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The quantum geometry arising in loop quantum gravity has been known to semiclassically lead to
generalizations of length geometries. There have been several attempts to interpret these so-called twisted
geometries and understand their role and fate in the continuum limit of the spin foam approach to quantum
gravity. In this paper we offer a new perspective on this issue by showing that the twisted geometry of a
four-simplex can be understood as arising from an area metric (in contrast to the more particular length
metric). Such equivalence allows us to define notions like signature, generalized triangle inequalities and
parallel transport for twisted geometries (now understood in a four-dimensional setting), exemplifying how
it provides a new handle to understand them. Furthermore, it offers a new microscopic understanding of
spin foam geometries which is notably supported by recent studies of the continuum effective dynamics of
spin foams.
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I. INTRODUCTION

Grosso modo, the covariant loop quantum gravity
(LQG), or spin foam, approach to quantum gravity can
be understood as coming in three main steps: One first
discretizes geometry and quantizes that, then imposes (dis-
crete) gravitational dynamics to finally take a refinement
limit. The discretization step can be intuitively understood as
approximating space-time using piecewise flat geometries
obtained by gluing convex polytopes together, with the
simplest one being a simplex. Although it arose as a
conservative approach that does not assume a priori addi-
tional degrees of freedom beyond those of general relativity,
it actually does have an extended configuration space of four-
dimensional geometries [1,2].
Such a parametrization results from the fact that a quantum

four-simplex is understood as a gluing of five quantum three-
simplices (tetrahedra) [3]. Indeed, the Hilbert space asso-
ciated to a four-simplex has as a basis the set of spin network
states of its boundary, which precisely represent the quantum
geometry of its five constituent tetrahedra.1

More precisely, as argued in Sec. I A, to each tetrahedron
one can associate five quantum numbers, so that gluing
them together would require us to match the two-geometry
of the ten triangles shared by pairs of tetrahedra. This

would amount to implementing several constraints which
are quantum equivalents of matching the triangles’ lengths
as seen from the different tetrahedra [1]. However, this
process is hindered by quantum uncertainty, which only
allows us to implement a subset of the constraints exactly;
e.g., setting only the areas of the matched triangles to be
equal. The remaining constraints lead to an enlargement of
the classical four-simplex configuration space, which is
parametrized by ten numbers, to the quantum configuration
space, which is parametrized by 5 × 5 − 10 ¼ 15 quantum
numbers.
In this paper we are interested in the enlarged classical

configuration space which these geometries quantize and
its geometrical meaning, from a four-dimensional perspec-
tive.2 As confirmed by analyzing an overcomplete basis of
coherent states for the boundary of a four-simplex, it is one
obtained by gluing classical tetrahedra together (whose
geometry is fixed by six independent parameters—e.g., the
edge lengths), but only matching the areas of triangles
shared by pairs so that their shapes may not match, thus it is
parametrized by 6 × 5–10 ¼ 20 independent quantities3

*bdittrich@perimeterinstitute.ca
†jpaduaarguelles@perimeterinstitute.ca
1Equivalently, one can note that the Engle-Pereira-Rovelli-

Livine and Freidel-Krasnov (EPRL/FK) spin foam amplitude
[4,5] of a four-simplex has fifteen labels, or follow a canonical
analysis similar to that of [2].

2For a three-dimensional point of view, more akin to thinking
just on boundary triangulations, see [2,6–11].

3The reader might wonder why one has 15 quantum numbers
but 20 classical parameters describing the configuration space.
The reason is that out of the 20 parameters one has ten
parameters, given by 3D dihedral angles, which form non-
commuting pairs with respect to the Poisson brackets provided
by the underlying phase space [2,9]. (See also the discussion in
Sec. I A.) These ten parameters result therefore only in five
quantum numbers.
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[12]. This is indeed larger than the number of parameters
needed to fix the usual length geometry of a four-simplex.
Following [6–8,12], we shall refer to these “coherent” four-
simplices as twisted.
There has been great interest in understanding and

interpreting what type of degrees of freedom are added
by “twisting” (see, e.g., [11,12]) and what is their fate in the
continuum limit, which could potentially have important
phenomenological implications [13].
Our key observation, developed in Sec. II, is that these

degrees of freedom are encoded in an area metric, which
instead of defining the inner product of vectors as happens
with the more traditional length metric, determines the
inner product of bivectors. We see great potential in this
new perspective to provide new insights into spin foam
geometries and their continuum dynamics: one can now
study effective actions based on the area metrics to model
spin foam dynamics. Recent work found that area metrics
can be used to describe the dynamics of spin foams in the
continuum limit [13–15]. Here we provide the underlying
microscopic match of spin foam degrees of freedom to the
area metric.
More generally, this is also a framework that potentially

generalizes Regge calculus [16] from length to area metrics
(and does not necessarily agree with area-Regge calculus
[17,18], but could lead to a related effective dynamics).
The match is provided as follows: just as for any simplex

one can reconstruct a simplicial length metric adapted to its
edge vectors from knowing their lengths, we show how to
construct an area metric for a four-simplex given the above-
mentioned 20 parameters, which may be the ten triangle
areas and ten 3D-dihedral angles (corresponding to the
intertwiners in LQG jargon), two at nonopposite edges per
tetrahedron. Remarkably, area-metric geometries have also
recently appeared in the continuum limit of area-Regge
calculus4 [17,18], which is closely related to the perturba-
tive continuum limit of spin foams [13,14]. Recent work
has also constructed a candidate effective action for the
continuum limit of spin foams, which is based on area
metrics [15].
After we establish this result, we will proceed to define

