange
between the in and out going quanta near the horizon; after

all, gravitational interactions dominate all others in this
region. In this paper, we explicitly compute an infinite
number of such graviton exchange diagrams near the
horizon, nonperturbatively resum them in a controlled
approximation, and show that the result provides for
compelling evidence in support of the said claim.
Consider a spherical shell of matter that is energetic

enough to collapse into a black hole. For as long as the
matter fields are far away from the eventual Schwarzschild
radius of the horizon that is to be formed, they may safely
be taken to be propagating on flat space. At such large
impact parameters, gravitational interactions can largely be
ignored if the energy of collisions is small. However, if the
energy of collisions becomes Planckian, graviton exchange
between the modes starts to dominate [6]. In the so-called
eikonal approximation, these processes can be reliably
calculated nonperturbatively by summing an infinite num-
ber of ladder diagrams [7]; this is the regime of negligible
momentum transfer. Considerable effort has gone into
studying trans-Planckian scattering (when impact param-
eters b ≫ GN

ffiffiffi
s

p
, where

ffiffiffi
s

p
measures the center-of-mass

energy of the collision), both within semiclassical gravity
and string theory [8–12]. However, when the impact
parameters reach a certain critical value b ∼ GN

ffiffiffi
s

p
, the

eikonal result diverges [13,14]. This suggests the produc-
tion of an intermediate state. In equal measure, it also
prevents a study of scattering at impact parameters smaller
than the said critical scale. Notwithstanding this difficulty,
various attempts have been made to capture black hole
formation and evaporation [15–21]. Nevertheless, it is fair
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to say that no universally accepted picture of information
retrieval has emerged so far. Any hope to repair this
situation seems to be hidden in physics near the only
intrinsic ultraviolet scale available, when impact parame-
ters are comparable to Planck length; a regime where large
momentum transfers and microscopic black hole formation
dominates. A regime where little to nothing is known.
Gravity has the remarkable property that strong quan-

tum effects arise not only in scenarios with large
momentum transfer, but also via the emergence of strong
gravitational effects at emergent scales (much larger than
Planck length). A case in point being the Schwarzschild
radius. In fact, in the collapsing spherical shell scenario
under consideration, an apparent horizon opens up long
before the shell has fallen past the Schwarzschild radius
of the eventual horizon to be formed. This is depicted
in Fig. 1.
Of course, in the very early stages of the opening up of

the horizon, it is Planckian in size and all processes are
dominated by large momentum transfers. However, as the
horizon grows to be larger than Planck size, impact
parameters of collisions on the horizon are of the order
of the Schwarzschild radius or less, but larger than Planck
size, LPl ≪ b ≤ RS. Consequently, momentum transfer
effects are suppressed. Nevertheless, in this regime, the
physics is necessarily dominated by scattering in the
presence of the horizon that has opened up due to
the collapse [22]. The primary difficulty with carrying
out this calculation is that unlike in flat space, the graviton
propagator on such a background is analytically intractable,
rendering the scattering process difficult to study.
When there is a separation of scales of the kind

LPl ≪ b ≤ RS, it is known that the transverse directions
of the horizon can be integrated out. Such an expectation
arose from arguments due to the Verlindes [23,24].
It was anticipated in their work that single graviton
exchange in this approximation would already modify
the state of Hawking radiation. Carrying this integration
out explicitly allows for a partial wave basis, in which the
scattering problem becomes analytically tractable near
the horizon.
In this article, we calculate a four-point correlator of

matter fields in the said partial wave basis, near the black
hole horizon. Owing to a subdominant transverse momen-
tum transfer, we may choose the external momentum to be
ingoing to the black hole for the infalling modes and
outgoing from the horizon for the Hawking quanta. These
modes exchange soft gravitons on the horizon. The
interactions are governed by the universal three-point
vertex coupling the graviton with the stress tensor of the
matter fields. Upon integrating the transverse sphere out,
the strength of the interactions is dictated by the emergent
dimensionless parameter, γ ¼ κ=RS ∼MPl=MBH. The main
result of this article is that, for every partial wave l, the
four-point function is given by

hϕϕϕϕi ¼ 4pinpout

�
exp

�
i

γ2R2
S

ℏðl2 þ lþ 2Þpinpout

�
− 1

�
¼ 4pinpout

�
exp

�
i

8πGN

ℏðl2 þ lþ 2Þpinpout

�
− 1

�
;

ð1:1Þ

where pin and pout are the in and out going momenta of the
infalling matter and Hawking quanta, respectively. This is a

FIG. 1. In this figure, a schematic picture of black hole evolution
is shown. It is formed by a collapsing shell of null matter of width
v1 − v0. Already at a classical level, an apparent horizon forms long
before the entire collapse has occurred. For most of the lifetime
of the black hole, however, the apparent horizon is essentially
indistinguishable from the event horizon. In fact, already at the final
stages of the collapse, the apparent horizon begins to resemble the
event horizon very closely. Therefore, except during the very
dynamical phase of the collapse, all infalling matter essentially
appears to fall into an already formed horizon. The infallingmode is
drawn in red, the outgoing one in green, while the symbolic
exchange of gravitons is shown by the blue wavy line. The central
conclusion of this paper is that the radiation receives information
about the infalling matter from the mediated virtual soft gravitons;
this is manifest after a resummation of infinitely many ladder
diagrams. Our calculations are valid so long as γ ¼ MPl

MBH
is small.

Consequently, the radiation imprints this information on theCauchy
slice drawn in yellow, allowing the external observer to retrieve it.
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result of a resummation of an infinite number of ladder
diagrams on the horizon. Therefore, it is nonperturbative1

in γ and ℏ. Exponential behavior in such four-point
functions has received renewed interest owing to their
close connection to quantum chaos [25,26]. Scattering
near the horizon has also been argued to be related to
chaos [27,28]. This may be seen to arise from (1.1),
when one moves to exponentiated coordinates near the
horizon. In fact, the two-dimensional Dray-’t Hooft scatter-
ing amplitude was shown to exactly agree with the semi-
classical limit of the four-point function of the Schwarzian
quantum mechanics that describes the collective infrared
mode of the SYK model [29–33].2
However, as far as four-dimensional black holes are

concerned, the importance of the emergent scale and the
new dimensionless coupling γ cannot be overstated. Based
on intuition from the eikonal approximation in flat space,
one may have feared that near-horizon scattering may result
in firewalls [28,34–36]; it is indeed true that soft graviton
exchange in flat space requires collision energies that are
trans-Planckian. So, an infalling observer may worry about
encountering highly energetic outgoing modes. However,
as we will show in the present article, this amplitude (1.1)
actually arises at leading order in the approximationffiffiffi

s
p

≫ γMPl: ð1:2Þ

We call this the black hole eikonal phase of quantum
gravity. This is in contrast to the eikonal approximation in
flat space for which s ≫ M2

Pl. For an earth mass black hole
(with Rs ∼ 1 cm ≫ LPl), where our calculation is valid, we
see that (1.2) implies that s ≫ 10−64M2

Pl. The calculation
captures collisions of extremely low energy because the
physics is captured by zero momentum transfer effects for
the 2 → 2 amplitudes under consideration.3 Nevertheless,
given that we perform an asymptotic scattering amplitude
calculation, the experience of an infalling observer is not
directly addressed. The effective field theory we set up
in this paper, may be useful to this end using the in-in
formalism. Moreover, in contrast to scattering in flat space
in a partial wave basis (which for a fixed impact parameter
and collision energy is dominated by large l modes [23]),

scattering near the horizon is evidently dominated by the
low l modes, as can be seen from (1.1). The importance of
metric perturbations for a resolution of the information
paradox has previously been emphasized [37–40].
A rather important consequence of (1.1) is the fact that

upon a Fourier transform of the right-hand side of that
equation, we see that the four-point function is nonzero
only when

yout ¼
8πGN

l2 þ lþ 2
pin: ð1:3Þ

This relation is very close to the Shapiro delay derived from
the backreaction calculation of [41] in a first quantized
formalism [42–44]. The curious discrepancy is in the extra
factor in l2 þ lþ 2 instead of the l2 þ lþ 1 that was
found in those references. As we will show in Sec. V B,
both results are correct in their own right and the present
one must be seen as a second quantized generalization that
includes arbitrary off shell fluctuations in the path integral.
It is worth noting that our results are consistent with the
expectation that quantum chaos is nonperturbatively real-
ized; our calculation shows which parameters are required
to be nonperturbatively treated (namely γ and ℏ), and which
perturbatively (

ffiffiffi
s

p
=γMPl), for this realization. Our effective

field theory setup allows us to see that while the eikonal
expectation [25] that ladder diagrams yield the shockwave
geometry is indeed true, the “classicalization” also allows
for a different near-horizon approximation where an alter-
native black hole eikonal amplitude emerges, as we show in
Sec. V B. Moreover, our effective field theory is a natural
framework that can capture exponentially suppressed
amplitudes, and exponentially many of them, in the form
of general 2 → N amplitudes in addition to the 2 → 2
amplitudes we study in this paper.
That scattering amplitudes capture nonlinearities in

Einstein’s equations is increasingly being appreciated
[45–53]. In fact, the classical tree-level three-point vertex
is sufficient [14,54] to completely determine the Aichelberg-
Sexl solution [55–57]. In the case of black holes, under
consideration in the present article, multiple near-horizon
approximations emerge, one of which is related to the
shockwave, that contribute to the nonperturbative ampli-
tudes.4 It is interesting that the different approximations
result in differences of numerical prefactors5 in (1.3). This
may implore one to ask whether quantum chaotic behavior
can also be seen to emerge in the first quantized formalism
of [42–44]. As it turns out, appropriate boundary conditions
that respect the scattering algebra near the central causal
diamond do indeed generate a rich and chaotic spectrum;

1It is nonperturbative in the sense that, for small γ, effects that
are exponentially suppressed in γ are captured, but it may also be
called “perturbatively exact” in the sense that Planckian (large
momentum transfer) effects that arise from the γ ∼ 1 regime are
not captured.

2In contrast to the expression (1.1) in Ref. [33], we find the extra
factor arising from the partial wave l. This factor is of importance,
as we explain below (1.3) and discuss further in Sec. V B.

3We expect that momentum transfer effects will play a
significant role in general 2 → N amplitudes. Moreover, the
timescale associated to those scattering processes is also expected
to be longer. Therefore, all external legs are better interpreted as
asymptotic states at future and past null infinity; therefore
conclusions about firewalls would require further care in general.

4See [58] for a recent perspective on classical scattering of a
pair of black holes.

5The change in prefactor is compared to what appears in the
nonlinear Dray-’t Hooft solution; see Eq. (2.9) of [43] for
instance. We discuss this further in Sec. V B.
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those of the zeroes of the Riemann zeta and Dirichlet beta
functions [59]. This boundary condition can be motivated to
arise from the expectation that CPT is a gauge symmetry
in a putative UV complete theory of quantum gravity, as
was also argued in [59]. It is to be seen as a generalization
of the antipodal identification that has gained some traction
in the context of black holes [43,44,60–64] and worm-
holes [65,66].

A. Organization of the paper

We begin with a quick review of the eikonal regime in
flat space in Sec. II. In Sec. III, we set up the theory of
quantum gravity coupled to a massless scalar field in a
certain soft limit, in the background field method. We first
begin with arbitrary backgrounds, and then specialise to
spherically symmetric ones, integrate the sphere out, and
formulate an effective two-dimensional theory. Thereafter,
in Sec. IV, we move to physics near the horizon and derive
the propagators and Feynman rules governing the inter-
actions. In Sec. V, we compute the advertised four-point
function. We end with a discussion on the implications of
our results for various existing proposals for a resolution of
the information paradox and an outlook, in Sec. VI. The
sections and subsections have been so titled to allow for an
understanding of the flow of the paper, merely by reading
the table of contents.

II. A REVIEW OF EIKONAL PHYSICS
IN FLAT SPACE

Certain features of Planckian scattering in flat space are
dominated by virtual gravitons. The significance of soft
gravitons in quantum gravity was perhaps first noted in
this classic example. In the eikonal limit, elastic forward

scattering of massive scalar particles can be calculated
exactly [6,7]. It is instructive to review this example. We
begin with the flat space metric in Cartesian coordinates in
four dimensions

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð2:1Þ

Of the four external particles, the two ingoing ones are
taken to carry momenta p1 and p2 while the outgoing
momenta are labeled by p3 and p4. The Mandelstam
variables of interest are

s ≔ −ðp1 þ p2Þ2 and t ≔ −ðp1 − p3Þ2; ð2:2Þ

and we focus on the limit s ≫ t. The eikonal limit consists
of discarding effects that are subdominant in s=m2, where
m is the mass of the scalar field. Moreover, to avoid large
transverse momentum transfer, the impact parameter is
taken to be large; in flat space, the only available scales to
compare the impact parameter with are the Planck length,
i.e., b ≫ lPl, and the scale associated to the centre of mass
energy of the collisions, i.e., b ≫ GN

ffiffiffi
s

p
. Therefore, the

two scattering particles maintain most of their momentum
in the scattering direction which we call longitudinal, i.e.,

pk
1 ≈ pk

2. The two particles do however exchange momen-
tum in the remaining two directions; the transverse direc-
tions, such that p⊥

1 ≠ p⊥
2 . Nevertheless, for all particles, we

take pk
i ≫ p⊥

i . This will later allow us to consider diagrams
where there is no exchange in four momentum, all virtual
gravitons will be “soft”.
The Feynman rules of interest include the familiar flat

space scalar and graviton propagators that are well-known
and relatively straight forward to calculate

and the interactions are governed by a three-point vertex that arises from the coupling of the stress tensor to the metric
fluctuations. It is of the form:
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The scalar propagator is the familiar Klein-Gordon propa-
gator and the graviton propagator is written in the harmonic
gauge with κ2 ¼ 8πGN . The vertex in principle contains
another term

pμpν −
1

2
ημνðp2 þm2Þ; ð2:3Þ

but the second recoil term of the matter field can be
neglected for eikonal scattering. Similarly, for large exter-
nal momentum p, internal scalar propagators can be
approximated as

1

ðpþ kÞ2 þm2 − iϵ
≈

1

2p · k − iϵ
: ð2:4Þ

The tree-level contribution to the four-point function
hϕðp1Þϕðp2Þϕðp3Þϕðp4Þi arises from the Feynman dia-
gram shown in Fig. 2.
This tree-level diagram (Fig. 2) is easily shown to

evaluate to

iM¼2iκ2jðsÞ
−t

with jðsÞ≔1

2
ððs−2m2Þ2−2m4Þ: ð2:5Þ

In the eikonal limit, the Feynman diagrams that dominate
are the so-called ladder diagrams displayed in Fig. 3. All
other loop diagrams (self-energy, vertex corrections) are
insignificant in the eikonal regime, that is to say that their
contributions are subleading in s=m2.
At loop level, it is important to average over the various

ways to attach the internal graviton legs, and the corre-
sponding conserved momentum. For the one-loop case, as
can be seen in Fig. 3, there are two possibilities arising from
fixing internal graviton momentum k on either external leg
in a direction of choice. The total amplitude at one-loop
results from summing over both of these choices, and
inserting a factor of a half. It is then straightforward to
proceed with the calculation for the amplitude, as outlined
in [7]. The final expression at one-loop becomes

iM ¼ κ2jðsÞ
Z

d4xe−iðp1−p3Þ·xΔðxÞχðxÞ; ð2:6Þ

χ ≔ −2κ2jðsÞ
Z

d4k
ð2πÞ4 e

ik·x 1

k2 − iϵ

×

�
1

−2p1 · k− iϵ
1

2p2 · k− iϵ

þ 1

−2p1 · k− iϵ
1

−2p4 · k− iϵ
þ 1

2p3 · k− iϵ
1

2p2 · k− iϵ

þ 1

2p3 · k− iϵ
1

−2p4 · k− iϵ

�
: ð2:7Þ

Here, we have defined a momentum space massless Klein-
Gordon propagator

−1
k2 − iϵ

¼
Z

d4x e−ik·xΔðxÞ: ð2:8Þ

Furthermore, in arriving at the above expression for the
amplitude, we approximated ðpi þ kÞμ ≈ piμ in the vertex
since p1 is very large. While k is integrated over, the
eikonal approximation is such that the leading order
contributions to the integrand are for k ≪ pi allowing us
to safely take only pi. This approximation notwithstanding,

FIG. 3. The one-loop ladder diagrams contributing to the eikonal scattering amplitude. The two graviton lines crossing each other in
the diagram on the right do not interact, as graviton self-interactions are subleading in the eikonal limit. The ladder diagrams give all
leading contributions in s=m2.

FIG. 2. Tree-level diagram with virtual graviton exchange, built
out of two three-point vertices.
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the expression for χ does not contain any UV-divergences in
the eikonal approximation. The additional k from the vertex
would then be countered by a k2 in the matter propagator.
Remarkably, the UV divergences are all embedded in
different diagrams, whose effects are subdominant in eikonal
scattering. This is crucial as the theory is not renormalisable.
While it may seem counterintuitive at first glance, the
divergent diagrams when dimensionally regularized are
indeed lower order in the eikonal approximation. Gravity
does not allow us to do any better at this stage.
The next step is to sum over all higher-loop diagrams.

