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Within the framework of relative and absolute quantum field theories (QFTs), we present a general
formalism for understanding polarizations of the intermediate defect group and constructing noninvertible
duality defects in theories in 2k spacetime dimensions with self-dual gauge fields. We introduce the
polarization pair, which fully specifies absolute QFTs as far as their (k — 1)-form defect groups are
concerned, including their (k — 1)-form symmetries, global structures (including discrete 8-angle), and
local counterterms. Using the associated symmetry topological field theory (TFT), we show that the
polarization pair is capable of succinctly describing topological manipulations, e.g., gauging (k — 1)-form
global symmetries and stacking counterterms, of absolute QFTs. Furthermore, automorphisms of the
(k — 1)-form charge lattice naturally act on polarization pairs via their action on the defect group; they can
be viewed as dualities between absolute QFTs descending from the same relative QFT. Using this
formalism, we present a prescription for building noninvertible symmetries of absolute QFTs. A large class
of known examples, e.g., noninvertible defects in 4D N = 4 super-Yang-Mills, can be reformulated via this
prescription. As another class of examples, we identify and investigate in detail a family of noninvertible
duality defects in 6D superconformal field theories (SCFTs), including from the perspective of the
symmetry TFT derived from type IIB string theory.
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I. INTRODUCTION

Global symmetries play a fundamental role in the study of
quantum field theories (QFTs). In particular, they provide an
intrinsic property of the QFT which is independent of any
specific description, such as via a Lagrangian, of the QFT.
Importantly, symmetries have many applications in studying
the low-energy dynamics of QFTs, their renormalization
group (RG) flows, and other properties; symmetries pro-
vide an especially powerful technique for extracting physi-
cal features of theories without a (known) Lagrangian
description.

Recently, there has been much ado about generalized
global symmetries, spurred on by [1], which proposes an
extension of the usual notions of symmetry in such a way

*craig.lawrie 1729 @gmail.com
xy1038@nyu.edu
“zhangphy @sas.upenn.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(2)/026005(37)

026005-1

that the powerful consequences we are used to from
ordinary symmetry are maintained.' In this generalized
perspective, a QFT with an ordinary global symmetry with
symmetry group G is viewed as possessing codimension-
one topological operators U,(M,_,), for each g€ G and
where M,_; is any (d — 1)-dimensional submanifold of
spacetime.” These operators are such that when U (M ,_;)
crosses a charged local operator/excitation, it exerts an
action via the group element g. The group-structure
comes from the fusion rule of the topological defects;
U, My_y) xUy(My_y) = Ugyy(My_y). This formulation
suggests several generalizations. First of all, we can
consider higher-codimension topological operators that
act on charged extended operators/excitations; these oper-
ators generate higher-form symmetries. In another direc-
tion, we can relax the condition that the topological defects

'For recent reviews on generalized global symmetries, see
[2,3]; for a small selection of recent papers, see [4—150]. We refer
to the cited reviews for comprehensive references to this vast
literature.

In this paper, the terms “operator” and “defect” are used
interchangeably since the distinction between the spatial and
temporal directions is not essential for our analysis.

Published by the American Physical Society
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obey a grouplike fusion rule; in this case the associated
symmetries are called noninvertible symmetries.3

The consequences of the existence of generalized global
symmetries apply to QFTs that realize such symmetries.
Therefore, to take advantage of this new symmetry toolkit,
it is necessary to first construct QFTs with such sym-
metries. In this paper, we focus on theories with non-
invertible symmetries associated to codimension-one
topological operators. In [65,82] the authors consider a
generalization of the Kramers-Wannier duality of the Ising
model to construct 4D gauge theories with noninvertible
symmetries. The key feature is the presence of self-dual
one-form gauge fields; such theories possess an associated
discrete one-form global symmetry. If the gauge theory also
realizes a zero-form global symmetry that acts (in a certain
precise sense that we elucidate later) on the one-form gauge
sector, then a noninvertible symmetry can be observed by
considering the gauging of the one-form symmetry. In this
paper, we consider the explicit generalization of this
“duality defect” construction to QFTs in 2k dimensions
which involve self-dual (k — 1)-form gauge fields.

Theories of self-dual higher-form gauge fields are often
plagued by subtleties. In particular, they do not a priori
admit a scalar-valued partition function on an arbitrary
closed spacetime manifold; instead they have a partition
vector; this property is a feature of a so-called relative
quantum field theory [152-161].* A 2k-dimensional theory
involving self-dual (k — I)-form gauge fields involves
both “light” (k — 1)-dimensional excitations and “heavy”
(k — 1)-dimensional defects. The charges of the light
objects take values in the lattice A, whereas the charges
of the heavy objects are valued in the dual lattice; A*, so
that A* C A ® Q, thus A*/A is torsional.® Such torsional
quotient is called the intermediate defect group [163,164]

D = A*/A, (1.1)

measures the failure of the Dirac pairing between (k — 1)-
dimensional objects to be integral.7 A consistent quantum
field theory with a well-defined partition function on an

’Noninvertible symmetries are familiar in two dimensions,
such as the Verlinde lines in rational conformal field theory [151].

*A relative quantum field theory in 2k dimensions should be
viewed as living on the boundary of a (2k 4 1)-dimensional
topological quantum field theory, whose Hilbert space contains
states which are the partition vector of the relative 2k-dimensional
theory.

SA lattice is defined as a rank r integral submodule of R,
which thus inherit a pairing from R”.

6See, e.g., [162] for a discussion of the charges of extended
objects in self-dual Abelian p-form gauge theory.

"The definition of the intermediate defect group as D = A*/A
shows that the pairing on the lattice A*, the Dirac pairing (—, —),
descends to a pairing on D. The intermediate defect “group” is the
Abelian group together with this inherited pairing, though we
often leave the pairing implicit and just write a group D.

arbitrary closed spacetime manifold requires a choice of
sublattice of charges for the (k — 1)-dimensional objects
that are all mutually integer under the Dirac pairing: this
corresponds to a choice of Lagrangian subgroup L of D,
often referred to as a choice of polarization (see [156] for an
early occurrence of this notion in the literature).® The
underlying physical reason is that, the noncommutativity
relation of a pair of flux operators of intermediate dimen-
sionality is precisely given by a phase which is the
fractional Dirac pairing value. Therefore, picking the
Lagrangian subgroup L C D amounts to picking a maximal
commuting set of operators to consistently define a QFT in
the traditional sense.

In summary: to have a well-defined QFT for a
2k-dimensional theory involving self-dual (k — 1)-form
gauge fields, it is necessary to also prescribe a Lagrangian
subgroup L of the intermediate defect group D.’ Given a
choice of L, the resulting absolute theory has a (k — 1)-form
global symmetry group LY = D/L.

We are interested in cases where the (k— 1)-form
symmetry LY is gaugable. This occurs when L is a
splittable polarization of D, i.e., where

D=L&®L, (1.2)
for L another Lagrangian subgroup of D. As groups
L =~ LV, however, recalling that the defect group also
includes the information of the pairing, there can be distinct
uplifts of LY to D, and this is captured by the different
choices of L. As we can see, to explicitly specify a
splittable polarization of D, it is insufficient to specify
L, but we must also provide the choice of uplift of LV to L.
As explained in [36] (see also Appendix B), different
choices of L correspond to different symmetry protected
topological (SPT) phase descriptions of the vacuum; as
such they describe a physically observable property of
the QFT.

When the (k — 1)-form global symmetry is anomaly-free
and thus gaugable, it is possible to incorporate nontrivial
SPT phases, specifically (k — 1)-form symmetry protected
topological phases, by extending the notion of a choice of

*We remark that one could in principle go beyond the
intermediate defect group to consider the defect groups of all
form degrees, which we leave for future analysis. Heuristically,
one then needs to pick a “Lagrangian subcategory” of the “defect
category” (see, e.g., [165]). We leave this for future analysis.

In 4s-dimensions, the choice of polarization is often left
implicit, since the intermediate defect group decomposes into
a sum of “electric” and ‘“magnetic” Lagrangian subgroups;
D =D, ®D,. Thus, a polarization can always be chosen,
however the different choices of polarization lead to differing
spectra of extended operators in the absolute theory. See, for
example, [7].

""When the polarization is splittable the (k — 1)-form sym-
metry LV = D/L can always be uplifted to L C D, in such a way
that the (k — 1)-form symmetry is nonanomalous.
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polarization to a choice of polarization pair.ll The dis-
cussion splits into the two scenarios of 2k =4s and
2k = 45 + 2, with the key distinction that the Z-valued
Dirac pairing on the dynamical charge lattice (and thus the
inherited Q/Z-valued pairing on the defect group) is
antisymmetric in 4s spacetime dimensions, while it is
symmetric in 4s + 2 spacetime dimensions. In 4s dimen-
sions it is always possible to find such a splittable
polarization due to the antisymmetry of the pairing,
whereas this is not necessarily the case in 4s+ 2
dimensions.

A. Polarization pair: General definition

With these preparations in place, we now introduce our
general, explicit description of the polarization for such
theories. Recall that we are only working with a defect
group D. We introduce L, for a Lagrangian subgroup
which further satisfies the following property. Then, a
polarization pair for a given L is defined in general to be a
pair of injective homomorphisms

$.¢: Ly < D, (1.3)
such that
D = ¢(Ly) © ¢(Lo). (1.4)
modulo equivalence relations of
Y. PG (1.5)

oy

. .S, .
Here, the equivalence relation ~ is defined by its
restriction onto individual

Z;,nk C ¢(L0)v (16)

as

“SL//

~

ka . ¢(LO) ka = g0mp’k(¢(L0))|ka (pESL(m,Zpk),
P 4 P

(1.7)

namely, a special linear transformation acting onto a
m-dimensional module with Z « coefficients.

Also, we want to impose the constraint that for any two
polarization pairs (¢, ¢) and (¢, ¢'), we have

\4 loELo,

(p(lo). pllo)) = (&' (lo). #'(Lo)).  (1.8)

"In 6D, the polarization pair overlaps with the “refined
polarization” of [36].

In practice, we always specify a single pair of (¢, )
satisfying all conditions other than in Eq. (1.8) (which is a
choice), and then all the remaining (¢',¢’') satisfy the
constraint in Eq. (1.8).

B. Polarization pair: Simple case

For clarity in this introduction, we now specialize to the
case where
[D:ZNQZN, (19)
with N a prime number."” In particular, L = L = Z,. In this
case, a polarization pair (¢,@) reduces to mapping a
specified generator 7, € Ly, = Zy into L and L, which is
thus given by a generator of L, £ = ¢(¢,), and a generator
of L, £ = ¢(¢,) that satisfy the following constraint (where
the 1 in the numerator is a consequence of a convention

choice in (1.8), which could be alternatively fixed to be any
integer that is coprime with N):

(1.10)

so that the polarization pair behaves consistently under
gauging, as described in more detail in Sec. II. (We remark
that, modding out special linear transformations become
trivial for cyclic L = L = Z,.) Once the polarization pair is
defined as in Eq. (1.10), the “topological manipulations” of
gauging LV, stacking an SPT phase, or acting by an
automorphism of the charge lattice admit a succinct
algebraic characterization. These actions are determined
in Sec. I, and we summarize them briefly here. To be more
specific, 4D 8u(N) SYM theories are included in this
family of examples. In fact, for all simple Lie algebra g, the
full set of global structures given in [7] is precisely captured
by a choice of a polarization L C D, where L may or may
not be cyclic. We will come back to some illustrations of
these 4D theories shortly, and thorough treatment of them
in Sec. IV D.

1. Gauging (k — 1)-form symmetries
In 4s + 2 dimensions, gauging LV simply corresponds to
flipping the polarization pair:
(¢.6) - (¢,7), (1.11)
whereas in 4s dimensions, we not only need to flip the

elements of the polarization pair but we also need to ensure
that the antisymmetric Dirac pairing is unchanged.

PIn general, without making the assumption in Eq. (1.9), one
needs to specify a polarization pair by providing a complete set of
generators of L and L, respectively. See Sec. II for more details.
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Original Stacked Stacked + Gauged Original
Theory Theory Theory Theory
(4,0) (6,€+70) (D 1l +70),0) | (a((=1) (L +7r0)),a(0))
I
(4,0)
I, o Za

FIG. 1.

An illustration of the general construction of noninvertible duality defects by combining the half-space gauging interface o, the

stacking-counterterm interface /,, and the interface 7, implementing a charge lattice automorphism. If the absolute theories on the left
and the right are the same, for which it is required that the polarization pairs are identical, then the combined defect N' =1, -6 -7, is a

noninvertible topological duality defect.

Thus, either £ or Z needs to be multiplied by —1. Without
loss of generality, this “symplectic” flip can be realized as

(£.7) = (=2.7). (1.12)

2. Stacking an SPT phase/adding a local counterterm

Stacking a local counterterm amounts to fixing # and
only changing 7,
(¢.6)— (¢,0)=(¢.C+rf), r=0,1,...N—1, (1.13)
which ensures that the Dirac pairing holds fixed. We
remark that in 4s + 2 dimensions the possibility of stacking

a counterterm is much more restricted than in 4s
dimensions.

3. Automorphism action on the charge lattice

An automorphism of the charge lattice a € Aut(A*)
always descends to an automorphism of the defect group:
a € Aut(D). In fortuitous circumstances, the automorphism
of the charge lattice a can be uplifted to a full duality of the
local operator content of the theory; i.e., to being a duality
of the relative theory. The chosen set of generators ¢;, Z; of
the Lagrangian subgroups L, L C D in the polarization pair
inherits the action of a via a € Aut(D). This way, we
naturally know how the charge lattice automorphisms act
on the set of polarizations.

We now describe how noninvertible symmetry defects
can be built out of these fundamental operations. Consider
a 2k-dimensional absolute theory of self-dual (k — 1)-form
gauge fields that is specified via a polarization pair (¢, 7).
We may introduce a domain wall in the theory which
implements the stacking of an SPT phase, I, where r € Zy.
Next, we can introduce a domain wall ¢ which imple-
ments the gauging of the (k — 1)-form discrete global
symmetry: this domain wall functions as an interface, with
Dirichlet boundary conditions, between two distinct QFTs.
Finally, introduce another domain wall, labeled by 7,
for a € Aut(D), in the stacked + gauged theory which

implements the action of an automorphism of the charge
lattice (that uplifts to a duality of the QFT). Let us assume
that QFT on the other side of this automorphism domain
wall is the same absolute QFT as the original theory we
started with. We depict this sequence of interfaces in Fig. 1.
In fact, one can include an arbitrary number of gauging/
stacking/automorphism interfaces in the middle, as long as
the QFTs at the far left and the far right are the same
absolute QFT. Collapsing all of the interfaces on top of
each other leads to a codimension-one topological defect in
the absolute QFT; when this combined defect involves an
odd number of gauging interfaces, this so-called duality
defect will have a noninvertible fusion rule.

C. Example: Reformulating noninvertible duality
defects in 4D N =4 SYM

To show the unifying power of our description, we start
by reformulating the well-studied case of 4D N = 4 SYM.
We explain how the duality defects in these theories based
on SL(2, Z) transformations at special values of 7y, half-
space gauging of center I-form symmetry, and stacking
SPT phases in [65,82] are captured by our formulation in
full generality.

The 4D defect group is well-known to split into an
electric component and a magnetic component,

D =D @ D", (1.14)
with the standard Dirac pairing,
DxD—2Z, (e,m),(¢.m')—em'—e'meZ. (1.15)

Therefore, at least the electric polarization L = D) and
the magnetic polarization L = D(¢) always exist. Various
SL(2,Z) duality transformations can be viewed as auto-
morphisms of the charge lattice at special 7y, values, e.g.,

026005-4
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SeAut(D) for ryy =i,
ST e Aut(D) for ryy = €7,
—1€Aut(D) for any zyy. (1.16)

For example, if we take 3u(N) SYM at zyy = i, then an
S-transformation acts on the polarization pair as

(¢,€) — (S¢,S7), (1.17)
where ¢ = (¢,,¢,,) and S¢ = S(l,,1,,) = (1,,,—1,), and
the same for SZ.