the notion of signature and triangle inequalities for twisted
geometries in Sec. II C. We emphasize in Sec. II C that
these generalized triangle inequalities could provide new
ways to understand relative suppressions and causal aspects
of spin foams. In Sec. III we first establish how to glue area-
metric simplices and then discuss how to construct a notion
of parallel transport. We will see that the definition of a
unique parallel transport requires the specification of

additional structure or additional conditions, but leave
the exploration of such options to future work.
But first we will discuss more in detail aspects of

classical and quantum simplicial geometry, which we
now do.

A. (Quantum) simplicial geometry

As intuition suggests, the full geometry of a tetrahedron
can be specified by its edge lengths. However, other para-
metrizations are possible and even desirable. In ð3þ 1ÞD
LQG the area operator appears as a more fundamental (and
simple) observable [19,20], whereas there are different
versions of length operators, which are all composite
[21,22]. Furthermore, the quantum labels of a spin network
state can be interpreted in terms of areas and 3D dihedral
angles associated to an underlying triangulation.
An alternative parametrization of simplicial geometries

is provided by Minkowski’s theorem, which states that a
collection of n vectors fp⃗mgNm¼1 ⊂ Rp;q, p ¼ 0, 1 that
closes, that is satisfies

XN
m¼1

p⃗m ¼ 0⃗; ð1Þ

can be used to reconstruct a unique flat convex polytopewith
n codimension-one convex polytopes having normals p⃗m

and corresponding codimension-one volumes pm ≔
ffiffiffiffiffiffi
p⃗2
m

p
.

In particular, note that in three-dimensional space, given
four areas pm and two products of normals p12 ¼ p⃗1 · p⃗2,
p13 ¼ p⃗1 · p⃗3, we may make use of the closure condition
and isometry group to reconstruct the normals and thus a
tetrahedron (consider, e.g., the inner product of a normal
with the closure condition). Observe also that because we
know the areas, the new information provided by these
products are 3D-dihedral angles of two nonopposite edges
(the subindex 1 is repeated).
The only obstruction to such reconstruction is a reality

condition on the solutions of the resulting system of
equations. If there is no real solution, it means that there
can be no tetrahedron with those areas and normal products
and we say that the geometric data is not realizable into a
tetrahedron: this simply gives us a higher dimensional (and
signature dependent) notion of triangle inequalities.
One can then quantize this geometry by associating

operators ˆp⃗i to the normals. Moreover, a canonical analysis
of general relativity formulated with the Holst action
suggests that the upgrade should be done with the suð2Þ
generators ˆJ⃗, or their timelike and null analogs. More
precisely, let us consider the spacelike case, where we have
ˆp⃗i ¼ γ

ˆJ⃗i in Planck units, with γ the dimensionless Barbero-
Immirzi parameter.
The resulting Hilbert space of quantum geometry is then

H ¼ ⨁ji Inv ⊗4
i¼1 Hji , where Hji is the representation

4Note that area-Regge calculus associates only 10 degrees of
freedom to a four-simplex, which are given by the areas of its ten
triangles. The reconstruction of an area metric in [14] relies not
on the data associated to a single simplex, but rather on the data
associated to a regular hypercubic lattice.
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space of the SUð2Þ irreducible representation of spin ji.
The Inv indicates that we consider the subspace of states
invariant under special orthogonal transformations (as we
should for geometry), so it is simply the kernel of the

generator of overall “rotations”
P

i
ˆJ⃗i, also known as Gauß

constraint. Note therefore that we have a remarkable
correspondence between orthogonal invariance and the
closure relation [23].
With this quantization of the normals we see that the area

squared operators amount to the Casimir of the SUð2Þ
representations and commute with each other. But this is
not the case for p̂12 and p̂13, as [24]

½p̂12; p̂13� ¼ � 9

2
γ dVolumeðTetrahedronÞ:

In fact, it can be shown that the four area operators and one
of the p̂mn provide a complete set of commuting observ-
ables, so that their eigenstates provide a basis for H.
Therefore, their values give us an example of five quantum
numbers defining the quantum geometry of a tetrahedron
(cf. Sec. I). Remarkably, this quantum geometry is “fuzzy”:
we cannot measure the missing datum to define its classical
geometry within this eigenbasis, in fact the missing datum,
say pik has maximal uncertainty for any element of
this basis.
It is also because of this noncommutativity that when

gluing two tetrahedra together, the geometry of their shared
triangle t cannot be matched completely [2,9]: We can
begin by fixing the areas pτi of the triangle as seen from the
tetrahedra τi to be equal. In this way, any remaining
nonmatching lays in the shape of the triangles.
Therefore, it is natural to try and match the 2D angles
αk2D as computed from each τi. In this way, we end up with
the constraints [1]

pτ1
t − pτ2

t ¼! 0 and αk2Dðp⃗τ1
mÞ − αk2Dðp⃗τ2

n Þ ¼! 0; k ¼ 1; 2:

However, quantum mechanically we can only implement
the first set of constraints, as the functional form of α2D
involves several products pτl

mn such that the spin network
states are not annihilated, precisely because they do not
diagonalize more than one pτk

mn. In this sense, we say that
the triangles are not shape matched. Also, one can compute
the commutator between the constraints in the second set
[2,9,10], which shows that these are nonvanishing, and
more specifically second class. That is, the full set cannot
be implemented sharply into the quantum theory. Thus, as
foretold, when gluing five tetrahedra to form a quantum
four-simplex, we obtain a geometry given by 5×5–10¼ 15
quantum numbers.
We can then consider that the way to resemble classical

geometry as much as possible is one that minimizes the
uncertainty of p12 and p13, i.e. a coherent state. Such states,
e.g. [12,25], will therefore define a semiclassical

four-simplex with 10þ 2 × 5 ¼ 20 degrees of freedom:
ten products of triangle normals, two per each tetrahedron;
and ten areas. As we will now see, this overparametrization
of a four-simplex classical geometry has a neat interpre-
tation in terms of area-metric geometries.

II. AREA-METRIC SIMPLEX

A. Summary of area metrics

Let us therefore define what an area-metric geometry is
following the seminal works [26–28]: It is a manifold M
equipped with a metric GðpÞ for ⋀2TpM ∀p∈M, and a
smoothness condition for p → GðpÞ. That is, G is a rank
ð0
4
Þ tensor such that Gabcd ¼ Gcdab (symmetry of inner

product) Gabcd ¼ −Gbacdð¼ −GabdcÞ—antisymmetry of
wedge product—and such that the linear map

G∶ ⋀2TpM → ð⋀2TpMÞ�; ðAabÞ → ðGabcdAcdÞ

is invertible. This definition is justified because simple
bivectors A∈⋀2TM, i.e. bivectors satisfying A ¼ l ∧ r,
are naturally interpreted as directed areas. Indeed, note that
in a three-dimensional flat (sub)space ⃗l ∧ r⃗ ¼ �ð⃗l × r⃗Þ,
with � representing the Hodge dual.
Therefore, we consider that the inner product defined by

G quantifies the “size” of simple bivectors A ¼ l ∧ r as
well as angles between pairs of them.5 The former are
naturally identified as the area of the parallelograms
defined by the vectors l and r, and in the case the pairs
of bivectors span planes that intersect in a line, the latter can
be interpreted as 3D dihedral angles.
As could be expected, any (pseudo)Riemannian length

metric g induces an area metric

Gg ¼ ðGabcdÞ ¼ ðgacgbd − gadgbcÞ; ð2Þ

but certainly not all area metrics are of this form as a simple
counting argument confirms: In four dimensions, the index
structure of G gives us 21 degrees of freedom, but length
metrics have only 10. One should therefore not expect a
unique procedure to extract a length metric from an area
metric. In fact, we are aware of two different proposals to
do so: The proposal in [28] is motivated from properties of
light propagation. The more recent work [15] adapts a
parametrization of bivector fields in terms of Urbantke
metrics and additional fields [30,31], in order to define a
length metric from an area metric. These techniques
appeared in the analysis of modified Plebanski theories
[32], and lead to candidate effective actions for the
continuum limit of spin foams [15].

5Compare with the Euclidean formula a ·E b ¼ jajjbj cos∠b
a or

its Lorentzian analogs [24,29].
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The 21 degrees of freedom of a general area metric are in
mismatch with the 20 degrees of freedom of a twisted
simplex. We can however restrict to the cyclic subclass of
area metrics, i.e. those satisfying6

G0123 þ G0231 þG0312 ¼ 0:

This constraint therefore results in area metrics with
20 degrees of freedom.
There are different motivations to introduce this restric-

tion: Area metrics, which are induced by a length metric are
cyclic. The restriction to cyclic area metrics appears also in
the framework of modified Plebanski theories, which are
proposed to model the continuum limit of spin foams [15].
Furthermore, in a universe in which only areas can be
measured, all measurable geometry can be encoded in a
cyclic area metric [15]. The one acyclic component of the
area metric and the remaining 20 cyclic components span
different representations of SLð4;RÞ [27]. Note finally, that
the cyclicity condition is analogous to the algebraic Bianchi
identity for the Riemann tensor. In fact, cyclic area metrics
have the same (algebraic) symmetries as the Riemann tensor.
In this paper we will mainly have in mind Lorentzian or

Euclidean space-times, but leave the discussion general.
We therefore must also define such notions for area metrics
and for this purpose we remark that it can be shown [27]
that if a length metric has signature ðp; qÞwithD ¼ pþ q,
the signature of its induced area metric is

ðP;QÞ ¼
�
pq;

ðpþ qÞðpþ q − 1Þ
2

− pq
�
: ð3Þ

This signature is understood in the six-dimensional space
of bivectors, that is with the bilinear map

G∶ ⋀2TM ×⋀2TM → R; ðU;VÞ → UIGIJVJ;

where we introduced the antisymmetrized indexes

I ¼ ðabÞ; a < b and J ¼ ðcdÞ; c < d

for the ðDðD−1Þ
2

Þ-dimensional bivector spaces. From this
follows that g is Lorentzian, i.e. p or q equal D − 1, if and
only if P ¼ D − 1. Likewise, g is Euclidean iff P ¼ 0.
Therefore, in general we will say that an area metric is
Euclidean (Lorentzian) if P ¼ 0 (P ¼ D − 1) [27].