Since any diagram at order n would contain n extra
graviton legs (in comparison to the tree level diagram),
there is an n! that arises from symmetry. This also holds
for diagrams where the graviton legs cross each other.
Therefore, we find a 1=n! factor for each order in
perturbation theory. So, nonperturbatively an exponential
series ensues; this is a typical feature of eikonal scattering.
The total scattering amplitude is thus written as

iM ¼ −2iκ2jðsÞ
Z

d4xe−iðp1−p3Þ·xΔðxÞ e
iχ − 1

χ
: ð2:9Þ

A calculation of the nonperturbative amplitude from such
an exponentiation of the one-loop result is possible owing
to the fact that vertex corrections and self-energy diagrams
are subdominant, as argued in [67]. What remains now is
the evaluation of χ by solving the integral. To this end, we
now approximate p1 ≈ p3, p2 ≈ p4. This may interpreted
as a soft limit as it restricts the virtual graviton momenta.
Inserting p1 ¼ p3, p2 ¼ p4 into (2.7) results in

χ ¼ −2κ2jðsÞ
Z

d4k
ð2πÞ4 e

ik·x 1

k2 − iϵ

×

�
1

2p1 · kþ iϵ
−

1

2p1 · k − iϵ

�
×

�
1

2p2 · kþ iϵ
−

1

2p2 · k − iϵ

�
: ð2:10Þ

Since ϵ is an infinitesimal regulator, we can now use the
following delta identity:

1

xþ iϵ
−

1

x − iϵ
¼ −2πiδðxÞ: ð2:11Þ

Using this, two of the integrals can be removed from (2.10),
allowing us to rewrite it as

χ ¼ −2κ2jðsÞ
Z

d4k
ð2πÞ4 e

ik·x

×
1

k2 − iϵ
ð−2πiÞ2δð2p1 · kÞδð2p2 · kÞ ð2:12Þ

¼ κ2jðsÞ
4Ep

Z
d2k⊥
ð2πÞ2 e

ik⊥·x⊥ 1

k2⊥ þ μ̃2 − iϵ
; ð2:13Þ

where we switched to the center-of-mass frame defined by
p1 ¼ ðE; 0; 0; pÞ and p2 ¼ ðE; 0; 0;−pÞ. The new param-
eter μ̃ is an infrared regulator corresponding to the graviton
mass and x⊥ are the two remaining coordinates in the
transverse directions. The solution to the integral in (2.13)
can be shown to be

χ ¼ GNjðsÞ
Ep

K0ðμ̃x⊥Þ ≈ −
GNjðsÞ
Ep

log ðμ̃x⊥Þ; ð2:14Þ

where the last approximation holds for μ̃x⊥ ≪ 1 since μ̃ is a
regulator. In this expression, a numerical constant has been
absorbed into μ̃. In contrast to this result, we will see in this
paper that the black hole provides for a natural infrared
regulator that is not put in by hand.
We now return to solving (2.9); now that χ is known,

only the integral remains. First we pay attention to ΔðxÞ.
In the eikonal approximation, p1 − p3 only contains trans-
verse components, i.e., only the transverse components
of q≡ p1 − p3 are dominant. This allows us to write
e−iq·x ≈ e−iq⊥·x⊥ . We can then isolateZ

dtdzΔðxÞ ¼
Z

d2q⊥
ð2πÞ2 e

iq⊥·x⊥ −1
q2⊥ − iϵ

¼ −Ep
2πGNjðsÞ

χ:

ð2:15Þ

Since χ only depends on x⊥, we can insert this expression
into (2.9). The integral to be solved simply becomes

iM ¼ 8Ep
Z

d2x⊥e−iq⊥·x⊥ðeiχ − 1Þ: ð2:16Þ

Solving this integral yields the final result for the scalar
four-point function in the eikonal regime

iM ¼ 2iκ2jðsÞ
−t

Γð1 − iαðsÞÞ
Γð1þ iαðsÞÞ

�
4μ̃2

−t

�−iαðsÞ
; ð2:17Þ

where we defined

αðsÞ ¼ GN
ðs − 2m2Þ2 − 2m4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2Þ
p : ð2:18Þ

This amplitude is nonperturbative in the coupling constant
κ, but is valid only to leading order in s=m2. Therefore, the
approximation gets better with ultrahigh-energy scattering.
For large s, we notice that αðsÞ is real and the complete
amplitude reduces to the tree-level amplitude in (2.5) up to a
phase. In the limit m → 0 and for μ̃ ¼ 1 the scattering
amplitudematches the semiclassical scatteringmatrix derived
by ’t Hooft in [6] based on a first quantized description of
shockwaves on an Aichelburg-Sexl metric [56]. This corrob-
orates the naive notion that while certain aspects of ultrahigh-
energy scattering can be well-understood, quantum gravity is
generically very difficult and poorly understood because
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regimes of large-momentum transfer (which are ignored in
the eikonal approximation) are plagued with problems like
UVdivergences, potential nonlocality at the Planck scale, etc.
In what we have calculated so far, it is not clear how onemay
even proceed to account for these in principle.
Nevertheless, this notion is indeed naive in that quantum

gravity is not only sensitive to large momentum transfers
and Planckian physics, but also to strong gravitational
backgrounds. Indeed, remarkable puzzles arise in strong
gravitational backgrounds that are classical solutions to
general relativity. The most celebrated of them is of course
the paradox of black hole information loss.
In this paper, we will address the problem of quantum

gravity in a tractable limit (that in which the virtual
gravitons do not transfer momenta) in the presence of
strong gravitational backgrounds where new large scales
emerge dynamically. An example is the Schwarzschild
solution where a new physical scale of the Schwarzschild
radius emerges well before a collapsing shell has fallen past
that radius. The graviton propagator is difficult to determine
in generic backgrounds, and as we will see, it will take us
some effort to derive the necessary Feynman rules before
we are able to carry out a calculation, of the kind reviewed
in this section, on the horizon of a Schwarzschild
black hole.

III. QUANTUM GRAVITY IN THE SOFT LIMIT

We begin by setting the scene for a putative quantum-
gravity path integral

Z ¼
Z

DḡμνDϕ exp ðS½ḡμν;ϕ�Þ; ð3:1Þ

where we take the matter action to be that of a minimally
coupled scalar field for simplicity,

S½ḡμν;ϕ�¼SEH½ḡμν�þSM½ḡμν;ϕ�

¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄−

1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ∇μϕ∇μϕ; ð3:2Þ

with κ2 ¼ 8πGN . The covariant derivatives with the bar are
associated to ḡμν and in what follows, those without will be
associated to gμν. We will work in the background field
method with a vanishing matter background,

ḡμν ¼ gμν þ κhμν; ð3:3Þ

and assume that gμν solves the vacuum Einstein’s equations.
This implies that (3.1) becomes

Z ¼
Z

DhμνDϕ exp ðSEH½hμν� þ SM½hμν;ϕ�Þ: ð3:4Þ

In principle, both terms in the exponent come with
infinitely many powers of hμν owing to the fluctuations
of the inverse metric. The matter action begins with

SM½hμν;ϕ�

¼ 1

2

Z
d4

ffiffiffiffiffiffi
−g

p
ϕ□ϕ − κ

Z
d4x

δSM½ḡρσ;ϕ�
δḡμνðxÞ

����
ḡ¼g

hμνðxÞ

¼ 1

2

Z
d4

ffiffiffiffiffiffi
−g

p
ϕ□ϕþ 1

2
κ

Z
d4x

ffiffiffiffiffiffi
−g

p
hμνTμν; ð3:5Þ

where we defined the stress tensor

Tμν ¼
−2ffiffiffiffiffiffi−gp δSM

δgμν
: ð3:6Þ

For most of this paper, we will restrict our attention to the
quadratic kinetic terms and the cubic interaction in (3.5).
The pure-gravity action is (derived in Appendix A 1),

SEH½hμν� ¼
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p �
hμν −

1

2
gμνh

�
× ð2∇σ∇ðμhνÞσ −□hμν −∇μ∇νhÞ; ð3:7Þ

where we defined the trace of the graviton h ¼ gμνhμν.
Higher order fluctuations give rise to quartic (and higher-

order) interaction vertices. In the Einstein-Hilbert part of
the action, some of these contain terms with derivatives
on hμν. In momentum space, these contribute to graviton
momenta in the Feynman diagrams. Integration over these
momenta results in the familiar nonrenormalizable features
of gravity [68,69]. These arise from large momenta in
the ultraviolet. As we will show in this paper, extremely
interesting physics arises in the soft limit where internal
graviton momenta are taken to vanish. Although it is
premature at this stage, we will argue in Sec. IVand Sec. V
that contributions from large virtual momenta are vanishing
for the four-point function of interest; the soft limit is
essentially enforced upon us when we restrict ourselves
to three-point vertices. There are additional higher-order
interaction terms that do not contain derivatives (for
instance, those coming from the expansion of the inverse
metric to higher orders), which we hope to address in
future work.
Therefore, the complete action (up to cubic vertices) for

fluctuations about a generic solution of vacuum Einstein’s
equations of motion is given by the sum of (3.7) and (3.5),

S½hμν;ϕ� ¼ SEH½hμν� þ SM½hμν;ϕ�: ð3:8Þ

A recent discussion emphasizing the role and importance
of interactions in the context of black holes can be
found in [40,70].
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A. Spherically symmetric backgrounds

In what follows, we will focus on backgrounds with
spherical symmetry. Of course, Birkhoff’s theorem limits
the class of such allowed vacuum solutions. Nevertheless,
large parts of our calculation is aimed at generic spherical
backgrounds supported by matter; we will only specify the
Schwarzschild metric in Sec. IV. The general metric we will
concern ourselves with is of the form,

ds2 ¼ −2Aðx; yÞdxdyþ rðx; yÞ2dΩ2: ð3:9Þ

With A ¼ e1−r=RR=r and r implicitly defined by xy ¼
2R2ð1 − r=RÞer=R−1, this reduces to the Schwarzschild
solution in Kruskal-Szekeres coordinates. Perturbations
around the Schwarzschild metric have long been studied
[71–75] with a predominant focus often laid on a study of
gravitational waves, cosmic censorship, and quasinor-
mal modes.

B. Gauge symmetry

Not all components of the fluctuations hμν are physical;
there are gauge redundancies due to infinitesimal
diffeomorphisms x → xþ ξðxÞ, under which the graviton
transforms as

hμνðxÞ → hμνðxÞ þ∇μξν þ∇νξμ: ð3:10Þ

A choice of the vector ξμ fixes a choice of gauge. This
choice is of course, not to be confused with the choice of a
system of coordinates for the background. Infinitesimal
diffeomorphisms acting on the graviton fluctuations are
different from finite coordinate transformations of the
background; as we will see, ξμ will be linear in the
fluctuations and therefore shall not interfere with the choice
of coordinates for the background. An alternative way to
think about this is to note that a covariant action can be
written for the fluctuations as in (3.8). A choice of back-
ground coordinates would not break that covariance, while
a choice of ξμ would make unphysical components of the
graviton hμν redundant.

The oft employed gauge in the literature is the harmonic
(or covariant or de Donder) gauge defined by

∇μ

�
hμν −

1

2
gμνh

�
¼ 0: ð3:11Þ

In this gauge, the first order variation of the Ricci tensor is
of the form

Rð1Þ
μν ¼ −

1

2
ðgμρgνσ□ − 2RμρνσÞhρσ: ð3:12Þ

The operator gμρgνσ□þ2Rμρνσ is the familiar Lichnerowicz
operator. It has been studied on the Schwarzschild
background in [76,77]. An important difficulty with the
choice of the harmonic gauge is that the Lichnerowicz
operator couples various spherical harmonics of the grav-
iton. Instead, we will use an alternative gauge; the Regge-
Wheeler gauge first proposed in [71]. This choice exploits
the spherical symmetry of the background and allows us to
reduce the action (3.8) to an infinite tower of decoupled6

effective two-dimensional actions; one for each partial
wave. Conveniently enough, the reduced effective action
can be written covariantly in two dimensions.

C. Decomposition in spherical harmonics

The decomposition of the graviton into spherical tensor
harmonics needs care. Owing to its tensorial nature, the
corresponding spherical harmonic decomposition differs
from the usual spherical harmonic decomposition of
scalars. The angular components haA and hAB have a
nontrivial spherical harmonic expansion which must be
taken into account. The lowercase indices run over the light
cone coordinates while the uppercase indices span the
sphere. As was pointed out in [71], this can be achieved by
splitting the graviton tensor harmonics into odd and even
parity modes,

hμν ¼
X
l;m

h−lm;μν þ
X
l;m

hþlm;μν; ð3:13Þ

where

h−lm;μν ¼

0BBBBB@
0 0 −h−x csc θ∂ϕ h−x sin θ∂θ
0 0 −h−y csc θ∂ϕ h−y sin θ∂θ

hΩ csc θ ð∂θ∂ϕ − cot θ∂ϕÞ 1
2
hΩ ðcsc θ∂2ϕ þ cos θ∂θ − sin θ∂2θÞ
−hΩ sin θ ð∂θ∂ϕ − cot θ∂ϕÞ

1CCCCCAYm
l ð3:14Þ

6In principle interaction terms do couple the partial waves, but the coupling between the partial waves can be ignored when transverse
momenta are ignored.
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is the odd parity mode and

hþlm;μν ¼

0BBBBB@
Hxx Hxy hþx ∂θ hþx ∂ϕ

Hyy hþy ∂θ hþy ∂ϕ
r2ðK þ G∂2θÞ r2Gð∂θ∂ϕ − cot θ∂ϕÞ

r2ðKsin2θ þGð∂2ϕ þ sin θ cos θ∂θÞÞ

1CCCCCAYm
l ð3:15Þ

is the even parity mode, with Ym
l being the familiar

spherical harmonics of the two-sphere. In these expres-
sions, the missing entries are determined by the symmetry
of the matrices. In [71], this decomposition was made for
the Schwarzschild black hole, written in Schwarzschild
coordinates. While we shall still work with a generic
spherically symmetric background at this stage, for com-
parison to [71], the entries of the graviton modes above are
given in terms of those of [71] as

h�x ðx; yÞ ¼ −
R
x

�
h�0 þ

�
1 −

R
r

�
h�1

�
; ð3:16Þ

h�y ðx; yÞ ¼ −
R
y

�
h�0 −

�
1 −

R
r

�
h�1

�
; ð3:17Þ

hΩðx; yÞ ¼ h2; ð3:18Þ

Hxxðx; yÞ ¼ −
y
2x

ðH0 þH2 þ 2H1Þ; ð3:19Þ

Hxyðx; yÞ ¼
1

2
ðH0 −H2Þ; ð3:20Þ

Hyyðx; yÞ ¼ −
x
2y

ðH0 þH2 − 2H1Þ: ð3:21Þ

To arrive at these transformations, we made extensive use
of the identity ð1 − R

rÞ ¼ xyA
2R2. It is evident that the time

translation invariance of the Schwarzschild solution man-
ifests itself as x → ax, y → 1

a y, and we observe that h
�
x , h�y

and Hxx, Hyy are not time-translation invariant.
Further on in this paper, for the sake of convenience, we

will work in light cone coordinates of the Kruskal-Szekeres
kind. Nevertheless, as argued in [78], the covariance of the
effective two-dimensional theory we shall present and
the conformally flatness of the horizon indicate that the
resulting amplitude is gauge invariant.
The decomposition above is general and therefore, the

graviton still contains redundant gauge degrees of freedom.
The r2 appearing in the graviton modes depends on the
light cone coordinates x, y as was noted earlier. All
functions—h�x , h�y , hΩ, Hxx, Hxy, H̃yy, K, and G—are
functions of only x, y with no further constraints. All of
them naturally carry l,m indices; we have dropped them to

avoid clutter of notation. These account for the ten degrees
of freedom of the graviton.

1. The Regge-Wheeler gauge

We now perform a gauge fixing similar to Regge and
Wheeler in [71] of the form

ξa ¼ ζaYm
l ; ð3:22Þ

ξA ¼ −
1

2
r2G∂AYm

l −
1

2
hΩϵAB∂BYm

l : ð3:23Þ

Here the antisymmetric tensor is defined in Appendix B 1
and

ζa ¼
�
1

2
r2∂aG − hþa

�
: ð3:24Þ

As was noted earlier, infinitesimal gauge transformations
do not interfere with the choice of background Kruskal-
Szekeres system of coordinates because ξa and ξA are of
order h. The above choice of gauge, along with the
redefinitions of h−a , K, and Hab as

h−a → ha −
1

2
r2∂a

�
1

r2
hΩ

�
; ð3:25Þ

K → K − 2gabζa∂b log r; ð3:26Þ

Hab → Hab −∇aζb −∇bζa; ð3:27Þ

killsG, hþa , and hΩ. We have dropped the minus superscript
on h−x and h−y since hþx and gþy are now zero. It can be
checked that the gauge transformation above, together with
the field redefinitions results in the same general form for
the odd and even graviton components, with G, hþa , and hΩ
set to be vanishing. The gauge fixing procedure, therefore,
makes four of the components redundant leaving six
physical off shell modes behind. After gauge fixing the
graviton components are given as
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h−lm;μν ¼

0BBB@
0 0 −hx csc θ∂ϕ hx sin θ∂θ
0 0 −hy csc θ∂ϕ hy sin θ∂θ

−hx csc θ∂ϕ −hy csc θ∂ϕ 0 0

hx sin θ∂θ hy sin θ∂θ 0 0

1CCCAYm
l ; ð3:28Þ

and

hþlm;μν ¼

0BBB@
Hxx Hxy 0 0

Hxy Hyy 0 0

0 0 r2K 0

0 0 0 r2Ksin2θ:

1CCCAYm
l : ð3:29Þ

The minus sign in the odd mode h−μν naturally arises when
written in index notation

h−aA ¼ −haϵAB∂BYm
l : ð3:30Þ

Owing to this antisymmetric nature of the odd parity mode,
the even and odd modes naturally decouple as we shall see.
Furthermore, for any diffeomorphism that acts on the light
cone and angular coordinates separately, we may simply
transform ha → ha0 and ϵA

B
∂BYm

l → ϵA0B
0
∂B0Ym

l accord-
ingly. In the new coordinates h−μν is still given by (3.30)
so that the spherical-harmonics decomposition is coordi-
nate independent for all such diffeomorphisms. Similary,
for the even modes, we may write

hþab ¼ HabYm
l and hþAB ¼ KgABYm

l ; ð3:31Þ

so that coordinate invariance for the decomposition is
manifest when Hab is transformed accordingly; gAB natu-
rally transforms appropriately. Because the decomposition
persists so long as we also transform the fields appropri-
ately, we now define Hab to be a 2-tensor on the light cone,
ha to be a vector on the light cone, and K to be a scalar on
the light cone. Therefore, these fields transform under
coordinate transformations on the light cone but not under
diffeomorphisms of the angular coordinates. In a similar
fashion all quantities with indices along A and B transform
under angular diffeomorphisms but not under those on the
light-cone. The spherical harmonics decomposition persists
under any transformation that keeps the light-cone and
two-sphere separate in this sense. Any coordinate trans-
formations that break the decomposition will therefore be
forbidden henceforth.
Finally, it is worth noting that the even parity graviton

carries four of the six off shell degrees of freedom in the
form of a two-tensor Hab and the scalar K, while the other
two are with the odd-parity mode in the form of the two-
vector ha. These degrees of freedom are now defined
covariantly and for arbitrary AðrÞ in the metric.

D. Decoupling of the odd- and even-parity
graviton modes

In this section we will investigate the coupling between
the odd- and even-parity modes defined by the graviton
decomposition

h−aA ¼ −haϵAB∂BYm
l ;

hþab ¼ HabYm
l ;

hþAB ¼ KgABYm
l ; ð3:32Þ

with the remaining terms vanishing. We expect this
coupling to fall away due to spherical symmetry and will
now prove this. First we see from. (3.8) that the part of the
Lagrangian that couples the different parity modes is of
the form

Lparity−coupling ¼ −
1

4
hμνþGð1Þ;−

μν −
1

4
hμν− Gð1Þ;þ

μν ; ð3:33Þ

where

Gð1Þ;�
μν ¼1

2
gρσð∇ρ∇μh�νσþ∇ρ∇νh�μσ−∇ρ∇σh�μν−∇μ∇νh�ρσÞ

−
1

2
gμνð∇ρ∇σh�ρσ−□h�Þ: ð3:34Þ

Evidently, the � symbols denote the variation of the
Einstein tensor corresponding to h� respectively.
Exploiting the decomposition structure of (3.32), we find

Gð1Þ;−
ab ¼ 0; ð3:35Þ

Gð1Þ;−
AB gAB ¼ 0; ð3:36Þ

Gð1Þ;þ
aA ¼

�
1

2
∂
bHab þ

1

A
∂aHxy −

1

2A
ð∂a logðAr2ÞÞHxy

−
1

2
∂aK

�
∂AYm

l ; ð3:37Þ

with all other components being unnecessary owing to
either the vanishing of h−ab, h

−
AB and hþaA, or the fact that

hþAB ¼ KgAB. The second equation Gð1Þ;−
AB gAB ¼ 0 results

from the fact that gAB is even in A, B, while Gð1Þ;−
AB contains

an ϵAB which is odd in A and B. We now immediately see
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that the first term in the coupling Lagrangian (3.33)
vanishes. Therefore, we are left with

Lparity−coupling ¼ −
1

2
haA− Gð1Þ;þ

aA : ð3:38Þ

Thus, to evaluate the coupling of the even and odd parity
modes, we only need to evaluate h−aAG

aA
ð1Þ;þ. At this point,

the presence of l, m indices that were omitted require
attention and explicit reinsertion

h−aA ¼ −
X
l;m

hlma ϵA
B
∂BYm

l ; ð3:39Þ

Gð1Þ;þ
aA ¼

X
l;m

Flm
a ∂AYm

l : ð3:40Þ

Here, we define the new quantity

Flm
a ≔

1

2
∂
bHlm

ab þ 1

A
∂aHlm

xy −
1

2A
ð∂a logðAr2ÞÞHlm

xy

−
1

2
∂aKlm: ð3:41Þ

This quantity can be directly read off from (3.37). Inserting
the summations in (3.39) and (3.40), the coupling
Lagrangian may be rewritten as

Lparity−coupling ¼ −
1

2

X
l;m

X
l0;m0

hlma Fa
l0m0ϵAB∂BYm

l ∂AȲ
m0
l0 :

ð3:42Þ

We inserted complex conjugation denoted by Ȳ because the
Lagrangian is required to be real and we take the imaginary
representation of the spherical harmonics. The correspond-
ing action is found by integrating (3.42) to give

Sparity−coupling ¼ −
1

2

X
l;m

X
l0;m0

Z
d2xAðrÞhlma Fa

l0m0

×
Z

dϕdθ
ffiffiffiffiffiffi
gS2

p
ϵAB∂BYm

l ∂AȲ
m0
l0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕Clm;l0m0

: ð3:43Þ

Here ffiffiffiffiffiffigS2
p is the volume element on S2 of radius r, i.e.,ffiffiffiffiffiffigS2

p ¼ r2 sin θ. The first integral is generally nonvanish-
ing, and is the only light cone dependent piece (the ffiffiffiffiffiffigS2

p
cancels as we shall see). The second integral is only
dependent on θ and ϕ and contains only spherical har-
monics; functions that we know exactly. This angular
integrand contains contractions over A, B and is integrated
over the sphere. So, the quantity Clm;l0m0 is independent of
the chosen two-sphere coordinates.

