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In this paper we study black hole and black string solutions in five dimensional N ¼ 2 supergravity
theories arising from the compactification of M-theory on Calabi-Yau manifolds. In particular, we consider
explicit examples of three parameter Calabi-Yau manifolds which are obtained as hypersurfaces in toric
varieties. Using the attractor mechanism, we obtain Bogomol’nyi-Prasad-Sommerfield (BPS) as well as
non-BPS black holes in these compactified supergravity theories. We also consider the black string
solutions in these models. We analyze the stability of these extremal black brane configurations by
computing the recombination factor. We find multiple stable non-BPS attractor solutions in some of these
models.
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I. INTRODUCTION

It is well known that the compactification of string theory
gives rise to a landscape of consistent low energy effective
theories in various dimensions [1]. This landscape has
further been enriched by the swampland program [2,3]
which contrived a set of general criteria that the low energy
effective theories must hold. One of the key ingredients
devised in order to distinguish the low energy effective
theories among each other is the weak gravity conjecture
[4]. This conjecture tells that gravity is the weakest force
among all and as a consequence objects with large charge
must decay into their respective elementary constituents
unless they are protected by a symmetry.
In gravity theories, black holes provide simplest objects

which can be used to further analyze the weak gravity
conjecture. Of particular interest are black hole configura-
tions in N ¼ 2 supergravity theories. For these theories, the
attractor mechanism [5–9] provides a suitable technique to
construct the extremal black hole solutions. These extremal
black holes may or may not preserve supersymmetry [8,9].
The attractor mechanism ensures that the scalar fields in
these theories, which in general may take arbitrary values at
spatial infinity, must run into fixed points at the horizon of
the corresponding extremal black hole. Their values at the
horizon are completely determined in terms of the black

hole charges. The attractor points in the moduli space
correspond to critical points of a suitably constructed black
hole effective potential [8]. This in turn determines the
mass as well as entropy of these black holes.
Recently Long, Sheshmani, Vafa and Yau have con-

structed a number of non-Bogomol’nyi-Prasad-Sommerfield
(BPS) black branes using the attractor mechanism [10]. They
have considered N ¼ 2 supergravity theories in five dimen-
sions [11], obtained upon the compactification of M-theory
on Calabi-Yau manifolds [12,13]. M2 branes wrapped on
two cycles of the Calabi-Yau manifold give rise to black
holes and M5 branes wrapped on four cycles give rise to
black string configurations. Depending upon whether the
two cycle corresponds to a holomorphic or a nonholomor-
phic curve one obtains a BPS or a non-BPS black hole.
Likewise, if the four cycle is a (non)holomorphic divisor one
obtains a (non)-BPS black string.
BPS objects, being protected by supersymmetry remain

stable. Whereas the same thing may not hold for non-BPS
configurations and a separate study is needed to address the
issues of their stability. For non-BPS black holes, the
attractor mechanism determines the black hole entropy.
This, in turn is conjectured [10] to give rise to the
asymptotic volume of the nonholomorphic curve on which
the M2 brane is wrapped provided the non-BPS black hole
is doubly extremal. Similarly, for doubly extremal non-BPS
black strings, the string tension determines the asymptotic
volume of the nonholomorphic divisor on which the
corresponding M4 brane is wrapped. These nonholomor-
phic cycles correspond to local volume minimizers in a
given homology class. If, within the same homology class
there exists a piece-wise calibrated representative with a
smaller volume then the black brane decays into the
constituent brane/anti-brane pairs wrapping this piece-wise
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representative cycle in accordance of the weak gravity
conjecture. On the other hand, if no such piece-wise
calibrated representative with a smaller volume exists
within the same homology class then the black brane
becomes stable against decay into constituent brane-anti-
brane configurations. In the later case, the constituent brane
configurations are said to be undergoing a recombination in
order to form a stable non-BPS black brane [10]. Several
examples of Calabi-Yau manifolds has been considered and
it has been observed that the non-BPS black holes are
always unstable [10]. On the other hand, it has been
observed that some of these models admit stable non-
BPS black strings [10].
These results have further been extended in [14] to

consider an exhaustive study of all the two parameter
Calabi-Yau compactifications of M-theory. It has been
observed that the resulting non-BPS black hole configu-
rations in all these examples are unstable and decay into the
constituent BPS/non-BPS pairs. Moreover, for a given
charge configuration, there exists a unique non-BPS black
hole attractor. In contrast, there exist several non-BPS black
string configurations which are stable against decay into
constituent BPS/non-BPS pairs. In addition, many of these
models also admit multiple basin of non-BPS black string
attractors for a given charge configuration. Similar phe-
nomena have also been observed in [15], in the context of
four dimensional N ¼ 2 supergravity theories arising from
the Calabi-Yau compactifications of type-IIA string theory.
The authors have considered non-BPS D0 −D4 as well as
D0 −D2 −D4 black hole configurations in one and two
parameter Calabi-Yau models and made similar analysis.
While many of these configurations are unstable, there are
also examples of several stable non-BPS black holes in
these classes of compactifications.
The authors in [10] considered a few examples of Calabi-