B. Area metric of a (twisted) simplex

In any dimension, given a set of lengths that realize7 a
flat simplex, one can construct a matrix representation of
the standard flat metric with respect to the basis defined by
a corner of the simplex. Further, if one uses this algorithm
then realizability is equivalent to asking the resulting matrix
to have the proper signature [33].
We will now construct an analog of this algorithm for

twisted four-simplices and cyclic area metrics. That is,
given our ten pm and ten pmn (two per tetrahedron), we will
reconstruct an array of G components Gða; b; c; dÞ that can
be interpreted as a matrix representation of an area metric
with respect to a given basis, i.e.,

Gða; b; c; dÞ ∼ ha ∧ b; c ∧ di:

Let us denote the vertices of our simplex as ð0Þ;…; ð4Þ. and
the vector going from vertex (i) to vertex (j) as ij. Our basis
will be the bivector simplicial corner in (0), i.e. the one
given by the vectors 0i. With this, a complete set of entries
of G is

C ¼ fGð0i; 0j; 0k; 0lÞji < j; k < l& iþ j ≤ kþ l; i; j; k ¼ 1;…; 4g
¼ fGð01; 02; 01; 02Þ; Gð01; 02; 01; 03Þ;…; Gð01; 02; 03; 04Þ;
Gð01; 03; 01; 03Þ;…; Gð01; 03; 03; 04Þ;
…;

Gð02; 03; 02; 03Þ;…; Gð02; 03; 03; 04Þ;
…;

Gð03; 04; 03; 04Þg:

This set of components is independent if we remove one of
the entries with all vectors different, as per the cyclicity
condition.

There are two main types of elements in C, those with
repeated vectors and those without; let us first reconstruct
the former. They are all related to the geometry of the four
tetrahedra that have (0) as a vertex and after possible
rearrangements of the vectors also come in two forms:

6In principle, one can loosen the cyclicity requirement and set
the left-hand side to a function that allows us to do the inversion
referred to below Eq. (6). 7See the discussion below Eq. (1).
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Gð0i; 0j; 0i; 0jÞ and Gð0i; 0j; 0i; 0kÞ. Of the first kind we
have six and they are clearly identified with six of our pm
variables by

Gð0i; 0j; 0i; 0jÞ ¼ ð2Areað△ð0ijÞÞÞ2;

where in the right-hand side we have the area of the triangle
with vertices (0), (i), and (j), a pm variable.
There are 12 independent matrix elements Gð0i; 0j;

0i; 0kÞ of the second form. To each tetrahedron of type
ð0ijkÞ, i.e. to each of the four tetrahedra sharing the vertex
0, we can associate three of these matrix elements of the
second kind. Of these three we can directly identify two
with the two pmn variables per tetrahedron. To match the
remaining third elements, we use that for an arbitrary
tetrahedron ðoijkÞ the following relation

oi ∧ ojþ oj ∧ okþ ok ∧ oiþ ik ∧ ij ¼ 0 ð4Þ

holds. This can be shown by writing ik ¼ ioþ ok, and
similarly for ij; expanding and using the properties of ∧.
Equation (4) is essentially the closure relation—cf. Eq. (1).
We can use this relation to compute the remaining entries of
the formGð0i; 0j; 0i; 0kÞ by taking inner products with (4).
This will require us to employ the geometric data of the
tetrahedra ð0ijkÞwe have not used so far, i.e. the remaining
four areas pm.
For example, let us focus on the tetrahedron ð0ijkÞ ¼

ð0123Þ and identify the normals as p⃗1 ∼ 01 ∧ 02,
p⃗2 ∼ 03 ∧ 01, p⃗3 ∼ 02 ∧ 03, and p⃗4 ∼ 13 ∧ 12. Now let

us suppose that p12 and p13 are directly matched with
Gð01; 02; 03; 01Þ and Gð01; 02; 02; 03Þ, respectively. Then
we can use (4) to determine p23 ∼Gð03; 01; 02; 03Þ by
taking the equation’s inner product with 13 ∧ 12 to get

0¼ Gð13;12; 01;02Þ þGð13;12; 02;03Þ
þGð13;12;03;01Þ þGð13;12;13;12Þ

¼ p2
4 −p2

1 −p2
2 −p2

3 − 2p12 − 2p13 − 2Gð03;01; 02;03Þ;

where in the last step we used lm ¼ l0þ 0m and the
properties ofG. From such an equation we can immediately
obtain p23 ∼ Gð03; 01; 02; 03Þ in terms of our given varia-
bles. Notably, the solution depends on p2

4 ∼Gð13; 12;
13; 12Þ, which is a geometric variable we had not used
previously.
In summary, we can determine all entries of the forms

Gð0i; 0j; 0i; 0jÞ and Gð0i; 0j; 0i; 0kÞ by using the geo-
metric data associated to the tetrahedra ð0ijkÞ: ten areas pm
and eight pmn’s. Thus, if we can reconstruct two of the
entries with no repeated index, using cyclicity we will have
completely determined the elements of C and whence G.
Our two remaining pmn variables associated to the remain-
ing tetrahedron (1234) allow us to do so.
Without loss of generality let us assume that the two

remaining pmn variables are identified with Gð13; 12;
13; 14Þ and Gð12; 13; 12; 14Þ. Then, using that G is
multilinear and its symmetry properties, we see that