The action in (3.43) explicitly splits the light cone part
depending on xa, and the spherical part depending on xA in
a manner that is covariant under light cone and angular
diffeomorphisms separately, without mixing. We will now
explicitly calculate this coordinate independent quantity
Clm;l0m0 ; clearly, it can be determined exactly without the
knowledge of the graviton fields. The spherical harmonics
are defined by

Ym
l ¼ N lmeimϕPm

l ðcos θÞ; ð3:44Þ

where N lm is a normalization constant and Pm
l ðxÞ the

associated Legendre polynomial which are real. The anti-
symmetric tensor ϵAB as given in (B32) has a prefactor
1=ðr2 sin θÞ, so that it cancels the ffiffiffiffiffiffigS2

p in (3.43). Inserting
this into the definition of Clm;l0m0 gives

Clm;l0m0 ¼ −iN lmN l0m0

Zπ
0

dθ

×
Z2π
0

dϕeiðm−m0Þϕ½m0Pm0
l0 ðcos θÞ∂θPm

l ðcos θÞ

þmPm
l ðcos θÞ∂θPm0

l0 ðcos θÞ�: ð3:45Þ

Here, the ϵAB introduces a minus sign, which is then
canceled by the different signs in ∂ϕeimϕ and ∂ϕe−im

0ϕ.
Now using the orthogonality of the complex exponents

Z2π
0

dϕeiðm−m0Þϕ ¼ 2πδmm0 ;

we may immediately write down

Clm;l0m0 ¼ −2πimN lmN l0mδmm0

×
Zπ
0

dθ½Pm
l0 ðcos θÞ∂θPm

l ðcos θÞ

þ Pm
l ðcos θÞ∂θPm

l0 ðcos θÞ�; ð3:46Þ

where we used that Fmδmm0 ¼ Fm0δmm0 for arbitrary Fm.
Finally, this can be recognized as the product rule on
derivatives of the associated Legendre polynomials. Thus,
the integral becomes a total derivative, which is trivially
integrated, yielding

Clm;l0m0 ¼ −2πimN lmN l0mδmm0 ðPm
l ð1ÞPm

l0 ð1Þ
− Pm

l ð−1ÞPm
l0 ð−1ÞÞ: ð3:47Þ
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This gives the result for Clm;l0m0 for all l, m, l0, and m0.
Clearly it trivially vanishes for m ¼ 0, so we only need to
know the values Pm

l ð�1Þ for m > 0. The definition [79]

Pm
l ðxÞ ¼

ð−1Þm
2ll!

ð1 − x2Þm=2

�
d
dx

�
lþm

ðx2 − 1Þl; ð3:48Þ

shows that for m > 0 this quantity vanishes at x ¼ �1.
Therefore, we finally find that

Clm;l0m0 ¼ 0 ð3:49Þ

in all cases. This completes the proof of the decoupling
of the odd and even graviton modes. The antisymmetry
arising from ϵAB is crucial. The minus sign introduced by
the antisymmetry of the odd parity mode is canceled by the
minus sign of the complex conjugate,7 allowing for the use
of the product rule.
In this decoupling we find that the choice of light cone

coordinates plays no role, i.e., r, t or x, y yield the same
result. The same holds for the choice of angular coordinates
A and B. Both the light cone coordinates and the angular
coordinates are summed over separately. This proof also
holds for any metric where Aðx; yÞ, rðx; yÞ only depend on
the light cone coordinates, i.e., for any spherically sym-
metric metric of the form (3.9). In particular, of course, it is
valid for the Schwarzschild metric.

E. The odd-parity graviton does not contribute

We have seen that the even and odd-parity gravitons
decouple in the quadratic action. In what follows, we will
see from studying the structure of the three-point vertex that
the odd parity graviton does not contribute to the four-point
function of interest.

1. The interaction vertex

The interaction vertex can be inferred from (3.5)

Svertex ¼
κ

2

Z
d4x

ffiffiffiffiffiffi
−g

p
hμν
�
∂μϕ∂νϕ −

1

2
gμνgρσ∂ρϕ∂σϕ

�
:

ð3:50Þ

As discussed in the introduction, the external momenta of
interest for the scalars are ingoing to or outgoing from the
black hole horizon. We are also interested in scattering very
close to the horizon. Naively, one may expect the outgoing
mode to carry transverse momentum after scattering in
addition to the longitudinal shifts (caused by gravitational

backreaction [41,56], for instance). However, as one may
have inferred from the brick-wall model [80] or the
Bekenstein-Hawking entropy formula, there is roughly
one degree of freedom per Planck area on the horizon.
This has been more recently emphasized in the work of
Dvali et al. [18,81] by studying graviton scattering ampli-
tudes. Therefore, loosely speaking, it is an unlikely event
that particles scatter at impact parameters comparable to
Planck length. This observation validates the approxima-
tion of impact parameters larger than Planck length. It is
well-known that transverse momentum transfer is a
Planckian effect [41].8 Therefore, transverse momentum
transfer may safely be considered small: pA ¼ 0. Piecing
this together with the Regge-Wheeler gauge, we find

Svertex ¼
κ

2

Z
dΩ
Z

d2x AðrÞr2
�
hab
�
∂aϕ∂bϕ

−
1

2
gabgcd∂cϕ∂dϕ

�
þ hABTAB

�
; ð3:51Þ

for the interaction vertex, where AðrÞ and r are implicitly
functions of the two-dimensional coordinates x, y as before,
AðrÞ ¼ Aðx; yÞ and r ¼ rðx; yÞ. We see that the odd-parity
graviton mode haA drops out of the vertex. Therefore,
all scattering processes are entirely governed by the even-
parity graviton.

F. Action for the even-parity graviton

Owing to the complete decoupling of the odd- and even-
parity modes of the graviton, and the subsequent dropping
out of the odd mode from all interactions, the Lagrangian
arising from the Einstein-Hilbert action reduces to

Leven ¼ −
1

4
hþμνG

μν
ð1Þ;þ; ð3:52Þ

where Gμν
ð1Þ;þ is defined in (3.34). This Lagrangian can be

brought into a more convenient form, exploiting the
spherical symmetry of the background. To do so, we first
note that the covariant tensor hAB ¼ KgAB and therefore
depends on the angular variables. Therefore, we will now
first use a raised index on the graviton to extract this
angular dependence out as hab ¼ Ha

b and hAB ¼ KδBA. We
will maintain covariance so that the indices can later be
lowered or raised. This intermediate step allows us to write
down a spherical harmonic expansion for the graviton as

hνμ ¼
X
l;m

ðhlmÞνμYm
l ; ð3:53Þ

7However, complex conjugation is not crucial. Had we inserted
two Ym

l ’s without complex conjugation instead, there would be no
minus sign in the derivative. Nevertheless, a new minus sign
would be introduced in the orthogonality relations. This allows
the use of the product rule in the end.

8Of course, when collision energies are extremely low for very
massive bodies at large-impact parameters, classical nonlinear
effects do not distinguish between longitudinal and transverse
effects.
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where hlm are now only dependent on the two-dimensional
coordinates x, y. Therefore, we also have

hab ¼ Ha
bYm

l ; ð3:54Þ
hAB ¼ KδBAY

m
l : ð3:55Þ

The spherical harmonic expansion enables us to write the
action (3.52) as

Leven ¼ −
1

8
hμνGν

μρ
σhσρ; ð3:56Þ

where we defined

Gν
μρ

σ ≔ δσμ∇ρ∇ν þ δνρ∇σ∇μ − δνμ∇σ∇ρ − δσρ∇ν∇μ þ 2δ̄νσμρ□;

ð3:57Þ
δ̄νσμρ ≔ δν½μδ

ρ
σ�: ð3:58Þ

G. Decoupling of the partial waves

Given that we are working on a spherically symmetric
background, it is expected that the partial waves are
decoupled entirely. To see this, we first evaluate the action
of the operator (3.57) on the graviton,

Gν
μρ

σhσρ ¼
X
l;m

Gν
μρ

σðhlmÞρσ þ
X
l;m

ðhlmÞρσGν
μρ

σYm
l

þ
X
l;m

ð−4δ̄νσμρð∂κYm
l Þ∇κ þ Uσν

μρ

þ Uνσ
ρμ − Uνσ

μρ − Uσν
ρμÞðhlmÞρσ; ð3:59Þ

where we defined

Uνσ
μρ ¼ δνμ½ð∂σYm

l Þ∇ρ þ ð∂ρYm
l Þ∇σ�: ð3:60Þ

The first line of (3.59) is the action of all the operators
in (3.57) on either the modes hlm or on the spherical
harmonics, whereas the second line arises from all the
mixed terms. While these terms appear complicated, noting
that the spherical harmonics Ym

l only dependent on the
angles, several indices in the second line of (3.59) do not
contribute. Moreover, using the tensor structure in (3.54)
and (3.55), together with the derivatives listed in
Appendix B 1, we find

ð−4δ̄νσμρð∂κYm
l Þ∇κ þ Uσν

μρ þ Uνσ
ρμ − Uνσ

μρ − Uσν
ρμÞðhlmÞρσ

∼ ∂AðhlmÞρσ ¼ 0: ð3:61Þ
Therefore, the mixed terms in (3.59) vanish, and we are
left with

Gν
μρ

σhσρ ¼
X
l;m

Gν
μρ

σðhlmÞρσ þ
X
l;m

ðhlmÞρσGν
μρ

σYm
l :

ð3:62Þ

The action of the operator (3.57) on the spherical harmonics
is given by

Gν
μρ

σYm
l ¼ ðΔΩYm

l Þ
2r2

ðδνμδσρ þ δνaδ
a
μδ

σ
bδ

b
ρ − 2δνρδ

μ
σÞ

¼ −Ym
l
lðlþ 1Þ

2r2
ðδνμδσρ þ δνaδ

a
μδ

σ
bδ

b
ρ − 2δνρδ

μ
σÞ;
ð3:63Þ

where in the second line, we have used the property that the
spherical harmonics are the eigenfunctions of the spherical
Laplacian ΔΩYm

l ¼ lðlþ 1ÞYm
l . That there are no further

derivatives on the Ym
l helps the decoupling of the partial

waves. Equation (3.59) can now be written as

Gν
μρ

σhσρ ¼
X
l;m

Ym
l Gl

ν
μρ

σðhlmÞσρ; ð3:64Þ

where we defined the modified operator

Gν
lμρ

σ ≔ Gν
μρ

σ −
lðlþ 1Þ

2r2
ðδμνδσρ þ δμaδaνδ

σ
bδ

b
ρ − 2δμρδσνÞ:

ð3:65Þ
As one many have expected, the angular parts contribute to
a 1=r2 potential in this operation. The second order action
now results in

Seven ¼ −
1

8

X
l;m

X
l0;m0

Z
dΩ Ȳm0

l0 Y
m
l

×
Z

d2x
ffiffiffiffiffiffi
−g

p ðhl0m0 ÞμνGν
μρ

σðhlmÞσρ: ð3:66Þ

We now have an infinite tower of decoupled actions,
one for each partial wave. The decoupling is a result of
spherical symmetry of the background and may be seen as
the conservation of angular momentum.

H. An effective two-dimensional theory

Noting that the graviton fields hlm are only functions of
the light cone coordinates since the angular pieces have
been extracted out, and using the orthogonality relations for
the spherical harmonicsZ

dΩȲm0
l0 Y

m
l ¼ δll0δmm0 ; ð3:67Þ

the action (3.66) reduces to

Seven¼−
1

8

X
l;m

Z
d2xAðrÞr2ðhlmÞμνGν

μρ
σðhlmÞσρ: ð3:68Þ

While this may appear to be a two-dimensional theory, the
indices on the graviton are still Greek and run over all four
spacetime dimensions. Moreover, owing to the implicit
presence of the angular indices, a separation of light cone
and spherical fields is no longer obvious. To appreciate this
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problemof separation of variables, it is instructive to evaluate
the quantity□hab. Despite the presence of only the light cone
coordinates, as show in Appendix B 3, we find a term of the
form ð∂arÞð∂brÞK. This arises from the two-sphere coor-
dinates in the □ operator. The second, and perhaps
more serious, problem is seen when indices are raised and
lowered with the metric. Defining, for instance, hϕϕ is

problematic because while hϕϕ is independent of the angular
variables, lowering the index would introduce it because
gϕϕ ¼ r2sin2θ. Therefore, separation of variables along the
light cone and the two-sphere, and the spherical harmonic
expansion appear to be in conflict with each other. While the
two-dimensional propagator and equations of motion appear
problematic, these nevertheless naturally pose no problem
in the complete four-dimensional action. It is therefore
evident that the price we pay for covariance on the light
cone is an inherent mixing between the fields Hab and K.
In what follows, we define differential operators with a

tilde to represent those on the light-cone. So, ∇̃ is the
covariant derivative on the light cone, and □̃ ¼ ∇̃a∇̃a is the
’d Alembertian, and the indices are raised and lowered
with the light cone metric gab. For consistency, we will also
write the light cone metric with a tilde as g̃ab. In this
formulation, clearly □̃hab will never give rise to the
scalar field K as the lowercase Latin indices never sum
over the angular coordinates. This allows us to separate
variables and maintain covariance on the light cone all the
same. Notwithstanding which, the tensor Hab and K will
remain coupled.
Symbolically we want to find an action of the following

form [82]:

Seven ¼
1

4

Z
d2x

ffiffiffiffiffiffi
−g̃

p
ðH̃abΔ̃−1

abcdH̃
cd þ H̃abΔ̃−1

L;abK̃

þ K̃Δ̃−1
R;abH̃

ab þ K̃Δ̃−1K̃Þ: ð3:69Þ
Here, we defined all of the new Δ̃ operators listed below.
We have also defined the new light cone fields H̃ab¼ rHab,
K̃ ¼ rK. These definitions have been made to absorb
the residual r2 of the two-sphere Jacobian in the action
in (3.68) into the fields. This gives rise to the light cone
Jacobian

ffiffiffiffiffiffi
−g̃

p
, and consequently results in the canonical

form of the action (3.69). A detailed derivation of these
operators is given in Appendix B 4. The result is

Δ̃−1 ¼ −□̃þ Fa
a; ð3:70Þ

Δ̃−1
R;ab ¼ −gab

�
□̃ −

1

2
Vc∇̃c þ 1

4
VcVc − Fc

c −
lðlþ 1Þ

2r2

�
þ ∇̃a∇̃b − Fab; ð3:71Þ

Δ̃−1
L;ab ¼ −gab

�
□̃þ 1

2
Vc∇̃c −

lðlþ 1Þ
2r2

�
þ ∇̃a∇̃b − Fab;

ð3:72Þ

Δ̃−1
abcd ¼

1

2
gacV ½b∇̃d� þ

1

2
gbdV ½a∇̃c� þ

1

2
gabðVðc∇̃dÞ þ 2FcdÞ

þ 1

2
gcd

�
−Vða∇̃bÞ þ

1

2
VaVb

�
þ gabgcd

�
1

4
R2d þ

lðlþ 1Þ
2r2

�
− gacgbd

�
1

2
R2d þ

lðlþ 1Þ
2r2

�
; ð3:73Þ

where we defined the following tensors:

Va ¼ 2∂a log r; ð3:74Þ

Fab ¼
1

r
∇̃a∇̃br ¼

1

2
∇̃ðaVbÞ þ

1

4
VaVb; ð3:75Þ

R2d ¼ −
1

A
□̃ logA: ð3:76Þ

Here Va is a residual curvature potential arising from the
two-sphere, Fab its corresponding field strength, and R2d
is the Ricci scalar of the two-dimensional background
metric g̃ab. We note that all operators are in fact symmetric
in the fields; in particular, Δ̃−1

R;ab equals Δ̃−1
L;ab up to total

derivatives. We now have a covariant description of the
graviton modes on the light cone, where the degrees of
freedom H̃ab and K̃ are explicitly separated, albeit coupled.
The two-sphere is now integrated out entirely; it leaves a
residual l, m dependence and the curvature potential Va.
The light cone metric is at this stage still general
g̃ab ¼ AðrÞηab parametrized by an arbitrary function.