Now, we can completely reformulate the duality defects
found in [82] algebraically in terms of polarization pairs.
Continuing with the same example, take 31t(N) at 7y = i
with the choice of polarization pair

(¢,¢) = ((0,1)(=1,0)). (1.18)
This is usually known as the theory with “electric polari-
zation.” Combine the half-space gauging interface ¢ and the
S-duality interface (viewed as an order-4 lattice automor-
phism) to build the duality defect

N(M;) =0T, (1.19)

with the action on polarization pairs as

((0.1)(=1.0)) 3 ((0.1)(1.0)) = ((0.1).(~1.0)).  (1.20)

and thus we find the original absolute theory. We then
recover the duality defect N'(M3) in N' = 4 SYM satisfy-
ing the noninvertible fusion rule as in [65,82]. We remark
that, in four dimensions, the extra data of specifying
generators beyond merely picking (L,L) is important
(specifically when D # Z5 for some n).

Physically, this extra data amounts to picking a specific
generator of the background field of the 1-form global
symmetry for each of its cyclic generators, modulo suitable
equivalence relations. For example, as we will see explicitly
in the 8u(3) theory, this extra data can be seen as charge
conjugation, which indeed will be modded out if one
merely specifies (L, L) as the polarization pair.

D. Example: Novel noninvertible duality defects
in 6D SCFTs

Of course, the abstract construction of noninvertible
symmetries in self-dual higher gauge theories in arbitrary
dimensions is complemented by a connection to explicit,
known and well-studied, quantum field theories where such
noninvertible duality defects are present. We revisit known
examples in 2D and 4D, and we make a detailed analysis of
six-dimensional field theories with self-dual two-form
gauge fields as a demonstration of our construction.

Such 6D QFTs are particularly challenging as the self-
dual two-forms preclude a simple Lagrangian description,
while at the same time, with enhanced superconformal
symmetry, they are ubiquitous in string theory, and
they function as parent theories shedding light on lower-
dimensional QFT." It is thus especially pressing to take
advantage of all possible tools and techniques to understand
the physical properties of this important class of theories. In
particular, we give a general construction of noninvertible
duality defects in 6D (2,0) SCFTs, which we illustrate
exhaustively for the D, and A4 + A4 theories. To support our
analysis of 6D SCFTs, we also study the symmetry TFT as
derived from type IIB string theory directly.

The rest of this paper is organized as follows. In Sec. II, we
review the relevant concepts, including relative and absolute
QFTs, the intermediate defect group, polarizations, and
Heisenberg-flux noncommutativity. We then establish the
general formulation of the polarization of a quantum field
theory in terms of a polarization pair. With the language of a
polarization pair for a 2k-dimensional QFT, we explain how
one can conveniently implement the operations of gauging
(k — 1)-form symmetry, stacking SPT phases and imple-
menting automorphisms of the charge lattice. In Sec. III,
we give the general construction of duality defects in
2k-dimensional QFTs using polarization pairs and revisit
the 2D Ising model and 4D AN =4 SYM as warm-up
examples. In Sec. V, we take the hitherto unexplored example
of six dimensions and construct noninvertible duality defects
in a number of 6D SCFTs, for which we give concrete
examples by 6D (2,0) and (1,0) SCFTs. Then in Sec. VI, we
determine the symmetry TFTs for 6D (2,0) SCFTs via type
IIB string compactification, from which we do a detailed
study of the interplay between our noninvertible duality
symmetry and other symmetries in 6D SCFTs. Finally, in
Sec. VII, we discuss a variety of consequences and future
directions. In Appendix A, we give more technical reviews
and treatments regarding intermediate defect groups and
polarizations. In Appendix B, we demonstrate that polari-
zation pairs intrinsically incorporate the information of SPT
phases/local counterterms.

II. POLARIZATION PAIRS ON THE
INTERMEDIATE DEFECT GROUP

In this section, we present the general formulation of
a polarization pair for an even-dimensional QFT. The
motivation is to review and refine the concept of a
polarization, which specifies an absolute QFT from a given
relative QFT [160]. Such a refinement allows us also to
incorporate the data of an SPT phase or discrete counter-
term, which removes the ambiguity involved in the

PFor a recent summary of the power of 6D superconformal
theories for the understanding of lower-dimensional quantum
field theory, see [166].
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outcome of gauging the (k — 1)-form global symmetry in
2k-dimensional spacetime.

A polarization pair succinctly captures the algebraic data
of relevant coefficients in the partition function, which can
be further viewed as coming from the topological boundary
condition of the associated symmetry TFT. It has the
advantage that all polarizations (e.g., what is known in
4D as electric, magnetic, and dyonic polarizations) with all
possible choices of SPT phase are treated on an equal
footing. In addition, manipulations like gauging, stacking
counterterms, and duality transformations are straightfor-
ward to handle in this formalism.

We begin by reviewing the intermediate defect group D
for heavy defects with spacetime dimension k — 1, on
which a Dirac pairing is defined. Then, motivated by the
objective of constructing duality defects, we specialize to
the QFTs whose (k — 1)-form symmetry is nonanomalous
and thus gaugable. This holds as long as the defect group
splits into a pair of Lagrangian subgroups, D = L @ L. In
such a case, the corresponding (2k + 1)-dimensional sym-
metry TFT admits a finite gauge theory (sometimes also
referred to as a BF theory) description. At a later stage, we
will also specialize to the simplest case of a defect group for
the sake of clarity,

D=2y® Zy. N prime, (2.1)

so that we are not distracted by the additional subtlety of
gauging or stacking counterterms with respect to a proper
subgroup of the (k — 1)-form symmetry group.

In this section, we emphasize the key concepts, however
some of the more formal or technical explanations are
gathered in Appendix A.

A. Intermediate defect groups
and the Dirac pairing

In 2k dimensions, one can define the Dirac pairing
between a pair of dynamical objects both of spacetime
dimension k—1 (see Appendix A1 for more details).
Crucially, the parity of such pairing depends on the parity
of k:

(i) For k = 2s even, we have a 4s-dimensional space-

time equipped with an antisymmetric Dirac pairing.
In these dimensions (starting from 4D), any charged
element has a trivial self-pairing; therefore a non-
degenerate Dirac pairing forces the simultaneous
existence of electric and magnetic objects.

(i) For k=2s+1 odd, we have a (4s + 2)-dimensional

spacetime which is equipped with a symmetric
Dirac pairing. A priori, there is no electric-magnetic
splitting of (k —2)-dimensional states [whose
world volume is (k — 1)-dimensional], and thus
these objects can be referred to as intrinsically
dyonic.

In 2k dimensions, in addition to dynamical objects, the
Dirac pairing also involves (k — 1)-dimensional heavy
defects in spacetime. The dynamical objects carry charges
valued in a charge lattice A, but the heavy defects carry
charges valued in a refined charge lattice A* O A, whose
equivalence classes under screening of dynamical objects
(via the usual ’t Hooft screening argument [167]) are
labeled by the defect group,

D = A*/A. (2.2)
By definition, the free lattice A* = Z" with rank r comes
with a bilinear pairing given by the integer-coefficient
matrix K
b/\*(ﬂl,ﬂz) ZATK_I;{z, EQ, /11,/12627, (23)
with the associated quadratic form g,-(4) =3ATK™'2
(sometimes called a quadratic refinement of the bilinear
form).14 The dual lattice A* is a torsional refinement of the
original lattice A given by A* = K~'A,"” on which one has
an inherited pairing g - (;1) €Q for 1€ A*. By definition,
for elements in the original lattice A, the pairings g, and
g+ are the same. Therefore, such a (@-valued quadratic

form g,.(1) on A* consistently descends onto a Q/Z-
valued pairing on the defect group D,

q(n)eQ/z, ueD. (2.4)
Similarly, the Q-valued bilinear pairing bp+(4;,4,) on A*
descends to a Q/Z bilinear form on D,

b(ui,uy) €Q/Z, (2.5)

M, €D.
In this paper, whenever we talk about a defect group D, we
always implicitly assume that it comes with a Q/Z-valued
bilinear form b(u;, u,) and an associated quadratic form
q(p), both of which are inherited from an underlying dual
charge lattice A*.

We can now define an isotropic subgroup of the defect

group

G cD, (2.6)

as one for which any pair of elements trivializes the bilinear
form,

b(uy, i) =0€Q/Z, Yp,peGcbD. (2.7)

“We have bp(A1.4) = ga- (A + ) = ga- (A1) — g (A)
and thus by- (4, 1) = 2g,-(4).

15Here, by “torsional refinement” we mean that A*/A is
torsional; while A* is free.
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A key type of isotropic subgroup of D for our purpose are
maximal isotropic subgroups, also known as Lagrangian
subgroups, which we usually denote by

L c D,
b(ui.pup) =0€Q/Z,

satisfying |L|> = |D|, and

Yy, L CD. (2.8)

It can be shown that any isotopic subgroup, L C D, must
satisfy |L|*> = |D| to be maximal; we refer the reader to
[168] for the mathematical background on Lagrangian
subgroups.16 For convenience, we also review some of
their relevant properties in Appendix A 2.

B. Polarizations and a phase ambiguity

After reviewing the intermediate defect group and the
Dirac pairing, we explain the notion of polarization of a
QFT. We start with reviewing the conventional approach of
specifying a polarization by specifying a Lagrangian
subgroups of the intermediate defect group to obtain
absolute QFTs from relative QFTs. Then, under the
motivation of gauging the (k — 1)-form symmetry, we will
guide ourselves to the point where the notion of the
polarization faces its limitation. At that point, we are be
forced to work with the more refined notion of polarization
pair, which will be the topic of the next subsection.

According to the standard story, the starting point of
picking a polarization is to notice that the heavy defects
valued in A* do not have integer-valued Dirac pairing
among themselves! This signals an inconsistency of the
theory upon quantization, resulting in a relative QFT [160].
A relative QFT cannot be consistently defined on its own
but has to be defined as the boundary theory of a (2k + 1)-
dimensional bulk QFT. This relative 2k-dimensional theory
has an anomalous (k —1)-form global symmetry; this
anomaly is precisely captured by braiding relations of
k-dimensional operators in the (2k 4 1)-dimensional bulk
QFT [17,36]. Such fractional pairing is also visible at the
level of flux operators as the Heisenberg-flux noncommu-
tativity X ¥ = ¥ X €2 with ¢ # 0 precisely the non-
integer Dirac pairing on the defect group D.

Therefore, in order to restore a consistent quantum
theory, we need to restrict ourselves to a maximum
commuting subset of flux observables out of the full set.
At the level of defect groups, the commutation condition
dictates that the Dirac pairing between the states on such a
maximal commuting subset has to be integer valued. So we
need to pick a maximal subset of heavy defects that have
integer-valued mutual Dirac pairing. Mathematically, this
choice of maximal commuting observables amounts to
choosing a maximal isotropic sublattice AL of the defect
charge lattice A*

For a more physics-friendly review, see, e.g., [8,36,169].

A C AF c A, (2.9)
where the isotropic condition is defined as b, (A5, 15) € Z
for any A%, A5 € AL

After quotienting every individual entry by A, this choice
of A is equivalent to choosing a Lagrangian subgroup (i.e.,
maximal isotropic subgroup) of the defect group,

L=AL/AC A /A =D. (2.10)

In this way, one specifies an absolute QFT in the conven-
tional sense, which has a (k — 1)-form global symmetry
whose background field is a k-form representing an
element of H*(My, L") such that (LY =D/L). This
process is also referred to as picking a polarization.'

The existence of such a polarization L C D depends on

the parity of k:

(1) For k= 2s even, the defect group automatically
comes with two copies D = D, & D,, where |D,| =
|D,,| due to the antisymmetric Dirac pairing.
Thus, a choice of L is always possible. For example,
one can always pick the electric polarization
L=D,,LY=D,, or the magnetic polarization
L=D,LY=D,, so that the remaining global
symmetry is the electric and magnetic global sym-
metry, respectively. A simple example is 4D 3u(N)

N =4 SYM with defect group D = Zl(\f) ® ZX,").

Choosing ZE\?) (resp. Z;;")) as the Lagrangian sub-
group results in the magnetic (resp. electric) 1-form
symmetry, whose genuine line defects are Wilson
(resp. 't Hooft) lines. Indeed, when the pairing is
antisymmetric meaning (a,b) =—(b,a), we immedi-
ately get (a,a) = 0, V a. Therefore any cyclic sub-
group {0, a,2a, ...} of D is automatically isotropic.
We hope to comment further on the specifics of the
s > 1 case in the future.

(i) For k =2s+ 1 odd, a priori, the defect group D
does not always decompose, so there is no guarantee
that a given relative theory allows a polarization to
an absolute theory by picking a Lagrangian sub-
group L C D. In particular, such a choice is impos-
sible when the order |D| is not a complete square.
When |D| is a complete square, there are cases where
such an isotropic subgroup L C D exists, and the
corresponding polarization can be picked.19 As we

YLV ~ L since LV is the Pontryagin dual of L as induced by
the Dirac pairing on D.

Any finite-dimensional symplectic vector space H can be
written as a decomposition H =V @ V*.

However, even when |D| is a complete square, there are
indeed situations when an isotropic subgroup L C D does not
exist. For example the SU(2) @ SU(2) theory in 6 dimensions,
one could have D =27, ® Z, > (a,b) with g =1(a® + b?),
which has no isotropic subgroup. In fact, any SU(N) @
SU(N) (2,0) theory —1 not a quadratic residue mod N is an
example, so one has an infinite family of examples.
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will see in Sec. V, there are many examples in 6D
that polarizations can be picked and one arrives at
6D absolute theories.

1. Partition functions for absolute theories
and a phase ambiguity

Given an relative theory with defect group D=7, @ Zy,
specifying a polarization L C D would specify an absolute
theory whose partition function coupled to a background
gauge field B is denoted as

“Z|B].BeL",” (2.11)
where B takes values in the global (k — 1)-form symmetry
LY = Zy, and the splittings of D = L @ L ensures that the
LY symmetry is gaugable.

However, we will soon see that the meaning of “Z[B]”
in the above equation suffers from a phase ambiguity.
Correspondingly, in an absolute QFT with only L C D
specified, it is not a well-defined notion to talk about
“resulting theory after gauging the (k — 1)-form symmetry,”
simply because we have not specified enough data. This
crucial point was also included in [36] by focusing on the
30(8) example in 6D. As will soon see, resolving such an
ambiguity precisely requires us to refine the notion of a
polarization into a polarization pair. Such a resolution of
this ambiguity is closely related to that of specifying an
SPT phase, namely a quadratic counterterm, which we will
also take into account.

C. Polarization pair via Heisenberg group

In this part, we present a refined analysis of partition
functions and topological boundary conditions of sym-
metry TFT via the representation space of the Heisenberg
group. The six-dimensional case of such a refinement has
already been treated in great detail in [36].

1. Basis of partition vector space
via Heisenberg group

To go one step further and define the topological
boundary states associated with polarization pairs (from
which we can build the well-defined partition functions),
we need to go deeper into the partition vector space of
relative QFTs and the quantization of the corresponding
symmetry TFTs.