Yau models with small h11 and interestingly the non-BPS
black holes obtained in all their examples remained unsta-
ble. Surprisingly, this result holds true in all the two
parameter examples considered in [14]. It remains to be
seen whether this result holds for all five dimensional non-
BPS black holes resulting in Calabi-Yau compactifications
of M-theory. Further, the analysis of [14] shows the
existence of multiple basin of attractors in some of these
two-parameter models [16]. In models with larger h11 there
is a possibility of obtaining more interesting black hole and
black string configurations. In the present work we wish to
generalize these results for a number of three parameter
Calabi-Yau manifolds obtained as hypersurfaces in toric
varieties. The cohomology data for these manifolds have
been computed. Using these data we can obtain the black
brane configurations and study their properties. In this paper
we consider some of these three parameter models to obtain
extremal black branes in them and analyze their properties.
The plan of the paper is as follows. First we will review

the basic results on extremal black hole and black string

attractors in five-dimensional minimal supergravity in
Sec. II. Also in this section we will set up our notations
and conventions and outline the attractor equations that
needs to be analyzed further. In Sec. III, we will shift our
focus toward three parameter Calabi-Yau manifolds where
we will outline some useful formulas and introduce some
notations that will be used throughout the paper. Following
a comprehensive treatment of BPS black holes in Sec. IVwe
turn our attention in particular to the black hole solutions
resulting from the Calabi-Yau manifolds emerging as
hypersurfaces in toric varieties (THCY). Subsequently,
our investigation extends to non-BPS black hole solutions
in Sec. V. In Sec. VA we take different examples of three
parameter THCY models and investigate non-BPS black
hole configurations. We also show the existence of multiple
non-BPS black hole solutions. In Sec. V B we compute the
recombination factor for non-BPS extremal black hole
attractors in these THCY models and show that there exists
stable non-BPS black holes. Moving forward, in Sec. VI we
outline the essential details concerning extremal black string
attractors in five-dimensional, minimal supergravity. Once
again, we turn our attention into three-parameter Calabi-Yau
manifolds. We take different cases for non-BPS black
strings and obtain multiple solutions. We compute the
recombination factor corresponding to these non-BPS
extremal black strings in Sec. VI A highlighting the stability
of these solutions. Finally we summarize our findings in
Sec. VII.

II. REVIEW OF 5D BLACK HOLE ATTRACTOR

In this section we will review the basics of black brane
attractors in N ¼ 2 supergravity theory in five dimensions.
We consider the five dimensional low energy effective
theory arising upon the compactification of M-theory on a
Calabi-Yau manifold. The corresponding Lagrangian den-
sity is given by [17]

Lffiffiffiffiffiffiffi−gp ¼ −
1

2
R −

1

4
GIJFI

μνFJjμν −
1

2
gij∂μφi

∂
μφj

þ 1

63=2
ffiffiffiffiffiffiffi−gp CIJKε

λμνρσFI
λμF

J
νρAK

σ : ð2:1Þ

Here gμν is the space-time metric and g is its determinant. R
is the corresponding Ricci scalar, φi are the real scalar fields
arising from the Kähler moduli tIðI ¼ 1;…; h1;1Þ, and AI

μ

are the gauge fields in the vector multiplet with corre-
sponding field strengths FI

μν. The triple intersection num-
bers of the Calabi-Yau manifold are denoted by CIJK. The
volume of the Calabi-Yau manifold is constrained to satisfy

CIJKtItJtK ¼ 1: ð2:2Þ

Thus, only h1;1 − 1 real scalar fields are independent and
are denoted by ϕi. The moduli space metric gij is given by
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gij ¼
3

2
∂itI∂jtJGIJ; gijgjk ¼ δik; ð2:3Þ

Here GIJ is the pull back of moduli space metric onto
the “ambient space” formed by the Kähler moduli tI .
The metric GIJ is derived from the prepotential V ¼
CIJKtItJtK as

GIJ ≔ −
1

3

∂
2 logCLMNtLtMtN

∂tI∂tJ

����
�

¼ ð3CILMCJNPtLtMtNtP − 2CIJMtMÞj�; ð2:4Þ

where “�” indicates that we need to impose the constraint
(2.2) after taking the derivatives.
The critical points of this theory have been studied

extensively in [18] using the attractor mechanism. The
model admits extremal black hole as well as extremal black
string solutions. We will first review the black hole
configurations. These are electrically charged objects
carrying charges qI . They are described in terms the black
hole effective potential [18]