1. Weyl rescaling

Before attempting to insert the Schwarzschild metric
to find the propagators, we first observe that the effective
two-dimensional metric is conformally flat,

g̃ab ¼ AðrÞηab; ð3:77Þ

with ηab being the two-dimensional Minkowski metric,

ηab ¼
�

0 −1
−1 0

�
: ð3:78Þ

This allows us to perform a Weyl transformation to reduce
our theory to a two-dimensional flat theory, with modified
potentials. This will allow us to trade the subtleties of
curved space, and quantum field theory on the said curved
space to a flat theory for additional potential terms. An
important consequence is that despite being in the region
within the gravitational potential, where flat space kin-
ematics is invalid, the Weyl transformation will allow us to
define centre of mass energies.
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In order to migrate to a flat two-dimensional background
we first make a transformation that explicitly removes the
function AðrÞ from the metric. The transformations are
given by

g̃ab → AðrÞηab; ð3:79Þ

H̃ab → AðrÞhab; ð3:80Þ

K̃ → K; ð3:81Þ

where hab is raised and lowered with the new flat
Minkowski metric. Conveniently enough, partial deriva-
tives are now covariant derivatives, so covariance of the
physical quantities is trivially achieved.
The Weyl transformation brings about a few noteworthy

points; K̃ does not transform (and yet we give it a new
name K) and neither does Vb ¼ 2∂b log r (however,
Vb ¼ g̃abVb ¼ 1

A η
abVb does transform). Moreover, Fab

also does not transform.
Inserting the Weyl rescaling, we may rewrite the action

quadratic in K, for instance, as

1

4

Z
d2xAðrÞKð−□þFa

aÞK¼1

4

Z
d2xKð−∂2þηabFabÞK;

ð3:82Þ

where we included the AðrÞ that comes from the
ffiffiffiffiffiffi−gp

and
defined ∂

2 ¼ ηab∂a∂b. For consistency we redefine

Fab¼
1

r
∇̃a∇̃br≕

1

r
∂a∂br−

1

2
UðaVbÞ þ

1

4
ηabUcVc; ð3:83Þ

where all index manipulations are now done with the
flat metric, i.e., UcVc ¼ ηacUaVc and Ua ¼ ηabUb. This
redefinition is in principle necessary, since the previous
light cone covariant derivative does not hold after the Weyl
transformation. Here, we defined a new potential that will
embed the curvature remnants of AðrÞ,

Ua ¼ ∂a logAðrÞ: ð3:84Þ

Then the action quadratic in K becomes

1

4

Z
d2xKð−∂2 þ Fa

aÞK; ð3:85Þ

where Fa
a ¼ ηabFab. The Weyl transformation essentially

allows us a change in viewpoint but no change in physics;
we may either study free fields in a curved spacetime, or
Weyl rescaled fields bounded by potentials in flat space-
time. Both descriptions are equivalent for conformally flat
spacetimes. The fact that the spacetime is conformally flat

is important because all curvature effects are then isotropic,
allowing for an embedding into a scalar function AðrÞ. For
anisotropic curvatures we naturally need a tensor potential,
losing the simplicity of a Weyl transformation.
We now proceed to a Weyl rescaling of all fields and

operators, with due regard for which fields transform, and
which fields do not. For the following, all Christoffel
symbols need to be worked out in order to safely pull the 1

A

in H̃cd through. Essentially, we need to calculate

Δ−1
R;ab ≔ AðrÞΔ̃−1

R;ab
1

AðrÞ ; ð3:86Þ

Δ−1
L;ab ≔ Δ̃−1

L;ab; ð3:87Þ

Δ−1
abcd ≔ Δ̃−1

abcd
1

AðrÞ : ð3:88Þ

The action is now given by

S ¼ 1

4

Z
d2xðhabΔ−1

abcdh
cd þ habΔ−1

L;abK

þKΔ−1
R;abh

ab þKΔ−1KÞ: ð3:89Þ

An explicit calculation of all Δ operators shows that

Δ−1 ¼ −∂2 þ Fa
a; ð3:90aÞ

Δ−1
R;ab ¼ −ηab

�
∂
2 þ 1

2
ðUc −VcÞ∂c þ

1

2
ηcdðWA

cd −Wr
cdÞ

−AðrÞlðlþ 1Þ
2r2

�
þ ∂a∂b þUða∂bÞ þWA

ab −Fab;

ð3:90bÞ

Δ−1
L;ab ¼ −ηab

�
∂
2 −

1

2
ðUc − VcÞ∂c − AðrÞlðlþ 1Þ

2r2

�
þ ∂a∂b −Uða∂bÞ − Fab; ð3:90cÞ

Δ−1
abcd ¼

1

2
ηacV ½b∂d� þ

1

2
ηbdV ½a∂c�

þ 1

2
ηab

�
Vðc∂dÞ þWr

cd þ
1

2
VcVd

�
þ 1

2
ηcd

�
−Vða∂bÞ þ

1

2
VaVb

�
þ ηabηcd

�
1

4
AðrÞR2d −

1

4
VeUe þ AðrÞlðlþ 1Þ

2r2

�
− ηacηbd

�
1

2
AðrÞR2d −

1

2
VeUe þ AðrÞlðlþ 1Þ

2r2

�
;

ð3:90dÞ
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where repeated application of the product rule on any
relevant 1

A was necessary. We defined two new field tensors

Wr
ab ≔ ∂ðaVbÞ and WA

ab ≔ ∂ðaUbÞ: ð3:91Þ

While the Δ operators now appear more complicated, the
background is flat, making all covariant derivatives trivial.
Moreover, while coordinate transformations need care, any
coordinate system may be chosen by an appropriate choice
of the function AðrÞ.
This completes the calculation of the even action.

The four-dimensional spherically symmetric spacetime
is now reduced to a flat two dimensional Minkowski
spacetime. This is largely owed to the spherical harmon-
ics expansion and a careful exploitation of the back-
ground spherical symmetry. Curvature is embedded in
two potentials Va, Ua and their respective field strengths.
While we have focused our attention on vacuum solutions
to Einstein’s equations, extension to more general space-
times should be straightforward. The first-order term
in (A2) will be nontrivial but can be accommodated
for, in this formalism.
To complete the effective action, we also need to reduce

the scalar action in (3.5) and the interaction vertex (3.51) on
to two-dimensional flat spacetime. We will incorporate
these in the following section as we move near the horizon.
Once equipped with the complete effective action, we will
then proceed to determine the graviton and scalar propa-
gators and the interaction vertex, on the Schwarzschild
horizon, as advertised.

IV. FEYNMAN RULES ON THE HORIZON

While the soft limit of the path integral about spherically
symmetric backgrounds conveniently split into effective
two-dimensional theories, it is still difficult to invert the
quadratic operators (3.90) to find the graviton propagator
for general backgrounds. In what follows, we will evaluate
the action (3.89) on the Schwarzschild background speci-
fied by

AðrÞ ¼ R
r
e1−r=R and xy ¼ 2R2

�
1 −

r
R

�
er=R−1: ð4:1Þ

Therefore, the potentials defining the operators (3.90) can
now be written in the x, y coordinates,

Va ¼
A
rR

xa; ð4:2aÞ

Ua ¼ −
A
2rR

�
1þ r

R

�
xa; ð4:2bÞ

Wr
ab ¼

A
rR

ηab −
A2

2R2r2

�
2þ r

R

�
xaxb; ð4:2cÞ

WA
ab ¼ −

A
2rR

�
1þ r

R

�
ηab þ

A2

4R2r2

�
2þ 2

r
R
þ r2

R2

�
xaxb;

ð4:2dÞ

Fab ¼
AR
2r3

ηab; ð4:2eÞ

R2d ¼
2R
r3

: ð4:2fÞ

The choice of background (4.1) is evidently that of an
eternal Schwarzschild solution in Kruskal-Szekeres coor-
dinates. This retains time-translational invariance in the
effective two-dimensional theory, x → ax, y → a−1y. In
what is to follow, however, we will make a near-horizon
approximation. As it turns out, the physically relevant
information for the derivation of the graviton propagator is
the conformal flatness of the bifurcation sphere. In a
collapsing scenario, the nature of the apparent horizon
may be rather different. However, in the soft limit, we will
argue towards the end of the paper that the general lessons
drawn may well hold. There are of course more detailed
questions further away from the horizon where the near
horizon propagator needs to be modified.
As an aside, the relation between the trace of the

residual curvature field strength of the two-sphere Fab
and the scalar curvature of the two-dimensional space-
time is striking; AðrÞR2d ¼ 2Fa

a. They may be seen to
conspire to make up the vacuum Schwarzschild solution
in four dimensions.
We may now insert all curvature potentials into the Δ

operators. Our interest is however, in studying scattering
near the horizon. Therefore, we will first define the near-
horizon approximation before writing down the simplified
potentials.

A. The near-horizon approximation

The naive near-horizon approximation of the
Scwharzschild solution yields Rindler spacetime.
However, we would like to keep the spherical nature of
the horizon intact. Moreover, as mentioned earlier, all wave
fronts received on future null infinity appear to emanate
from the central causal diamond in a collapsing scenario.
Therefore, the natural approximation of interest is such that
the two-dimensional light cone coordinates x; y ≪ R; the
reference scale for the coordinates is the Schwarzschild
radius R instead of the Planck length and the near-horizon
region effectively measures 1 − r=R. In terms of the light
cone coordinates, the horizon is of course defined by
xy ¼ 0. So, we have that

r ¼ Rþ RO
�
xy
R2

�
; ð4:3Þ

NAVA GADDAM and NICO GROENENBOOM PHYS. REV. D 109, 026007 (2024)

026007-16



in this approximation. Therefore, to linear order, we simply
find r ¼ R and AðrÞ ¼ 1. There are of course other linear
contributions in the form of the couplings xa∂b, while all
potentials have now simply become mass terms. The Δ
operators (3.90) now simplify to

Δ−1 ¼ −∂2 þ μ2; ð4:4aÞ

Δ−1
R;ab ¼ −ηab

�
∂
2 − μ2xc∂c −

1

2
μ2λ

�
þ ∂a∂b − μ2xða∂bÞ;

ð4:4bÞ

Δ−1
L;ab ¼ −ηab

�
∂
2 þ μ2xc∂c −

1

2
μ2ðλ − 2Þ

�
þ ∂a∂b þ μ2xða∂bÞ; ð4:4cÞ

Δ−1
abcd ¼

1

2
μ2ðηacx½b∂d� þ ηbdx½a∂c� þ ηabxðc∂dÞ − ηcdxða∂bÞÞ

þ μ2ðλþ 1Þ
2

ðηabηcd − ηacηbdÞ; ð4:4dÞ

where we defined

λ ≔ l2 þ lþ 1; ð4:5Þ

and used the inverse Schwarzschild radius μ ¼ 1=R again,
which can now be understood as effective mass due to the
positive curvature of the two-sphere.
It is now evident that this approximation is identical

to expanding around μ → 0, which holds for large black
holes. Of course the approximation is better defined in
terms of the dimensionless quantity μxa. The equations of
motion are also written in terms of the Δ operators as

Δ−1
abcdh

cd þ Δ−1
L;abK ¼ 0; ð4:6Þ

Δ−1
R;abh

ab þ Δ−1K ¼ 0: ð4:7Þ

An evident disconcerting feature of the operators (4.4) is the
asymmetry in the “left” and “right” operators. Removing
first-order terms naively with μxa → 0 does not fix the
problem either. The first-derivative terms contribute to the
effective mass. A symmetric representation of these oper-
ators can be achieved with a field redefinition as we will now
show. We first note the following identities:

∂a∂be−
μ2x2

4 ¼ e−
μ2x2

4

�
∂a∂b − μ2xða∂bÞ −

1

2
μ2ηab þ

1

4
μ4xaxb

�
;

ð4:8Þ

∂a∂be
μ2x2

4 ¼ e
μ2x2

4

�
∂a∂b þ μ2xða∂bÞ þ

1

2
μ2ηab þ

1

4
μ4xaxb

�
:

ð4:9Þ

In what follows, we will ignore the last terms quadratic
in μxa. This allows us to identify

e
μ2x2

4 Δ−1
L;abe

−μ2x2

4 ¼e−
μ2x2

4 Δ−1
R;abe

μ2x2

4

¼−ηab
�
∂
2−

1

2
μ2ðλ−1Þ

�
þ∂a∂b: ð4:10Þ

This gives a symmetric representation. Moreover, conven-
iently enough, it also removes all first-derivative and first-
order terms in μxa. Therefore, the field redefinitions to
achieve this symmetric representation are given by the
following transformations:

K → e−
μ2x2

4 K; ð4:11Þ

hab → e
μ2x2

4 hab: ð4:12Þ

Under this field redefinition, it is worth noting that Δ−1
abcd

does not transform because of the antisymmetry of the
derivatives.What remains isΔ−1. We first note the part of the
action quadratic in K,

SK ¼ 1

4

Z
d2xKΔ−1K

¼ 1

4

Z
d2x e−

μ2x2

2 K
�
−∂2 þ 1

2
μ2xc∂c þ 2μ2

�
K: ð4:13Þ

While there was no first derivative term to begin with, the
field redefinition has generated one. The first derivatives in
the terms couplingK and h have essentially been traded for a
first derivative in the pure K action. The exponent can be
removed in the near-horizon approximation

e−
μ2x2

2 ¼ 1þOðμ2xyÞ: ð4:14Þ

The use of the exponential in the field redefinition may
appear to be at odds with the recurring use of the approxi-
mation μxa ≪ 1. A remark on this is in order. But before
that, we will first massage the said first derivative. The
integral with the first derivative can be rewritten asZ

d2xKμ2xc∂cK ¼ 1

2
μ2
Z

d2xxc∂cðK2Þ: ð4:15Þ

Integration by parts with vanishing boundary conditions
yields

1

2
μ2
Z

d2xxc∂cðK2Þ ¼ −
1

2
μ2
Z

d2xK2
∂cxc

¼ −μ2
Z

d2xK2: ð4:16Þ
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The first derivative is therefore traded for another mass term.
The complete even parity graviton action near the horizon is
now given by

S ¼ 1

4

Z
d2xðhabΔ−1

abcdh
cd þ habΔ−1

abKþKΔ−1
abh

ab

þKΔ−1KÞ; ð4:17Þ

with

Δ−1 ¼ −∂2 þ μ2; ð4:18aÞ

Δ−1
ab ¼ −ηab

�
∂
2 −

1

2
μ2ðλ − 1Þ

�
þ ∂a∂b; ð4:18bÞ

Δ−1
abcd ¼

1

2
μ2ðηacx½b∂d� þ ηbdx½a∂c� þ ηabxðc∂dÞ − ηcdxða∂bÞÞ

þ μ2ðλþ 1Þ
2

ðηabηcd − ηacηbdÞ: ð4:18cÞ

What we see is thatΔ−1 andΔ−1
abcd remain unchanged. It was

important that we were able to remove the exponential

exp ð� μ2x2

2
Þ to linear order in μxa. A word about the

consistency of the approximation is now in order. In the
small μxa limit, the fields themselves do not transform as can
be seen from (4.11) and (4.12). The transformations are only
nontrivial at higher orders in μxa. So we began with an
infinitesimally small transformation, and nevertheless trans-
formed the operators. Therefore, the difference between the
first derivatives in Δ−1

L;ab and Δ−1
R;ab and the effective mass in

Δ−1
ab is vanishing to linear order in μxa. The transformation

we chose is merely one consistent choice, but the underlying
structure that Δ−1

L;ab, Δ−1
R;ab equal Δ−1

ab up to infinitesimal
differences holds regardless of the transformation chosen.
This quadratic action is now in a convenient enough

form to allow for inversion of the above operators to find
the graviton propagator. All terms linear in μxa have
dropped out, except in Δ−1

abcd. We shall see that in the
following subsection that they do not contribute either.

B. The graviton propagator

In this subsection we derive the complete graviton
propagator for the even action on the Schwarzschild
horizon near the horizon. The propagator is found from
the Green’s function of the equation of motion. The
equations of motion of the graviton are now

Δ−1
abcdh

cd þ Δ−1
abK ¼ 0; ð4:19aÞ

Δ−1
abh

ab þ Δ−1K ¼ 0; ð4:19bÞ

with the operators defined in (4.18). These can be written in
the following matrix form

�Δ−1
abcd Δ−1

ab

Δ−1
cd Δ−1

��
hcd

K

�
¼ 0: ð4:20Þ

Then the Green’s function of this matrix differential
equation is defined by

�Δ−1
abcd Δ−1

ab

Δ−1
cd Δ−1

��
Pcdef Pcd

Pef P

�
¼
�
δefab 0

0 1

�
δð2Þðx− x0Þ:

ð4:21Þ

The Green’s function matrix is symmetric owing to the
symmetrized operators (4.18). There are three propagators.
The first is Pcdef, which is the propagator of hcd → hef.
The function Pab corresponds to hab → K whereas P
corresponds to K → K. From Eq. (4.21) we find that all
individual propagators are defined by

Δ−1
abcdP

cdef þ Δ−1
abP

ef ¼ δefabδ
ð2Þðx − x0Þ; ð4:22aÞ

Δ−1
abP

abcd þ Δ−1Pcd ¼ 0; ð4:22bÞ

Δ−1
abcdP

cd þ Δ−1
abP ¼ 0; ð4:22cÞ

Δ−1
abP

ab þ Δ−1P ¼ δð2Þðx − x0Þ: ð4:22dÞ

The coupling between the propagators is naturally owed to
the coupling between the tensorial and scalar fields in the
quadratic action (4.17). To find the propagators, we first
need to find the inverses of Δ−1, Δ−1

ab , and Δ−1
abcd. These

inverses are defined as usual,

Δ−1
abcdΔcdef ¼ δefabδ

ð2Þðx − x0Þ; ð4:23Þ

Δ−1
abΔbc ¼ δcaδ

ð2Þðx − x0Þ; ð4:24Þ

Δ−1Δ ¼ δð2Þðx − x0Þ: ð4:25Þ

1. The inverse of Δ− 1

This is the easiest of the lot, and requires us to solve

ð−∂2 þ μ2ÞΔðx; x0Þ ¼ δð2Þðx − x0Þ: ð4:26Þ

Using the Fourier transforms

Δðx; x0Þ ¼ 1

ð2πÞ2
Z

d2k eikaðx−x0ÞaΔðkÞ; ð4:27Þ

δð2Þðx − x0Þ ¼ 1

ð2πÞ2
Z

d2peikaðx−x0Þa ; ð4:28Þ
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the solution for the inverse is

ΔðkÞ ¼ 1

k2 þ μ2
ð4:29Þ

where k2 ¼ ηabkakb. This is the Klein-Gordon propagator
with an effective mass μ2 arising from the two-sphere
reduction of the Schwarzschild metric. In contrast to the
flat space eikonal approximation, we see that the effective
reduction to two dimensions near the horizon provides a
natural infrared regulator given by the Schwarzschild
radius. In the soft limit, this cures infrared divergences.
However, the four-dimensional graviton of course remains
massless.

2. The inverse of Δ− 1
abcd

The operator is given in (4.18c). In order to find the
inverse we start with the following ansatz:

Δabcd ¼ Tðx − x0Þηabηcd þQðx − x0ÞηaðcηdÞb: ð4:30Þ

This is the most general form that respects the symmetries
of the graviton hab ¼ hba, and time translation symmetry
x → ax, y → y=a up to linear order in μxa. Here we used
time translation symmetry to require that Δabcd transforms
at most as a tensor under time translations, so that the only
allowed tensor structures are ηabηcd, μ2ηabxcxd, and
μ4xaxbxcxd with any index permutation. We included the
μ2 to have dimensionless tensor structures. Now the latter
two can be removed up to linear order in μxa, so that only
ηabηcd remains. Then (4.30) gives the most general form
that respects symmetries of the problem. There is another
allowed dimensionless tensor as well, xaxb

x2 . This tensor is
however not regular over the entire manifold. The irregu-
larities of usual momentum space poles determine the mass
shell, whereas this tensor contains a pole that would be a
coordinate singularity. In Kruskal-Szekers coordinates
there is no singularity at x2 ¼ 0. This are not the usual
1=r singularity of spherical coordinates either, as that
would correspond to 1=ðx2 þ 2R2Þ instead. Therefore,
we forbid this tensor, leaving behind (4.30) as the most
general form.
Inserting (4.30) in the definition of the inverse (4.23)

results in

2

μ2ðλþ 1Þ δ
ef
abδ

ð2Þðx − x0Þ

¼ −Qδabef þ ηabη
efðxc∂cT − ðλþ 1ÞðT þQÞÞ

− ηefxða∂bÞð2T þQÞ þ ηabxðe∂fÞQ

þ 1

2
ðδeax½b∂f� þ δfax½b∂e� þ δfbx½a∂

e� þ δebx½a∂
f�ÞQ:

ð4:31Þ

Neither the antisymmetric terms nor the terms containing
the metric tensor can reduce to the delta function as
required by the left-hand side of this equation. Therefore,
we find

Q ¼ −
2

μ2ðλþ 1Þ δ
ð2Þðx − x0Þ: ð4:32Þ

This is a peculiar result; the inverse of the operator
is instantaneous. Nevertheless it is allowed. The two-
dimensional operator on the light cone (4.18c) does not
contain any second derivatives ∂2. So it is not expected to
have a momentum dependence. Instantaneous operators are
not familiar in other gauge choices. Presumably this is a
peculiarity of the choice of gauge. This operator is not the
physical propagator; we denoted that by Pabcd. That full
propagator will of course have momentum dependence.
Notice that the inclusion of the irregular xaxb

x2 tensor would
not have lead to a δabef either and the inverse would still have
been instantaneous. To proceed further, we make a guess
that T ¼ −Q in (4.30). Inserting this into the definition of
the inverse shows that (4.30) is only a valid inverse if the
following equation is satisfied:

0¼?
�
ηabη

efxc∂c−ηefxða∂bÞ−ηabxðe∂fÞ

−
1

2
ðδeax½b∂f�þδfax½b∂e�þδfbx½a∂

e�þδebx½a∂
f�Þ
�
δð2Þðx−x0Þ:

ð4:33Þ

At first glance this does not seem to vanish. However, if we
interpret the Dirac delta function as a distribution obeying

xa∂bδð2Þðx − x0Þ ¼ −ηabδð2Þðx − x0Þ; ð4:34Þ

and recognize that the right-hand side of (4.33) appears
inside a two-dimensional integral, we find

ηabη
efxc∂cδð2Þðx − x0Þ − ηefxða∂bÞδð2Þðx − x0Þ

− ηabxðe∂fÞδð2Þðx − x0Þ
¼ −2ηabηefδð2Þðx − x0Þ þ ηabη

efδð2Þðx − x0Þ
þ ηabη

efδð2Þðx − x0Þ
¼ 0:

A similar analysis for x½b∂f� results in

x½b∂f�δð2Þðx − x0Þ ¼ 1

2
ðxb∂f − xf∂bÞδð2Þðx − x0Þ

¼ −
1

2
ðδfb − δfbÞδð2Þðx − x0Þ

¼ 0:
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Of course, all these manipulations are legitimate only under
the integration over all x, y. Therefore, we now find that the
inverse is given by

Δabcd ¼
1

μ2ðλþ 1Þ ð2ηabηcd − ηacηbd − ηadηbcÞδð2Þðx − x0Þ:

ð4:35Þ

In momentum space the δð2Þðx − x0Þ can simply be replaced
by unity, giving the final tensor

Δabcd ¼
1

μ2ðλþ 1Þ ð2ηabηcd − ηacηbd − ηadηbcÞ: ð4:36Þ

With the inverses of Δ−1 and Δ−1
abcd, the propagators can be

determined from (4.22).