A relative QFT no longer has a scalar-valued partition
function, but it has a partition vector instead. It turns out
that the partition vector space of a relative QFT can be
regarded as the Hilbert space from the quantization of the
corresponding symmetry TFT [154], which is succinctly
captured by the Heisenberg group H*(M,;, D) with coef-
ficients in the defect group D [8,36,154,161], following
[170]. The Heisenberg group H*(M,;, D) is defined by the
following extension:

1 - U(l) g ﬂk(MZk,D) - Hk(MZk,[D) - 1 (212)

The partition vector space of a relative QFT carries a
representation of H*(M,;, D). Associated with any coho-
mology class A € H*(M,,, D), we denote the correspond-
ing flux operators as ®(A) € H* (M, D).>

A polarization of the defect group D always induces a
polarization of the group of fluxes H*(M,;, D) via the
following long exact sequence [17,36,154]:

o= HY (Mo, LY) ™5 HE (Mo, L)

P

E)I‘Ik(MZk,[D) —)Hk(MZk,LV) ... (213)

Then one sees that H¥(My, L) C H*(My.D)* is an
isotropic subgroup of H*(M,;, D). So one can write down
the group of physical fluxes H*(M,;,D)/H*(My, L).
When D=L &L splits, H*(M,;,D)/H*(My, L) can
similarly be uplifted to H¥(M,;, L).** The dimension
of the vector space is then given by |H¥(M,, L)|=
|Hk(M2kv[:)v| =V |H"(M2k,ID)\.23 B

Given such a decomposition D = L @ L which induces
the split of H*(My;, D) = H*(Mx;, L) @ H*(Mo, L), the
standard procedure of constructing a basis of topological
boundary states for the symmetry TFT involves the
flux operators of ®(A),®(B) (where A€ H*(My, L),
Be€H*(My, L)), which satisfies the well-known flux
noncommutativity relation,

D(A)D(B) = exp (% /

AU B)op(B)cp(A). (2.14)

The existence of the partition space (mathematically
the representation space of HX(My, Z)) requires the
splitting of D into L @ L. In this situation, we introduce
the formalism of a polarization pair. Given a polarization
associated with the Lagrangian subgroup L, we specify a
certain L to form a ordered pair of Lagrangian subgroups
(¢,€). A polarization pair is defined by a chosen set of
generators of L and L as

*As pointed out in [17,36,161], ®(A) is not a global section of
H*(Myy, D) in H*(M,;, D) due to flux noncommutativity, but we
still treat ®(A) as a physically defined flux operator.

'Technically 1, (H*(May., L)) C H¥ (M, D).

In particular, when D =L & L, the Bockstein homomor-
phisms f; in the above sequence are always trivial.

“That the order of |H* (M, D)| is a complete square follows as
can be found in https://mathoverflow.net/questions/58825/non-
degenerate-alternating-bilinear-form-on-a-finite-abelian-group/
58828#58828, which makes use of the nondegenerate antisym-
metric pairing on D for 2k = 4s, and of the nondegenerate
antisymmetric pairing on H*(M,;, D) for 2k = 45 + 2.
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({210} {01 6o 24},

(€T =~

such that fi’ ?i eb ﬁl

Vi, (2.15)

where #; (resp. Z;) denote the ith generator of L (resp. L)
with order N;.** To illustrate the idea more explicitly, we
focus on the case of D = Z @ Zy, i.e., L = L =~ Z,. The
polarization pair thus takes a simple form,

(6.7) stt.7eD, L=(6),L=(), (£.7)=~.

v (216)

More concretely, the basis of partition functions (namely
a basis of the partition vector space) can be written as

(2.17)

where we emphasize that the reason why we specify a pair
of generators (£,7) on top of L, L is to keep track of the
relabeling of the background fields, such that for any
nontrivial element 7 # 0 € Z,, (with its inverse element ¥
such that /¥ = 1 mod Zy),

Z 7 [tB] = Z e i) [B]. (2.18)
By definition, such a basis has the nice property that the

®(A) behave as clock operators under this basis, and the
®(B) behave as shift operators [17,36,154,161],

27i
@(A)Z(f?) [B] = exp <W Alz,cA U B> Z(f?)[B],

®(B,)Z s (B)] = Z,, 7B\ + Ba). (2.19)

We remark that only the state with zero boundary field
value Z , 7, [B = 0] has the property that its phase factor

does not depend on the choice of # [36], and that a ®(A)
acts trivially onto it. Therefore, operationally, we begin
with this basis vector Z , 7 [B = 0], and then acts on it with

shift operator ®(B) to generate the remaining basis vectors
with B # 0, all of whose phases will depend on the choice
of 7 and thus on L.

*'We emphasize once again that the polarization pair is an
object that first requires one to pick a splittable polarization. This
is sufficient to have a nonanomalous (k + 1)-form global sym-
metry, and thus allows for the construction of noninvertible
duality defects. However, there are also many nonsplittable
polarizations, which are not captured by a polarization pair as
defined here, and which do not have noninvertible duality defects
following the half-space gauging construction described through-
out this paper. Such nonsplittable polarizations are not uncom-
mon, for example when considering N =4 SYM with gauge
algebra 3u(4), the absolute theory corresponding to the global
form (SU(4)/Z,), is nonsplit [7].

In summary, the partition functions Z , 7, [B] specified by
the polarization pair (¢, ) and the background field value
B is capable of completely capturing the information of
topological boundary conditions.

We remark that in the special case of 6D, our phrasing
largely overlaps with that of [36]. The full data for them
involves specifying H> (Mg, L) and H*(Mg, L) for given
Mg, whereas our polarization pair (£,7) is the minimal
version of their data that one already need to specity before
specifying a spacetime manifold M,,. In addition, speci-
fying (¢,7) on top of (L, L) further specifies the data of
background field relabeling (which incorporates charge
conjugation).”

In particular, we stress that the conventional notion of
“quadratic counterterm” in the literature can be absorbed
when we change the basis of topological boundaries of a
symmetry TFT (and thus the basis of partition functions) by
changing the second element # in the polarization pair.

2. Symmetry TFT and topological boundary conditions

Equivalently, the information associated with a polari-
zation pair can be recast in terms of a symmetry TFT
[160,171] (see also [69,105] for discussion in various
specific contexts). Symmetry TFTs are topological theories
in (d+ 1) spacetime dimensions living on N, ;, with
boundary dN,, = M, which capture the information of
global symmetries in d-dimensional QFTs living on M.

In the case we are currently interested in, namely
2k-dimensional QFTs with intermediate defect groups D,
the symmetry TFT elegantly encodes the structure of polar-
izations via its topological boundary conditions. They have
been intensively studied in various systems. Here we present
a treatment of polarizations via symmetry TFTs, which
applies to all QFTs with a split intermediate defect group
D = L @ L where L, L C D are both Lagrangian subgroups
of D. To illustrate our main idea, our presentation focuses on
the case with L = [ & Z,, and we leave the treatment of
generic noncyclic L to Appendix A 4.

Denoting the defect group decomposition as D =

ZE\),C) ® Zg), we have k-form gauge field b; €
Hk(N2k+l’Z§\;))’ le{x,y} where Hk(N2k+l,D) =
H*(Noyy 1, ZE\),()) ® HY(Noji1, Zg)). Namely, the splitting
of the defect group induces a splitting of the group of
fluxes. Keeping the relative theory in mind, every flux

will eventually be rewritten as valued in the defect
group D.*

The definition of [36] in 6D also involves a quadratic
refinement of the bilinear pairing on H*(Mg, D), which we
address in Appendix B.

*We avoid labeling the defect group as D = Zg\f) ® ngm),
since such a notation is only natural in 4s dimensions while
misleading in 4s + 2 dimensions, as discussed in Sec. II B.
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The symmetry TFT then has an action of the generic
form

b;Q;;0b; (i,je{x,y}), (2.20)

1
SsymTFT[bvay} :/ E
Moy

where the 2 x 2 matrix Q;; is the coefficient of the bilinear
pairing b(u;,u,) on the defect group D, defined in
Eq. (2.5).27 In this case, each element Z,Z€D of our
polarization pair (¢,¢) comes with two components each
corresponding to a Z, subgroup of D,
= (ty.ty), C=(Cy.Cy). (2.21)
For the (2k 4 1)-dimensional symmetry TFT, a dynami-
cal boundary always exists, on which the 2k-dimensional
relative QFT lives. A topological (gapped) boundary, on the
other hand, is specified by a Lagrangian subgroup L C D.
There is a set of well-defined topological boundary con-
ditions on the topological boundary, including the Dirichlet
boundary conditions,

D, € HY(My, Zﬁ\f)),
(2.22)

5(d(bl) - ?xDx - ?yDy) = O|M2k’
D, e H My, ZY)).

As a linear combination of b;, we have d(b;)€
H*(Nyiy,L) are L-valued components of bulk fluxes,
whose boundary profiles are determined by D, and D,.
Here d stands for Dirichlet boundary conditions with
boundary value D. In particular, # specifies the embedding
of the generator of L into D,
lel27Zy (7,.7,)eD27y &7y, (2.23)
where # labels the boundary profiles of the L-valued bulk
fields. In other words, the above boundary condition in
Eq. (2.22) can be derived by expressing the L-valued B in
terms of the embedding of L in the full defect group D,
whose components in Zy X Zy can be denoted as
7= (7.2,).2.2,€2y.
The canonical dual of d(b;) is another linear combina-
tion of bulk fields, denoted as n(b;) (where n stands for
Neumann). This n(b;) is the background field for the

*"If we were to not restrict ourselves to fields associated with
the intermediate defect group, then there are more terms in the
bulk symmetry TFT beyond the quadratic Chern-Simons terms.
For all such fields involved, one needs to specify a basis with
respect to the involved commutation relations for the quantization
of such extra terms in the symmetry TFT. In our paper, we restrict
to the situation where the background fields beyond the inter-
mediate defect group are not turned on, so that such complica-
tions do not arise. We thank J. J. Heckman for comments on this
point.

gauged symmetry L that has Neumann boundary condi-
tions on the topological boundary.
More concretely, the basis of boundary states, written as

£.7.B). (2.24)

are such that we can stack the topological boundary onto
the dynamical boundary (R| to get the partition function of
the absolute theory specified by the polarization pair (¢, £),

Z,7B] = (R|¢.2.B), (2.25)

which is just the projection of the partition vector |R) onto
a topological boundary state under a given basis.

Therefore, ®(A), ®(B) also act as clock-shift operators
on the boundary states,

_ 2
£,¢,B) = exp (ﬂ/ A UB)
N My

f,é_p,Bl> — f,?,Bl +Bz>

®(A)

¢,¢,B),

@(B,)

(2.26)

D. Topological manipulations via polarization pairs

In the remainder of this section, we explain that
polarization pairs are particularly convenient for the pur-
pose of understanding the gauging of the (k — 1)-form
global symmetries. By working with polarization pairs, we
no longer need to do detailed computations involved in
gauging the global symmetry in the presence of quadratic
counter terms (sometimes known as “twist gauging”).
Since conceptually, a twist gauging is always decomposed
into the following two steps: (1) transforming into a
polarization pair (£,7) — (£,¢') where the counterterm
disappears; and (2) doing a direct gauging of (k — 1)-form
symmetry via implementing a single discrete Fourier
transformation.

1. Stacking counterterms as changing €

Recall the step when introducing polarization pairs
where for a given LV, the uplift to L is not unique. The
choice of (Z, £) for the split D = L @ L leads to the split of
the group of fluxes. As a consequence, we will get a
specific basis by examining the Heisenberg group and its
representation, as explained in Sec. II C.

Now, it is natural to ask the explicit consequence of
changing from one option L to another L. In short, such a
difference will result in a phase shift of the partition
function Z, 7 [B] and the topological boundary state

Z,¢,B). In Appendix B, we explain in detail that such
a redefinition can generate quadratic counterterms as the
integral of €(B). At the same time, there always exists such
a redefinition that precisely cancels the phase associated
with the quadratic counterterm. Therefore, we say that the
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choice of SPT phase has been captured/incorporated in the
choice of the polarization pair (7, 7).
We now briefly discuss the possible form of quadratic
counterterms in 4s and 4s + 2 dimensions:
(i) For 4s dimensions, a quadratic counterterm (an SPT
phase) should be described by a Pontryagin square
P(Byy), which is defined as

Bk est(M4.w Zn)
{P(Bk> €HY (Myy, Z,,)
_)
P(Bk> EH4S(M4S7 Zn)

n even,

2.27
n odd. ( )

For n odd P(B;) coincides with B; U By, while for n
even, P(By) takes valued in a “quadratic-refined”
coefficient Z,,, and its reduction mod Z,, coincides
with Bk U Bk'

(i) Whereas for 45 4 2 dimensions, the only possibility
of a quadratic counterterm can be expressed as (e.g.,
see Appendix B of [36])

O(x):H* "\ (Mys12. Zy) > Z,,  (2.28)

which is a quadratic refinement of the bilinear
pairing (-,-) on H**' (M, »,7Z,) defined via in-
tegration, such that for B,, B, € H**'(My,.,.7,),

A B,UB,=Q(B,+B,)— 0(B,) - O(B,)

mod 2. (2.29)

To understand why the above quadratic form is the
only possibility, we remark that usually for an odd-
degree form, we say they have trivial self-pairing
due to anticommutativity B, U B, = =B, U B, so
2B, UB,=0. This almost always gives B,UB, =0,
unless if they take the coefficients in Z,.

We conclude by remarking that, shifting £ to absorb the
counterterm also holds for more general cases. Indeed,
when L has Z5 subgroup with s > 1, there will be more
ways to stack counterterms corresponding to more Z,
generators, but at the same time, there are equally many

ways to cancel these counterterms by shifting # with these
generators. For example, if D = Z3 and L = Zg“) e Zgb),
then there are three order-3 elements so that any one of the
three possible counterterms

0(B,).  Q(By).  Q(B,+B,). (2.30)

can be canceled by shifting the generators in L via
generators of L accordingly.

2. Gauging as flipping the polarization pair

We next consider gauging the (k — 1)-form symmetry LY
in a given absolute theory 7, which is only possible when
LV is nonanomalous. The anomaly-free condition is equiv-
alent to the existence of uplift of LV to L, which gives rise
to a direct sum decomposition of the defect group D =
L @ L in a pair of Lagrangian subgroups (L, L) [36] (also
see detailed discussion in Appendix A 3) so that one can fix
a pair of generators (¢, ) of (L, L) as the polarization pair.

Then, under this particular basis, gauging a (k — 1)-form
symmetry whose background field is a k-form field
representing an element in H¥(M,;, LV) amounts to sum-
ming in the partition function Zp over its all possible
k-form background field values B € H*(M;, L). Such a
summation would turn the background field B into a
dynamical field of the gauged (k — I)-form symmetry,
but the dual L-valued gauge field A € H*(M;, L) would
instead turn into a global symmetry.

In the symmetry TFT language, such a gauging amounts
to doing the following Fourier transformation on the
boundary state. Here B = By, is the boundary value for
the Dirichlet boundary condition of the L-valued field, and
A is the dual L-valued field which acquires a Dirichlet
boundary condition after gauging,

i
exp <ll/ AUB>
) N Moy

By definition, we introduce £ with (7, £) = ~ to keep track
of the to-appear generator of the dual global symmetry after
gauging. Therefore, we have

i
Z exp <£/ AU B)
i) N Moy

By € H (M,

= (=D, 1A = A).

|¢,€,B=B,)

>

By€H* (M, L

£,€,B=By).

(2.31)

¢,¢,B = B)

(2.32)

Under this description, gauging (k — 1)-form symmetry
can be succinctly described as follows: _
(1) In 4s + 2 dimensions exchanging ¢ and ¢ [36];

T associated with (¢, £)

gauging L T /L associated with (7, ¢).