Gð13; 12; 13; 14Þ ¼ Gð10þ 03; 10þ 02; 10þ 03; 10þ 04Þ
¼ −Gð01; 02; 03; 04Þ −Gð01; 04; 03; 02Þ − Gð01; 02; 01; 03Þ −Gð01; 03; 02; 03Þ
− Gð0̄1; 0̄3; 0̄1; 0̄4Þ þGð0̄1; 0̄3; 03; 04Þ þGð01; 02; 01; 04Þ −Gð02; 03; 03; 04Þ þ Gð01; 03; .01; 03Þ

≕ −Gð01; 02; 03; 04Þ − Gð01; 04; 03; 02Þ þ C3234; ð5Þ

where we note that C3234 includes only terms Gð0i; 0j;
0i; 0kÞ of the second form, which we already expressed as
functions of pm and pmn.
Similarly, from the exchange 2 ↔ 3 we see that

Gð12;13;12;14Þ ¼−Gð01;03;02;04Þ−Gð01;04;02;03Þ
þC2324

¼−Gð01;02;03;04Þþ 2Gð01;04;03;02Þ
þC2324; ð6Þ

where in the last step we used cyclicity.
Equations (5) and (6) define a linear system of equa-

tions that allow us to determine Gð01; 02; 03; 04Þ and

Gð01; 04; 03; 02Þ in terms of C3234, C2324, and two unused
geometric parameters pmn which we identified with
Gð13; 12; 13; 14Þ and Gð12; 13; 12; 14Þ.
Thus, as advertised, from the geometric data of a twisted

four-simplex we can reconstruct the set ofG elements C and
from there a whole tensor G that satisfies the linear and
index properties of a cyclic area metric, i.e. an area metric
tensor. Reciprocally, from an area-metric tensor we can
reconstruct the geometric data of a twisted four-simplex.
Thus, a twisted simplex is an area-metric simplex.

C. Realizability (generalized triangle inequalities)

A remark however is in place. Above we mentioned
that from realizable length data for a simplex, one can
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reconstruct a simplicial length metric with a well estab-
lished signature. Yet, in the previous section we did not
discuss realizability (or signature). Indeed, such a notion
has not been defined for twisted geometries yet.
In a sense in spin foams realizability is not of prime

importance: Some models, for example, give nonvanishing
amplitudes, albeit exponentially suppressed, for configu-
rations that violate top-dimensional length-geometric tri-
angle inequalities. Viewed in this way, spin foams may
implement top-dimensional triangle inequalities only
“weakly.” This is, in a sense, another manifestation of
how spin foams construct top-dimensional geometry from
codimension one geometries.
For example, the (Euclidean) Ponzano-Regge model

gives a zero amplitude for configurations that violate the
(proper) triangle inequalities. However, there are nonvan-
ishing, but exponentially suppressed amplitudes for con-
figurations that violate the inequality for the tetrahedron
[34], so we have four well-defined triangles which cannot
be glued to form a tetrahedron in Euclidean space.8

A similar situation occurs in the Lorentzian EPRL model
[38], where one can have nonvanishing, but exponentially
suppressed amplitudes for Euclidean four-simplices [39]
(which violate Lorentzian 4D inequalities, but satisfy lower
dimensional ones).
Thus, although not strictly, spin foam models do care

about realizability (and signature), so in this spirit we now
turn to defining its area-geometric version.
As mentioned in Sec. II, for Lorentzian and Euclidean

geometries, realizability of a length simplex amounts to the
simplicial length metric having the proper signature.
Indeed, this means that there is a change of basis mapping
the length-reconstructed g to the standard length metric of
Rp;q in the canonical basis. Such a map transforms the
canonical vectors into D linearly independent vectors that
form the corner of a D simplex and thereof the simplex
itself, so it is indeed realizable. Likewise, we propose that a
set of 20 variables fpmn; pmg realize a twisted four-simplex
if its area tensor G has the right signature, as discussed
around Eq. (3). In other words, we ask that there is a
diagonalizing bivector basis in which

ðGABÞ ≐ diagð�1;�1;�1;�1;�1;�1Þ; ð7Þ

with the number of positive and negative signs given by the
signature.
We remark that then, the matrix representation (7) agrees

with the one obtained by considering the area metric
induced by the standard length metric of Rp;q when
written in a wedge-product basis of an orthonormal basis

[i.e. using (2) in an orthonormal basis and going to the
antisymmetrized indices]. This does not mean that our area
metric G is induced by a length metric as the diagonalizing
basis may not be simple.
Note that this notion of realizability naturally gives a

definition of signature for a twisted simplex, which in turn
implies that in the Lorentzian context, shape-matched data
associated to a Euclidean simplex would not be realizable,
so that the exponential suppression of the Lorentzian
EPRL/FK amplitude mentioned above (see also footnote 8)
[39] is not surprising from this point of view. Another class
of area geometries which is exponentially suppressed are
nonshaped (twisted) data—this holds by construction in
effective spin foams [24,40,41] and has been observed to
hold in the EPRL/FK model [42,43], so this naturally raises
the question of whether there is a hierarchy of suppressed
data that can be recast in terms of area geometries. In fact,
such study could also provide a refinement for our
definition of realizability. We find the possibility of casting
spin foam amplitude suppression in terms of area geom-
etries very interesting, but we leave it for future works.
As foreshadowed above, our proposed definition of