V ¼ GIJqIqJ ¼ Z2 þ 3

2
gij∂iZ∂jZ: ð2:5Þ

Here Z denotes the central charge of the black hole
Z ¼ qItI . The critical points of this potential are given by

∂iV ¼ 0: ð2:6Þ

For a comprehensive treatment of the critical points using
the so called new attractor approach see [19,20]. The above
condition is obviously satisfied by the extrema of the
central charge Z. All such critical points correspond to
supersymmetry preserving extremal black holes. However,
there exist critical points which do not extremize Z. These
correspond to nonsupersymmetric extremal black holes.
For both these cases, the entropy of the black hole is
determined by the value V0 of the effective potential (2.5) at
the critical point. In the present convention, the black hole
entropy is given by

S ¼ 2π

�
V0

9

�
3=4

: ð2:7Þ

To obtain the equation of motion it is more convenient to
express the black hole effective potential as [14]

V ¼ 3

2
Z2 −

1

2
CIJqIqJ: ð2:8Þ

Here we have introduced the notation CIJ ¼ CIJKtK and
CIJ is the matrix inverse of CIJ. Upon extremizing the
potential (2.8) with the constraint (2.2), we obtain

3ZðqK − ZCKIJtItJÞ þ
1

2
ðCILCJMCKLM

− CIJCKLMtLtMÞqIqJ ¼ 0: ð2:9Þ

The supersymmetric critical points ∂iZ ¼ 0 are given by

qK − ZCKIJtItJ ¼ 0: ð2:10Þ

Clearly, the first term of (2.9) vanishes if the above is
satisfied. With a little bit of work it can be shown that the
second term of this equation also vanishes for the super-
symmetric critical points. The equation of motion (2.9) also
admits critical points for which (2.10) does not hold. These
correspond to non-BPS critical points of the effective
potential (2.8). To find these non-BPS critical points, we set

XI ≔ qI − ZCIJKtJtK ð2:11Þ

Using this notation, we will rewrite (2.9) in a suitable
form [14]. To this end, substitute qI ¼ XI þ ZCIJKtJtK

in (2.9) to obtain

8ZXK þ CKLMðCILCJM − CIJtLtMÞXIXJ ¼ 0: ð2:12Þ

Clearly, XI ¼ 0 solves this equation trivially and gives BPS
critical points. Solutions of (2.12) with XI ≠ 0 correspond
to non-BPS critical points.
To further analyze the above equation, we note that the

constraint (2.2) can be rewritten in terms of XI as

tIXI ¼ 0: ð2:13Þ

We can first solve the above constraint to express XI in
terms of tI and substitute the resulting values in (2.12)
which can then be solved to obtain the critical points. Care
must be taken while solving (2.13) for XI, since it remains
unchanged upon multiplying the XIs by an overall factor.
The overall multiplicative factor in the XIs can be deter-
mined as follows. Multiply both sides of (2.12) with
CKNXN and using (2.13) to obtain

8ZCIJXIXJ þ CKLMCKICLJCMNXIXJXN ¼ 0: ð2:14Þ

This equation is not homogeneous in XI and hence will fix
the overall multiplicative factor in it uniquely. Using the
above formalism, models with h1;1 ¼ 2 have been exten-
sively analyzed in [14]. In the following we will consider
some explicit examples of Calabi-Yau compactifications
with h1;1 ¼ 3 and analyze the resulting black hole
solutions.
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Before we turn our discussion on three parameter Calabi-
Yau models, we will outline the Kähler cone condition,
which states that the volume of any effective curve must be
positive:

Z
C
J > 0; ð2:15Þ

where J ¼ tIJI is the Kähler form and C is any arbitrary
effective curve in the Calabi-Yau manifold M. Here fJIg
form an integral basis of the cohomology class
H1;1ðM;ZÞ. Thus, as emphasized in [10], we need to
make sure that the resulting solutions for the attractors must
lie within the Kähler cone.