(2.33)
(ii) In 4s dimensions exchanging # and # and then put
an extra minus sign on 7;

T associated with (¢, £)

gauging LY
—_—

T /L associated with (=2, 7). (2.34)
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The information in the two elements of (¢, 7) is, in
fact, correlated with each other under the Dirac
pairing constraint. But as we have just seen keeping
both of them explicitly is very helpful in making our
notation well-behaved under gauging. For these
spacetime dimensions, the gauging is a symplectic
transformation on the defect group D=D(¢) @D,
since the Dirac form is antisymmetric in 4s
dimensions.
Therefore, after shrinking the symmetry TFT slab, the
above discrete Fourier transformation would thus be
implemented on the partition function Z[B],

o
exp ﬂ/ AU B |Z[B),
N Moy

(2.35)

Z[B] - Z[A]= >

B€H"(My,L)

(A€ HX(My, L)).

As we have seen, the N-valued field B, which were
previously thought of as a dynamical field, now become the
background field, with coefficients in L, i.e., the emergent
(k — 1)-form global symmetry after gauging. Instead, the N
valued field By as background field of the original theory
now becomes the dynamical field of the new theory.

We end this part with two concluding remarks:

(1) It is natural to examine the consequence of gauging
twice. Indeed, gauging twice in 4s + 2 dimensions
gives us back the original theory, while gauging
twice in 4s dimensions gives us the charge-
conjugated version of the original theory.

(i) The above treatment of gauging seems very basic at
first glance. But the power of our formulation comes
from the fact that this is all we need to do for
gauging. Indeed, the complication of “twist gaug-
ing,” namely of gauging in the presence of counter-
terms, has been simplified by decomposing into two
smaller steps; changing Z to 7' and then doing a
(symplectic) pair flip.

ITII. NONINVERTIBLE DUALITY DEFECTS
VIA POLARIZATION PAIRS

In this section, we reformulate the half-space gauging
construction of noninvertible duality defects in 2k dimen-
sions, as building defects separating dual absolute QFTs
arising from the same relative QFT. Our construction
involves stacking an interface implementing a discrete
automorphism of the charge lattice for (k — 1)-dimensional
charged operators, with another interface implementing a
half-space gauging of the (k — 1)-form global symmetry.

A. Review of existing formulations

We begin by reviewing how to construct noninvertible
symmetry defects in even-dimensional QFTs via half-space
gauging and refer the reader to [65,85] for more details.

Consider a 2k-dimensional QFT 7 with a nonanomalous

(k — 1)-form global symmetry Z%H). Gauge the Z%H) in

half of the 2k-dimensional spacetime, and then impose
Dirichlet boundary conditions for the associated k-form
gauge field B on the resulting interface. Such a gauging
corresponds to summing over the background field B, in
the partition function; this is a topological manipulation
denoted as o. If the original theory 7 and the gauged one

T/ Z%{_l) are dual to each other

T/Zy =T, (3.1)
either trivially or via a duality transformation, then the
interface becomes a symmetry defect, corresponding to a
noninvertible O-form symmetry of the theorZ T [65].

In addition to directly gauging the Zg\,_l), one can
consider other topological manipulations combined with
the gauging. If performing the resulting action on half of
the spacetime again gives rise to a topological interface
between 7 and its dual theory, then one can end up with a
higher-order noninvertible duality defect, which is also
referred to as an n-ality defect in the literature (see, e.g.,
[82,85]).%® For example, define the topological manipula-
tion 7 as stacking a quadratic counterterm (i.e., an SPT
phase) ¢(By) on the theory 7 [1,172]

o 208~ 2 = 2 lgden (i [ @) G2

One can then perform a twisted gauging (i.e., stacking a

counterterm and then gauging the Z%C_”

resulting theory 77) of the Z%H) via the interface

Z(oT = Z(TT) /2 If the resulting theory is dual to

the original one, i.e.,

symmetry of the

67T = (7)) Zy =T, (3.3)
anoninvertible duality defect can be constructed via perform-
ing a twisted gauging o - 7 on half of the spacetime.29

In this section, we show that all the above operations can
naturally be reformulated in terms of polarization pairs,
which inevitably leads to higher-dimensional generaliza-
tions. We begin by explaining how any discrete auto-
morphism acts on the polarization pair via its action on the
defect group D. We then combine all ingredients to give
the general construction of noninvertible duality defects in
the language of polarization pairs.

*In this paper we will also use “duality defect” for whatever
order of the associated duality.
Gauging without twist can lead to a defect with order >2,
however, the noninvertible defect is still commonly referred to as
a duality defect. See [82,85] for discussions on this point.
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B. Automorphisms as dualities among
absolute theories

In addition to the gauging, we also focus on cases where
there exist discrete automorphisms
a € Aut(A*), (3.4)
acting on the charge lattice of (k — 1)-dimensional objects,
such that under the action of a the charge lattice of
dynamical objects, A, is mapped to itself. These auto-
morphisms thus descend to automorphisms of the defect
group D,
Aut(A*) - Aut(D). (3.5)
These can be regarded as discrete automorphisms for the
relative QFT; these can be either discrete global symmetries
or dualities, depending on the particular setup (see,
e.g., [173] for applications to six-dimensional theories).

However, once we descend to an absolute theory by
picking a polarization pair, then these automorphisms are
no longer global symmetries. However, they may become
dualities mapping absolute QFTs which are equivalent
locally (i.e., having the same local operators and their
correlation functions) but different global structures (e.g.,
extended operators). Take 4D 3u(N) N =4 SYM as a
simple example. Consider the Montonen-Olive S-duality
for =4 SYM. For the 3u(N) relative theory, just
considering the local operator spectrum, it is an auto-
morphism that can be regarded as a discrete global
symmetry. For absolute theories with well-defined global
forms, it becomes a duality transformation between differ-
ent absolute theories, e.g., with gauge groups SU(N) and
PSU(N), at certain points on the conformal manifold [174]
(i.e., 7ym = i). For our purposes, such a statement will be
refined by including discrete 8 angles and SPT phases, for
which we give a detailed illustration in Sec. IV.

For 2k-dimensional QFTs, using polarization pairs, one
can immediately obtain how the Aut(A*) acts on the set of
polarizations, thus read off the possible dualities between
absolute theories. Since Aut(A*) acts on the defect group, it
acts on the components (#,7) of the polarization pair
which are simply elements of the defect group. Therefore,
implementing an action of a discrete automorphism of the
defect group a € Aut(D) is determined by having a acting
on ¢ and 7 separately,

(¢,.€) = (a(?),a(?)). (3.6)

C. Constructing noninvertible duality defects

Having discussed gauging and dualities of absolute
theories as various manipulations on the defect group, we
are now ready to reformulate the half-space gauging

N N

FIG. 2. The action of noninvertible duality defects in 6D on
charged surface operator. 5 is a three-dimensional topological
operator generating the L global symmetry.

construction of noninvertible duality defects. The construc-
tion has the following steps, which is also illustrated in Fig. 1:

(i) Step 1. Start with an absolute theory 7 associated
with the Lagrangian subgroup pair (L, L), which
directly decomposes the defect group as D=L @ L.
In addition, we need to also specify a pair of
generators (Z,7) for (L,L).

(i) Step 2. Stack quadratic counterterms onto the
partition function of 7. This effect can be described
by shifting a basis of the partition vector space,
which amounts to shifting (7,7) — (¢,¢'), where
' =¢+rt.

(iii) Step 3. Gauge the nonanomalous (k — 1)-form
symmetry LV in half of the spacetime M3’ with
Dirichlet boundary conditions for the corresponding
k-form background gauge field. According to
Eq. (2.33), the resulting topological interface
6(M_;) separates 7 and its gauged absolute theory
T /LY associated with (L, L). Specifically, the new
polarization pair one gets is (£',7) for 4s+2
dimensions and (=", ¢) for 4s dimensions.

(iv) Step 4. Assume that there exists an automorphism
element a € Aut(D) exchanging the two Lagrangian
subgroups L and L, thus the two absolute theories 7
and 7 /LY are dual to each other under this auto-
morphism. Concretely, this automorphism takes the
new polarization pair (7, #) and restores the old
one (¢,¢) = (a(££"),a(¢)) before stacking the
counterterms and doing the gauging. Introduce the
topological interface Z,(M»,_;) implementing this
automorphism a.

(v) Step 5. Stack the above sequence of topological
interfaces together. The resulting codimension-1
operator

N (Myy)
(3.7)
is a noninvertible duality defect for the theory 7.

In some literature, e.g., [85,175], the half-space gauging
interface o(M»;_,) is promoted as the noninvertible duality
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Tsu(2)
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(0,1),(1,0)
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(2)
Tho)y

stacking SPT

-
gauging Zéw
su(2)
7{1,0),(0,1)
su(2)
T(1,0),(1,1)
—
S action
—
T action

(2)
T10).0.1)

We show the six different polarization pairs for the relative theory of N' =4 SYM with 8u(2) gauge algebra, together with

how the topological manipulations and dualities act on the polarization pairs. Any closed loop containing an odd number of topological
manipulations associated to gauging the one-form symmetry, i.e., o, gives rise to a noninvertible symmetry defect in the theory at the

start/end of the loop.

defect itself if 7 /L is dual to 7, without writing down
Z,(My,_;) explicitly. At the level of fusion rules, this is
equivalent to the above construction in the sense that
Z.(My,_y) is invertible and does not affect the nontrivial
fusion rules.

The fusion rules for the noninvertible defect A and the
LY symmetry defect  are

N (My_y) x NT(MZk—l)

1
O, 2,

% € Hy(My—y3L)

N(Myy) xn(Ep) = N (Myy), (3.8)
where N (M,,_;)" is the orientation reversal of N'(M;_; ).
The rhs of the first fusion rule is summing over all LY
symmetry defects 5 along the codimension-1 manifold
M;_;, which is known as the condensation defect via
higher gauging [64,83].%

1. Action on states with L -valued charges

Let us comment on how noninvertible duality defects act
on (k — 1)-dimensional charged defects. Starting from the

3The coefficient SN

|H? (Mg41.D)]|

all gauge configurations in the symmetry TFT slab My, x I,

and then convert to homology by using the Poincare-Lefshetz

duality of a tubular neighborhood M5, | x I of M, relative to
its boundary. See [65,105] for more details.

can be derived by summing over

relative theory, a defect charged under L €D would
descend to a genuine (k — 1)-dimensional defect charged
under the nonanomalous global symmetry LY in the
absolute theory 7 associated with (Z,7). If we instead
consider a defect whose charge is valued in L C D, then it
descends to a nongenuine (k — 1)-dimensional defect in the
absolute theory 7 associated with (Z,7), which is only
well-defined when attached to a k-dimensional topological
operator.

Therefore, when the noninvertible duality defect A is
swept past a (k — 1)-dimensional LY-charged defect, it
becomes gauged, i.e., nongenuine and is now attached to
k-dimensional LY symmetry operator 7 which intersects
with V. This nontrivial transition has been investigated in
2D and 4D QFTs (see, e.g., [65,176]).31 Figure 2 illustrates
this transition for k = 3, i.e., in 6D.

IV. WARM-UP EXAMPLES:
2D AND 4D REVISITED

In the previous sections, we gave a general discussion of
how to realize various topological manipulations and how
to build duality defects in 2k-dimensional QFTs in terms of
the polarization pair. In this section, we present a compre-
hensive discussion of how this reproduces the known
results in the literature for the 2D Ising CFT and 4D
N = 4 SYM theories. By doing so, we not only clarify our

*'In some 4D examples, this nontrivial transition enjoys a string
theory implementation as the Hanany—Witten transition [99,175].
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notations and conventions but also familiarize the reader
with the language of polarization pairs in order to better
understand our generic construction and the more exotic 6D
examples in the following sections. Our notations in this
section essentially follow [65,82].

A. 2D Ising CFT

We begin by revisiting the most studied case of QFT in
two dimensions. There, we also consider the simplest
example of 2D Ising CFTs [176]. Here, polarization pairs
is instructing us to consider a 2D relative theory with defect
group D = Z, x Z,, which organizes the known results of
Krammers-Wannier duality of the Ising CFT, Arf-invarant
(also known as fermionic SPT), and bosonization/fermio-
nization between the Ising CFT and a Majorana fermion, in
a clean way.

The simplest example of a noninvertible duality defect is
the Kramers-Wannier line in the 2D critical Ising CFT
[176]. This duality defect can be realized via the half-space
gauging construction [65], which can also be viewed from
the symmetry TFT perspective [105]. In this subsection, we
reproduce the Kramers—Wannier duality defect from the
polarization pair perspective. Furthermore, we argue that
bosonization/fermionization among ¢ = % CFTs is also
nicely unified via this description.

The relative 2D theory that we start with has intermediate
defect group D = ng) X Zgy ), with the symmetric (since
we are in 4s + 2 dimensions) Dirac pairing given by

0 ;>
: (4.1)
;!
We label each generator of ng) X Zéy ) as
(x) o)
(ny,ny) €2y’ x 75, (4.2)

and the subgroup generated as ((n,,n,)). Lagrangian
subgroups L € D are then those generated by (7., n,) with
the trivial pairing

0 1
(nx’ny)< 1 (2)>(nxv ny)T =0 mod 1, (43)
2

from which it is straightforward to compute that Z", Z"),

and the diagonal subgroup Z(Zdiag) C D are the three
Lagrangian subgroups, generated by ((1,0)), ((1,0)),

and ((1,1)), respectively. There are thus six absolute
1
-2

theories, labeled by 7° ;?, given by the following polari-

zation pairs:

Tuoon  Taoy Ty
Tioi)1.1) T 1110 Tunon (44
where “c = 1 indicates that these theories are not all the

2
Ising CFT but all have central charge ¢ = %
B. Kramers-Wannier duality defect

We take the convention that the Ising CFT is associated
with the polarization pair as follows:

(4.5)

Then, gauging the Z, zero-form symmetry of the Ising
model leads to the absolute theory,

TE;)’(LO) < Ising/Z,, (4.6)

as gauging is simply the flipping of the pair of generators in
the polarization pair,

(£.2) = ((1.0).(0.1)) = (£".2') = ((0.1).(1,0)). (4.7)

The isomorphism of Ising and Ising/Z, is implemented
by an automorphism on the parent relative theory with the
action on the polarization pair as

a:((0,1),(1,0)) — ((1,0),(0,1)).

The Kramers-Wannier duality defect in the critical Ising
CFT can then be simply realized as

(4.8)

N=¢---T, (4.9)
where o is the half-space gauging interface and Z, is the
invertible operator implementing the automorphism a.

C. Fermionization/bosonization

Let us now interpret the other four polarization pairs
in Eq. (4.4). Based on our general discussion in pre-
vious sections, theories with the same # but different £
should be regarded as distinguished via SPT phases/
counterterms. However, there is no nontrivial SPT phase
for the Z, symmetry in 2D pure bosonic systems, since

=1
H?*(Zy,U(1)) = 0. Then how is the theory Té
—1
distinguished from the Ising CFT T(c; (2))’(0!1)? The answer
. c=1
is that TU’S).(H
phases, given by Arf invariants (see, e.g., [36,177,178]), on

) is derived from stacking fermionic SPT

the Ising CFT 7 Ei(%)),(o.l)' Gauging the Z, symmetry of
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c=1 . . . . .
T (1’8)_(1’1), one flips the polarization pair and ends up with
the theory

c=1 . .
T, 1)10) < CFTforaMajorana fermion. (4.10)

This reproduces the celebrated fermionization of the
bosonic Ising CFT to a Majorana fermion. The absolute

c=1 . . . .
theory 7° (1.?),(0.1 ) 18 also the fermionic CFT for Majorana

spinor, but differed from the TE;%)’(L(D theory by the SPT

phase/Arf invariant. Gauging the Z, of the fermionic CFT
gives rise back to the bosonic Ising CFT, which is exactly
the bosonization process via summing over the spin
structure appropriately.”