3. The K propagator

We first find the easiest propagator, i.e., the scalar K
propagator. From (4.22c) and (4.22d) we can find that in
momentum space the propagator is given by

PK ¼ 1

Δ−1 − Δ−1
abΔabcdΔ−1

cd

: ð4:37Þ

The second term in the denominator can be expanded as

Δ−1
abΔabcdΔ−1

cd ¼ λ − 1

λþ 1
ðμ2ðλ − 1Þ þ 2k2Þ: ð4:38Þ

Together with Δ−1 ¼ k2 þ μ2, we have for the K propa-
gator that

PK ¼ −
λþ 1

λ − 3

1

k2 þ μ2λ
: ð4:39Þ

This obviously resembles the Klein-Gordon propagator
with an effective mass μ

ffiffiffi
λ

p
. We will discuss the effective

graviton mass at the end of this section. The prefactor,
however, deserves attention. It is not well-defined for
λ ¼ l2 þ lþ 1 ¼ 3 which corresponds to l ¼ 1.
Moreover, there is a flip in sign for l ¼ 0, hinting at
negative norm states. That the l ¼ 0 and l ¼ 1 cases are
special is familiar [72,83]. The equations of motion are
not invertible for l ¼ 1, so a gauge redundancy is to be
expected. The l ¼ 0 corresponds to a change in black hole
mass since it is spherically symmetric and Birkhoff’s
theorem states that the l ¼ 0 perturbation is also of a
Schwarzschild form [72]. Therefore, this also suggests
leftover gauge redundancies since at l ¼ 0 we have many
more degrees of freedom than just the mass perturbation.
Similarly l ¼ 1 has has more degrees of freedom than can
be reduced to a form with only the odd-parity graviton

components haA [72]. So the l ¼ 1 mode may be thought
of as describing a rotating gravitational field. It has to be
said, however, that this intuition of [72] is based on a
classical analysis. Nevertheless, that these modes require
additional care and indicate gauge redundancies is clear.
For the four-point function of interest in this paper, this
propagator will not contribute as we will see in further
sections. Therefore, we leave further analysis of the K
propagator for future work.

4. The hab propagator

For the purposes of the scalar four-point function of
interest, the propagator of hab will turn out to be the most
important one. To find Pabcd, we begin by using (4.22a)
and (4.22b) to write

Pabcd ¼ ðLab
efÞ−1Δefcd; ð4:40Þ

where we define

Lab
ef ≔ δabef − ΔabcdΔ−1

cdΔΔ−1
ef : ð4:41Þ

We now write down Δ−1
ab in momentum space,

Δ−1
ab ¼ ηab

�
k2 þ 1

2
μ2ðλ − 1Þ

�
− kakb: ð4:42Þ

Using this, Lab
ef is given by its definition in (4.41).

Expanding the tensor structure results in

Lab
ef ¼ δabef −

ΔðkÞðk2 þ 1
2
μ2ðλ − 1ÞÞðλ − 1Þ
λþ 1

ηabηef

−
2ΔðkÞðk2 þ 1

2
μ2ðλ − 1ÞÞ

μ2ðλþ 1Þ kakbηef

þ ΔðkÞðλ − 1Þ
ðλþ 1Þ ηabkekf þ

2ΔðkÞ
μ2ðλþ 1Þ k

akbkekf

≕ δabef − L1η
abηef − L2kakbηef

þ L3η
abkekf þ L4kakbkekf; ð4:43Þ

where we define four functions Li that can be seen by
comparing the two equalities above. To invert (4.43)
we make the ansatz

ðLab
efÞ−1 ¼ δabef −Q1η

abηef −Q2kakbηef þQ3η
abkekf

þQ4kakbkekf; ð4:44Þ

such that

Lab
efðLef

cdÞ−1 ¼ δabcd: ð4:45Þ
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Using the definition of L in this equation yields a neat
relation between all Li and Qi. This relation can be written
in matrix form as follows:

�
M 0

0 M

�0BBB@
Q1

Q2

Q3

Q4

1CCCA ¼

0BBB@
L1

L2

L3

L4

1CCCA; ð4:46Þ

where

M ¼
 
−1þ 2L1 − L3k2 L1k2 − L3k4

2L2 − L4k2 −1þ L2k2 − L4k4

!

¼ ΔðkÞ
λþ 1

 
−2k2 þ μ2λðλ − 3Þ 1

2
μ2k2ðλ − 1Þ2

2
μ2
ðk2 þ μ2ðλ − 1ÞÞ −2k2 − μ2ðλþ 1Þ

!
:

ð4:47Þ

The matrix relation (4.46) is block diagonal and therefore,
an inverse of the 2 × 2 matrix M suffices to invert the
matrix relation. An explicit calculation shows that the
matrix determinant is given by

jMj ¼ −
λ − 3

λþ 1
ðk2 þ μ2λÞΔðkÞ

¼ ΔðkÞ
PK

: ð4:48Þ

This determinant vanishes for λ ¼ 3; a problem similar to
what was evident in the inverse propagator of K. This
shows that the equations of motion are indeed not orthogo-
nal at λ ¼ 3 and that there is residual gauge freedom.
Furthermore, the observations of the zeros and poles of the
prefactor of P are again relevant. We can now easily write
down the inverse matrix to be

M−1 ¼ PK

λþ 1

 
−2k2 − μ2ðλþ 1Þ − 1

2
μ2k2ðλ− 1Þ2

− 2
μ2
ðk2 þ μ2ðλ− 1ÞÞ −2k2 þ μ2λðλ− 3Þ

!
:

ð4:49Þ

We now recognize that 2L1 ¼ μ2ðλ − 1ÞL2, and that
2L3 ¼ μ2ðλ − 1ÞL4. Thus, we only need to calculate

M−1
�
μ2ðλ − 1Þ

2

�
¼ −

PK

Δ

�
μ2ðλ − 1Þ

2

�
: ð4:50Þ

What we see is in fact an eigenvalue equation, so that the
2 × 2 matrix M is simply reduced to only a scalar in this
particular case. The corresponding eigenvalue is exactly
given by the negative of the reciprocal of the determinant.
This allows us to easily identify the solution to the inverse

Qi ¼ −
PK

Δ
Li: ð4:51Þ

Inserting Qi into (4.44) results in

ðLab
efÞ−1 ¼ δabef þ

PKðk2 þ 1
2
μ2ðλ − 1ÞÞðλ − 1Þ
λþ 1

ηabηef

þ 2PKðk2 þ 1
2
μ2ðλ − 1ÞÞ

μ2ðλþ 1Þ kakbηef

−
PKðλ − 1Þ
ðλþ 1Þ ηabkekf −

2PK

μ2ðλþ 1Þ k
akbkekf:

ð4:52Þ

We can now insert the above solution for ðLab
efÞ−1 into

(4.40) to find the propagator. It is worth noting that the
detailed mathematical calculations result in what one may
have expected on physical grounds based on symmetry.
The underlying structure merely consists of eigentensors,
elegantly displaying the symmetry structure of the graviton.
Finally, inserting (4.52) into (4.40) results in

Pabcd ¼ Δabcd þ PKpabpcd; ð4:53Þ

with

pab ≔
λ − 1

λþ 1
ηab þ 2kakb

μ2ðλþ 1Þ : ð4:54Þ

Here Δabcd is the same quantity defined in (4.36). The pab

operators are the projection operators for the massive
graviton. In fact, observing the scalar part Pk, there is
clearly a pole at −μ2λ. Therefore, the tensor field hab has
also become massive. Note that the four-dimensional
graviton is still massless, it is only the two-dimensional
reduction that gains an effective mass. This is an important
result, one that provides for a natural infrared regulator.
This is in contrast to the flat space eikonal limit where a
regulator was necessarily inserted by hand (2.17).
A projection operator similar to pab was observed for the

massive graviton in [84], where unlike in the present case
the mass was owed to a direct insertion of mass terms in
the action. While the resemblance between the propagator
in [84] and (4.53) is notable, the most significant difference
is the Δabcd term; this quantity still has no momentum
dependence in the present case. It represents the effect of
the mass of the spin-2 particle in two dimensions. This
mass generates a curvature andΔabcd embeds this curvature
into the propagator. This is also the reason that it has no
momentum dependence; the curvature contribution of the
tensor modes is constant in the Lagrangian, there is no k2

contributing to the two-dimensional light cone action
in (4.17). The second term involving the K mode carries
momentum dependence, and implicitly also gives it to the
tensor modes.
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5. Propagator for hab → K

The propagator that couples the tensorial mode in the
graviton to the scalar one can be found from (4.22) to be
given by

Pab ¼ −ΔΔ−1
cdP

cdab

¼ −PKpab: ð4:55Þ

The operator pab is still the same projection operator as
before, defined in (4.54). This propagator resembles that of
a massive spin-1 field; given that this it couples a spin-2
field with a scalar field, this may not be a surprise. For the
purposes of this article, this plays no role as we will see in
the upcoming sections.

C. The scalar propagator

The propagator for the scalar field is relatively straight
forward to find, but first requires a reduction of the
matter action on the two sphere. We begin with the kinetic
term in (3.5),

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ□ϕ: ð4:56Þ

For the box operator, we write

□ ¼ □̃þ Va∇̃a þ
1

r2
ΔΩ; ð4:57Þ

where, as before, the tilde operators correspond to the
light cone. Furthermore, we used the residual curvature
tensor Va, which is defined to be Va ¼ 2∂a log r. We now
expand the scalar field in spherical harmonics,

ϕ ¼
X
l;m

ϕlmYm
l : ð4:58Þ

We again make use of ΔΩYm
l ¼ −lðlþ 1ÞYm

l and the
orthogonality relation (3.67) to write the action as

Sm ¼ −
1

2

X
l;m

Z
d2xAðrÞr2ϕlm

×

�
−□̃ − Va∇̃a þ

lðlþ 1Þ
r2

�
ϕl;m: ð4:59Þ

We now perform the Weyl transformation as was done in
Sec. III H 1, along with a field redefinition for the scalar as
ϕ → rϕ̃. This removes the Jacobian, and yields

Sm ¼ −
1

2

X
l;m

Z
d2xϕlm

×

�
−∂2 þ 1

r
ð∂2rÞ þ AðrÞlðlþ 1Þ

r2

�
ϕl;m: ð4:60Þ

The field redefinition also removes the first derivatives, and
replaces them with a potential ∼ð∂2rÞ. Finally, we insert
that on the horizon r ∼ R and ∂

2r ∼ − 1
2R, as derived in

Appendix B 1 in the approximation x; y ≪ R, to find the
following:

Sm ¼ −
1

2

X
l;m

Z
d2xϕlmð−∂2 þ μ2λÞϕlm; ð4:61Þ

where we define λ ¼ l2 þ lþ 1 and μ ¼ 1=R as
before. The propagator is easily found by the Fourier
transformation

ϕðxÞ ¼ 1

ð2πÞ2
Z

d2p eipaxaϕðpÞ; ð4:62Þ

ϕðpÞ ¼
Z

d2x e−ipaxaϕðxÞ: ð4:63Þ

The inverse propagator can be read off from (4.61) as
∂
2 − μ2λ. Under the chosen conventions for the Fourier
transform, the propagator is directly found by substituting
∂a ¼ ipa. This results in

Pϕ ¼ −
1

p2 þ μ2λ − iϵ
: ð4:64Þ

This is the propagator for a fixed ðl; mÞ wave and spherical
symmetry of the background ensures that different partial
waves do not interact below Planck scale.
In what is to follow, we will assume ∂A → 0 since the

external particles have insignificant transverse momenta
when the black hole is larger than Planck size. We will first
analyze the consequence of this for the vertex, before
proceeding to compute the amplitudes of interest.

D. The interaction vertex

The scattering processes of interest in this article are
mediated by three-point vertices as we noted before. This
vertex written in the Regge-Wheeler gauge was given
in (3.51). Inserting the light cone fields taking the Weyl-
rescaling into account,

hab ¼
1

AðrÞr hab; ϕ ¼ 1

r
ϕ; K ¼ 1

r
K; ð4:65Þ

this vertex action becomes

Svertex ¼
κ

2R

Z
dΩ
Z

d2x

�
hab
�
∂aϕ∂bϕ−

1

2
ηabη

cd
∂cϕ∂dϕ

�
þKηABTAB

�
; ð4:66Þ
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in the xa ≪ R approximation. As can be seen from the
second term in (3.50), the definition of the stress tensor
shows that the second term of (4.66) does not vanish with a
mere assumption of vanishing transverse momenta pA ¼ 0.
In fact, we see that

KηABTAB ∼Kηab∂aϕ∂bϕ: ð4:67Þ

Now, the scattering amplitude of interest has one particle,
say p1, with a momentum exclusively going into the black
hole while the other particle, say p2, is exclusively exiting
the horizon. Therefore, we have that p1 ¼ ðp1;x; p1;yÞ ¼
ðp1;x; 0Þ and p2 ¼ ðp2;x; p2;yÞ ¼ ð0; p2;yÞ. We now define
the two-dimensional Mandelstam variable

s ¼ −
1

2
ðp1 þ p2Þ2 ¼ −p1 · p2 ¼ p1;xp2;y: ð4:68Þ

The amplitudes arise from the interaction terms in (4.66).
Let us first consider the tree-level diagram arising
from (4.67) mediated by propagators involving K.
The amplitudes in Fig. 4 can easily be calculated. The

diagram on the left mediated by PK gives

MK ∼
s2

2sþ μ2λ
; ð4:69Þ

and the diagram on the right, mediated by Pab, gives

Mhab→K ∼ ðp1 · p2ÞPab

�
p1;ap2;b −

1

2
ηabðp1 · p2Þ

�
¼ ðp1 · p2ÞPxyðp1;xp2;y − p1;xp2;yÞ
¼ 0; ð4:70Þ

where we used that the light cone metric is given by
ηxy ¼ −1, and that p1 ¼ ðp1;x; 0Þ and p2 ¼ ð0; p2;yÞ. The
remaining tree-level diagrams involve hab exclusively, as
shown in Fig. 5.
Owing to the symmetry of the propagator Pabcd under

a ↔ b, and under c ↔ d, the amplitude Mhard vanishes
due to an argument similar to (4.70). The soft amplitude on
the other hand is again easily calculated to be

Msoft ∼ ðp1;xp2;yÞ2Pxxyyð0Þ ∼ s2

μ2
: ð4:71Þ

FIG. 5. The diagram on the left, say Msoft, is the soft one mediated by the propagator Pabcd given in (4.53), with no momentum
exchanged. The diagram on the right yields an amplitude, say Mhard, mediated by the same propagator Pabcd.

FIG. 4. The diagram on the left gives rise to an amplitude, sayMK, and is mediated by the propagator PK given in (4.39). The diagram
on the right yields an amplitude, say Mhab→K, mediated by the propagator Pab given in (4.55).

SOFT GRAVITON EXCHANGE AND THE INFORMATION … PHYS. REV. D 109, 026007 (2024)

026007-23



E. The black hole eikonal limit:
ffiffi
s

p
≫ γMPl

Using the parameters μ ¼ 1=RS and κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
,

we define

γ ≔ μκ ∼
MPl

MBH
: ð4:72Þ

With this definition, we observe that

μ2 ∼
M4

Pl

M2
BH

∼ γ2M2
Pl: ð4:73Þ

The only nonvanishing tree-level amplitudes were (4.69)
and (4.71). When written in terms of γ, in the limit
s ≫ γ2M2

Pl for every fixed l, these read

MK ∼ s and Msoft ∼
s2

γ2M2
Pl

: ð4:74Þ

Clearly MK is subleading for black holes that are bigger
than Planck size. In the eikonal approximation in flat space,
reviewed in Sec. II, we saw that the analogous approxi-
mation necessitated ultrahigh energy scattering. A black
hole background provides for a new scale that tempers this
requirement dramatically. The requirement for the energy
of collision is merely ffiffiffi

s
p

≫ γMPl: ð4:75Þ

The factor γ is of the order of 10−32 for a black hole with a
Schwarzschild radius of 1 cm (this would be a black hole
with the mass of the earth). Therefore, the requirementffiffiffi
s

p
≫ 10−32MPl is very easily satisfied for all known

particles in the Standard Model for any black hole that
is much heavier than Planck mass. In this approximation,
we see that we can ignore the amplitude for K in (4.74)
and we are left with Msoft to leading order. Therefore,
this approximation simplifies the vertex (4.66) because the
field K drops out and we are left with

hab
�
∂aϕ∂bϕ−

1

2
ηabη

cd
∂cϕ∂dϕ

�
¼hxx∂xϕ∂xϕþhyy∂yϕ∂yϕ:

ð4:76Þ

That only hxx and hyy remain was argued to be a feature of
the eikonal approximation in flat space based on boundary
conditions. Near the horizon of the Schwarzschild solution
in the s ≫ γ2M2

Pl approximation, we see that the same
result can be explicitly derived. Therefore, with the implicit
understanding that the off-diagonal components hxy do not
contribute

hab ¼
�
hxx 0

0 hyy

�
; ð4:77Þ

the vertex action (4.66) can be written as

Svertex ¼
γ

2

X
l;m

X
l1;m1

X
l2;m2

Z
dΩYm

l Y
m1

l1
Ym2

l2

×
Z

d2x hablm∂aϕl1m1
∂bϕl2m2

; ð4:78Þ

where we inserted the spherical harmonic expansions

hab ¼
X
l;m

hablmY
m
l and ϕ ¼

X
l;m

ϕlmYm
l : ð4:79Þ

Integrating over the sphere will result in a coupling between
the various partial waves. We saw in Sec. III G that the
various partial waves decouple at quadratic order, owing to
the spherical symmetry of the background. The different
partial waves are then expected to only be coupled by large
transverse momentum transfers [23]. This is subdominant
for scattering processes on the horizon when the black hole
is greater than Planck size. Therefore, we do not expect
that angular momentum is distributed among external legs.
This implies that one of the external scalar legs is kept
with some fixed partial wave, say ϕ0. The vertex action
therefore becomes

Svertex ¼ γ
X
l;m

Z
d2x hablm∂aϕ0∂bϕlm; ð4:80Þ

where the additional factor of two is owed to the different
possible attachments of the fixed partial wave ϕ0.
Since the off-diagonal components of hab play no role

in scattering with a massless scalar field, the graviton
propagator (4.53) simplifies significantly

PabcdðkÞ ¼ 1

4
fl

�
ηacηbd þ ηadηbc − ηabηcd

þ 4

μ2ðλ − 3Þ
1

k2 þ μ2λ

�
kakb −

1

2
k2ηab

�
×

�
kckd −

1

2
k2ηcd

��
: ð4:81Þ

The choice of 1=4 is arbitrary. From (4.53), the soft form
factor fl can be found to be given by

fl ¼ −
4

μ2ðλþ 1Þ : ð4:82Þ

For the scattering processes to be considered, we will see
in the Sec. V that the soft limit k → 0 is imposed on us.
Observing (4.81), we see familiar problems in the ultra-
violet. In the high energy limit, we have that Pabcd ∼
k4=ðμ2k2 þ μ4Þ which diverges. This is a feature familiar
from massive gravity [84]. It is a result of the mass in the
projection operator pab. For a massive spin-1 field, there is a
similar feature in the UV limit, which renders the theory

NAVA GADDAM and NICO GROENENBOOM PHYS. REV. D 109, 026007 (2024)

026007-24



nonrenormalizable by the power counting theorem [85].
Massive quantum electrodynamics is renormalizable due to
the introduction of additional scalar fields [86]. A similar
trick can be applied to the spin-2 case, introducing vector
fields to restore the power counting theorem for the
graviton. This was also done in [84], however renormal-
ization remains a problem as it was already a problem for
the massless graviton.
Fortunately enough, owing to the soft limit that is to be

enforced upon us, we may simply work with the propagator
in (4.81). We shall see that the divergent momentum-
dependent tail is projected out in the ladder diagrams of
interest. And it will be far more important that Pabcd is
well-defined when k ¼ 0. Unlike in the flat space eikonal
calculation reviewed in Sec. II, the emergent scale of the
Schwarzschild radius provides for a natural regulator, with
no necessity for a regulator to be put in by hand.
As a final comment, if instead of writing down the honest

propagator as we have done above, had we postulated an
ansatz of the form [78]

PabcdðkÞ ¼ 1

4
flðk2Þðηacηbd þ ηadηbc − ηabηcdÞ; ð4:83Þ

we find that using (4.53), the solution is given by

flðk2Þ¼−
4

μ2ðλþ1Þ−
4

μ4ðλþ1Þðλ−3Þ
k4

k2þμ2λ
: ð4:84Þ

In the soft limit, which we will be projected on to in Sec. V,
either choice results in the same answer since flð0Þ ¼ fl.

