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In this paper we use α02 corrections to theD3-brane action to obtain a nonzero and positive cosmological
constant in the induced cosmology living on the dark bubble. Its measured value together with the value of
the fine structure constant correspond to a dark dimension of size 5 × 10−5 m and a string scale at 11 TeV.
We conclude that the dark bubble model predicts deviations of Newtonian gravity and stringy excitations of
known particles within reach of future experiments.
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I. INTRODUCTION

The construction of four-dimensional vacua with a tiny
and positive cosmological constant Λ, is a big challenge for
string phenomenology [1–3]. The dark bubble model
proposal [4–10] is an alternative framework that circum-
vents many of the problems that arise in standard com-
pactification constructions. The key ingredient of the model
is an unstable five-dimensional anti–de Sitter space (AdS5),
which decays to a more stable one through the nucleation of
a spherical D3-brane. The induced metric corresponds to a
four-dimensional expanding cosmology with a positive
cosmological constant. For a recent review, where many
common questions about the model are discussed,
see Ref. [11].
In [9], the dark bubble was realized within type IIB

string theory using a stack of N D3-branes, whose near
horizon geometry takes the form of AdS5 × S5, with
angular momentum in the compact directions. It has a
holographic interpretation through N ¼ 4 super-Yang-
Mills theory with nonzero chemical potential μ and
temperature T. From a five-dimensional point of view,
the stack of branes can be viewed as an AdS5-Reissner-
Nordström (RN) black hole. Due to the instabilities caused
by the presence of fμ; Tg, the black hole can discharge
itself by emitting D3-branes. The nucleation of a brane
corresponds to the creation event of Vilenkin quantum
cosmology as described in [12].
At zeroth order, the tension σ of such branes is exactly

critical and the cosmological constant vanishes [13]. In [9],
it was argued that 1

N corrections to the tension of the brane
will reduce this below the critical one, leading to an

accelerated expansion with a positive cosmological con-
stant. This in line with the weak gravity conjecture
(WGC) [14,15].
The goal of this paper is to calculate the precise size of

such corrections, and relate the induced four-dimensional
cosmological constant to other fundamental scales.
Remarkably, we will find that the theory is fully specified
through the value of the cosmological constant together
with the fine-structure constant. It uniquely predicts the
string scale to be of order 10 TeV, and the presence of large
extra dimensions leading to deviations of the force of
gravity on scales of order 10−5 m.

II. NEW ENERGY HIERARCHY
AND Λ4 > 0 FROM STRING THEORY

A. The energy hierarchy of the dark bubble

We start by relating the various scales of the bulk theory.
Our definitions are such that the relation between
Newton’s constant, reduced Planck mass and length in a
d-dimensional space is

κd ¼ 8πGd ¼ M2−d
d ¼ ld−2d : ð1Þ

Throughout the paper we are working in units such that
ℏ ¼ c ¼ 1. In 10D supergravity, the relation between the
Planck length and the Regge slope parameter α0 is

l810 ¼ 26π7g2sα04: ð2Þ

Compactifying on S5, we find a 5D Planck length given by

l35 ¼
l810

VolðS5Þ ¼ 26π4g2s
α04

L5
: ð3Þ

In addition, the AdS=CFT correspondence [16] states that
the length scale L of a stack of N classical D3 branes in
type IIB supergravity is
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L4 ¼ 4πgsNα02; ð4Þ

Using this, we can rewrite Eq. (3) as

L3 ¼ N2l35
4π2

: ð5Þ

The physical relevant regime has gsN ≫ 1, implying the
following hierarchy of scales:

ðN=2πÞ2=3l5|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
L

≫ π3=8ðN=2πÞ5=12|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
l10

≫ l5: ð6Þ

Next, let us discuss how the junction conditions relate the
induced four-dimensional cosmology and the bulk five-
dimensional geometry [17]. The expanding bubble of
vacuum is localized in the radial direction of the AdS
throat, dividing the bulk space in two: the true (inside)
vacuum and the false (outside) vacuum. This generates a
discontinuity of the bulk metric across the D3 brane, which
forces the presence of a nonzero induced energy-stress
tensor on the brane Sab, given by the second Israel’s
junction condition as

Sab ¼ κ−15 ðΔKab − ΔKhabÞj−þ; ð7Þ

where Kab is the extrinsic curvature of the brane defined as
Kab ¼ ∇βnαeαae

β
b. The unit vector normal to the brane, nα,

is defined in the direction of increasing transverse volume.
The tangent vectors are defined by eαa ¼ ∂xα=∂ya, with xα

labeling bulk coordinates and ya labeling coordinates on
the brane. In order for a spherical bubble to be able to
nucleate, the tension of the bubble (i.e., Sab ¼ σhab) can be
at most the critical value given by