We close this subsection by emphasizing that though one
can write automorphisms on the defect group in order to
connect theories under fermionization/bosonization, these
do not give rise to (noninvertible) duality defects but rather
maps between inequivalent bosonic and fermionic CFTs
[180]; i.e., this is an example where the assumption that the
charge lattice automorphism uplifts to a good duality of the
full theory does not necessarily hold.

D. 4D N =4 3u(N) SYM

For simple examples like the 2D critical Ising CFT, the
polarization pair language for building duality defects
might look unnecessarily abstract and formal. However
for relative QFTs that possess a rich structure of associated
absolute QFTs, the polarization pair is a powerful method
for their investigation. With this in mind, let us now revisit
noninvertible duality defects in 4D N =4 SYM theories
via the polarization pair.

For simplicity we focus on the 8u(N) case for N prime,

whose defect group is Zj(\f) ® Zl(\,m)

Dirac pairing,
( O %>
X .
L0

We label each generator via the following notation:

with the antisymmetric

(4.11)

(nesnn) €ZY @ 2", (4.12)
and the cyclic subgroup generated as ((n,,n,,)). In the
language of polarization pairs, the total number of absolute
theories is given by (recalling that N is prime)

(N+1)N(N —1) = N> - N. (4.13)

3We refer the reader to [178,179] for a detailed discussion on
2D fermionization/bosonization from a modern perspective.

This can be counted by first counting the number of pairs of
generators (Z,7) with

¢ = (n,,ny,), ¢ = (A, n,), suchthat
- 1
<I/ﬂ’ f> = N (neﬁm nmﬁe) (414)

We will later see that these are exactly all global structures
that the conventional approach covers, thereby supporting
the validity of our formulation.*

A standard way of defining all polarizations is to start
from the partition function of the electric polarization
Zsu(n),[7ym: B, and do various manipulations on it to
reach all to the remaining polarizations. Instead of going
through all the technical details of the original approach, we
will take the same steps and walk through these manip-
ulations in the notion of polarization pairs. Our notation in
4D will follow that of [82].

It is conventional to start from the electric polarization,
which is usually denoted as Zgy (), [B]. For us, taking the
electric polarization means that the global symmetry LV is
the electric center symmetry. We have

Zsuwy, :L = ((0,1)), L = ((1,0)). (4.15)
We first consider the theory where the background field of
the global symmetry carries a single unit of B; this amounts
to fixing the generator to be # = (1,0), and then the Dirac
pairing requires us to pick £ = (0,—1). Therefore, the
above theory is refined into the polarization pair,

Zsyw),[B]: (¢.€) with £=(0,—1),/=(1,0).  (4.16)
Now we take the following three-step procedure to get all
absolute theories which correspond to the 81(N) SYM as a
relative theory:

() Zsu),[tB]. This theory is obtained by changing the
multiplicity of the background field, i.e., implement-
ing generalized charge conjugation (named after the
charged conjugation B — —B with t = N — 1). This
is done by using different generators,

Zsyw),IB):(¢.€) with ¢ =(0,-1),

¢ =(1,0), tezy, (4.17)

where 1V is the inverse of ¢ in Zj, i.e., such
that ¥ =1 mod N. In particular, t = —1 imple-

ments charge conjugation. This gives N — 1 absolute
theories.

BIf N is not prime, then we get a complication from the
possibility of gauging proper subgroups of Zy, which, though
somewhat involved, is also captured by the polarization pair.
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(i) Zsy(v), [tB]. This theory is obtained by stacking m
units of counterterms onto the Zgy () [tB] theory,
which is implemented by the shift of Z — 7 + m?.
The resulting polarization pair is

Zsuw), [tB]: (7, ) with ¢ =(0,-1),

£ = (tV,—mt), (4.18)

which gives (N — 1) more absolute theories.

(iii) Zpsy(),,[tB]. This theory is obtained by taking
Zsy(w), |tB], first stacking n units of counterterms to
get [ = (0,—1),¢ = (Y, —nt), and then implement-
ing the gauging via the symplectic flipping (¢, 7) —
(=Z,7) to get

£ = (—t¥,nt), ¢=(0,-1), (4.19)

and finally stack m units of counterterms once more
to get

ZPSU(N)n.m [ZB] . (f, ?) Wlth f — (—tv, nt),

¢ = (—mt¥,(mn—1)t). (4.20)

This gives N-N-(N—1) = N?>—N? additional
absolute theories, since m,n,t€Zy,t # 0.
Adding up all three situations, we reproduce all N°> — N
possible absolute theories via the polarization pairs (, 7).

To summarize, the topological manipulations relating the
different absolute theories translate into simple operations
on polarization pairs (¢, £), which provides an elegant and
universal way to capture all absolute theories associated
with the same relative theory. Instead of starting with a
particular theory and exhaustively exploring all possible
topological manipulations, one merely needs to enumerate
the polarization pairs.

We now go into further details of 31(2) and 8u(3) SYM
theories to review the construction of duality defects via
polarization pairs. As we will see, in the 811(3) example
where the charge conjugation is nontrivial, the polarization
pair (Z,7) serves as a powerful tool to fully specify the
absolute theory and its possible duality defects.

E. 3u(2) example
The intermediate defect group is D = Z, @ Z,. There
are six polarization pairs (¢, #) [in this case reduced to only
specifying (¢, 7) for L = L = Z,] which are given by

SU(2): ((0,1),(1,0)),  SOB3),,: ((1,0),(0, 1)),

SO(3)_p: ((1,1),(0,1)), (4.21)
SU@2);: ((0.1), (L 1), S0B3),,: ((1,0). (1. 1)),
SO(3)_;: ((1,1),(1,0)). (4.22)

To recapitulate, the topological manipulations are gener-
ated by

Y

)= (=¢.¢) = (¢.0),

o: (
T. )—)(f,?"‘bﬂ),

(

while the SL(2, Z) automorphisms/dualities act separately
on Z and 7 as

f’
f’

Y

(4.23)

S: (1,0) < (0,1),
T: (1,0) < (1,1),

(1,1) fixed,

(0, 1) fixed. (4.24)
Thus, we reproduce the expected transformations for 4D
8u(2) SYM. There is only one nontrivial generator of
SU(2), so charge conjugation is completely trivial in this
case. Based on our discussion in Sec. III C, the non-
invertible duality defects for a given (7,7) are those
corresponding to ¢ combined with other actions in
Egs. (4.23) and (4.24) such that (#, £) is eventually mapped
back to itself. It is straightforward to check this reproduces
the result in [82]. We depict the polarization pairs and their
connections Fig. 3.

F. 3u(3) example

In this case, the polarization pair consists of a pair of
generators inside the defect group D = Z3 x Z5. In con-
trast to 8u(2) case, the charge conjugation plays a non-
trivial role. For the convenience of the reader, we present all
global forms of N' =4 81(3) SYM, enumerating the full
list of 3% — 3 = 24 polarization pairs (Z, £). Since we only
have two choices of the value of the background field £B,
we denote the Z;[B] as G and the charge conjugated
version Zg[—B] as G following [82], where G is SU(3) or
PSU(3) with certain discrete parameters. Then the full list
of polarization pairs (Z,7) is given by the following:
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SU(3)p: (0,2),(1,0) | PSUB3)ge: (2,0),(0,2) | PSU3),4: (2,1),(0,2) | PSU(3),0: (2,2),(0,2)
SU(3),: (0,2),(1,2) | PSU(3)y,: (2.0),(2,2) | PSU(3);,: (2,1),(2,0) | PSU(3),;: (2,2),(2,1)
SU3),: (0,2),(1,1) | PSU(3)g,: (2,0),(1,2) | PSU(3);,: (2,1),(1,1) | PSU(3),,: (2,2),(1,0)
SU(3)p: (0,1),(2,0) | PSUB)ge: (1,0),(0,1) | PSUB),4: (1,2),(0,1) | PSUB3),0: (1,1),(0,1)
SU(3),: (0,1),(2,1) | PSUQ3)y,: (1,0),(1,1) | PSU3),,;: (1,2),(2,0) | PSU(3),,: (1,1),(1,2)
SU®3),: (0,1),(2,2) | PSU(Q3)g,: (1,0),(2,1) | PSU(3),: (1,2),(2,2) | PSU(3),,: (1,1),(2,0)

The procedure of obtaining the full list of duality defects in
[82] via polarization pairs is again followed our discussion in
Sec. IIIC. Write down the 24 polarization pairs above,
together with all of their connections via topological
manipulation of duality; then, any closed loop involving
an odd number of one-form symmetry gauging manipula-
tions implies the presence of a noninvertible duality defect.
For example, consider the theory with polarization pair

((2.1),(1.1)).

Gauging the Z; one-form symmetry leads to the following
absolute theory:

((2,1),(1,1))

PSU(3),,: (4.25)

> ((-1.-1).(2,1))
=((2,2), (2, 1)),

which is written as PSU(3), ;. We mark these two theories in
the table in red for visual clarity. One can express the SL(2, Z)
automorphisms (at 7yy; = i) of the 81(3) theory as actions on
¢ and 7, similarly to Eq. (4.24), and then realize there is
indeed an automorphism which is the duality transformation

((2.2),(2,1) 3 (2, 1), (1,1)).

Therefore, this leads to a noninvertible duality defect in the
PSU(3), , theory via half-space gauging associated with ¢
and the duality transformation S.

We close this section by emphasizing that the polariza-
tion pair construction in 2D and 4D is not limited to the
Ising CFT and A/ = 4 SYM theories. One can revisit other
theories with noninvertible duality defects, e.g., 2D ¢ =1
CFTs [56], or 4D class S theories [110,181]. Namely, once
the defect group and its pairing rule are derived for these
theories, one can follow our generic construction to build
polarization pairs and noninvertible duality defects.™*

(4.26)

(4.27)

*In practice, looking for the defect group and its pairing can
be nontrivial. For 2D ¢ = 1 rational CFTs, this translates into
investigating the Lagrangian subalgebra for the conformal blocks
(which give rise to the space of partition vectors) and defect
braiding in the associated 3D TFT. For class S theories associated
with 6D A/ = (2,0) theories compactified on Riemann surfaces,
the relative theory to start with is the 6D N = (2, 0) theory itself.
Lagrangian subgroups are then given by maximally isotropic
sublattices of 1-cycles of the Riemann surface and their linking.

V. NONINVERTIBLE DUALITY DEFECTS
IN 6D (S)CFTS

In this section, we apply our general constructions of
duality defects to QFTs in six dimensions. Even though our
general construction does not depend on supersymmetry,
most of the known constructions of QFTs in 6D rely on
string theory, therefore we focus on examples in 6D SCFTs
with (2,0) and (1,0) supersymmetry, see [182] for a review.

However, this section will not assume any background in
6D SCFTs. Even though we will express each 6D SCFT we
discuss in terms of the effective field theory description on
the tensor branch, following the notation in [183,184], we
immediately specify the field-theoretic data of 2-form charge
lattices, their intermediate defect groups, and the associated
bilinear pairing. As the latter three objects are all that is
necessary for our discussion, together with the datum that a
relevant automorphism uplifts to a duality of the relative
theory, the tensor branch description is only provided as an
aid to readers who are familiar with that description.

A crucial object is the charge lattice automorphisms of
6D SCFTs. They are introduced and exhaustively studied
in [173] for 6D SCFTs viewed as relative theories.
However, down to the level of absolute 6D theories, such
Green-Schwarz automorphisms should be viewed as dual-
ities between different absolute theories descending from
the same relative theory. Their role is highly analogous to
that played by SL(2, Z) duality at special 7y); values in 4D
SYM theories.

By combining the Green-Schwarz dualities and topo-
logical manipulations of gauging 2-form symmetries and
stacking counterterms, the construction of noninvertible
duality defects in 6D exactly follows from our general
discussion in Sec. IIL

For the rest of this section, we discuss concrete examples
of 6D SCFTs; an irreducible (2,0) example (the D, theory),
a “reducible” (2,0) example (the A, @ A, theory), together
with some general comments on (1,0) examples. We also
briefly discuss some RG flows from 6D (1,0) SCFTs to 6D
(2,0) SCFTs, along which we get noninvertible duality
defects as emergent symmetries in the infrared.

A. N =(2,0) D4 theory

The first example we consider is the D, (2, 0) SCFT. The
descirption of its tensor branch effective field theory is
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, (5.1)

which translates into a Dirac pairing matrix which is the
80(8) Cartan matrix,

2 1 0 0
« 2 1 1 52
= 1 -2 0 '

B. Polarization pairs for the D, (2,0) SCFT

The defect group of this theory is D = Z, @ Z, with a
quadratic form given by

(i o)
q= :
10

Recall that for a Lagrangian subgroup, any pair of elements
need to have integer bilinear pairing, or equivalently, any
element should have a half-integer value of the quadratic
form. Therefore, one has three possible choices of polar-
izations L C D; we introduce the following compact
notation to match with the conventions in the literature:

(5.3)

sy = (1.0),  £5.=(0.1),

lso=(1.1). (5.4)

We remark that since all these subgroups are order 2,
the charge conjugations are all trivial and one also gets the
full list of absolute theories by staying at the level of
Lagrangian subgroups L, L, which is the notation that was
used in [36]. As emphasized earlier, in more general cases
then explicitly specifying the generators, as opposed to just
the (L,7) is vital.

Conventionally, these three choices of polarizations are
called the Ss(8), Sc(8), and SO(8) theories, with the
understanding that these Lie groups no longer label the
character lattice of gauge symmetry charges, but rather
label the character lattice of string charges.

Moreover, as we have explained in Sec. III, the data of
SPT phases on top of a 6D SCFT can be labeled by choosing
the second element 7 in the polarization pair.36 When the
£ C{s, Csc.Cso} has been chosen, Z can be one of the
remaining two subgroups. Therefore, after incorporating
SPT data, we actually have six possible combinations:

#The character lattice of Lie group Ay, is an intermediate
lattice between the root lattice A, and the weight lattice A,,:
A, C Ay CA,. It captures the global form of the Lie group.

In this context, the SPT phase is fermionic and is given by the
Arf-Kervaire invariant. See, e.g., [185].

D D D
T7 _ T7% _ T+ _
(fS.s ,f&.) (KS& 'fS()> (fSl"fS.‘)
Dy D, Dy 55
(fS(-fSO)’ (fS0~sz)7 (fSO»fS(»)’ ( ’ )

or when written explicitly in terms of polarization pairs:

D, D. D
Tinoy  Taoany  Tonao
D, D. D
T 041,11y T30y Tinon  (5:6)

See Fig. 4 for all allowed topological actions among these
theories. Gauging amounts to flipping # and #, which we
denote in green arrows.

The S; = Z, X Z3 Green—Schwarz duality can be gen-
erated by an order-3 element which cyclically permutes
(Zs50, Cser €ss) and any choice of an order-2 element. Here
we make a choice so that the latter switches Ss and SO but
leaves Sc invariant.

C. Construction of duality defects

Next, we construct the duality defect: finding all possible
closed chains of topological operations so that we go back
to the same absolute theory. We give two concrete examples
of noninvertible duality defects:

(1) The simplest example can be given as follows. We
gauge the symmetry in half the spacetime so that we
switch # with #, and then perform a Green-Schwarz
duality to switch back # and 7. As can be checked
explicitly, there is always one particular order-2
element inside S5 that exchanges ¢, Z while leaving
the third Z, subgroup invariant.

In the language of interfaces, by stacking with a
half-space gauging interface and a Green—Schwarz
duality interface, we can construct a topological
operator

N(Ms) =o0(Ms)-T,,7(Ms), (5.7
with a(Z,7)€ S5 an order 2 element, such that
N (Ms) implements the duality transformation in
an absolute D, theory with polarization (¢, ¢). The
relevant fusion rules are given by

N(M)x N(M5)= 3" U(M),

S€H;3(MsZ,)

N(Ms) xUM3) = N (Ms), (5.8)

where U(M3) is the symmetry operator for the
2-form symmetry.