III. THREE PARAMETER MODEL

Our goal in the present work is to analyze black brane
attractors in three parameter Calabi-Yau models. In this
section we will set up some notations in three parameter
models that will be used throughout this paper to analyze
the equations of motion. First, for convenience introduce
the variables x, y, z to represent the Kähler moduli t1, t2, t3

respectively. Further, introduce the parameters a; b; � � �, to
denote the intersection numbers CIJK such that C111 ¼ a;
C112 ¼ b;C122 ¼ c;C222 ¼ d;C113 ¼ e;C123 ¼ f;C133 ¼ g;
C223 ¼ h;C233 ¼ i;C333 ¼ j. In addition, we introduce the
functions A1;…; A6 as

A1 ¼ axþ byþ ez; A2 ¼ bxþ cyþ fz;

A3 ¼ exþ fyþ gz; A4 ¼ cxþ dyþ hz;

A5 ¼ fxþ hyþ iz; A6 ¼ gxþ iyþ jz: ð3:1Þ

With these notations, the matrix CIJ ¼ CIJKtK reads as

CIJ ¼

0
B@

A1 A2 A3

A2 A4 A5

A3 A5 A6

1
CA: ð3:2Þ

To express the inverse of the matrix CIJ in an organized
way we introduce the functions B1;…; B6 as and

B1 ¼ A4A6 − A2
5; B2 ¼ A3A5 − A2A6;

B3 ¼ A2A5 − A3A4; B4 ¼ A1A6 − A2
3;

B5 ¼ A2A3 − A1A5; B6 ¼ A1A4 − A2
2: ð3:3Þ

In terms of these quantities, the matrix inverse CIJ is
expressed as

CIJ ¼ 1

A1B1 þ A2B2 þ A3B3

0
B@

B1 B2 B3

B2 B4 B5

B3 B5 B6

1
CA: ð3:4Þ

We further need the expressions for quantities such as
CI ≡ CIJKtJtK and CIJqJ. It is straightforward to obtain

CI ¼ CIJKtJtK ¼

0
B@

A1xþ A2yþ A3z

A2xþ A4yþ A5z

A3xþ A5yþ A6z

1
CA; ð3:5Þ

and

CIJqJ ¼
1

A1B1 þ A2B2 þ A3B3

0
B@

B1q1 þ B2q2 þ B3q3
B2q1 þ B4q2 þ B5q3
B3q1 þ B5q2 þ B6q3

1
CA:

ð3:6Þ

The central charge Z ¼ qItI is given as

Z ¼ ðq1xþ q2yþ q3zÞ; ð3:7Þ

and the black hole effective potential (2.8) becomes

V¼3

2
ðq1xþq2yþq3zÞ2

−
ðB1q21þ2B2q1q2þ2B3q1q3þ2B5q2q3þB4q22þB6q23Þ

2ðA1B1þA2B2þA3B3Þ
:

ð3:8Þ
IV. BPS BLACK HOLES

We will first analyze the BPS black holes in three
parameter Calabi-Yau models. Thus, we need to solve
the Eq. (2.10) subjected to the constraint (2.2). For the three
parameter models, (2.10) becomes

ZðA1xþ A2yþ A3zÞ ¼ q1;

ZðA2xþ A4yþ A5zÞ ¼ q2;

ZðA3xþ A5yþ A6zÞ ¼ q3: ð4:1Þ

On the other hand the constraint (2.2) becomes

xðA1xþ A2yþ A3zÞ þ yðA2xþ A4yþ A5zÞ
þ zðA3xþ A5yþ A6zÞ ¼ 1: ð4:2Þ

To further analyze the above conditions, note that the left
hand sides in Eqs. (4.1) and (4.2) are all degree three
homogeneous polynomials in x, y, z. We will introduce
the following inhomogeneous coordinates τ ¼ x=z and
t ¼ y=z. Further we define the charge ratios ρ ¼ q1=q3
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and σ ¼ q2=q3. In terms of these variables, Eqs. (4.1)
becomes

z3ðρτ þ σtþ 1Þðaτ2 þ 2bτtþ ct2 þ 2eτ þ 2ftþ gÞ ¼ ρ;

ð4:3Þ

z3ðρτ þ σtþ 1Þðbτ2 þ 2cτtþ dt2 þ 2fτ þ 2htþ iÞ ¼ σ;

ð4:4Þ

z3ðρτ þ σtþ 1Þðeτ2 þ 2fτtþ 2gτ þ ht2 þ 2itþ jÞ ¼ 1:

ð4:5Þ

The constraint on the volume becomes

z3ðaτ3 þ 3bτ2tþ 3cτt2 þ dt3 þ 3eτ2 þ 6fτtþ 3gτ

þ 3ht2 þ 3itþ jÞ ¼ 1 ð4:6Þ

Using the above equation, we can eliminate z in
Eqs. (4.3)–(4.5). This results in three equations in two
variables. However, as we will see below, only two of them
remain independent. We need to solve two of these
equations for τ and t in terms of the charge ratios ρ and
σ. However, notice that these equations provide two coupled
cubics in two variables. Thus, it is not possible to obtain an
exact analytic solution for arbitrary values of the intersec-
tion numbers. In order to obtain some insight into the
problem we will first study the inverse problem, i.e., we will
solve these equations for the charge rations ρ and σ in terms
of the scalar moduli τ and t. Since these equations are linear
in ρ and σ, it is straightforward to obtain the solution.
Consider the first to Eqs. (4.3) and (4.4). We find