realizability is not only a direct and minimal generalization
of the length-metric condition, but offers the following
picture: If a simplicial area metricG satisfies this condition,

then there is a change of basis for the ð4ð4−1Þ
2

¼ 6Þ-dimen-
sional space of bivectors mapping GAB into its representa-
tion in an orthonormal basis. Note that such a map is not
unique, as we can always compose it with an orthogonal
transformation. However, in complete analogy to the
length-geometric case, any such map provides a notion
of simplicial corner in the space of bivectors. From this
point of view, the space of twisted simplices is equivalent
to9 GLð6;RÞ=OðP;QÞ up to the implementation of cyclic-

ity (this indeed gives us 6 × 6 − 6ð6−1Þ
2

− 1 ¼ 20 degrees of
freedom).
Our definition also satisfies two necessary criteria:
(1) It implies that all tetrahedra are realizable in the

length-geometric sense (twisting comes from gluing
tetrahedra, they themselves are not twisted).

(2) When shape matching is satisfied, it reduces to
length realizability.

Let us prove so.
(1) This holds because, from the reasoning above, we can

find a transformation that sends an orthonormal
bivector basis fEIg, to a bivector simplicial corner
that we may choose such that it includes the bivectors
of any tetrahedron in question. Because GAB is real
and symmetric, themap can be of the formU−1 ¼ UT

and can be followed by an orthogonal transformation
8However, they can form a tetrahedron in Lorentzian space

[34], so this could be a desirable feature: it can, for example, be
used for Lorentzian Hartle-Hawking no-boundary-like scenarios
[35–37]. Importantly, it is also a consequence of triangulation
invariance [36].

9Depending on whether one wishes to distinguish between
simplices of different orientation (as done in spin foams) or not
(as happens with Regge calculus), we should replace O(P,Q) with
SO(P,Q).
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O that we can pick so that the tetrahedron’s bivectors
are expressed as a linear combination of just three EI
bivectors.
This defines a three-dimensional linear transfor-

mation T that sends the three basis bivectors into the
tetrahedral bivectors. The signature of the former,
which we will now denote as uμ, μ ¼ 1, 2, 3,
determines the signature of the putative tetrahedron:
let it be ðπ; ʕÞ—with π þ ʕ ¼ 3. The identification
uμ ∼ e⃗μ with the canonical basis e⃗μ of Rπ;ʕ is then
natural and we expect v⃗μ ¼ Te⃗μ (defined through the
linear combination above) to give the normals of our
tetrahedron.
Let us therefore consider the four vectors

�
v⃗μ; v⃗4 ¼ −

X3
μ¼1

v⃗μ

�
:

These close by construction and therefore define a
tetrahedron inRπ;ʕ by virtue ofMinkowski’s theorem
(cf. Sec. I A), we only need to confirm that its
geometry corresponds to the relevant values of pm
and pmn from which we constructed GAB.
Let γ be the flat metric of Rπ;ʕ, then the inner

product between these normals for μ, ν ≤ 3 is

pμν ¼ vρμγρσvσν ¼ ðTe⃗μÞργρσðTe⃗νÞσ
¼

X
I;J
0 ðTuμÞIΓIJðTuνÞJ

¼
X
I;J

ðOUÞIμΓIJðOUÞJν ;

where we introduced the metric Γ of RP;Q and the
primed sum indicates that we only sum over the
indices I, J associated to μ and ν. However, as done in
the last step, we can extend the sum over the whole
range I; J ¼ 1;…; 6 because our construction is such
that ðTuρÞK vanishes if K is not related to a Greek
index.
Now, the latter expression can be rewritten as

ððOUÞTΓðOUÞÞμν, which is Gμν by construction. So

pμν ¼ Gμν

with the proper identification of indices in G.
Thus, any potential difference betweenpmn andpμν

(or pm and pν ≔ pνν) has to come from the products
with v⃗4. But since these can be expressed in terms of
the abovepμν’s with μ, ν < 4 due to closure, and since
GAB is consistent with this closure by the construction
in Sec. II B, there is no difference at all.
Therefore, we have found four vectors that close

and whose geometry is consistent with our tetrahedral
data, making the latter realizable.

Thus, 1. indeed holds and therefore also does the
following.

(2) Because now that we know that our three-dimen-
sional subsimplices are realizable, so are all proper
subsimplices and therefore we only need to prove
that when shape matching is satisfied, the formally
defined volume squared of the simplex has the
correct sign associated with its signature. Indeed,
this is another characterization of realizability;
namely, all proper subsimplices are realizable and
the formal volume squared has the right signature-
dependent sign [24,44].
Now, if shape matching is satisfied then GAB can

be induced from a simplicial length metric gμν which
is obtained by writing the lengths in terms of areas.
This is possible because a four-simplex has the same
number of triangles as edges and the length-area
system is invertible locally in configuration space.10

Then it can be shown that [28]

detðGABÞ ¼ ðdet gÞD−1

and therefore in our case with D ¼ 4 the sign of
these determinants is equal. The latter provides the
formal definition of the volume squared of the
simplex (up to a positive factor) and therefore, if
GAB is realizable in our sense the volume squared
has the right sign, making our four-simplex realiz-
able when shape matching is satisfied.