From a string theory construction of 6D SCFTs, a more
general construction of the 3d topological symmetry operator is
to wrap a D3-brane on boundary 1-cycle, as concretely con-
structed in [101]. Namely, this operator itself is a noninvertible
one such that U(M;)U(M3)" # 1, and the leading term in its
world volume TFT reduces to an invertible 2-form symmetry
operator.
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Dy Dy Dy
Ta1y.00) T0.1).(1.0) Ti.0).(1.1)

stacking SPT

gauging Zf)

D D D
721,?),(1,0) 7;0,?),(1,1) 7;1:6),(0,1)

/\

D. D. D.
Taiy.01) — To).0.0 — Tao.00)

«—
an order 2 GS

—
an order 3 GS

D D D
721,?),(1,0) ’ 7?0,?),(1,1) ’ 7;1,?)),(0,1)

FIG. 4. The topological manipulations and Green-Schwarz automorphisms/dualities of the relative 6d (2,0) SCFT of type D,. Top:
gauging 2-form symmetries in magenta, and stacking a counterterm in red. Bottom: an order 2 Green-Schwarz duality fixing Lgy =
((1,1)) while exchanging Lg, = ((1,0)) with Lg. = ((0, 1)) is represented by blue arrows, and an order 3 Green-Schwarz duality
cyclically permuting (Lso = ((1,1)), Ls. = {(0, 1)), Lg, = {(1,0))) is represented by black arrows. After combining these two sets of
topological manipulations into a single diagram, any closed loop should be interpreted as a duality defect, which is noninvertible if an

odd number of ¢ operations are involved.

(i) As a second example, one can start from the

TI(D;SC]SO) = Tg)‘fl)’(l,w theory, stack a counterterm
D D
to get the 7 (;sc.?sS) =T (04’1%(1,0) theory, then gauge
the 2-form symmetry to get the 72¢ _ =
(€55Cse)
T 514,0).,(0, N theory, and finally implement an
order-3 Green-Schwarz duality a; to recover the
D, _ Dy,
T(fsCa?so) = T(o,1),(1.1) theory,
D T D ) 43 D
Ton.an = Ton.a0 = Tdo.on = 7o

(5.9)

Stacking the interfaces of these three operations

builds a order-3 noninvertible duality defect, which

is also commonly referred to as a triality defect.
We have thus demonstrated that there are indeed various
constructions of invertible duality defects in such 6D
SCFTs, in which all the topological manipulations play
a role. One could also use topological operations other
than an odd number of half-space gaugings of the 2-form
symmetry to build invertible duality defects.

D. N'=(2,0)A4 ® A, theory

Having studied an irreducible theory of D, type, we now
give another example of a reducible 6D (2,0) relative theory
(which gives irreducible absolute theories), where we also
identify noninvertible duality defects.”®

Concretely, we examine the 6D (2,0) theory A, @ A, as
a direct sum of two relative 6D SCFTs

2222 @ 22 2 2, (5.10)

whose Dirac pairing matrix is the direct sum of two 311(5)
Cartan matrices. As a relative theory, this theory is a direct
sum of two A, (2,0) theories.

To identify polarizations and topological boundary con-
ditions, we need to write down the pairing. We denote
a generic element as (a,b) €D = Zsx Zs, then the

38Usually an irreducible (relative) SCFT means that the theory
has only one stress-tensor; an irreducible (relative) theory then
has multiple stress tensors which corresponds to having de-
coupled local operator sectors. A reducible relative theory may
lead to an irreducible absolute theory in the sense that the
extended operator spectrum may nontrivially connects the a priori
decoupled relative sectors.
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AsBA AP A
7—(142 2 —1) 7-(27471),?*1,2)
o a o a
AsBA AsDA
T 42714)(12) T 412)%271)
FIG. 5. All absolute theories descending from the A, @ Ay N =

ALBDAL TA4€BA4

(—2,1),(1,—2) (—1,-2),(2,1)
—
an order 2 GS

a o a

—
gauging Zf)

A4®A A4®A4

(1,—2),(=2,1) (2,1),(—1,—-2)

(2,0) relative theory. Here, each vertical pair of theories can be

connected by gauging 2-form symmetry (in magenta arrows) and implementing Green-Schwarz duality (in blue arrows).

quadratic form ¢((a, b)) inherited from the bilinear pairing
on the A, @ A, weight lattice reads,

q((a,b)) = laz +lb2 €eqQ/Z.

s@ T (5.11)

In this way, the generator of either Zs subgroup associated
with either A4 factor has a nontrivial ¢((a, b)), and there-
fore neither Z5 is an isotropic subgroup of D. Nonetheless,
there are two possible choices for Lagrangian subgroups
given by

((1,2)) or ((1,-2)) cD=2ZsxZs, (5.12)
since the generators (1, +2) of either Z5 has
1
q((1,42)) = g(12 +(£2)?)=0 mod Z.  (5.13)

Now, each of the Zs subgroups has four nontrivial
generators n,(1,2) and n,(1,—2). By imposing the pairing
condition (#,7) =1, we get that n;n, =3 mod 5. By
redefining the generators, we can get the full list of
polarization pairs as in Fig. 5. There, each vertical pair
of theories is connected by both gauging the Zs 2-form
symmetry, ¢ and Green-Schwarz duality, a

We notice that Z5 does not contain a Z, factor, so we
could not possibly form a nontrivial counterterm by a
Zs-valued field. This is in perfect agreement with the fact
that for the same # we always have a unique choice of 7,
following the general logic of Appendix B. Therefore, the
only topological manipulation that we have is gauging the
2-form symmetry. As we can see, gauging the 2-form
symmetry will exchange the pair of theories in any
individual column of Fig. 5. On the other hand, the only
GS automorphism which is a global symmetry exchanges
the pair of (2,0) theories, which therefore also exchanges
the pair of Z5 generators in the polarization pair. Therefore,
each operation of gauging 2-form symmetries is exchanged
by the only order 2 global symmetry element a of the GS
duality [out of the full Green-Schwarz automorphism
which is (S5 x S5)xZ,]. Each absolute theory descending
from the A4 @ A, relative (2,0) theory only admits one way

of constructing the noninvertible duality defect, corre-
sponding to the chain of topological manipulation

(¢.0)5 (2.0) S (¢,7), (5.14)
and thus the noninvertible duality defect
U(Ms) = 6,(Ms)---1,(Ms). (5.15)

By computing U(Ms)U"(Mj5), one can get a condensation
operator of 2-form symmetry defects. In this way, one can
see that U(Ms) is indeed a noninvertible condensation
defect.

For Ay_; x Ay_; theory with general N, the existence of
polarization of the above type is discussed extensively
in [17,36]. If the background field of the two Z factors is
given by Cy, C,, then one type of topological boundary
condition is imposed by the boundary term proportional to
J m, "C1 U Cy, so that the boundary condition is given by

Cl = rC2, C2 = —rCl, (516)

which together implies that > = —1 mod Zy (e.g., r = +2
for N =5, but r does not exist for N = 3). Therefore, only
for some N, there exists a pair of boundary conditions of the
above diagonal type with L = ((1,r;)),L = ((1,r,)) such
that r, = —ry.

E. N'=(1,0

Now we examine the more general family of 6D SCFTs,
with AV = (1,0) supersymmetry. Such theories are con-
structed via F-theory on elliptically fibered Calabi-Yau
threefolds over a noncompact base [183,184]. Such theo-
ries generalize the (2,0) family in two ways; the base
configuration can be more general, and nontrivial degen-
erations of the elliptic fibers are allowed. The punchline is
that (1,0) theories mostly exhibit similar behavior as the
(2,0) theories, in terms of their possible polarization pairs
and thus duality defects.

) case
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1. Bases for (1,0) SCFTs

To begin with, we remark that all possible finite Abelian
groups can be seen as the defect group of some (possibly
reducible) 6D (2,0) SCFT, so one cannot get new defect
groups by considering (1,0) theories. In addition, most of
the time, even the quadratic pairing g(u) for elements of a
(1,0) defect group u € D coincides with that of certain (2,0)
theories. For example, an Ay_; (2,0) theory has a defect
group Zy, from which one can already construct all finite
simple Abelian groups. In addition, a (1,0) SCFT with a - N
curve in the base has a quadratic form with spin 1\;_1—\,1 (so that
the bilinear pairing has coefficient —4,), which is isomor-
phic to the quadratic form on the Z,, center of an Ay_; (2,0)
theory with quadratic form evaluated to 25! for N odd. To
exemplify this, we can consider the following (1,0) theory
consisting of two irreducible theories (where each tensor
multiplet paired with a f, vector multiplet):

fa Ta

565, (5.17)
which has the following Dirac pairing matrix is
50
. 5.18
(0 %) (5,18

The defect group is Zs @ Zs with the associated quadratic
form; g((a, b)) = L (a® + b?) for (a, b) € D. We notice that
this is precisely the same as the defect group and quadratic
form that appeared when we discussed the duality defects
in the Ay, @ A4 (2,0) theory. Thus, this particular 6D (1,0)
SCFTs has a similar noninvertible symmetry structure to
that depicted in Fig. 5.

2. Including gauge algebras

Another possibility is to pair the tensor multiplet with
a vector multiplet, breaking the supersymmetry from
N =(2,0) down to N = (1,0). Depending on the details
of the gauge symmetry, the inclusion of gauge algebras
may make the tensor multiplets to be no longer no equal
footing, and thus reduce the admissible set of Green-
Schwarz dualities down to those that preserve the structure
of the gauge algebras. On the other hand, the data about
2-form symmetries, defect groups, polarization pairs
(whenever applicable) are completely unaffected by this
gauge algebra data.

For example, consider a (1,0) theory where each tensor
multiplet pairs with either a 31(4) gauge theory or a 311(8)
gauge theory,

3u(4)

u(
2

su(8) su(8) su(4) (519)
2

[SU8)] 2 2.

Then the defect group and the bilinear pairing are identical
to that of a D, (2,0) theory. However, the Green—Schwarz
automorphism is reduced from S5 to Z,, the one exchang-
ing the two external tensors paired with 8u(4) gauge
algebras, but fixing the external tensor paired with the
3u(8) gauge algebra. Then, inheriting from the D, (2,0)
theory analyzed above, in the following two polarizations
(under a specific choice of basis of the D = Z, x Z,):

D D D D
T z0=Tooon T4 z2,=Tonao (520

there is still some remnant of the A/ = (2, 0) noninvertible
duality defects associated with the preserved Z, Green-
Schwarz automorphism. In contrast, in the remaining four
theories with either # = £, or £ = £, the noninvertible
duality defect no longer exists.

We observe in passing that if we consider a Higgs branch
RG flow from this (1,0) theory to the D4 (2,0) theory
breaking all the paired gauge groups,

3u(4)
2 Higgs Branch flow 2
- 5

su(8) su(8) su(4) 2 22
sU@®)] 2 2 2 ’

(5.21)

then the full group of S3-valued Green-Schwarz dualities
will get restored. Along such an RG flow, the original set
of noninvertible duality defects for (2,0) theories of type
D, would appear in the infrared as an emergent global
symmetry.

VI. TOWARDS A STRING THEORY EMBEDDING

In previous sections, we discuss polarization pairs and
build noninvertible duality defects via them for QFTs in
diverse dimensions. Many of our examples are QFTs which
admit engineering via string theory, e.g., N'=4 SYM
theories and 6D SCFTs. Furthermore, dualities of these
theories usually admit top down interpretations as specific
isometries of the extradimensional geometry.40 Therefore, it
is natural to ask for a stringy perspective for polarizations
and noninvertible duality defects, especially in 6D SCFTs
which largely arise via a string theory realization (see, e.g.,
[182] for a review).

With this spirit, in this section, we set our stage at 6D
N = (2,0) SCFTs, derive their 7D symmetry TFTs and

PSee [186] for analysis of noninvertible symmetries along RG
flows in 4D. See also [187-195] for some more studies on RG
flows in 6D. We leave it for future work to understand the
emergence of generalized symmetries along Higgs branch RG
flows between 6D SCFTs.

String theory gives rise to geometric interpretations for both
exact dualities and infrared dualities. Here we focus on exact
dualities, e.g., S-duality of A'=4 SYM and Green—Schwarz
duality of 6D SCFTs. For a geometric interpretation of infrared
dualities in QFTs in diverse dimensions, see, e.g., [196—198].
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discuss their polarizations and noninvertible duality
defects from the type IIB string theory point of view.
The symmetry TFTs are computed from dimensional
reduction of the type IIB topological sector. This includes
quadratic terms for the 2-form symmetry background fields
of 6D SCFTs, which encode the information of the
intermediate defect group and the Dirac pairing, as inten-
sively studied in the previous section, as well as additional
fields and interaction terms, encoding other symmetries and
their mixed anomalies, coming from the cubic topological
coupling in type IIB supergravity. Based on this string
theory construction, we discuss the branes behind charged
and symmetry operators for the various global symmetries
and take the first steps towards a geometric interpretation of
noninvertible duality defects.”!

A. Symmetry TFTs for A =(2,0
from type IIB

We start with deriving the 7D symmetry TFT for the 6D
N = (2,0) SCFTs from type IIB string theory. Derivation
for the quadratic part of the TFT is well-known, which we
review here using the differential cohomology language. In
addition, we find cubic terms in the 7D TFT from the
dimensional reduction of the type IIB Chern-Simons
coupling, capturing the mixed anomalies between the
2-form symmetries, discrete O-form symmetries and con-
tinuous 1-form symmetries.

We will now compute symmetry TFTs for 6D N =
(2,0) SCFTs via type IIB on an orbifold singularity
X = C?*/T,, with T is a finite subgroup of SU(2). The
computation is realized by reducing the topological sector
of type IIB string theory on the asymptotic boundary
d(C?/T) = $3/T via treating the various type IIB super-
gravity fluxes as elements in differential cohomology
uplifts of (see, e.g., [157,199])

) SCFTs

H*(S3/F, Z)={z,0, 2, z}, (6.1)
where T2 is the Abelianization of T,
ab — r/[C,T]. (6.2)

The reduction leads to a 7D theory known as the symmetry
TFT, as explained in e.g., [10,69].

B. Quadratic terms

We have seen in previous sections that 7D quadratic CS
terms play an essential role in characterizing 2-form
symmetries as well as noninvertible symmetries of 6D
SCFTs. A natural question is whether these terms can
be reproduced from the top down. This is indeed the case.

“'We refer the reader to [175] for a similar top-down discussion
of the 4D N = 4 SYM theories.