ρ ¼ aτ2 þ 2bτtþ ct2 þ 2eτ þ 2ftþ g
eτ2 þ 2fτtþ 2gτ þ ht2 þ 2itþ j

;

σ ¼ bτ2 þ 2cτtþ dt2 þ 2fτ þ 2htþ i
eτ2 þ 2fτtþ 2gτ þ ht2 þ 2itþ j

: ð4:7Þ

It can easily be verified that (4.5) holds true upon sub-
stitution of the above values for ρ and σ in it.
In this paper we will consider some specific examples of

three parameter Calabi-Yau manifolds. We will consider
Calabi-Yau manifolds which are obtained as hypersurfaces
from toric varieties. A toric variety is given in terms of a
reflexive polytope with a specific triangulation of its faces.
A polytope is reflexive provides it is integral (i.e., the
coordinates of its vertices are all integers) and the corre-
sponding dual polytope is also integral. The faces of a
reflexive polytope are in one to one correspondence with
the vertices of the dual polytope. Consider a reflexive
polytope with n faces and let the n vectors v⃗i; ði ¼ 1;…; nÞ
represent the vertices of the dual polytope. In general, they
will not all be linearly independent, and, for a polytope in d
dimensions, we will have (n − d) relations like

Xn
i¼1

qri v⃗i ¼ 0: ð4:8Þ

Here the index r takes values r ¼ 1;…; n − d. We associate
each of the vertices with a homogeneous coordinate
zi ∈Cn. If we view the coefficients qri in (4.8) as elements
of a ðn − dÞ × n weight matrix, then each of its row defines
an equivalence relation among these n homogeneous
coordinates with the corresponding coefficients as the
weights. Thus there are (n − d) such equivalence relations
altogether. Removing the fixed points and taking quotient
with these equivalence relations we obtain a d dimensional
toric variety. A hypersurface of vanishing first Chern class
in this toric variety gives a (d − 1) dimensional Calabi-Yau
manifold.
We are interested in Calabi-Yau threefolds. Thus we need

to construct toric varieties from four dimensional reflexive
polytopes. All such reflexive polytopes in four dimensions
have been classified by Kreuzer and Sakrke [21]. The
cohomology data for the corresponding toric Calabi-Yau
manifolds have been computed in [22–24] and the results
are listed in the database [25]. In the present work, we will
use the cohomology data such as the intersection numbers
and Kähler cone conditions from [25] to analyze the black
brane configurations.
We will now consider an explicit example of a toric

hypersurface Calabi-Yau manifold (THCY). The polytope
ID associated with this THCY as per the Kreuzer-Sakrke
classification [21] is 260. In the following we will reca-
pitulate some of the essential cohomology data associated
with it from the Calabi-Yau database [25]. The Hodge
numbers for the Calabi-Yau manifold M are h1;1 ¼ 3 and
h2;1 ¼ 123 and the corresponding Euler number is −260.
The resolved weight matrix of M has the form

Q ¼

0
B@

0 0 0 1 1 3 1

0 1 1 2 2 6 0

1 0 0 0 1 2 0

1
CA: ð4:9Þ

The volume of the manifold is given by

V ¼ 2xy2 þ 2xyzþ 4y3 − 4yz2: ð4:10Þ

From this we can obtain the intersection numbers of the
Calabi-Yau manifold M. We find the nonvanishing inter-
section numbers to be c ¼ 2=3; d ¼ 4; f ¼ 1=3; i ¼ −4=3.
Each of the homogeneous coordinates zi associated

with the toric Calabi-YauM define a holomorphic divisor
Di. Denoting the basis elements of (1,1) homology class
of M as fJ1; J2; J3g, the divisor classes Di in terms
of them are given as D1 ¼−2J1þ J2 − J3;D2 ¼ J1;D3 ¼
J1;D4 ¼ 2J1þ J3;D5 ¼ J2;D6 ¼ 2J1þ 2J2þ J3;D7 ¼ J3.