σcr ¼
3

8πG5

Δk; ð8Þ

where Δk ¼ ðk− − kþÞ, with k� ¼ L−1
� . If the tension is

less than the critical value, then the difference will give rise
to a positive cosmological constant [4]. The effective 4D
gravitational constant can also be derived using the junction
conditions and is given by

G4 ¼
2k−kþ
Δk

G5: ð9Þ

Here, one should note the crucial difference between the
Randall-Sundrum construction, where the bubble has two
insides, and the dark bubble where there is an inside and
outside. With two insides, the extrinsic curvatures have the
same sign, and the denominator of (9) is replaced by
k− þ kþ. In case of RS, or any standard compactification,
the higher dimensional gravity will be stronger than the 4D
one. The dark bubble is unique since Δk small allows the

higher dimensional gravity to be weaker. We will come
back to this later.
The relations between bubble boundary and bulk, (8), (9),

that we have obtained can be expressed in terms of
parameters of the 10D space time. We first notice that G5

in expression (5) per definition remains constant across the
junction (i.e., ΔG5 ¼ 0), which implies

Δk ¼ −
2

3

ΔN
N

k: ð10Þ

This expression relates the scales k� of the outside/inside
vacua to the ΔN number of D3-branes that can potentially
nucleate and escape from the stack. This allows us to
write (8) as

σcr ¼ −
k

4πG5

ΔN
N

¼ −
ΔN

ð2πÞ3gsα02
¼ −ΔNTD3

; ð11Þ

where TD3
¼ ðð2πÞ3gsα02Þ−1 is the tension of a fundamental

D3-brane and we have again used Eq. (4). If we assume the
nucleation of a single brane, thenΔN ¼ −1, so we find that

σcr ¼ TD3
: ð12Þ

This is exactly the correct tension for a single Bogomol'nyi–
Prasad–Sommerfield (BPS) D3-brane, and we conclude
that such a nucleated brane has critical tension σcr. Below
we will see how corrections reducing the tension of the
brane will generate a positive cosmological constant
(i.e., ρΛ ¼ σcr − σ > 0) on the induced four-dimensional
cosmology.
We will now write the value of the 4D Newton’s constant

in terms of the N number of branes in the background.
Making use of expression (10), one can rewrite (9) as

G4 ¼ 2
k−kþ

k− − kþ
G5 ¼

3k2

−ΔNk
NG5 ¼ 3

N
L
G5; ð13Þ

where we have written k− ≃ kþ, with k� ¼ k ∓ Δk and
ΔN ¼ −1. Using the previous relations, we can then
connect L to the 4D Planck scale through

L ¼ N1=2

2
ffiffiffi
3

p
π
l4; ð14Þ

which allows us to rewrite the hierarchy (6) in terms of l4
instead:

N1=2

2
ffiffiffi
3

p
π
l4|fflfflfflffl{zfflfflfflffl}

L

≫
N1=4

23=4
ffiffiffi
3

p
π3=8

l4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
l10

≫ l4 ≫
N−1=6ffiffiffi
3

p ð2πÞ1=3 l4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l5

: ð15Þ

As already pointed out, it is of crucial importance to notice
how unusual the hierarchy l5 ≪ l4 is. In conventional
dimensional reduction, L ≫ l5 immediately leads to
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l5 ≫ l4, which implies that gravity is stronger in the
compact dimensions. As a consequence, there is an upper
bound on the volume of those closed directions to avoid
conflict with observations. This no longer applies to the
dark bubble model. The reason is the presence of the
large factorN in the relation between the 5D and 4D Planck
scale in the expression (15), provided by the derivation of
four-dimensional Newton’s constant from the junction
conditions.
Let us now turn to the expected corrections to the BPS

tension of the D3-brane mediating the decay.