The self-dual RR 4-form gauge field C, and its field
strength F5 in type 1IB string theory should be regarded as
the boundary mode of a 11D Chern-Simons theory via the
anomaly inflow construction [17] (see also [24,200,201])

1 N
=3 [ ks
2 NgxS3/T

where Fg € H%(M ;) where M, = Ng x 3/ is the differ-
ential cohomology uplift of the type IIB self-dual flux F’s.
The % symbol in Eq. (6.3) defines a bilinear product
operation on Cheeger-Simons characters H* (M) x
HR (M) = H R (M) [202,203].*% In particular, when
ki +ky=d+1 as in Eq. (6.3), the integral describes a
perfect pairing H*' (M) x H*"'="(M,) - R/Z. Ny sat-
isfies dNg = M x R, i.e., a bulk manifold whose boun-
dary is the spacetime where the 7D symmetry TFT lives.
We expand F via the cohomology classes of S3/T°

(6.3)

Fo=Foxi+ Y E{ %ty + fxvol,  (6.4)
1
where 1 and Vol are generators corresponding to the
nontorsional H°(S*/T",Z) = H3(S*/T',Z) = Z of coho-
mology classes, whereas ?2([) are generators corresponding
to the torsional part ', associated with the H?(S*/T", Z)
and 7 runs over its generators. Note that the asymptotic
boundary S$°/T" has formally infinite volume, so any fields
arising as coefficients of Vol are nondynamical [101,175].
Thus, ]f3 = 0. The self-dual property of the D3-brane flux
then implies that fe=0.
Integrating over S°/T", we end up with the TFT terms

E w(i) , w(i
quadratlc = 2 \/S“ *tz AS E4 *E4j)
=/ E C,. BV %sEY)

- ij*&3 3

MGXR>0

i.j
where at the second step we denote the integral over
S3/T as

(6.5)

Cij = /3 ;2(1')*;2(]-), (66)
$3/r

which is determined by linking numbers between torsional

cycles of $3/T" [17]. We also assume H*(Mg X Rs) = 050

that E\ on Ny is trivialized to E{ on Mg x Ry. The

resulting action exactly consists of quadratic terms for the

2-form symmetry background fields

(6.7)

We refer the reader to [69,157,199,200] for a lightning
review of differential cohomology in the physics context and
[204] for a more mathematical one.
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which encodes the information of the intermediate defect
group D =T and its pairing for discrete 2-form
symmetries, which we have intensively studied in previous
sections.

C. Cubic terms

In addition to the 11D Chern-Simons term, type IIB
supergravity itself includes a cubic topological term

—/ C4 A\ de AN dC2 - — FS*IZI3*G3,
MgxC?/T MgxC?/T

(6.8)

where the type IIB fluxes are again promoted to differential
cohomology elements as Fs € H> (M), Hy,G € H> (M),
where My = Mg x Ry x S°/T. Based on Egq. (6.1), we
expand fluxes as

Fs = Fsxl + 3 EV %y + foxvol,
i

Hy = hyx i+ B xty + igxol,

v

Gy = gyxT + Y %ty + Gokvol. (6.9)

Again we treat fields associated with cycles with infinite
volumes as nondynamical, thus f5 f2 = ho =30 =0.

The surviving coefficients of 1 correspond to field
strengths of background fields for continuous U(1) 1-form
symmetries,

hhouD,  geuvund.  (610)

The coefficients of the torsional generator ;2(0 are back-
ground gauge fields for discrete symmetries,

Y o6, B)oal, el

(i)

where E(i) <~ G%) is exactly the 2-form symmetry back-

ground fields produced in Eq. (6.7). G ) denotes p-form
discrete symmetry group corresponding to the ith generator

of ', and in particular, GE?)), b GE?;.C
of O-form symmetries associated with the same set of cycles

but generated via different brane fluxes.

are two different sets

The IIB topological term (6.8) are now expanded as

- / FsxHyx G
MgxC2)T

:—Zﬂ3 (o)

x/ (EV'%BY 5y + EVxhyxC). (6.12)
MgxR>0

Performing the integral over the internal geometry S3 /T, we
derive

S7D

cubic — / ZCU
MexRs i

gy + EV xhywCY.
(6.13)

It is easy to see each term encodes a mixed anomaly

between the discrete 2-form symmetry GEZ)>, a discrete

0-form symmetry [either GE )  Or G ] anda U(1) 1-form

symmetry.

Combining quadratic terms in (6.5) and cubic terms
in (6.13), we can now write down the full symmetry TFT
for 6D N = (2,0) theories as

_ ()
SeymTFT = A 6XR>O{ S ocyEY usEY

ij

=S eyEY uBY gy + EY Unsu cﬁ”)},
i.j

(6.14)

where all fields are now expressed as elements in ordinary
cohomology. The correspondence between fields and
global symmetries has already been given in (6.10)
and (6.11).

Before discussing the string theory objects underlying
charged operators and symmetry operators, we would like
to remark that U(1) 1-form symmetries, denoted by field
strengths g5 and A3, are not coupled to 6D SCFTs. In fact, it
is shown in [29] that there is no continuous 1-form
symmetry in any 6D SCFT because nontrivial conserved
2-form current cannot exist in any unitary superconformal
multiplet. From the symmetry TFT computation above, it is
easy to see that g; and &5 exist even when reducing the IIB
topological term on S°, while IIB string theory on C? does
not lead to 6D SCFTs. Therefore, these two classes of U(1)

I-form symmetries (namely U (1)(b) and U (1) )Y do not

belong to 6D SCFTs but rather are included in decoupled
sectors.
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D. Branes for symmetry operators
and polarization pairs

Let us now discuss the brane construction for charged
and symmetry operators of the discrete 2-form symmetries

GE?)) and two classes of O-form symmetries GE%b? GE?)),c'

According to [101] (see also [99,100,175]), the charged
heavy defects are built via branes along R, direction,
while the symmetry operators are built via branes wrapping
cycles “at infinity,” which in the current context reads in
Table L.

Instead of dealing with generic S*/T", we focus on the
simple example of D, theory discussed in Sec. V to
illustrate our idea of geometric realization for noninvertible
duality defects. The defect group for the relative QFT is
given by

D=r=27%xz{, (6.15)
where x and y are used to distinguish the two Lagrangian
subgroups of D. The coefficient C;; in the symmetry TFT is

given by the linking pair of $*/Dy,

1/2 1 (6.16)
2\1 2 '
from which we derive the quadratic CS term as
1
Squadratic = / EEé ) U 5Egy>. (617)
MexRs

This is exactly the 7D Z, gauge theory matching the defect
group and its Dirac pairing given by the quadratic form
in (5.3).

E. Polarizations pairs from branes
patterns at infinity

Recall that absolute theories corresponds to Lagrangian
subgroups of the defect group, and for relative theories with
split defect group one further needs to specify a polariza-
tion pair. From the symmetry TFT perspective, such
algebraic data encodes the topological boundary condi-
tions. This statement is now nicely inherited from the string

TABLE L.

theory as the noncommutativity of RR fluxes, which give
rise to different wrapping patterns of D3-branes on top-
olocial cycles at infinity.

For example, pick the polarization pair

D D
T(;&-’?s.\\) o T(Ozf])»(l-o)’

(6.18)
which is introduced in (5.5) and (5.6). This corresponds to

choosing the Lagrangian subgroup L = Zgy ), which is now

a gauge symmetry. The associated boundary condition is

()

Neumann for E5 and the Dirichlet boundary condition for

ng), without counterterm, in the symmetry TFT. From the
string theory perspective, this polarization pair is realized as
an asymptotic boundary condition for RR fluxes “at
infinity” (i.e., infinitely far away from the singularity where
the 6D SCFT is engineered), which translates in the
following certain patterns for D3-branes wrapping torsional
I-cycles:

D3-branes wrapping 7y ,) “atinfinity” fluctuating

< symmetry operators generating Zg’o,

D3-branes wrapping y| ) terminating “at infinity”

<> charged operators under ng). (6.19)

F. Comments on a geometric interpretation
of duality defects

We briefly comment on the geometric interpretation of
noninvertible duality defects. Before starting, we remark
that a similar idea has been illustrated in [175] in the
context of 4D SCFTs.

For QFTs built from string theory via geometric engi-
neering, discrete global symmetries, including duality
symmetries, are inherited from discrete isometries of the
internal geometry. In the context of 6D SCFTs, as we
mentioned in Sec. V, dualities symmetries come from
Green—Schwarz automorphisms, which are inherited
from discrete isometries of the complex two-dimensional
F-theory base space. Back to our current stage on N =
(2,0) SCFTs from IIB string theory, this reduces to the
discrete isometries of the orbifold C2/T.

Fields in the 7D symmetry TFT and their corresponding global symmetries in 6D SCFTs. The charged

and symmetry operators composed of various types of branes are also presented. y,(;) and 7' denote torsional

1-cycles linking to each other in S3/T.

Fields Global symmetries Charged operators Symmetry operators

Egi) GE?)) D3-branes wrapping Ryq X yy(; D3-branes wrapping ;751:)
Bgi) GE?),b Fl-string wrapping Ryq X y(;) NSS5-branes wrapping ;75'.)
C(Ii) GE('»? D1-string wrapping Ryo X 7y(; D5-branes wrapping ;75’)
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In order to build noninvertible duality symmetries,
instead of treating M, x C?/I" as a direct product, we
consider the asymptotic boundary S°/T" nontrivially fibered
over a complex two-dimensional base. The base space is
composed by the transverse direction x, of the 5D duality
defect in Mg and the radial direction Ry, of C?/T’, whose
coordinate can then be written as (x, r). Similarly to the
spirit of building topological operators via branes at
infinity, we consider fiber degeneration at infinity.
Namely, the $3/I" fiber degenerates at x; = 0,7 = o0, S0
that it realizes a nontrivial transition fromx; < Otox; >0
at r = co. More concretely, we require this transition to be
inherited from the discrete isometry transforming different
torsional 1-cycles of S3/T". Since this fiber degeneration is
an asymptotic profile that is infinitely far away from ADE
singularities, it only has topological effects on the 6D SCFT
localized at » =0 as we want. See Fig. 6 for a rough
depiction.

Let us revisit our D, example to illustrate our idea
further. As before, we denote torsional 1-cycles corre-

sponding to the two generators of the ng) X Zgﬁ defect
group as yy(, and y;(,. Choosing the polarization pair

D, Dy . .
T( 7o) _T(O,l),(l.o)’ then according to our previous

discussion, 7y, is the cycle wrapping which D3-branes
are allowed to end at infinity. Now introduce $°/D, fiber
degeneration at x; = 0, r = oo so that there is a nontrivial
transition from x; <0 to x; > 0 based on the isometry
exchanging yy() and yy(,). This gives rise to the non-

invertible duality symmetry of 7° Zj - . theory as shown in

sel'ss)
(5.7) in Sec. V.

The action of the noninvertible duality defect on the
2-form symmetry charged operators, discussed in Fig. 2, is
nicely encoded in the nontrivial transition of D3-branes
crossing through the fiber degeneration, as shown in

®e

¢ -----

~— - — F - =

I
1
I
I
I
¢

,/

FIG. 6. S°/T fibered over the two-dimensional base space
(x1,r). We use the colorful ball to denote the three-dimensional
fiber and a squashed ball to denote the degeneration of some
cycles. The fiber degenerates at x| = 0, r = oo, whose topologi-
cal effect on 6D SCFTs engineered at r = 0O is introducing the
noninvertible duality defect.

Xy

D3 on yy¢ — 119
(o) (o]
r D3 on 7y, - r D3 on vy
0 0
XL XL
FIG. 7. The transition of cycles wrapped by D3-branes gives

rise to the action of noninvertible duality defects on 2-form
symmetry charged operators. The blue point denotes the position
where the S /T fiber degenerates. The red line denotes D3-branes
wrapping 1-cycles “at infinity”, which gives rise to symmetry
operators 7 aligned with Fig. 2.

Fig. 7.5 This is very similar to the Hanany-Witten
transition [205] interpretation for noninvertible symmetries
in 4D [99, 175].44 Interestingly, since this transition is based
on exchanging torsional 1-cycles, F1- and DI-strings
wrapping on cones over y(; also transforms under it.
This gives rise to a nontrivial action of the noninvertible
duality defect on the charged operators under O-form
symmetries B(;) and C(;. See Fig. 8 for a schematic
depiction. This phenomenon of noninvertible defect acting
on both 0-form and higher-form charged operators has been
observed in 4D SCFTs from the string theory point of view
in [175].

Our discussion of the geometric realization of non-
invertible duality defects is at a qualitative level. It would
be interesting to have an algebraic description of the fiber
degeneration at infinity setup, similar to the holomorphic
Weierstrass model considered in [175], which we leave for
future work.

VII. DISCUSSION

In this paper, we studied 2k-dimensional QFTs, involv-
ing self-dual gauge fields, whose (k — 1)-form symmetry
can be gauged using the formalism of relative and absolute
QFTs. Building upon previous studies of polarizations such
as [36], we established polarization pairs as an algebraic
characterization of polarizations and the SPT phase data of
such a 2k-dimensional QFT by directly relating a polari-
zation pair to the partition function of such a QFT. We
explained how the operations of gauging (k — 1)-form
symmetries, stacking counterterms, and implementing
charge-lattice isomorphism are all incorporated into the
polarization pair. We then combined these operations to
give general constructions of duality defects in such even-
dimensional QFTs. To demonstrate the generality of our
formalism, we first revisited the well-studied case of 4D
N =4 SYM. Here, we show that the construction of

®We thank Ifaki Garcia-Etxebarria and Max Hiibner for
valuable discussions on this point.
This geometric transition can be thought of as sharing the
same origin with the Hanany-Witten transition via various dual-
ities in string theory. See, e.g., [206] for related discussions.
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N

r (p.,q)-string on 7, -

X1

N

(p,)-string on vy — 71¢5)

(p,q)-string on

X1

FIG. 8. Local operators charged under G;), and G;) . 0-form symmetries also admit nontrivial action by the noninvertible duality
defect V. The string theory origin is the transition of cycles wrapped by (p,q) strings, associated with a certain combination of G and

Gj),. symmetries.

noninvertible defects in [82] can be reformulated by
polarization pairs in full generality.

We then moved on to the novel case of 6D QFTs. There,
by focusing on examples of 6D SCFTs, we are again able to
identify noninvertible duality defects by combining the
gauging of 2-form symmetries, stacking counterterms, and
implementing discrete automorphisms of the charge lattice
(known as Green-Schwarz automorphisms [173]). We gave
some examples of noninvertible duality defects in 6D (2,0)
and (1,0) SCFTs. Finally, we discussed the symmetry TFT
for 6D SCFTs from type IIB string theory on ADE
orbifolds. In this way, we not only reproduced the 7D
Chern-Simons terms relevant for the intermediate defect
group and the noninvertible symmetries but also observed
background fields for global symmetries which have non-
trivial interplay with the noninvertible duality defects.

Our work suggests various natural directions for future
investigation, especially in higher-dimensional theories
where noninvertible symmetries have not been discussed
overmuch in the literature. Below we comment on three
possible directions.

A. Generic 4D gauge theory

In this paper, when we have considered explicit exam-
ples of 4D theories which realize noninvertible duality
defects, we have focused on N = 4 super-Yang-Mills. For
a 4D QFT with self-dual gauge fields, the analysis of the
polarizarion pair put forth in this paper generically
describes interfaces corresponding to gauging the one-form
symmetry and stacking counterterms. Then, all that remains
to be understood before being able to state the different

types of noninvertible symmetries that exist in a given
theory is the automorphism group of the charge lattice and
whether this action extends to a full duality of the (relative)
QFT. For V' = 4 SYM this occurred only for certain values
of the complexified coupling 7.

There are a variety of other classes of 4D gauge theories
where the construction, whether top-down or bottom-up,
provides a mechanism to study the possible dualities. Class
S theories are obtained from compactifications of 6D (2,0)
SCFTs on punctured Riemann surfaces—the duality action
is determined from the Riemann surface. Noninvertible
symmetries of class S theories have been studied from this
geometric perspective in [110,126,181]. A recent explora-
tion of a class of non-Lagrangian N'=1 and N =2
SCFTs has been constructed via gaugings of Argyres-
Douglas theories in [207-211]. These theories often have
identical central charges, and in many ways evince similar
behavior to /' = 4 SYM. Following from the techniques in
this paper, the demonstration of noninvertible symmetries
is evident once one has shown that the automorphism of the
charge lattice extends to a duality of the local operator
spectrum. It would be interesting to study whether the
similarly to N'=4 SYM persists to this noninvertible
sector. Some work in this regard has appeared in [135].