STABLE NON-BPS BLACK HOLES AND BLACK STRINGS IN … PHYS. REV. D 109, 026001 (2024)

026001-5



The Mori cone matrix associated with M is

Mi
j¼

Z
Ci
Dj¼Ci ·Dj¼

0
B@

0 1 1 0 0 0 −2
1 0 0 0 1 2 0

−1 0 0 1 0 1 1

1
CA: ð4:11Þ

The elements of the Mori cone matrix indicate the
intersection of generating curves Ciði ¼ 1;…; 3Þ with
the toric divisor classes Diði ¼ 1;…; 7Þ [23]. In order
to ensure the validity of the Kähler cone condition (2.15)
for our attractors, we also need the Kähler cone matrix K
corresponding to the Calabi-Yau manifold. This is the
matrix whose elements Ki

j are defined by [23]

Ki
j ¼

Z
Ci
Jj: ð4:12Þ

From the expression for the Mori cone matrix we can find
the Kähler cone matrix. In the present case, the Kähler
cone matrix is given by

K ¼

0
B@

1 0 −2
0 1 0

0 0 1

1
CA: ð4:13Þ

This indicates that the Kähler moduli tI for this model
will lie inside the Kähler cone provided x − 2z > 0;
y > 0; z > 0. In terms of the inhomogeneous coordinates
these conditions become τ − 2 > 0, t > 0 and z > 0. Now,
consider the constraint on the volume (2.2) in terms of the
inhomogeneous coordinates:

2z3tðtþ 1Þðτ þ 2t − 2Þ ¼ 1: ð4:14Þ

From the above constraint we observe that z becomes
positive in the region t > 0, τ > 2. Thus, we do not need to
impose it as an additional condition for the solution to
remain inside the Kähler cone.
We will now consider the BPS solutions for this model.

Substituting the values of the intersection numbers in (4.7)
we can obtain the charge ratios in terms of the inhomo-
geneous coordinates. However, in this case the BPS
equations qI − ZCIJKtJtK ¼ 0 are simple enough to solve
directly. Substituting the values of the intersection numbers
and rescaling the charges and variables appropriately, the
equations take the form

3ρ − 2tðtþ 1Þz3ðρτ þ σtþ 1Þ ¼ 0;

3σ − 2z3ð6t2 þ 2τtþ τ − 2Þðρτ þ σtþ 1Þ ¼ 0: ð4:15Þ

The variable z in the above equations can be eliminated
using the constraint (4.14) to obtain

2ρð3tþ τ − 3Þ − σt − 1

τ þ 2t − 2
¼ 0;

σ −
ð6t2 þ 2τtþ τ − 2Þðρτ þ σtþ 1Þ

3tðtþ 1Þðτ þ 2t − 2Þ ¼ 0: ð4:16Þ

These equations can easily be solved to obtain a unique
solution for τ and t in terms of the charge ratios ρ and σ:

τ¼ 24ρ2 − 4ρðσ− 3Þ− σþ 1

ρð6ρ− σþ 2Þ ; t¼−
2ρþ 1

6ρ− σþ 2
: ð4:17Þ

The entropy associated with the attractor is

S ¼ 2π

3
ffiffiffi
3

p jZj3=2 ð4:18Þ

Upon substituting the solution (4.17) in the above and
simplifying we find

S ¼ 21=3
ffiffiffi
3

p
πq23ðρð2ρþ 1Þð4ρ − σ þ 1ÞÞ2=3: ð4:19Þ

We need to make sure that the solution (4.17) lies within
the Kähler cone, i.e., we must have τ > 2 and t > 0.
Expressed in terms of the charge ratios, these conditions
become

ð2ρþ 1Þð6ρ− σþ 1Þ
ρð6ρ− σþ 2Þ > 0 and

2ρþ 1

6ρ− σþ 2
< 0: ð4:20Þ

To simplify the above conditions further, note that for the
attractor solution (4.17), we have ρ2ðτ þ 2t − 2Þ ¼
ρð2ρþ 1Þðtþ 1Þ. Since both ðτ þ 2t − 2Þ and (tþ 1) are
positive inside the Kähler cone, we must have
ρð2ρþ 1Þ > 0. Thus, we can have ρ > 0 or ρ < −1=2.
Now, requiring τ > 2 gives the condition

6ρ − σ þ 1

6ρ − σ þ 2
> 0: ð4:21Þ

Thus, for a given ρ we can either have 6ρ − σ þ 1 > 0 or
6ρ − σ þ 2 < 0. In other words, for τ > 2 we must have
σ > ð6ρþ 2Þ or σ < ð6ρþ 1Þ. We will now consider the
implication of these two bounds on σ on the t > 0
condition. Note that for σ > ð6ρþ 2Þwe have ð6ρþ 2 − σÞ
< 0 and hence t > 0 implies 2ρþ 1 > 0 and hence ρ must
be positive. For σ < ð6ρþ 1Þ we have ð6ρþ 1 − σÞ > 0
and hence ð6ρþ 2 − σÞ is positive. Thus 2ρþ 1 < 0 and
hence ρ < −1=2. To summarize, the solution (4.17) lies
within the Kähler cone provided ρ > 0; σ > ð6ρþ 2Þ
or ρ < −1=2; σ < ð6ρþ 1Þ.
Before we turn our attention to the non-BPS black holes,

we will consider one more example of a three parameter
THCY model. The polytope ID associated with this THCY
is 230. It has Hodge numbers h1;1 ¼ 3; h2;1 ¼ 111 and
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Euler number χ ¼ −216. The resolved weight matrix
associated with it is given by