B. Λ4 > 0 from subleading corrections

As discussed above, Eq. (12) implies the absence of an
induced cosmological constant at leading order in the brane
action. As argued in [9], it is the angular momentum of the
stack of branes (or the high chemical potential and nonzero
temperature in dual field theory) that breaks the supersym-
metry of the system. This breaking should be reflected by
corrections to the brane’s tension, making it subcritical, in
line with the WGC [14] and the decay of nonsupersym-
metric AdS vacua described in [15]. These corrections are
expected to be of the order 1=N, as the nucleation of a
D3-brane can be understood as a Higgsing process of the
dual gauge group as SUðNÞ → SUðN − 1Þ ×Uð1Þ [9].
There are two types of corrections (up to a power of the

string coupling) that can roughly contribute at the same
order of magnitude 1

N. Let us elaborate on them.
(1) “Stringy” corrections: These corrections at Oðα02Þ

can be independently computed for the Dirac-Born-
Infeld (DBI) and Wess-Zumino (WZ) pieces of the
brane action. Curvature corrections to the DBI action
were found in [18] by requiring consistency of the
effective action with the Oðα02Þ terms of the corre-
sponding disk-level scattering amplitude [19]. On
the other hand, the WZ curvature corrections can be
found by imposing that the chiral anomaly on the
world volume of intersecting D-branes cancels with
the anomalous variation of the WZ action [20]. We
will explore each of them in the following section.
Schematically, we can write these corrections as

δσ ∼ TD3

α02

L4
∼ TD3

1

gsN
; ð16Þ

where we have used relation (4). Observe that, since
the length scale l2s ¼ α0 is a classical scale set by the
tension of the string, these contributions can be
interpreted as a tree level effect.

(2) Quantum loop corrections: Quantum loop correc-
tions can be written as

1

N
∼
l410
L4

; ð17Þ

where l10 is the 10D Planck length. The Planck
length is obtained from the classical Newton’s
constant by introducing Planck’s constant, showing
that this correction comes from quantum loops. A
renormalized one-loop calculation for a massive
field of mass m, leads to a contribution to the
vacuum energy of order m4. Hence, we see that
the loops above would be generated by fields with
m ∼ 1=L, which are present in the theory [21].

While stringy corrections to the brane action will be
suppressed by a factor 1=gsN, quantum loop corrections
will be suppressed by 1=N. This implies that stringy
corrections will be the most important, provided that
gs ≪ 1. We conclude that corrections from string theory
will induce a 4D cosmological constant according to

ρΛ ∼ TD3

1

gsN
∼

1

gsLG5N2
∼

1

gsL4
: ð18Þ

In the next section, we will compute in detail all relevant
contributions to Λ4 from higher curvature corrections to the
brane action.

III. STRINGY CORRECTIONS
TO THE BRANE ACTION

The low energy effective field theory of Dp-branes in
type II superstring theories consists of the DBI [22] and the
WZ [23] actions. Concretely, for p ¼ 3, this is

SD3
¼ −TD3

Z
d4ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detP½G�

p
þ TD3

Z
P½C4�; ð19Þ

where P½·� denotes the pullback of a 10D space-time field to
the brane world volume. G is the 10D metric and C4 is
the 4-form that charges the brane. From now on, we will
refer to ten-dimensional directions with greek indices,
fa; b; c;…g to denote space-time coordinates on the brane
and fi; j; k;…g for directions normal to this.
At leading order with critical tension, the two terms

in (19) are perfectly balanced, so that they cancel. We have
previously commented that we expect corrections in line
with WGC making the tension slightly less than the critical
value. It is natural for such corrections to appear in the DBI
part, but not in the WZ part. The latter represents the
change in the bulk energy density between the inside and
the outside, and can be viewed as a boundary term
appearing in a bulk calculation. We do not expect this to
change through local effects having to do with the brane.
Hence, the WZ part should not give any correction relevant
for us. We will find evidence supporting this claim below.

A. Corrections to DBI

String theory corrections to the DBI action at order α02
due to curvature were obtained in [18]
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SDBI ⊃−TD3

π2α02

48

Z
d4xe−Φ

ffiffiffiffiffiffi
−g

p ððRTÞabcdðRTÞabcd

− 2ðRTÞabðRTÞab − ðRNÞabijðRNÞabijþ 2ðR̄ÞijðR̄ÞijÞ:
ð20Þ

Observe that ðRTÞabcd ¼ Rð4Þ
abcd is the induced curvature on

the brane and is related to the bulk curvature Rð4þdÞ
μνρσ and the

extrinsic curvature Ki
ab, with i ¼ f1…dg through the

Gauss-Codazzi equations:

Rð4þdÞ
μνρσ eμaeνbe

ρ
ceσd¼ðRTÞabcdþδij

�
Ki

adK
j
bc−Ki

acK
j
bd

�
; ð21Þ

where eμa projects the Riemann tensor of the bulk onto the
brane. The number of dimensions normal to the brane is
represented by d. In our case, the bulk will be AdS5 × S5,
so d ¼ 6 [24], ðRNÞabij is the curvature of the normal
bundle and given through