B. 6D little string theories

In 6D, there is a class of nongravitational yet nonlocal
quantum theories called little string theories (LSTs) that
were first identified in [212] and later given a geometric
classification in [213] (see [214] for an early review). Their
geometric constructions almost come hand-in-hand with
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6D SCFTs; instead of constructing 6D SCFTs putting
F-theory on a local elliptically fibered Calabi-Yau threefold
whose base B contains a collection of complex curves with
negative definite intersection matrix A;; = %, - X; < 0, for
LSTs, we only need to change one condition to Aij <0,
namely the intersection pairing is negative semi-definite.
For an irreducible LST, A;; will only have a single zero
eigenvalue, whose eigenstate in the 2-form charge lattice
encodes the charge of the little string that sets a mass scale
for the LST.

One might wonder whether it is straightforward to
construct noninvertible duality defects in 6D LSTs. The
answer is, unfortunately, not. According to our formulation
based on relative QFTs, the major obstacle is that the
conception of relative versus absolute LSTs has not yet
been established since, in the first place, they are not QFT's
at all. This conceptual obstacle comes hand-in-hand with a
technical one since the defect group of an LST can be given
as D = Z @ Dgcpr [31], where the pairing is trivial on Z.
Therefore, the whole notion of polarization (which builds
upon a nondegenerate pairing) can only be safely discussed
if we restrict our attention to Dgcpr, thus forcing us to
ignore the little string physics and step back into the SCFTs
discussed in this paper.

C. 8D QFTs

Following the path of increasing dimension, the next
natural place to look for noninvertible symmetries is in 8D
QFTs. Recently, 8D QFTs have been studied, in view of 8D
compactifiations of string theory, in [50,75,215-220],
however, the focus is typically on the defect group

D> [D<le) (&) Ing) associated with the electric 1-form and
magnetic 5-form symmetries. In contrast, self-dual 3-form
symmetries, associated with the intermediate defect group
discussed in this paper, have not received much attention. It
would be interesting to write down specific examples of 8D
QFTs that exhibit noninvertible duality defects, and to
understand whether and in what manner such theories can
be obtained from string theory.
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APPENDIX A: (k-1)-FORM DEFECT GROUP
IN 2k-DIMENSIONAL QFT

In this appendix, we review the relevant background
material on relative QFTs in even spacetime dimensions
necessary for the construction of the polarization pair in
Sec. II. We emphasize the key role of the self-dual (k — 1)-
form gauge fields, and the related (k — 1)-form discrete
global symmetries together with their anomalies and
possible gauging.

1. Dirac pairing

In the 2k-dimensional QFT, we consider the dynamical
state of k — 2 spatial dimensions so that its worldvolume
can be coupled to a (k — 1)-dimensional gauge field. The
gauge field of this (k — 1)-form is self-dual so that one can
write down dual gauge field A{*dl of the same form degree
and impose the Hodge duality condition,

dA = £ x dA, (A1)
Under this Dirac pairing, we can define the charge lattice A
of dynamical states with spatial dimension k — 2. This
charge lattice is mathematically a Z-module equipped with
a Z-valued bilinear pairing,

(,)IAXA - Z. (A2)
Due to the exchanging property of differential forms, this
pairing is symmetric for £ odd and antisymmetric for
k even.

As an example, in four dimensions (k = 2), we consider
the antisymmetric Dirac pairing ((e,m), (¢/,m’)) :=
em’ —e'm on the electromagnetic charge lattice. There
the self-pairing of any single state is trivial, so the notion of
electric-magnetic duality is necessary so that there is a
magnetic state which pairs trivially with any given electric
state.

If we instead consider six dimensions (k = 3), there is a
symmetric Dirac pairing of string charges under various
2-form gauge fields. These strings are called “dyonic
strings,” which generically have nontrivial self—pairings.45

“An example is the dynamical strings in 6D SCFTs, also
elaborated in Sec. V. These strings are coupled to the antiself-dual
field comes from the tensor multiplet,

(dA%a), = 4 x (dA)j,. (A3)
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2. Heavy defects and the defect group

In addition to the charge lattice of dynamical states A,
there are also heavy defects in the spectrum of extended
objects of the QFT that carries charges valued in a more
refined version of A. Such a (Q-)refinement is given by
A* DA and A* Cc Q ® A, which is defined as the set of
elements in A @ Q that have integer pairings with all
elements in A under (-, -). This definition is indeed justified
by noticing that all defects must have integer Dirac pairing
with the physical states in order for the QFT to admit a
consistent quantization.

Such heavy defects can be physically viewed as some
external heavy probes of a theory. Concepts of heavy
defects carrying fractional charges in comparison to
dynamical objects are well-known in 4D as the “N-ality”
of the fundamental Wilson lines of 4D 8u(N) Yang-Mills
theory, which can be seen as the worldline of a heavy probe
quark in the fundamental representation. In 6D SCFTs
engineered from string theory, such defects have also been
carefully studied from the top-down perspective in [8].

Following ’t Hooft screening arguments [167,221], the
defect group of a 2k-dimensional QFT with respect to the
(k — 1)-dimensional charged objects can be defined by
modding the group of heavy defects by the group of
dynamical defects,

D = A*/A, (A4)
which is a nontrivial finite Abelian group for generic A. A
special type of charge lattice A having trivial D (hence
A = A¥)is called unimodular lattices or self-dual lattices.*®

3. (k—1)-form symmetries and their anomalies

After having understood the key role of defect group and
its Lagrangian subgroup(s) in controlling the collection of
physically allowed operators in an absolute quantum field
theory, we now systematically formulate our understanding
of the (k — 1)-form symmetries together with their counter-
term data.

Picking a Lagrangian subgroup L C D for a relative
theory would give an absolute theory whose (k — 1)-form
symmetry is valued in D/L. However, this (k — 1)-form
symmetry could still suffer from a ’t Hooft anomaly
associated with the 2-form symmetry LV precisely when
the following short exact sequence does not split,

1-L->D->D/L=L"—-1, (A5)
namely, whenever a direct sum decomposition D = L @ L
(with L = LV is an uplift of LV back into D) is impossible.
Such a theory with a 't Hooft anomaly of the 2-form
symmetry is called a projective theory in [36], which is a

**Meaning that the lattice is self-dual under its bilinear pairing.

specific type of absolute theory. Physically, such projective
theory lives at the boundary of bulk (2k + 1)-dimensional
Chern-Simons theories.

Returning to the anomaly-free case when the direct sum
decomposition D = L @ L is possible, we remark that such
a decomposition might not be unique. Different direct sum
decompositions correspond to different choices of local
counterterms of this theory, and any pair of such resulting
theories only differ by a symmetry-protected topological
phase (also known as “stacking a counterterm”).

Therefore, we propose to rephrase the usual statement of

acertain D/ L theory with a specific choice of SPT
as

a theory with defect group D and a pair (1, [)
generating Lagrangian subgroups (7, £),

with L a particular choice of uplift of LY = D/L to D. Said
differently, the information of an SPT choice is fixed via the
choice of L. A nice feature of this phrasing is that all
choices of L would be placed on equal footing, so we no
longer need to make the decision of which choice L
corresponds to a theory without a counterterm.

4. Symmetry TFT for polarization pairs
for noncyclic (¢.7)

In this part, we elaborate on the definition of polarization
pairs for QFTs with split defect groups in general, without
imposing the restriction of L & L = Z, as done in the
main text.

Consider the defect group D with n generators D;, I =
1,---m, each of which we associate with an k-form gauge
field b; valued in ;. The symmetry TFT then has an action
in the generic form

1
Symtrrlbr.ba.cbn) =3 [ biQuds. (6)
2t 1

where the matrix Q;; is inherited from the quadratic pairing
q(u), defined around (2.4), on the defect group D.

We then specify to split defect groups with D = L & L,
so m = 2n that it has two identical sets of generators b}, b}
where i € 1, ..., n. In addition, L, L both begin Lagrangian
subgroups of D means that the xx components and yy

components of Q;; vanish identically so we have

0 o
QIJ_< Y O>

ij

(A7)

and only the xy component remains. And the symmetry
TFT now reads,
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Ssymtrr (D], b3, ... by, by, DY, ..., by

_ x )Y <Y
= / bi Qij 5bj,
Moy

The (2k 4 1)-dimensional symmetry TFT always has a
dynamical boundary, where the 2k-dimensional relative
QFT lives. The existence of a Lagrangian subgroup L C D
translates into the existence of a topological (gapped)
boundary of the symmetry TFT, on which there is a set
of well-defined topological boundary conditions. This
includes Dirichlet boundary conditions (where J labels a
set of 2n generators, and i labels n linear combinations 17
of these generators that satisfy Dirichlet boundary con-
ditions),

i.j=1....n  (A8)

5(di(b1)_(?i)jD])|M2k:O? i=1,...,n, J:1,...,2n,
(A9)
where d;(b;), i =1,...,m are m linear combination of

D-valued fields that has Dirichlet boundary condition
(hence the letter d), whose boundary value are given by
¢;D; (which can also be written as £} DY + ¢, D?). Here,
for each individual i, we recover the cyclic story as in the
main text.

We define the polarization pair for the general case as

({I/ﬂlv ""Lpn}; {21’ ’?n})

With this polarization pair, the boundary states can be
denoted as

(A10)

W, ... {41, ... ¢}, By, ....B,).  (All)
As our notation suggests, the orders within ¢4, ..., 7, and
the order with in 7, ...,Z, are both irrelevant, since they
are n Dirichlet boundary conditions implemented by &
functions that commutes with each other.

One could also concatenate the general topological
boundary with a dynamical boundary |R) to get the
partition, whose description thus goes completely in
parallel as the topological boundary states.

We proceed by giving some general remarks:

(1) For the generic situation discussed in this appendix,

there are many ways of implementing gauging of

(k — 1)-form symmetry and stacking counterterms,

one associated with each cyclic subgroup of L.

Formulating the story in full details introduces more

technical complications, but the main idea still

follows from our main text.

(i) One could consider gauging not only gauging
the cyclic subgroup associated with a single
generator, but also gauging a “diagonal” cyclic
subgroup. Then, one should first implement a
linear transformation as above such that this

diagonal generator is an basis in the new set of
basis, and then switch it with a “dual” generator
out of {#;}.

(2) The permutation within {7, ...,#,} is irrelevant, so
is adding one element to another: £; > ¢;+¢,.(i#))
while keeping any other #s fixed. However, multi-
plying the generator of a single Z is still brings us to
another absolute theory via implementing an oper-
ation analogous to charge conjugation.

5.4D N =4 30(8) theory

To conclude this appendix, we give some discussions of
how polarization pair describes all global structure of the
4D N =4 80(8) SYM theory, which is also covered
in [82].

Here, D = 73 with the following pairing47:

000 !
00 10
1 : (A12)
0loo0
1000

such that L ~ L =~ 7, @ Z,. Any pair of nontrivial ele-
ments inside Z5 would give a Z3 subgroup, so modulo
repetition there are (4)/3 =35 such Z} subgroups
of Z3. However, not all of them are isotropic. To look
for isotropic Z3 C Z3, we only need to examine the
mutual pairing of the two generators a, b, which reads
(aby + arbs + azb, + agby)/2. One can check that for a
fixed a, there are 8 out of 165 that will make this pairing
integral. But after excluding » = 0 and b = a, this number
becomes 6 out of 14. So the total number of Lagrangian
subgroups of this Z3 becomes (%)) x  x & = 15.

Now L can be any one of these 15 Lagrangian sub-
groups. Our case is simple in that once we fix L, all
possibilities of {#,¢,} modulo linear relations are com-
pletely fixed, since all elements in L have order-2. The last
step is to also pick an L such that D = L @ L, which is
equivalent to the statement that L N L = 0. For any given
L, it turns out that eight out of the remaining 15 —1
Lagrangian subgroups can be chosen to be L that satisfy
this direct sum condition, so there are 15 x 8 = 120
polarizations of the 4D N =480(8) SYM theory.
Reproducing the correct collection of SYM theories is a
nice confirmation and illustration that a polarization pair is
indeed capable of completely describing polarization for
theories with D = L @ L in general, even though the defect
group is not of the form Zy x Zy.

“'This pairing holds for 80(8k) in general, while it will take a
different form for 8o0(8k + 4), see e.g., [17].
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Now, associated with any particular ({£,,2,},{¢1.%>}),
there is a Z, x Z,-valued 1-form symmetry which has
three Z, subgroups. So the generic possibility of stacking

counterterms can be expressed as [, PBY) + P(BY) +

P(Bél) + Bgz)) which, nonetheless, can still be accounted
for by shifting {#,,%,} via {#,,%,}. Similarly, gauging
any Z, subgroups of this Z, x Z, can be accounted for by
flipping a single pair of #, #. We leave the full detail as an
exercise for the interested reader.

APPENDIX B: CHANGING 7 TO ABSORB
QUADRATIC COUNTERTERMS

As we have seen in the main text and in Appendix A 3, a
nice feature of the polarization pair is that all choices
of L are placed on equal footing, so we no longer need
to make the decision of which choice L corresponds to “a
theory without a counterterm.” In this appendix, we further
justify this statement from the symmetry TFT perspective.

We have formally defined the boundary state |£, 12 B) in
a way that depends on the choice of (#, #) in the main text.
The dependence of this basis on # can be examined via the
consequence of basis change for a theory with, e.g.,
D=L®L=27yxZy:

(6.7) = (£.7+¢) (B1)
such that L' = (£ + ¢). Now the new set of clock-shift
operators are

{®(A).@(B)}.

A€eH"(My L), B eH*My.L).

(B2)

Now the creation operators ®(B’') = ®(A + B) that we use
to construct the entire set of basis vectors {|£,7, B + A)}
are different from {|#,Z,B)} which is constructed via
®(B), so it is natural to expect differences between these
two sets of basis.

We note that the two set of basis still share the same
clock operator ®(A). Namely, for fixed B = By, |£. 7, B, +
Ag) and |£, 7, By) are eigenvectors in the same 1d eigen-
space of ®(A), so they should only differ by a phase. To
then determine this phase, we need the following formula
of ®(A+ B).*®

*Such a choice of quadratic refinement has the effect of
redefining the zero point of the background field, as illustrated
in 6D in Sec. 4.4 of [36]. We leave a more detailed exploration of
such a possibility and its more physical implications in future work.

i
®(A+ B) =exp <—2—7; ’
2k

— exp (i—’; Al A B) D(B)D(A).

Namely, ®(A + B) is neither ®(A)®(B) nor ®(B)D(A),
but a phase-averaged version of them. With this formula,
we can act ®(A + B) onto |£,#', B’ = 0) to get (where in
the second line, we used the fact that when B’ = 0, the
boundary state does not depend on 7),

AU B> ®(A)D(B)

(B3)

|f, 2’,3/ :AO +B0>
= ®(Ay+ By)|£, ¢, B' = 0)

2ri _
= exp <i’/ Ay U BO> ®(By)D(Ay)|£, 7. B = 0)
2N Jum,,
2ri -
= eXp (m/ AOU30>(I)(Bo)|bp,f,B:0>
2N Jum,,

i _
= exp ﬂ/ Ao UBy |62, B = By). (B4)
2N Ju,

By doing the above procedure k times we can see the
quadratic nature of the phase factor,

|f, ?/,B/ — k(AO + B0)>

27i _
— exp i’k2/ AyUB, ||6.7.B = kB,).  (BS)
2N

As we have seen, shifting # creates quadratic phase factors.

Exactly in the same fashion, we can also use the freedom
of shifting # to cancel/absorb all quadratic phase factors. In
particular, If we have a phase factor of any quadratic
counterterm ¢(B),

exp <2m- [M ) €(B)>

then we can also absorb it by doing a shift of £ — £ + r£
such that the following identity holds:

r/ AoUB():/ €<B0).
Moy My

In this case, the counterterm is indeed absorbed by the
following operation:

£,¢,B)

(B6)
(B7)

exp <2ﬂi/w e(B))|f,?,B> == |, ¢+ rf,B). (BS8)
2k
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