Q ¼

0
B@

0 0 0 0 0 1 1

0 1 1 1 1 3 0

1 1 1 0 0 3 0

1
CA: ð4:22Þ

The volume of the Calabi-Yau manifold M is given by

V ¼ 2x3 þ 2x2yþ x2z − 3xz2 þ 9z3 ð4:23Þ

From the above we can read the respective intersection
numbers. We find a ¼ 2; b ¼ 2=3; e ¼ 1=3; g ¼ −1; j ¼ 9
and all other intersection numbers are zero. The Mori cone
matrix associated with the manifold M is

Mi
j ¼

Z
Ci
Dj ¼

0
B@

−1 0 0 1 1 0 0

0 0 0 0 0 1 1

1 1 1 0 0 0 −3

1
CA; ð4:24Þ

where fCig are the Mori cone generators. The divisor
classes Dj are given in terms of the basis fJ1; J2; J3g of
(1,1) homology class as D1¼ J1−J2;D2 ¼ J1;D3¼ J1;
D4 ¼ J2;D5¼ J2;D6¼ 3J1−J3;D7¼ J3. From (4.24) we
find the Kähler cone matrix K for M to be

K ¼

0
B@

0 1 0

0 0 1

1 0 −3

1
CA: ð4:25Þ

We can now study the BPS solutions for this model.
Substituting the values of the intersection numbers in (4.7)
it can be seen that the charge ratios in this case take the
form

σ ¼ 2τ2

τ2 − 6τ þ 27
; ρ ¼ 6τ2 þ ð4tþ 2Þτ − 3

τ2 − 6τ þ 27
: ð4:26Þ

Now we have much a simpler expression and it can be
inverted to find the inhomogeneous moduli τ and t in terms
of σ and ρ. We find

τ ¼ 3

σ − 2

�
σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3σ − σ2Þ

q �
;

t ¼ ρτ2 − 6ρτ þ 27ρ − 6τ2 − 2τ þ 3

4τ
; ð4:27Þ

for σ ≠ 2. For σ ¼ 2, we have

τ ¼ 9

2
; t ¼ 1

24
ð27ρ − 170Þ: ð4:28Þ

Upon substituting the solution in the expression for the
entropy (4.18) and simplifying, we find

S ¼ π

12

�
2q33
3τ3

�
1=2 ðρ2ðτ2 − 6τ þ 27Þ − ρð6τ2 þ 2τ − 3Þ þ 4τðστ þ 1ÞÞ3=2

ðρτðτ2 − 6τ þ 27Þ − ð2τ3 þ 3τ − 18ÞÞ1=2 : ð4:29Þ

Here for simplicity we have expressed the σ dependence
through τ as given in (4.27).
Several comments are in order. First, since τ and t are

real valued we must have 3σ − σ2 > 0, i.e., σ lies in the
range 0 ≤ σ ≤ 3. Further, the values must lie within the
Kähler cone. From the Kähler cone matrix (4.25), we find
that y > 0, z > 0 and x − 3z > 0. Thus, we have τ > 3 and
t > 0. We also need to ensure that z remains positive for
both the solutions. We can do so by examining the volume
constraint (2.2), which in our model takes the form:

z3ð2τ3 þ ð2tþ 1Þτ2 − 3τ þ 9Þ ¼ 1: ð4:30Þ

Notice that the quantity ð2τ3 þ ð2tþ 1Þτ2 − 3τ þ 9Þ in the
left hand side above remains positive for τ > 3 and t > 0.
Thus, imposing the volume constraint (2.2), z becomes
automatically positive provided τ > 3 and t > 0. We do not
need to impose this condition separately for the solutions to
lie inside the Kähler cone.