Rð4þdÞ ij
μν eμaeνb ¼ðRNÞabijþhcd

�
Ki

adK
j
bc−Ki

acK
j
bd

�
: ð22Þ

Finally, we need to define

R̄ij ¼ habRð4þdÞ ij
ab þ habhcd

�
Ki

acK
j
bd − ηKi

abK
j
cd

�
: ð23Þ

In contrast to the other corrections to the action, expres-
sion (23) has no clean geometrical interpretation. We note
two terms depending on the square of the extrinsic
curvature. The first one is of the form Ki

acKac j, and
was derived in [18]. The second term, of the form Ka i

a Kbj
b ,

has an unknown coefficient η, which could not be
determined through the scattering amplitudes in [18].
These amplitudes involve gravitons and scalar perturba-
tions of flat space that are on shell. Since Ki

ab ¼ ∂a∂bϕ
i in

flat space, with ϕi as the embedding coordinate, it follows
that the trace of K must vanish. Therefore, a calculation
using scattering amplitudes in flat space does not fix the
constant η above.
Unfortunately, it is exactly this term that will yield a

nontrivial correction to the DBI action of our dark bubble,
embedded into AdS space. Away to fix η, as well as many
other parameters when more fields are turned on, is to use T
and S dualities. This was done in [25] with the result that
η ¼ 1, if S duality is used off shell. However, the derivation
is slightly subtle. The sum of the contact terms in the
scattering amplitudes, which are used to read off the terms
in the effective action, should respect T duality off shell. S
duality, on the other hand, may mix the contact terms with
the pole terms, which makes it much more tricky to use.
Actually, since on-shell S duality is automatically satisfied
by the scattering amplitudes, it is really only off-shell S
duality that needs extra care. Luckily, for precisely those

amplitudes that are relevant for this paper, no such mixing
occurs. This is the reason why we can trust the derivation
in [25], based on off-shell T duality, and use η ¼ 1. Clearly,
it would be satisfying to derive this result through an
explicit scattering amplitude calculation. This could be
achieved considering three closed string gravitons, scatter-
ing off a D-brane. You would then induce a vertex between
one of the gravitons and two internal off-shell scalars. Such
calculations turn out to be extremely complicated, but can
in principle be done.
We will now use the correction described above to

compute the shift in the tension of the brane, and thus
the cosmological constant of the dark bubble. To do this, it
is enough for us to study a pure AdS5 background. We are
only interested in finding the value of the cosmological
constant, and therefore we consider the late time universe at
large radius, where matter components induced by the
Reissner-Nordström piece of the metric of [9,26] can be
ignored. For a cosmological constant that is small com-
pared to all other scales of the model, we can ignore the
expansion of the dark bubble when calculating its value.
We therefore assume that the brane sits at a constant z ¼ z0,
and we can also assume that the brane sits at a constant
position on the S5. With AdS5 × S5 as a direct product, and
the brane positioned within the AdS5, all contributions to
the extrinsic curvature Ki

ab with i ≠ z will vanish. With a
single extra dimension to worry about we just get
ðRNÞabzz ¼ 0 by antisymmetry. Since the brane is flat,
RT will also vanish. One may also note that the expression
for 5D Riemann tensor of AdS, given by

Rð5Þ
abcd ¼ k2ðhadhbc − hachbdÞ; ð24Þ

with hab ¼ gab, coincides with the Gauss-Codazzi equa-
tions for a flat brane, with extrinsic curvature

Kab ¼ khab: ð25Þ

We can now evaluate the single nonzero component of R̄ij

to obtain

R̄zz ¼ k2gzzð−4þ 4 − 16Þ ¼ −16k2gzz: ð26Þ

If we then sum up all contributions, then we find

ðRTÞabcdðRTÞabcd − 2ðRTÞabðRTÞab
− ðRNÞabijðRNÞabij þ 2ðR̄ÞijðR̄Þij ¼ 512k4: ð27Þ

This will make the tension smaller, just as expected from
WGC. This means

TD3
→ TD3

�
1 −

512

48
π2α02k4

�
: ð28Þ
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B. Corrections to WZ

We have already argued that the WZ part of the action
will not yield any nonvanishing correction in our case. Let
us look at this in more detail. It describes the coupling of
the brane to Ramond-Ramond fields of various dimensions.
It is given by

SWZ ¼ TDp

Z
dpþ1xC ∧

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að4π2α02RTÞ
Að4π2α02RNÞ

s
: ð29Þ

Since RT and RN all vanishes for us, there are no relevant
corrections form this expression. However, as shown
in [27], there is also a related contribution to the WZ
action given by