Therefore it is indeed the case that our definition of
realizability not only minimally generalizes its length-
geometric counterpart, but satisfies two tests that any
definition should. However, we leave open the possibility
for refinements of this definition, e.g., parallel transport
considerations (see discussion below) suggest that simplic-
ity may also need to be considered.

III. GLUING AREA-METRIC SIMPLICES

So far we have shown that for a four-simplex with
twisted (boundary) data, we have a well-defined area metric
for it that determines all of its geometry and vice versa. We
defined a notion of realizability, which ensures that the
area metric has a signature consistent with Euclidean or
Lorentzian space-time, respectively.
Twisted simplices can be also glued to each other: for a

given pair to be glued four-simplices the data associated to
the to be shared tetrahedron, that is the six p variables, have
to match. This gluing is inherited by the area-metric four-
simplices. Given the area metrics associated to a pair
of to be glued four-simplices, we can compute the 20 p
parameters associated to each simplex, and check whether
the six p parameters associated to the to be shared

10Such a system may have several roots but the roots can be
determined by also matching the values of the 3D dihedral angles.
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tetrahedron match. Additionally, we demand that realiz-
ability holds for both simplices with respect to the same
space-time signature.
We can thus glue area-metric simplices to a triangulation

that can be considered as a discretization of an area-metric
space-time. In order to construct geometric quantities such as
a generalized curvature, it would be helpful to have a notion
of parallel transport. In the followingwewill sketch what has
to be considered to construct a unique notion of parallel
transport, but leave this for futurework.Wenote that the issue
of area-metric parallel transport has also not been fully
resolved in the continuum: The construction of a parallel
transport in [26] requires additional structure, e.g., an addi-
tional length metric. One can associate a length metric to a
given area metric: the authors of [15,26] propose two
different procedures to do so; the construction in [15] is
inspired by the modified Plebanski formalism, and therefore
nearer to spin foams, but requires additional work to translate
into the discrete, which goes beyond the current paper.
To start with, we first recall how to construct a parallel

transport for length-metric simplices in any dimension d.
Such a parallel transport can be defined between two
neighboring d simplices σ1 and σ2. To this end, we assume
that the length metrics g1 and g2 are given with respect to
the d basis vectors of a simplicial corner for σ1 and the d
basis vectors of a simplicial corner for σ2, respectively. The
simplicial corners should be defined at a vertex that is
shared by both d simplices, so that the two bases coincide
in (d − 1) of their vectors. [The existence of a pair of such
bases is guaranteed by the notion of realizability for length-
metric simplices and by the gluing conditions for such
simplices, which enforce that the length geometries of the
shared (d − 1) simplex coincide.]
The parallel transport matrix U transforms the first basis

into the second basis, keeping the shared (d − 1) vectors
invariant. Thus, U also transforms g1 into g2, that is

UTg1U ¼ g2: ð8Þ
Given g1 and g2 we can use (8) to solve for the matrix
elements of U. Note that the conditions above leave only d
unknown matrix elements in the d × d matrix U. These
conditions also ensure that the symmetric matrices g1 and g2
agree in a (d − 1)-dimensional submatrix. We are thus left
with d equations, which can be used to specify the d
unknown variables, and therefore the parallel transport
matrix U.
Let us now apply the same concept to area-metric

simplices in four dimensions. Here we again assume that
the area metrics G1 and G2 are expressed with respect to a
bivector basis arising from a simplicial corner for σ1, and a
bivector basis arising from a simplicial corner for σ2,
respectively. The two simplicial corners are attached to a
shared vertex, hence three of the six bivectors in each of the
two bases agree, and the parallel transport matrix U is
constrained to fix these three vectors. To determine U we
have then to solve

UTG1U ¼ G2: ð9Þ

This time we have 21 equations, of which six are auto-
matically satisfied on account of the gluing conditions. U
has 36 elements of which 6 × 3 are already determined by
the condition that the two bases agree in three of their
bivectors. We thus have only 15 equations for 18 unknowns
and are left with a three-parameter ambiguity.
This can be also understood as follows: Realizability

implies that we can find simplicial corners for both σ1 and σ2.
We would like to rotate the latter so that the bivectors of the
to-be-shared tetrahedra match andwe can certainly find such
orthogonal transformation, but it is not unique: oncewe have
found one, it can be followed by another arbitrary rotation
that fixes the three bivectors associated to the tetrahedral
corner. The dimension of this subgroup is ð3

2
Þ ¼ 3.

This discussion shows that the problem with parallel
transport is not with existence but with uniqueness. Thus, it
is possible for two glued area-metric simplices to find a
common bivector basis, so that the induced area metric is
constant across both four-simplices. This is a property
shared by length-metric simplices, where pairs of neigh-
boring simplices admit a common vector basis.
The issue with uniqueness results from working with

bivector bases. We were forced to consider bivector bases,
as we needed to define a standard area metric (for a given
space-time signature), to which all (realizable) area metrics
can be transformed. This appeared first for our notion of
realizability. Similarly, the notion of simplicial parallel
transport (in the length and area-metric case) does require a
standard metric, to which the metrics associated to two
neighboring simplices can be transformed.
The uniqueness of parallel transport might however be

ensured, if we demand additional simplicity constraints for
the parallel transport. In this case, one has however also to
ensure the existence of (real) solutions to the parallel
transport equations (9) and the additional constraints. We
leave this to future work, but note that the need to enforce
simplicity conditions on the connection was also noted in
the continuum framework of [26]. In the future, it will also
be interesting to explore the definition of a deficit angle,
which could partially be constructed from these parallel
transport transformations, but must have information about
winding around a bone.11