F. The Feynman rules

Gathering all the results we have obtained so far in
(4.61), (4.80), and (4.81), we find that the action near the
horizon reduces to

Shor ¼
1

4

Z
d2k habP−1

abcdðkÞhcd −
1

2

Z
d2pϕðp2 þ μ2λÞϕ

þ γ

Z
d2kd2p1d2p2δ

ð2Þðkþ p1 þ p2Þ

× habðkÞpa
1p

b
2ϕ0ðp1Þϕðp2Þ ð4:85Þ

for each partial wave, in momentum space. This allows us
to read off the Feynman rules. For the propagators we find

and the vertex is given by

with a symmetry factor of 8 for the graviton propagator
accounting for the a ↔ b and c ↔ d symmetry and a
factor of two for the external scalar legs that may be
exchanged. Furthermore, we will employ the usual iϵ
prescription for the graviton propagator

PabcdðkÞ ¼ 1

4
fl

�
ηacηbd þ ηadηbc

− fl

�
λþ 1

λþ 3

�
kakbkckd

4ðk2 þ μ2λ − iϵÞ
�
; ð4:86Þ

and use the fact that the external scalar momenta dominate
the momentum transferred by internal gravitons

−i
ðpþ kÞ2 þ μ2λ − iϵ

≈
−i

2p · k − iϵ
: ð4:87Þ

V. SCATTERING AMPLITUDES
ON THE HORIZON

We are now in a position to calculate all the scattering
diagrams of interest. Our interest is in the four-point
correlator with external scalar legs: hϕl;mϕ0ϕl;mϕ0i. The
tree-level scattering diagrams are given in Fig. 6.
This transfer channel tree amplitude can be calculated

using the Feynman rules from the previous section,

iMtransfer;1¼ðiγp1
ap1

bÞð2iPabcdðkÞÞðiγp2
cp2

dÞ

¼γ2ðp1
ap1

bÞ
�

2i
μ2ðλþ1Þðη

acηbdþηadηbcÞ
�
ðp2

cp2
dÞ

¼ 4iγ2s2

μ2ðλþ1Þ

¼ 4iκ2s2

l2þlþ2
; ð5:1Þ

where in the first step, we used momentum conservation at
each vertex and in the last step, we used the definition of γ
from (4.86) and that λ ¼ l2 þ lþ 1. This formula is the
analog of the corresponding expression for the eikonal
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phase in flat space (2.5). In that result, all the transverse
effects were embedded in the Mandelstam variable
t ¼ −ðp1 − p3Þ2 ≈ −ðp⊥

1 − p⊥
3 Þ2. Whereas here, since

we have integrated the sphere out, they are now captured
by the partial wave l. In contrast to the eikonal phase in
flat space, where scattering is dominated by large-l
modes [23],9 we see that it is instead dominated by the
low-l ones near the horizon.

A. Loop diagrams and the resummation

At one loop, much like in flat space, we have the
following diagrams Fig. 7.
As we see from Fig. 7, the one-loop diagrams only

contain the conserved channel diagrams. In fact, this is a
feature of all odd-loop diagrams as can be observed from
the diagrams. In similar vein, all even-loop diagrams
transfer the angular momentum indices across the virtual
gravitons to the bottom of the diagrams. For instance, all
two-loop diagrams in the transfer channel, to leading order
in the black hole eikonal limit are shown in Fig. 8.
In comparison to [67], these general loop diagrams are

largely similar, except for different external legs and the
fact that we are now effectively in two dimensions.
Adapting that calculation to the present case, the general
loop amplitude can be written as10

iMn ¼ ðiγÞ2n
Z Yn

j¼1

�
d2kj
ð2πÞ2 ð2ip

1
ap1

bp
2
cp2

dP
abcd
l ðkjÞÞ

�

× I × ð2πÞ2δð2Þ
�Xn

j¼1

kj

�

¼ ðiγsÞ2n
Z Yn

j¼1

�
d2kj
ð2πÞ2 ð2iP

xxyy
l ðkjÞÞ

�

× I × ð2πÞ2δð2Þ
�Xn

j¼1

kj

�
: ð5:2Þ

Here, we have taken the vertices to come with a factor of
iγs each, with all corrections arising from internal momenta
k being subleading. The quantity I contains all possible
matter propagators leading to diagrams of the kind shown
in Fig. 8 but at a general loop order. We also integrate over
all internal graviton propagators, and insert delta functions
to ensure conservation of internal momentum. The quantity
I represents all the matter propagators to be inserted.
The matter propagators can also be derived analogously
to [67]. The principle is to add all possible permutations of
kj in the matter propagators, with the knowledge that all fl
are the same function. These permutations are independent
of the dimension of kj and therefore, the result is very
similar,

iMn ¼ −
γ2s2

n!

Z
d2k
ð2π2Þ 2iP

xxyy
l ðkÞ

Z
d2x e−ik·xðiχÞn−1;

χ ≔ −iγ2s2
Z

d2k
ð2πÞ2 ð2iP

xxyy
l ðkÞÞe−ik·x

×
�

1

−2p1 · k − iϵ
1

2p2 · k − iϵ

þ 1

−2p1 · k − iϵ
1

−2p2 · k − iϵ

þ 1

2p1 · k − iϵ
1

2p2 · k − iϵ

þ 1

2p1 · k − iϵ
1

−2p2 · k − iϵ

�
: ð5:3Þ

The expression of χ can be massaged to find

χ ¼ −iγ2s2
Z

d2k
ð2πÞ2 ð2iP

xxyy
l ðkÞÞe−ik·x

×

�
1

2p1 · kþ iϵ
−

1

2p1 · k − iϵ

�
×

�
1

2p2 · kþ iϵ
−

1

2p2 · k − iϵ

�
: ð5:4Þ

FIG. 6. We call this diagram the transfer channel as the angular
momentum indices (represented by the solid lines) are transferred
across the virtual graviton. Combining two such diagrams, a
conserved channel where the angular momentum stays put is
generated; see Fig. 7. We discuss both these channels in this
section.

9See Eqs. (6.9) and (6.10) of that reference, for instance.
10Note that n ¼ 1 is the tree-level diagram, n ¼ 2 is the one-

loop contribution, and so on. So, n counts the number of virtual
gravitons exchanged. This equation is the analog of Eq. (3.1)
of [67], with gravitational vertices replacing the meson ones, and
adapted to two dimensions, with q ¼ p1 − p3 ¼ 0.
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Using the identity (2.11), we now find

χ ¼ −γ2s2
Z

d2kð2Pxxyy
l ðkÞÞe−ik·xδð2p1 · kÞδð2p2 · kÞ

¼ −
1

2
γ2sPxxyy

l ð0Þ

¼ −
1

4
γ2sfl: ð5:5Þ

Owing to the lack of any transverse directions (they have
been integrated out), we see that the soft limit is indeed
forced upon us. Consequently, the ultraviolet tail in the
graviton propagator is rendered inconsequential. Now,
since χ is independent of space-time coordinates in this
case, the amplitude can be written as

iMn ¼ −
γ2s2ðiχÞn−1

n!

Z
d2k
ð2π2Þ ð2iP

xxyy
l ðkÞÞ

Z
d2xe−ik·x:

ð5:6Þ

Using that

Z
d2xe−ik·x ¼ ð2πÞ2δð2ÞðkÞ; ð5:7Þ

we find for the general loop amplitude

iMn ¼ −i
γ2s2ðiχÞn−1

n!
fl

¼ 4s
ðiχÞn
n!

: ð5:8Þ

Therefore, the complete resummed nonperturbative ampli-
tude can be written as two independent sums; one each for
the transfer and conserved channels,

iM ¼ iMtransfer þ iMconserved

¼ 4s

�X∞
n odd

ðiχÞn
n!

þ
X∞
n even

ðiχÞn
n!

�

¼ 4s

�X∞
m¼0

ðiχÞ2mþ1

ð2mþ 1Þ!þ
X∞
m¼1

ð−1Þmχ2m
ð2mÞ!

�
¼ 4sðexp ðiχÞ − 1Þ: ð5:9Þ

FIG. 8. All leading two-loop ladder diagrams on the horizon, in the black hole eikonal limit. None of the gravitons self-interact here.

FIG. 7. All leading one-loop ladder diagrams on the horizon, in the
ffiffiffi
s

p
≫ γMPl limit. We see that the angular momentum indices

(represented by the solid line) stay on top and do not get transferred to the bottom. We call this the conserved channel. It is clear that all
odd loops fall in the conserved channel, while all even loops in the transfer channel.
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Restoring factors of ℏ which we have so far been negligent
about, and substituting for χ, we find11

iM ¼ 4pinpout

�
exp

�
i

γ2R2
S

ℏðl2 þ lþ 2Þpinpout

�
− 1

�
¼ 4pinpout

�
exp

�
i

8πGN

ℏðl2 þ lþ 2Þpinpout

�
− 1

�
;

ð5:10Þ

where we have used the definition of γ, given in (4.72) and
that λ ¼ l2 þ lþ 1, and relabeled the momenta from p1

and p2 to pin and pout. This amplitude is nonperturbative in
γ ∼MPl=MBH and ℏ. Of course, it ignores effects that arise
strictly from the Planck scale. Moreover, we have worked
to leading order in

ffiffiffi
s

p
≫ γMPl. Unlike in flat space, this

condition is easy to satisfy. In fact, it is actually difficult to
violate with Standard Model particles, for large semi-
classical black holes.
It is now straight forward to notice, upon Fourier

transforming the right-hand side, that this amplitude is
only nonvanishing when

yout ¼
8πGN

l2 þ lþ 2
pin: ð5:11Þ

Similar to what was expected from a first quantized
formalism [42–44], this calculation suggests that near a
black hole, creation and annihilation operators for in and
out states, are also related by Fourier transforms in this
second quantized description. However, there is a mysteri-
ous discrepancy in the denominator in comparison to the
first quantized results. It is to this discrepancy that we now
turn to.

B. An apparent discrepancy demystified

Analysis from first quantization, where wave functions
on a fixed nonlinearly backreacted Dray-’t Hooft metric
formed the starting point, suggested the relation

yout ¼
8πGN

l2 þ lþ 1
pin ð5:12Þ

instead of the expression we found in (5.11). The Dray-’t
Hooft metric can be readily checked to satisfy equations of
motion only with (5.12). So, the first temptation is to fear
the correctness of (5.11). Tracing back the origins of the
factor l2 þ lþ 2 ¼ λþ 1, we see that it arises from the

tensorial operator (4.4d). The only components that were
relevant for the scattering in the black hole eikonal limit are

Δ−1
xxyy ¼ −

1

2
μ2ðλþ 1þ x∂x − y∂yÞ;

Δ−1
yyxx ¼ −

1

2
μ2ðλþ 1þ y∂y − x∂xÞ: ð5:13Þ

The on-shell metric perturbation that led to the Shapiro
delay was given by (see Appendix C)

hxx ¼ 2Aðx; yÞδðxÞFlm; ð5:14Þ

where we replaced the angular function FðΩÞ by its partial
wave counterpart. In particular, recall that hyy is vanishing.
From the effective two-dimensional action (4.17), we
identify the first order variation of the Einstein tensor to
be Gxx ¼ Δ−1

xxyyhxx. Writing it out, we find

Gxx ¼ −μ2Aðx; yÞFlmδðxÞðλþ 1Þ − μ2Aðx; yÞFlmx∂xδðxÞ
− μ2FlmδðxÞðx∂x − y∂yÞAðx; yÞ: ð5:15Þ

It can now be checked that ðx∂x − y∂yÞAðx; yÞ ¼ 0, using
the derivatives from Appendix B 1. We are therefore
left with

Gxx ¼ −μ2Flmλ; ð5:16Þ

which is consistent with the on shell Dray-’t Hooft result.
This confirms that the tensorial operator Δ−1

abcd is indeed
correct, the near horizon approximation in Sec. IVA
notwithstanding.
An important conclusion from this analysis is therefore

that the discrepancy lies in the delta functions. For the
Shapiro delay, we have that

ðx∂x − y∂yÞδðxÞ ¼ −δðxÞ: ð5:17Þ

This was indeed the fact that resulted in the appropriate on
shell solution as we just saw. On the contrary, in inverting
the propagator in Sec. IV B, we used a double Dirac-delta
function, δð2Þðx − x0Þ ¼ δðx − x0Þδðy − y0Þ. Therefore, we
will now have that

ðx∂x − y∂yÞδð2Þðx − x0Þ ¼ 0: ð5:18Þ

The term arising from the y piece cancels the one arising
from the x piece. One may now wonder if introducing a
metric perturbation hyy in addition to hxx would resolve the
issue. For instance, consider splitting the metric perturba-
tions on the future and past horizons as

habðx; yÞ ¼ hþabðxÞδðyÞ þ h−abðyÞδðxÞ; ð5:19Þ

11Analytically continuing n to zero neutralizes the extra factor
of 1. This would correspond to situation where no gravitons are
exchanged, and the particles move without interactions. This also
accounts for the normalization, which arises from the discon-
nected product of two-point functions.
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where h−ab is defined on the past horizon while hþab on the
future horizon. This does not solve the problem, as can be
checked; in addition to terms proportional to λ, additional
λþ 2 terms arise. One may be tempted to further restrict the
perturbations as (see Sec. 2.3 of [14])

hxxðx;yÞ¼h−xxðyÞδðxÞ and hyyðx;yÞ¼hþyyðxÞδðyÞ: ð5:20Þ

But with this, we recover the on shell Shapiro delay again.
Therefore, if we are to restrict the possible metric pertur-
bations, the only resulting possibility is the on shell Dray-’t
Hooft solution, leaving the different factor in (5.11) still
mysterious.
In the black hole eikonal limit, we saw that the transverse

mode K does not contribute. So, it suffices to focus on the
relevant part of the action (4.17),

S ¼ 1

4

Z
d2xðhxxΔ−1

xxyyhyy þ ðx ↔ yÞÞ: ð5:21Þ

Focusing on the Δ−1
xxyy term, and plugging in the Shapiro

delay perturbations (5.20) into the above action, we find

S¼ −
1

8
μ2
Z

d2xhþyyðxÞδðyÞðλþ 1þ x∂x − y∂yÞh−xxðyÞδðxÞ:

ð5:22Þ

The factor x∂xδðxÞ can be integrated by parts,Z
dxhþyyðxÞx∂xδðxÞ¼−

Z
dxδðxÞ∂xðxhþyyðxÞÞ

¼−
Z

dxδðxÞð1þx∂xhþyyðxÞÞ; ð5:23Þ

where the boundary terms cancel exactly because
δð�∞Þ ¼ 0. Using this relation, the above action can be
rewritten as

S ¼ 1

4

Z
d2xhþyyðxÞδðyÞ

�
−
1

2
μ2λ

�
h−xxðyÞδðxÞ

þ 1

8

Z
d2xδðxÞδðyÞðx∂x þ y∂yÞh−xxðyÞhþyyðxÞ: ð5:24Þ

The last term is now easily simplified since the delta
functions do not have any derivatives on them anymore.
Therefore, we may simply remove the integrals and set
x ¼ 0 ¼ y. However, in that case x∂x þ y∂y ¼ 0 provided
h−xxð0Þ and hþyyð0Þ are regular. We therefore have

S ¼ 1

4

Z
d2x

�
hxx
�
−
1

2
μ2λ

�
hyy þ ðx ↔ yÞ

�
; ð5:25Þ

where we reinserted (5.20). Comparison with (5.21) now
shows that we can identify Δ−1

xxyy ¼ − 1
2
μ2λ. Inversion is

now straightforward,

Δxxyy ¼ Δyyxx ¼ −
2

μ2λ
¼ −

2

μ2ðl2 þ lþ 1Þ : ð5:26Þ

This gives the on shell Shapiro delay factor to reproduce
(5.12). This proves that the discrepancy between (5.12)
and (5.11) really arises from a choice of the specific shape
of the metric perturbations made in the first quantization
calculations of [42–44]. Considering the l ¼ 0 mode,
which is the most dominant, this results in a factor of
two compared to the first quantization calculations. To
understand this better, we first note that the general
operators (3.90) can be written, using (4.2) as