SWZ ⊃ −
π2α02

12

Z
d4xe−Φ

ffiffiffiffiffiffi
−g

p
ϵa0a1a2a3

×
1

ðpþ 1Þ! ∂zF
ð5Þ
za0a1a2a3R̄

zz: ð30Þ

Here we again note the appearance of R̄zz, which contains
the trace of the extrinsic curvature. In contrast to the
corresponding result for the DBI action, the results in [27]
are not conclusive. A reasonable guess is that R̄zz is the
same as for the DBI part, but the dualities cannot fully fix it.
Luckily, as we have already explained, there are good
reasons to expect that we will not need the precise result,
and that the contribution vanishes for a very general reason.

Studying (30), we note the presence of ∂zF
ð5Þ
za0a1a2a3 . In the

analysis of [27], assuming the trace of the extrinsic
curvature to vanish, there is no difference between ∂ and
the full covariant derivative ∇ ¼ ∂þ…. One could there-
fore argue that the correct expression should be (30) with a
covariant derivative. Then the correction to the WZ will
simply vanish as a result of the equations of motion for F.
This is in line with our general expectation.

IV. PHENOMENOLOGICAL IMPLICATIONS
AND CONCLUSION

The results we have obtained in this paper are not just
order of magnitude estimates but based on first principles in
the precise model put forward in [9]. Let us now fix the
scales and parameters by comparing with cosmological
observations.
From expression (28) and ρΛ ¼ σcr − σ, we see that

ρΛ¼
32

3

π2α02

L4
TD3

→ ρΛ¼
4

3πgsL4
; ð31Þ

where Eq. (4) and TD3
¼ ðð2πÞ3gsα02Þ−1 have been used.

Using Eqs. (1), (5), and (13) we find

L2 ¼ 2

3π
NG4; ð32Þ

implying

N ¼
ffiffiffiffiffiffi
3π

p

G4
ffiffiffiffiffiffiffiffiffi
gsρΛ

p : ð33Þ

To constrain the value of the string coupling gs, we
notice that

Mp ¼ MRN; ð34Þ

where

Mp ¼ TL ¼ 1

L

ffiffiffiffiffiffiffiffi
gsN
π

r
¼

ffiffiffiffiffiffiffiffi
3gs
2G4

s
; ð35Þ

is the mass of a four-dimensional particle represented
by the end point of a fundamental string with the
fundamental charge e and tension T ¼ 1=2πα0, attached
to the D3-brane [5]. This BPS particle will induce a
Reissner-Nordström geometry. In the extremal case sce-
nario, this results in MRN to be

MRN ¼
ffiffiffiffiffiffiffiffi
αEM
G4

r
; ð36Þ

where αEM ≃ 1
137

, is the fine structure constant. This
implies that the string coupling constant can be expressed
in terms of the fine structure constant as

gs ¼
2

3
αEM: ð37Þ

Electromagnetism is the only long range force, except
for gravity, and it is therefore natural that the low
energy value of the string coupling is set by it.
Introducing this result in expression (33), together with
ρΛ ≃ 6.8 × 10−27 kg=m3, we obtain (after reinserting
ℏ and c):

N ¼ 1.2 × 1063; ð38Þ

which fixes the hierarchy of scales of the dark bubble
construction as described in Table I. One should note that
L, ls ¼

ffiffiffiffi
α0

p
, G5, and G10, as well as gs and N, are all

TABLE I. New hierarchy of scales associated to the dark bubble
embedding into string theory.

Scale Length (m) Energy

L 5.1 × 10−5 3.8 meVffiffiffiffi
α0

p
1.8 × 10−20 11.2 TeV

l̃10 1.4 × 10−20 13.7 TeV

l̃5 3.9 × 10−45 5.1 × 1028 TeV
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unambiguously fixed. Throughout the calculations, we
have used the reduced Planck scale for convenience. In the
table we have chosen to instead use Gd ¼ l̃d−2d .
The dark bubble model was introduced as a way to

naturally incorporate a positive cosmological constant. It is
remarkable that a detailed implementation of the model
leads to precise predictions of novel phenomena in micro-
scopic physics. The presence of the large extra dimensions
implies a modification of gravity at scales of order a few
10−5 m. Similar proposals have been made previously in
the literature [28], but our result is through calculations
based on first principles. Furthermore, the way the extra
dimensions relate to the 4D world is completely new.

Moreover, the model predicts new high energy physics at
energy scales of tens of TeV in the form of stringy
excitations of known particles such as the photon.
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