IV. DISCUSSION

Spin foams and loop quantum gravity feature an
extended geometrical configuration space [1,2,6]. The
geometrical interpretation of these additional degrees of
freedom remained however an open issue. In this work we

11This might be particularly important in Lorentzian path
integral approaches to quantum gravity based on Regge-like
calculus, where histories with nontrivial windings can be ex-
ponentially suppressed or enhanced [24,29,37].
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propose that gravitational spin foams can be understood as
discretized area-metric geometries. To this end we matched
the (coherent state) parameters associated to a single spin
foam four-simplex to a (constant) area-metric geometry. We
also specified how to glue such simplices to form an area-
metric triangulation. We specified realizability conditions,
which ensure that area-metric simplices have a consistent
signature. Such conditions have not been formulated before
for “twisted” simplices, but are now available due to the
identification of twisted simplices with area metrics.
Our reinterpretation of spin foam geometries as area-

metric geometries is supported by recent insights into the
continuum limit of gravitational spin foams [13–15], which
indicates that it can be understood in terms of an effective
area-metric dynamics. In this work we provided a micro-
scopic explanation for this appearance of the area metric,
further strengthening this connection between spin foam
dynamics and area-metric dynamics.
In contrast to earlier suggestions for the geometric

interpretation of twisted geometries, e.g. [11], the link to
area metrics is therefore supported and informed by the
spin foam dynamics.
There are already various actions that can be applied to

area-metric triangulations: first, area-angle Regge calculus
[1], which was proposed as a classical description for the
EPRL/FK spin foam models. The work [1] was the first to
specify the shape matching constraints, which reduce area-
angle (and therefore area-metric) configurations to length-
Regge configurations. Such shape matching conditions are
missing from area Regge calculus [17,18], which can also be
adapted12 to area-metric simplices.Moregenerally, the action
used for the construction of effective spin foams [24,40,41]
interpolates between these two cases, by imposing the shape
matching constraints only weakly, and can be also applied to
area-metric triangulations. Finally, using coherent states, the
SUð2Þ-BF action, describing a topological theory, can be
also expressed in terms of the 20 parameters of the twisted/
area-metric simplices [12]. This is again an action where the
shape matching conditions are not imposed, but differently
from the area Regge action it does have a nontrivial
dependence on the angular parameters.
The extension of the geometrical configuration space

from length to area metrics leads to the so-called flatness
problem for spin foams [45–49]: The classical action
principle, namely the Plebanski formalism, on which spin
foams are based, demands that one has to impose con-
straints that reduce the area-metric configuration space to a
length configuration space. However, due to an anomaly in
the constraint algebra [10], spin foams do impose these
constraints only weakly [4,5,24,40], e.g. via Gaussians or
coherent states, allowing fluctuations within the area-metric
configuration space. The width of the Gaussians imposing

the constraints scales with
ffiffiffi
ℏ

p
, whereas the frequency of

the oscillations grow with 1=ℏ. Thus, in a naive classical
limit ℏ → 0 the oscillations win over the Gaussians, and
this seems to inhibit the imposition of the constraints [40].
There are two different arguments, which avoid this
conclusion: First, the Gaussians’ width scales with the
Barbero-Immirzi parameter. Indeed, in [41] (effective) spin
foam expectation values were computed, and these repro-
duced a gravitational dynamics, if the Barbero-Immirzi
parameter was chosen to be sufficiently small. Second, one
can perform a perturbative continuum limit for effective
spin foams [13,14], and show that the additional degrees of
freedom which distinguish an area metric from a length
metric are massive. The continuum limit is dominated by
the massless degrees of freedom, which turn out to come
only from the graviton [13,14].
Let us also note that the richness of discrete actions for

area-metric triangulations is mirrored by actions available in
the continuum.Apart from the earlier area-metricworks [26–
28], the recent work [15] builds on the modified Plebanski
action framework [30–32] to construct a family of continuum
actions for area metrics. The area metrics can be split into a
length-metric part and additional “pure” area-metric degrees
of freedom [15]. Integratingout the latter leads to anEinstein-
Hilbert term and a Weyl curvature squared term. This Weyl
curvature squared term can be understood as a correction,
resulting from the additional area-metric degrees of freedom
[15]. This provides an example of how the understanding of
the fundamental underlying degrees of freedom of a theory
can lead to deeper insights into its dynamics. This holds in
particularwhenworkingwith the concept of effective actions
and renormalization,which, given the fundamental variables,
include apriori all possible terms allowedby the symmetries.
We are therefore very hopeful that the notion of area-

metric triangulations helps to facilitate the connection
between various proposals for discrete actions, and par-
ticularly for spin foam actions, with the continuum actions.
Having a match between geometric concepts in the discrete
and the continuum will also be helpful for establishing a
renormalization flow for spin foams [50,51], which can
potentially connect to the continuum, and in particular to
the framework of modified Plebanski theories [32]. This
will give us long awaited insights into spin foam dynamics,
and help to establish and understand the continuum limit
and the phenomenology of spin foam dynamics.
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