Δ−1 ¼ −∂2 þ AR
r3

; ð5:27aÞ

Δ−1
R;ab ¼ −ηab

�
∂
2 þ A

2rR

�
1 −

r
R

�
xc∂c −

A2x2

8r2R2

�
2 −

r2

R2

�
−

A
2r2

�
lðlþ 1Þ þ 2

r
R
−
R
r

��
þ ∂a∂b −

A
2rR

�
1 −

r
R

�
xða∂bÞ −

A2x2

4r2R2

�
2þ 2

r
R
þ r2

R2

�
xaxb; ð5:27bÞ

Δ−1
L;ab ¼ −ηab

�
∂
2 þ A

2rR

�
1 −

r
R

�
xc∂c −

A
2r2

�
lðlþ 1Þ − R

r

��
þ ∂a∂b þ

A
2rR

�
1 −

r
R

�
xða∂bÞ; ð5:27cÞ

Δ−1
abcd ¼

A
4rR

ðηacx½b∂d� þ ηbdx½a∂c� þ ηadx½b∂c� þ ηbcx½a∂d� þ 2ηabxðc∂dÞ − 2ηcdxða∂bÞÞ

þ ηabηcd

�
AR
2r3

þ Alðlþ 1Þ
2r2

þ A
2rR

þ A2x2

8r2R2

�
1þ r

R

��
− ηaðcηdÞb

�
AR
r3

þ Alðlþ 1Þ
2r2

þ A2x2

4r2R2

�
1þ r

R

��
−

A2

4r2R2

�
1þ r

R

�
ηabxcxd þ

A2

4r2R2
ηcdxaxb: ð5:27dÞ
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As it turns out, there are three different approximations12

that one may make on these operators to simplify them to
an analytically invertible form. One of them is the approxi-
mation that we have described in detail in Sec. IVA.
Another approximation is what may be termed as the
“leading-order near-horizon approximation” where we
blithely evaluate the operators on the bifurcate horizon
to leading order by setting r ¼ R, and uv ¼ x2 ¼ 0.
Moreover, to leading order, we also set all terms linear
in xa to zero. This simplifies these operators tremendously.
In particular, if the fields are regular on the horizon, we may
also ignore terms with single derivatives in this approxi-
mation. The resulting operators can easily be inverted
following the techniques we employed in Sec. IV B. The
propagators so obtained can be checked to give the eikonal
amplitude we found in (5.11). In hindsight, therefore, the
detailed keeping track of the single derivative terms in
Sec. IVA may have been unnecessary to leading order.
Alternatively, another approximation that may be made on
the above operators is what we may call the “shockwave
approximation” where in addition to imposing x2 ¼ 0,
we also demand that the field configurations satisfy the
condition that xahab ¼ xhxb þ yhyb is negligible.13 This
condition may be understood as the demand on the horizon,
say described by x ¼ 0, that hyb is negligible. This is a
covariant way to express the restriction to shockwave field
configurations we found above. Carefully implementing
this approximation and evaluating the eikonal amplitude
following the techniques of Sec. V, we directly find the
amplitude (5.12). Therefore, the discrepancy may finally be
concluded to emerge from two possible approximations
that we may make on the quadratic operators that lead to
different analytic results.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have argued that the geometric optics
approximation of Hawking is invalid when the wave fronts
are traced back to the region near the central causal
diamond (see Fig. 9) for finite sized black holes; this is
owed to the strong gravitational interactions in this region.
To repair this problem, we studied 2 → 2 scattering
mediated by virtual gravitons, near this region; this near
horizon region is curved and the familiar eikonal phase
around flat space does not capture this physics. We found
that there is a remarkable limit in quantum gravity, namely
the

ffiffiffi
s

p
≫ γMPl regime near the black hole horizon, where

an infinite number of graviton exchange diagrams can be
resummed exactly in γ ∼MPl=MBH. We name this the black

hole eikonal phase of quantum gravity. Only upon this
resummation does one recover a scattering matrix that is a
pure phase.
While in this paper we have only study the elastic 2 → 2

amplitudes which are naturally suppressed at high energies,
the effective field theory we set up captures exponentially
many such general 2 → N amplitudes. We leave the study
of these amplitudes for future work. We expect that these
conspire to provide for a resolution to the information
paradox. Indeed, several authors have argued that the
information paradox is expected to be resolved by 1=N
effects. It has been argued that N may be interpreted as the
occupation number of the number of coherent gravitons
that represent the black hole state [18,81]. It may be
interesting to note that the coupling constant of the tree-
level 2 → 2 diagram naturally comes with two powers of
the coupling constant γ2 which is precisely 1=N. Both the
black hole eikonal ladder (which includes loop corrections
to the tree-level diagram and comes with higher powers
of γ as we explicitly computed in the present article) and
(tree-level) 2 → N diagrams capture higher order 1=N
corrections.
Moreover, our calculation explicitly ignores any poten-

tial Planckian physics (by the choice that impact parameters
be larger than Planck length). Ultraviolet completions are
hidden in the hard sector, whereas the calculation forced us
to consider soft gravitons with vanishing momenta in all the
ladder diagrams. Given the universality of the result, the
problem of unitarity (in effective field theory) itself does
not seem to guide us to a specific ultraviolet completion
of quantum gravity. Nevertheless, there is a clear path to
include subleading corrections arising from the transverse
scalar field K, the odd-parity graviton mode, and the
subleading contributions in the black hole eikonal limit.
None of these may be analytically resummable to all orders,
but the techniques developed in this article certainly lay
the path for order-by-order inclusions of these effects, in
perturbation theory. It is not impossible or unreasonable
that a theory such as string theory may emerge in the
ultraviolet [87,88].
Of course, in addition to the shortcomings pointed out in

the companion article [78], a natural complaint that may be
raised is that the apparent horizon is radically different in
nature to a Schwarzschild horizon. This is a complaint that
may have been raised against Hawking’s computation too.
Even for collapsing black holes, provided they are large
enough, this is expected to be a reliable approximation.
A perhaps more realistic apparent horizon is shown in

Fig. 10, taken from [89]. While trapped surfaces were
shown to dynamically form in Christodoulou’s monumen-
tal work [90], apparent horizons (which are marginally
trapped) have also been proved to dynamically form [91].
Moreover, black hole mechanics can be established for
apparent horizons should they be smooth and spacelike
[92,93]. In the present article, the most important ingredient

12In all of these, we assume that the gravitons are regular on the
horizon. While the shockwave has a discontinuity on the horizon,
as we explain in the following, the relevant quantity for the
shockwave approximation is xahab which is indeed regular.

13In implementing this condition, care must be taken to keep
track of terms of the form xa∂bhac¼−δabhacþ∂bðxahacÞ¼hbc.
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that came from the horizon is the conformal flatness of the
effective two-dimensional metric that allowed us to derive
the effective two-dimensional propagator. Given that the
soft limit of the graviton propagator was the only necessary

component in the end, a more realistic model of the
apparent horizon may only change the soft factor, leaving
behind the general lessons learnt unchanged.
Given the insensitivity of the resolution presented in this

article to ultraviolet physics, it is natural to ask how the
corrections we computed compare with those required for
some of the existing proposals for the resolution of the
information paradox. Here, we consider a few proposals
and speculate on this matter.

A. Soft hair

Renewed interest in asymptotic symmetries has also
provided hope that soft quantum hair could pave the way
forward to information recovery from the horizon; it has
also been shown that shockwaves inserted on past infinity
implant soft hair on the horizon [94–98]. More generally,
the soft sector of the gravitational scattering matrix has also
received recent attention [99]. In fact, the Dray-’t Hooft
metric can be shown to arise from supertranlsations and to
contain superrotation charges on the horizon [100,101].
Given that the backreacted Dray-’t Hooft solution is closely
related to what can be derived from the resummed
amplitude (5.10), it is not inconceivable that the scattering

FIG. 9. In Hawking’s calculation of thermal radiation emanating from the black hole [1,2], wave fronts were naively extended to the
past, near the central causal diamond, and further back on to the past horizon. In this article we argued that this is invalid owing to
the strong gravitational interactions near the horizon that result in graviton exchange processes between in and out going quanta; the
exchanged off shell gravitons are found to be soft.

FIG. 10. A depiction of a more realistic apparent horizon than the
crude approximation made in this article. Figure taken from [89].
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matrix can be (at least partially) recast in the language
of soft hair on the horizon; it is also worthwhile to note
there are no infrared divergences in our calculations.
Furthermore, the black hole eikonal phase may have
interesting implications for (subdominant) soft graviton
theorems near the horizon.

B. Islands

An increasingly popular suggestion is that information
recovery must be seen to arise from additional saddles
leading to the so called island formula that is claimed to
trace the correct Page curve behavior to restore unitarity
[102–104]. Morally speaking, islands imply that informa-
tion behind the horizon is captured by radiation. This is
consistent with the present calculation and in fact, our
calculation shows a dynamical process that achieves this;
namely, via graviton exchange. The general lessons from
the island computations may be seen as twofold: (i) unitarity
in black hole evaporation does not necessarily rely on the
ultraviolet details of the theory, and (ii) information
retrieval is a nonperturbative process. The present calcu-
lation is in line with both of these expectations. An
interesting caveat in the island computations is the neces-
sity of massive gravitons for black holes in dimensions
greater than three [105,106]. Finally, given a unitary
scattering matrix that describes evolution, the notion of a
Page curve is unnatural in the scattering process. Should
one insist on the Page curve and generate the information
paradox, one may simply set γ ∼

ffiffiffiffiffiffiffi
GN

p
=RS ¼ 0; this

essentially ignores all the interactions that may resolve
the problem. However, in our effective field theory, Page
time is likely to naturally arise from longer Wigner’s time
delays from general 2 → N scattering matrices, whereas
scrambling time is naturally encoded in the resummed
2 → 2 amplitude [44] under consideration in the
present paper.

C. Fuzzballs

A traditional black hole has been called by Mathur as an
“information-free” one, and small corrections have been
claimed to be insufficient to restore unitarity [107]. Instead,
new fuzzy structure is introduced, and an exponentially
large number of such structures are claimed to explain the
degeneracy of states. Our calculation shows that the
Schwarzschild horizon is not information free in that it
hosts soft gravitons. Although the fuzzball line of thought
may question if a classical horizon forms at all [108], it
needs to be reconciled with the expectation that apparent
horizons do dynamically form [91]. It is clear, in either
case, that our calculation and the fuzzball proposal would
yield different gravitational wave echoes leaking out of the
classical Regge-Wheeler potential. The present calculation
has no free parameters and may provide for disambiguation
[109]. Finally, it is worthwhile to note that precise state-
ments made about fuzzballs have often been in the context

of supersymmetric, extremal, or near extremal black holes
inspired from string theory. In the present article, we make
no assumptions about a putative ultraviolet completion.

D. Soft but strong corrections

Giddings has suggested that the resolution of the
information paradox will require “soft but strong” correc-
tions to the traditional Hawking calculation; see [110] and
references therein. In our calculation, the exchanged virtual
gravitons near the horizon are soft.

E. Holographic null infinity

Another recent proposal for the resolution of the infor-
mation paradox is that the information can always be
recovered from an infinitesimal neighborhood of the past
boundary of future null infinity [111,112]. However, this
proposal refers to the information present in a Cauchy slice
at a specific instant in time and how this is retrievable
from the boundary of the said slice. This is insufficient to
draw conclusions about information preservation between
Cauchy slices at different time slices, namely the S-matrix.

F. Planckian remnants

Given that a unitary scattering matrix can be achieved
with impact parameters b ≫ LPl, the present calculation
leads us to expect that one need not rely on the details of
Planckian physics for the information problem.

VII. OUTLOOK AND FUTURE WORK

Several directions for future work are listed in the
companion article [78]. Here, we list a few more.
In the present article, we only considered three-point

interaction vertices that came with one solid line and one
dashed line (corresponding to one field with angular
momentum and another without). It would be interesting
to understand the role that vertices and diagrams of the
kind in Fig. 11 may play in the theory. It would also be
interesting to extend our calculation to include additional
external legs, and massive scalar fields. In the latter case
in particular, the hxy component of the graviton is now
expected to contribute. While the former might allow for an
obvious extension of the chaos bound [26] to n-point
functions. It is of course also interesting to explore the role
of additional nonlinearities arsing from graviton self-
couplings, in the soft limit. For instance, a three-point
self-interaction would immediately allow for a study of
2 → 2 graviton scattering [113]. This would allow us to ask
if there are “graviballs” near the horizon, much like
glueballs in QCD. Studying graviballs in the flat space
eikonal regime introduces the familiar infrared divergences
and unfixed parameters [114]. These may be naturally
addressed near the horizon using the tools developed in
this article.
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Owing to the Weyl rescaling we were able to perform
in Sec. III H 1, we could define flat space kinematics
despite being in a gravitationally interacting regime. This
means that essentially every improvement done on flat
space eikonal physics could potentially be repeated near
the horizon using our techniques. Effective two-
dimensional theories to study this region have long been
sought after [115–117]. Our two-dimensional effective
theory may well provide for a good starting point. Some
microscopic proposals for two-dimensional models may
be found in [118,119].
It would also be interesting to explore if an emergent

scale can be incorporated into Schwarzian quantum
mechanics to capture the subleading dynamics (governed
by the field K resulting in the tree-level amplitude (4.69),
for instance) of four-dimensional black holes, in an analysis
similar to the one carried out in [33].
The flat-space eikonal phase has also been extended to

anti–de Sitter (AdS) spacetimes [120–124]. The Regge-
Wheeler gauge is also well-understood in AdS [125,126].
All results and analyses in the present article can easily be
extended to AdS. This should provide a window into
studying the information paradox for small black holes
in AdS. Moreover, a boundary calculation of the resum-
mation of the ladder diagrams on the horizon is also
of significant interest. An eikonal exponentiation in the
context of Out-of-time-ordered correlators (OTOCs) in 2D
holographic CFTs and their relevance to extremal Bañados-
Teitelboim-Zanelli black holes and corresponding micro-
state geometries was recently discussed in [127,128].
Another avenue worth exploring is the relevance of the

black hole eikonal phase introduced in this article for
general constraints on graviton couplings [129–131].
It is also interesting to explore any observational

consequences of the black hole eikonal phase [109], for

the distant observer; this requires an accounting of the
classical Regge-Wheeler potential further away from
the horizon.
To end, it would be a grave injustice to nature to not refer

to another important emergent scale in quantum gravity,
namely the size of the cosmological horizon. It shares
features with the black hole horizon [132] and appears to
have a large number of hitherto unexplained microstates.
Although the appropriate asymptotic gauge-invariant states
are far more tricky to define in quantum cosmology, the
possibility of near-horizon asymptotic states giving rise
to a cosmological eikonal phase of quantum gravity shall
certainly not be lost on us.
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APPENDIX A: METRIC FLUCTUATIONS

1. Quadratic action

We start with the Einstein-Hilbert action:

SEH ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄: ðA1Þ

Metric fluctuations are defined in the background field
method about an arbitrary background as ḡμν ¼ gμν þ κhμν.
Assuming that the background gμν is a vacuum solution of
the equations of motion implies that the on shell action and
the variation of it to linear order in hμν vanish. In the soft
limit, therefore, the path integral is dominated by quadratic
terms in hμν,

Sð2Þ ¼
1

2

Z
d4x
Z

d4x0
δ2SEH

δḡμνðxÞδḡρσðx0Þ
����
ḡ¼g

hμνðxÞhρσðx0Þ:

ðA2Þ

We now expand
ffiffiffiffiffiffi−gp

and R then

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffi
−g

p �
1þ 1

2
κhþOðκ2h2Þ

�
; ðA3Þ

R̄ ¼ Rð1Þ þ Rð2Þ þOðh3Þ; ðA4Þ

FIG. 11. The vertices considered in this article had a solid and a
dashed line, whereas diagrams of this kind are possibly also
allowed. Given that these would exchange the s-wave graviton,
they may be crucial in determining the change in mass of the
black hole due to the scattering.

SOFT GRAVITON EXCHANGE AND THE INFORMATION … PHYS. REV. D 109, 026007 (2024)

026007-33



where we defined h ¼ gμνhμν and the subscripts on the
Ricci scalar stand for the order in the metric fluctuations.
We can then write

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ ffiffiffiffiffiffi

−g
p �

−
�
hμν −

1

2
gμνh

�
Rð1Þ
μν þ gμνRð2Þ

μν

�
; ðA5Þ

where we have only written the quadratic terms. Therefore,
we have

S2¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
�
hμν−

1

2
gμνs h

�
Rð1Þ
μν þgμνRð2Þ

μν

�
: ðA6Þ

a. Variation of the Ricci tensor

The Palatini identity gives a variation of the Ricci tensor
δR̄ ¼ R½gþ κh� − R½g�,

δRμν ¼ ∇ρδΓ̃
ρ
μν −∇νδΓ̃

ρ
ρμ with δΓ̃ ¼ Γ½gþ κh� − Γ½g�;

ðA7Þ

where the covariant derivatives are associated to the
background metric. Since this identity holds to all orders

in perturbation theory, we observe that Rð2Þ
μν is in fact a total

derivative. Therefore, the term containing Rð2Þ
μν vanishes

identically owing to vanishing boundary conditions. We
therefore only need to find δR̄μν up to first order since
Rμν ¼ 0 for the background vacuum solution. We write the
first order variation as

Rð1Þ
μν ¼ ∇ρΓ

ð1Þ;ρ
μν −∇νΓ

ð1Þ;ρ
ρμ : ðA8Þ

The variation of the Christoffel symbol to first order is
written as follows:

δΓ̄ρ
μν ¼−

1

2
hρσð∂μgσνþ ∂νgσμ− ∂σgμνÞþ

1

2
gρσð∂μhσνþ ∂νhσμ− ∂σhμνÞ

¼−hραgαβΓ
β
μνþ 1

2
gρσð∇μhσνþ∇νhσμ−∇σhμνÞþ

1

2
gρσð Γα

μσhαν1þΓα
μνhασ þ Γα

νσhαμ2þΓα
μνhασ − Γα

σμhαν1− Γα
σνhανÞ2

¼− hραgsαβΓ
0;β
μν

3þ gρσs

�
∇s

ðμhνÞσ −
1

2
∇s

σhμν

�
þ gρσs Γ0;α

μν hασ
3; ðA9Þ

where the identically numbered terms cancel each other in
the last two lines. The Ricci tensor is thus given by

Rð1Þ
μν ¼ 1

2
gρσð∇ρ∇μhνσ þ∇ρ∇νhμσ −∇ρ∇σhμν −∇μ∇νhρσÞ

¼ 1

2
ð2∇σ∇ðμhνÞσ −□hμν −∇μ∇νhÞ: ðA10Þ

In addition to the kinetic term for the matter fields, we also
have the interaction term given by

Sint ¼ −
Z

d4x
δSM

δḡμνðxÞ
����
ḡ¼g

hμνðxÞ: ðA11Þ

APPENDIX B: SOME DEFINITIONS AND
CALCULATIONS

1. Metric and coordinates

We work in Kruskal-Szekeres coordinates that are
defined as

xy ¼ 2R2

�
1 −

r
R

�
e

r
R−1; ðB1Þ

x=y ¼ e2τ: ðB2Þ

Here τ ¼ t
2R. We will often write these as a two-vector xa

where xx ¼ x, xy ¼ y. Here a ¼ fx; yg denotes a light cone
index and A ¼ fθ;ϕg a two-sphere index. The quantity R is
the Schwarzschild radius

R ¼ 2GM; μ≡ 1

R
; ðB3Þ

where we will work with the effective mass μ more often.
We work in natural units where ℏ ¼ c ¼ 1. The metric in
these coordinates is given by

ds2 ¼ −2AðrÞdxdyþ r2dΩ2; ðB4Þ

AðrÞ ¼ R
r
e1−

r
R; ðB5Þ

where r ¼ rðx; yÞ is a function of both the light
cone coordinates. Our metric convention is the
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ð−;þ;þ;þÞ signature. This metric has the following
matrix definitions:

gμν ¼

0BBB@
0 −A 0 0

−A 0 0 0

0 0 r2 0

0 0 0 r2sin2θ

1CCCAgμν

¼

0BBB@
0 −A−1 0 0

−A−1 0 0 0

0 0 r−2 0

0 0 0 r−2sin−2θ

1CCCA: ðB6Þ

On r ¼ R we find A ¼ 1 such that the metric is given by

ds2 ¼ −2dxdyþ R2dΩ2; ðr ¼ RÞ: ðB7Þ

a. Light cone derivatives

Here we list the derivatives of A and r with respect to the
light cone coordinates. The derivative on r can be found by
implicit differentiation on (B1) to be

∂ar ¼
1

2R
xa; ðB8Þ

where xa ¼ gabxb. The derivative of AðrÞ is then

∂aA ¼ ∂rA∂ar ¼ −
A
2R

�
1

r
þ 1

R

�
xa: ðB9Þ

When evaluated on r ¼ R these functions have the follow-
ing derivatives on the horizon:

∂aA ¼ ∂ar ¼ 0; for any a on r ¼ R; ðB10Þ

∂x∂yr

����
r¼R

¼ −
1

2R
; ðB11Þ

∂x∂yA

����
r¼R

¼ 1

R2
: ðB12Þ

b. Christoffel symbols

The nonvanishing Christoffel symbols of the
Schwarzschild metric in Kruskal-Szekeres coordinates
are given by

Γx
xx ¼ ∂x logA; ðB13Þ

Γy
yy ¼ ∂y logA; ðB14Þ

Γθ
θx ¼ Γθ

xθ ¼ Γϕ
ϕx ¼ Γϕ

xϕ ¼ ∂x log r; ðB15Þ

Γθ
θy ¼ Γθ

yθ ¼ Γϕ
ϕy ¼ Γϕ

yϕ ¼ ∂y log r; ðB16Þ

Γϕ
θϕ ¼ Γϕ

ϕθ ¼ − sin−2 θΓθ
ϕϕ ¼ cot θ; ðB17Þ

Γx
θθ ¼ sin−2θΓx

ϕϕ ¼ 1

2A
∂yr2; ðB18Þ

Γy
θθ ¼ sin−2 θΓy

ϕϕ ¼ 1

2A
∂xr2: ðB19Þ

c. The Riemann tensor

We define the Riemann tensor as

Rρ
μσν ¼ ∂σΓ

ρ
μν − ∂νΓ

ρ
μσ þ Γρ

σκΓκ
μν − Γρ

μκΓκ
σν: ðB20Þ

The Ricci tensor is then given by

Rμν ¼ Rρ
μρν: ðB21Þ

For the Schwarzschild metric the Ricci tensor and scalar
vanish identically. Here we list all nonvanishing compo-
nents of the Riemann tensor:

Rxyxy ¼ ∂x∂y logA; ðB22Þ

Rxθxθ ¼
r∂xA∂xr − A∂2xr

A
; ðB23Þ

Rxϕxϕ ¼ sin2θRxθxθ; ðB24Þ

Ryθyθ ¼
r∂yA∂yr − A∂2yr

A
; ðB25Þ

Ryϕyϕ ¼ sin2θRyθyθ; ðB26Þ

Rxθyθ ¼ −r∂x∂yr; ðB27Þ

Rxϕyϕ ¼ sin2θRxθyθ; ðB28Þ

Rθϕθϕ ¼ r2sin2θ

�
1þ 2∂xr∂yr

A

�
: ðB29Þ

2. The antisymmetric Levi-Civita tensor

Here we define the antisymmetric tensor on S2 by

ϵAB ¼ r2 sin θ

�
0 1

−1 0

�
; ðB30Þ
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i.e., ϵθϕ ¼ r2 sin θ ¼ −ϵϕθ. Raising and lowering goes with
the metric, so for the more common form ϵA

B we have

ϵA
B ¼

�
0 sin θ

− csc θ 0

�
: ðB31Þ

Lastly for the twice raised form we have

ϵAB ¼ 1

r2 sin θ

�
0 1

−1 0

�
: ðB32Þ

The antisymmetric tensor on the light cone is defined
similarly, although now we work on r ¼ R. It is given by

ϵab ¼
�

0 1

−1 0

�
; ϵab ¼

�
0 1

−1 0

�
: ðB33Þ

3. Quadratic operators reduced to two dimensions

In this appendix we formulate the relevant quantities in
the action (3.66) in terms of the two-dimensional metric
gab, its corresponding derivatives, and the residual curva-
ture components arising from the two-sphere. In deriving
these identities it is crucial that

∂AK ¼ ∂AHa
b ¼ 0; ðB34Þ

gaA ¼ 0; ðB35Þ

ΓA
ab ¼ Γa

bA ¼ 0: ðB36Þ

These ensure a clear split between the light cone and two-
sphere contributions. The terms proportional to lðlþ 1Þ
in the definition of G in (3.65) are straightforward. Since
hab ¼ Ha

b and hAB ¼ δABK, the only components of interest
are GA

Aρ
σ and Ga

bρ
σ. The two-sphere indices are always

contracted. As it turns out, checked by explicit calculation,
ΓA
BC cancels in the calculation, largely owing to either (B34)

or the fact that the two-sphere indices are contracted.
Furthermore, using (B34) and (B36) we find that the only
curvature remnant of the two-sphere is neatly embedded in
the following vector potential

Va ≔ ΓA
Aa ¼ −gabgABΓb

AB: ðB37Þ

We now write down all calculated expressions in terms of
the light cone metric and Va. The first relevant expression is

GA
Aρ

σhρσ ¼2∇ρ∇AhAρ −2∇σ∇ρh
ρ
σ−∇A∇Ahþ2□h−□hAA:

ðB38Þ

Each of these terms can be expressed in terms of the
two-dimensional quantities

∇ρ∇AhAρ ¼ e∇aðVbHb
aÞþ

3

2
VaVbHb

a−ðe∇aVaÞK−
3

2
VaVaK;

ðB39Þ

∇σ∇ρh
ρ
σ ¼ ∇̃a∇̃bHb

a þ Va∇̃bHb
a þ ∇̃aðVbHb

aÞ
þ VaVbHb

a − ∇̃aðVaKÞ − VaVaK; ðB40Þ

∇A∇Ah ¼ Va∇̃aHb
b þ 2Va∇̃aK; ðB41Þ

□h ¼ □̃Ha
a þ Vb∇̃bHa

a þ 2□̃K þ 2Vb∇̃bK; ðB42Þ

□hAA ¼ VaVbHa
b þ 2□̃K þ 2Va∇̃aK − VaVaK: ðB43Þ

The other relevant expression is given by

Ga
bρ

σhρσ ¼ ∇ρ∇bhaρ þ∇ρ∇ahρb − δab∇σ∇ρh
ρ
σ −∇a∇bh

þ δab□h −□hab: ðB44Þ

These terms separately give

∇ρ∇bhaρ ¼ ∇̃c∇̃bHa
c −

1

2
VcVbHa

c þ Vc∇̃bHa
c

− Va∇̃bK þ 1

2
VaVbK; ðB45Þ

∇ρ∇ahρb ¼ ∇̃c∇̃aHc
b −

1

2
VcVaHc

b þ Vc∇̃aHc
b

− Vb∇̃aK þ 1

2
VaVbK; ðB46Þ

∇σ∇ρh
ρ
σ ¼ ∇̃a∇̃bHb

a þ Va∇̃bHb
a þ ∇̃aðVbHb

aÞ
þ VaVbHb

a − ∇̃aðVaKÞ − VaVaK; ðB47Þ

∇a∇bh ¼ ∇̃a∇̃bHd
d þ 2∇̃a∇̃bK; ðB48Þ

□h ¼ □̃Hb
b þ Va∇̃aHb

b þ 2□̃K þ 2Va∇̃aK; ðB49Þ

□hab ¼ □̃Ha
b −

1

2
VcVaHc

b −
1

2
VcVbHa

c

þ Vc∇̃cHa
b þ VaVbK: ðB50Þ

All these expressions are covariant on the light cone.

4. Integrating the two-sphere out

In this section we present the details of the derivation of
the action (3.69),

Seven ¼
1

4

Z
dx2

ffiffiffiffiffiffi
−g̃

p
ðH̃abΔ̃−1

abcdH̃
cd þ H̃abΔ̃−1

L;abK̃

þ K̃Δ̃−1
R;abH̃

ab þ K̃Δ̃−1K̃Þ: ðB51Þ
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Our starting point is

Seven ¼ −
1

8

X
l;m

Z
d2xAðrÞr2ðhlmÞμνGl

ν
μρ

σðhlmÞρσ; ðB52Þ

Gl
ν
μρ

σ ¼ Gν
μρ

σ −
lðlþ 1Þ

2r2
ðδμνδσρ þ δμaδaνδ

σ
bδ

b
ρ − 2δμρδσνÞ:

ðB53Þ

Thus, we need to find the proper field transformations
and operator redefinitions such that the above actions are
identical. As mentioned earlier, the initial step will be to
split spacetime into the light cone gab and two-sphere gAB
pieces. The choice of field transformations will then appear
naturally. For what is to come, identities in Appendix B 3
are crucial.
To find all relevant couplings between Hab and K we

now first split the degrees of freedom in hμνGν
μρ

σhρσ. To do
so we are only interested in KGA

Aρ
σhρσ and Hb

aGa
bρ

σhρσ.
Using the identities listed in Appendix B 3 we find that for
all relevant quantities in (3.69)

G̃ ¼ 2□̃þ 2Va∇̃a; ðB54Þ

G̃R;ab ¼ 2gab

�
□̃þ 1

2
Vc∇̃c −

lðlþ 1Þ
2r2

�
− 2ð∇̃a∇̃b þ Vða∇̃bÞÞ; ðB55Þ

G̃L;ab ¼ 2gab

�
□̃þVd∇̃d þ 1

2
∇̃dVd þ

1

2
VdVd −

lðlþ 1Þ
2r2

�
− 2ð∇̃a∇̃b þVða∇̃bÞÞ; ðB56Þ

G̃abcd ¼ gac∇̃d∇̃b þ gacVd∇̃b þ gbd∇̃c∇̃a þ gbdVc∇̃a

− gabð∇̃c∇̃d þ 2Vðc∇̃dÞ þ VcVd þ ð∇̃ðcVdÞÞÞ

− gcd∇̃a∇̃b þ gabgcd

�
□̃þ Ve∇̃e −

lðlþ 1Þ
r2

�
− gacgbd

�
□̃þ Ve∇̃e −

lðlþ 1Þ
r2

�
: ðB57Þ

Here we have used that all quantities are now finally
covariant on the light cone; this explains the conventional
covariant index form. We also defined the residual curva-
ture tensor of the two-sphere

Va ¼ 2∂a log r: ðB58Þ

We can now simplify (B57) since we are in two dimen-
sions; explicit calculation of all double covariant derivative
terms for G̃xxcdHcd, G̃yycdHcd and G̃xycdHcd shows that we
can identify

− R̃acbdHcd þ gacR̃bdHcd

¼ gac½∇̃d; ∇̃b�Hcd

¼ ðgac∇̃d∇̃b þ gbd∇̃c∇̃a − gab∇̃c∇̃d

− gcd∇̃a∇̃b þ gabgcd□̃ − gacgbd□̃ÞHcd: ðB59Þ

The Riemann and Ricci tensors above are on the light cone.
Since the Riemann tensor has only one unique component
in two dimensions (namely R̃xyxy), we can now write,

Racbd ¼
R2d

2
ðgabgcd − gadgbcÞ; ðB60Þ

Rbd ¼
R2d

2
gbd; ðB61Þ

R2d ¼
2

A
∂x∂y logA: ðB62Þ

The covariant derivatives above, therefore, only contribute
the following:

R2d

2
ðgadgbc − gabgcd þ gacgbdÞHcd

¼ R2d

2
ð2gacgbd − gabgcdÞHcd: ðB63Þ

A similar procedure for all the first derivatives shows that

ðgacVd∇̃b þ gbdVc∇̃a − 2gabVðc∇̃dÞ þ gabgcdVe∇̃e − gacgbdVe∇̃eÞHcd

¼ ðgacV ½d∇̃b� þ gbdV ½c∇̃a� − gabVðc∇̃dÞ þ gcdVða∇̃bÞÞHcd: ðB64Þ

Finally, we can define the operator as

G̃abcd ¼ gacV ½d∇̃b� þ gbdV ½c∇̃a� − gabðVðc∇̃dÞ þ VcVd þ ð∇̃ðcVdÞÞÞ þ gcdVða∇̃bÞ

− gabgcd

�
R2d

2
þ lðlþ 1Þ

r2

�
þ gacgbd

�
R2d þ

lðlþ 1Þ
r2

�
: ðB65Þ
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In what follows, we will work with this simplified form.
The only fact we used to derive all these simplifications is
that gxx ¼ gyy ¼ 0, i.e., the form of the metric. Using these
operators the Lagrangian is written as

Leven ¼ −
r2

8
HabG̃abcdHcd −

r2

8
HabG̃L;abK

−
r2

8
KG̃R;abHab −

r2

8
KG̃K: ðB66Þ

Now there is a disconcerting presence of r2 in this
Lagrangian. Since the metric is now gab, not all covariant
derivatives commute with r2. This means that the
Lagrangian is not properly symmetric between the degrees
of freedom. To resolve this, we absorb the residual r2 into
the fields, so we redefine H̃ab ¼ rHab, K̃ ¼ rK.

a. The light cone fields

We will now write the Lagrangian in terms of the
redefined light cone fields H̃ ¼ rH and K̃ ¼ rK. To do
so, we first inspect the quantity Va ¼ 2∂a log r, from which
we can define a derivative

Da ≔ ∇̃a þ
1

2
Va ¼

1

r
∇̃ar: ðB67Þ

By replacing every covariant derivative ∇̃a in (B54)–(B57)
by Da (using ∇̃a ¼ Da − 1

2
Va), we can use (B67) to

remove one r from the r2 on the left-hand side in (B66)
and introduce an r on the right-hand side. This automati-
cally gives the symmetric form in r, from where we can
redefine the fields appropriately. This gives the final
effective two-dimensional theory in (3.68).
The results with the new derivatives (B67) are

G̃ ¼ 2D2 − 2Fa
a; ðB68Þ

G̃R;ab ¼ 2gab

�
D2 −

1

2
VcDc þ 1

4
VcVc − Fc

c −
lðlþ 1Þ

2r2

�
− 2ðDaDb − FabÞ; ðB69Þ

G̃L;ab ¼ 2gab

�
D2 þ 1

2
DcVc þ

1

4
VcVc − Fc

c −
lðlþ 1Þ

2r2

�
− 2ðDaDb − FabÞ; ðB70Þ

G̃abcd ¼ gacV ½dDb� þ gbdV ½cDa� − gab

�
DðcVdÞ þ

1

2
VcVd

�
− gcd

�
−VðaDbÞ þ

1

2
VaVb

�
− gabgcd

�
R2d

2
þ lðlþ 1Þ

r2

�
þ gacgbd

�
R2d þ

lðlþ 1Þ
r2

�
: ðB71Þ

Here, we defined D2 ¼ DaDa and the new quantity

Fab ≔
1

2
DðaVbÞ ¼

1

r
∇̃a∇̃br; ðB72Þ

which is a symmetric tensor (not an operator). Notice
that the fact that Fab is symmetric is a natural result from
commutativity of covariant derivatives when acting on a
scalar. Now, because Da ¼ 1

r ∇̃ar, we also have that
D2 ¼ 1

r □̃r. In this sense we pull a single r from the
left side to the right side. For the scalar field, for instance,
we have

Kr2G̃K¼2Kr2ðD2−Fa
aÞK ⟶

D→1
r∇̃r

2Krð□̃−Fa
aÞrK: ðB73Þ

We may now consistently make the field redefinitions
H̃ab ¼ rHab, K̃ ¼ rK, to we end up with 2K̃ð□̃ − Fa

aÞK̃.
Carrying the same procedure for all other fields, i.e.,
inserting D ¼ 1

r ∇̃r and the redefined fields, results in
the following Lagrangian

Leven ¼
1

4
H̃abΔ̃−1

abcdH̃
cd þ 1

4
H̃abΔ̃−1

L;abK̃

þ 1

4
K̃Δ̃−1

R;abH̃
ab þ 1

4
K̃Δ̃−1K̃: ðB74Þ

Here we defined,

Δ̃−1 ¼ −□̃þ Fa
a; ðB75Þ

Δ̃−1
R;ab ¼ −gab

�
□̃ −

1

2
Vc∇̃c þ 1

4
VcVc − Fc

c −
lðlþ 1Þ

2r2

�
þ ∇̃a∇̃b − Fab; ðB76Þ

Δ̃−1
L;ab ¼ −gab

�
□̃þ 1

2
Vc∇̃c −

lðlþ 1Þ
2r2

�
þ ∇̃a∇̃b − Fab;

ðB77Þ

Δ̃−1
abcd ¼

1

2
gacV ½b∇̃d� þ

1

2
gbdV ½a∇̃c� þ

1

2
gabðVðc∇̃dÞ þ 2FcdÞ

þ 1

2
gcd

�
−Vða∇̃bÞ þ

1

2
VaVb

�
þ gabgcd

�
1

4
R2d þ

lðlþ 1Þ
2r2

�
− gacgbd

�
1

2
R2d þ

lðlþ 1Þ
2r2

�
: ðB78Þ

A minus sign has been absorbed into all Δ̃ operators for
convenience. We note that all operators are in fact sym-
metric in the fields, since for example Δ̃−1

R;ab equals Δ̃−1
L;ab up
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to total derivatives. This completes the rewriting of the
action; we have now arrived at the Lagrangian in (3.69).

APPENDIX C: SHOCKWAVES AND ON SHELL
PERTURBATIONS

The question of interest in this appendix is to derive
the equation of motion for the metric perturbation that
results in the Dray-’t Hooft shockwave, first derived in [41].
Given that the source involves a delta function in the
stress tensor, the perturbation is naively of the form hxx ¼
2Aðx; yÞδðxÞF, where we seek to derive the equation of
motion for the function F, such that the perturbed metric
satisfies the Einstein’s equations. This calculation in the
harmonic gauge of course fails because the solution is not
invariant under gauge transformations. So, we will instead
work with the general equations of motion before gauge
fixing. We begin with the Einstein’s equations that are of
course given by

Rμν −
1

2
gμνR ¼ 8πGNTμν; ðC1Þ

and the variation of the Ricci tensor is derived in (A10),

Rμν ¼
1

2
gλρð∇λ∇μhρν þ∇λ∇νhρν −∇λ∇ρhμν −∇μ∇νhλρÞ:

ðC2Þ

We want to find the F function using the following
(Schwarzschild form of the) metric:

gμν ¼ −2Aðx; yÞdxdyþ r2ðx; yÞdΩ2; ðC3Þ

such that it still satisfies the nonlinear Einstein’s equations.
Here, Aðx; yÞ, rðx; yÞ, and the inverse metric are defined
in (B1), (B4), and (B6), respectively. From the form of the
source that introduces the shockwave, we may write hμν
containing the only nonvanishing component

hxx ¼ 2Aðx; yÞδðxÞFðΩÞ: ðC4Þ

Explicitly calculating all covariant derivatives in the Ricci
tensor results in

Rxx¼
AδðxÞ
r2

ΔΩFþ2Fδ0ðxÞ
r

∂yr

þ2FδðxÞ
A

�
∂xA∂yA

A
−∂x∂yA−

1

r
ð∂xA∂yrþ∂yA∂xrÞ

�
:

ðC5Þ

Here ΔΩ is the Laplacian on the two-sphere. We now
interpret the Dirac delta derivative as δ0ðxÞfðxÞ ¼
−δðxÞf0ðxÞ. Moreover, it suffices to evaluate the equation
of motion at x ¼ 0 owing to the δðxÞ; therefore, we may
set A ¼ 1 and remove the ∂yA; ∂yr terms. Finally, using the
derivatives in Appendix B 1, the equation of motion now
becomes

δðxÞ
R2

ΔΩF − 2δðxÞF
�
∂x∂yAþ ∂x∂yr

r

�
¼ 8πGNTxx: ðC6Þ

Using the double derivative identities in Appendix B 1
given by

∂y∂xAjr¼R ¼ 1

R2
and ∂y∂xrjr¼R ¼ −

1

2R
; ðC7Þ

we therefore find

δðxÞ
R2

ðΔΩ − 1ÞF ¼ 8πGNTxx: ðC8Þ

This shows that the Shapiro delay can be treated in linear
gravity. It is worth mentioning that all of the above was
done in the discontinuous yþ ΘðxÞF coordinate, while the
energy-momentum tensor is given in the continuous y
coordinate. However a quick coordinate transformation
shows that on r ¼ R this has no effect on the result.
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