For σ ¼ 2, from (4.28) we find a unique solution lying
within the Kähler cone provided ρ > 170=27. For σ ≠ 2 we
have two possible solutions as given in (4.27). First
consider the following solution for τ:

τ ¼ 3

σ − 2

�
σ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p �
: ð4:31Þ

It may be observed that, for 0 ≤ σ < 2 the value of τ
becomes negative and hence lies outside the Kähler cone.
On the other hand, for 2 < σ ≤ 3 the value of τ is always
greater than 3 and hence lies within the Kähler cone. We
can substitute this value of τ in the expression for t in
(4.26). We find that, for 2 < σ ≤ 3 the value of t remains
positive provided

ρ > ρ− ≡ 1

54

�
ð169σ − 6Þ − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p �
: ð4:32Þ
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For σ ¼ 2, ρ− takes the minimum possible value ρ− ¼ 6.
Thus, this branch of BPS attractors exists for 2 < σ ≤ 3
and ρ > 6.
We will now consider the second solution for τ in (4.27):

τ ¼ 3

σ − 2

�
σ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p �
: ð4:33Þ

It is easy to notice that, for 1 < σ ≤ 3 the value of τ remains
greater than 3 and it lies within the Kähler cone.
Substituting the above expression for τ in the expression
for t in (4.27) we find that it remains positive provided

ρ > ρþ ≡ 1

54

�
ð169σ − 6Þ þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p �
: ð4:34Þ

Since ρþ monotonically increases with σ, it takes the
minimum possible value ρþ ¼ 19=6 at σ ¼ 1. This branch
exists for 1 < σ ≤ 3 and ρ > 19=6.
From the above we can see that, while no solution exists

for σ < 1, we have a unique solution described by (4.33)
and the corresponding t when ρ > ρþ and σ takes values in
the range 1 < σ ≤ 2. On the other hand, for 2 < σ < 3
there is a possibility of existence of both the solutions.
Notice that ρþ ≥ ρ−, with the equality holding for σ ¼ 3.
Thus, we have a unique solution described by (4.31) (and
the corresponding solution for t) if 2 < σ ≤ 3 and
ρ− < ρ < ρþ, whereas both the solutions exist if ρ > ρþ.
As a concrete example, take σ ¼ 3=2 and ρ ¼ 5. In this

case the equations of motion gives rise to a unique solution
inside the Kähler cone

τ ¼ 9ð
ffiffiffi
2

p
− 1Þ; t ¼ 1

12
ð19

ffiffiffi
2

p
− 23Þ;

and z ¼
�

2

9ð1887 ffiffiffi
2

p
− 2641Þ

�
1=3

: ð4:35Þ

Similarly, consider the values σ ¼ 5=2 and ρ ¼ 38=5. We
find

τ ¼ 3ð5þ
ffiffiffiffiffi
10

p
Þ; t ¼ 1

300
ð13

ffiffiffiffiffi
10

p
− 35Þ;

z ¼
�
30267

2
þ 46773ffiffiffiffiffi

10
p

�
−1=3

: ð4:36Þ

On the other hand, if we take σ ¼ 5=2 and ρ ¼ 8 we obtain
two solutions both lying inside the Kähler cone:

τ ¼ 3ð5þ
ffiffiffiffiffi
10

p
Þ; t ¼ 1

60
ð65þ 17

ffiffiffiffiffi
10

p
Þ;

z ¼
�

2

9ð3627þ 1121
ffiffiffiffiffi
10

p Þ

�
1=3

;

and τ ¼ 3ð5 −
ffiffiffiffiffi
10

p
Þ; t ¼ 1

60
ð65 − 17

ffiffiffiffiffi
10

p
Þ;

z ¼
�

2

9ð3627 − 1121
ffiffiffiffiffi
10

p Þ

�
1=3

: ð4:37Þ

One distinguished feature is the existence of two distinct
solutions for a given value of σ and ρ in the range 2 < σ ≤ 3
and ρ > ρþ. It is rather interesting to find multiple solutions
preserving supersymmetry for the same set of charges in
our model. Such examples were constructed first in the case
of five dimensional supergravity theories arising from the
compactification of M-theory on two parameter Calabi-Yau
manifolds. It was later realized that the multiple solutions
lie in different disconnected branches of the moduli space.
While the examples studied in [14] admitted multiple non-
BPS attractors, the BPS solutions for a given set of charges
were all unique. Though multiple non-BPS attractors are
found to occur in many supergravity theories, the existence
of multiple BPS attractors seems quite exceptional.

V. NON-BPS BLACK HOLES

Wewill now turn our attention to non-BPS black holes in
the three parameter Calabi-Yau models. Thus, we need to
analyze the equation of motion

8ZXK þ CKLMðCILCJM − CIJtLtMÞXIXJ ¼ 0; ð5:1Þ

with XI ≠ 0. We need to keep in mind that XI’s satisfy the
constraint (2.13), tIXI ¼ 0. Setting XI ¼ X̂X̃I in (2.14), we
obtain

X̂ ¼ −
8ZCIJX̃IX̃J

CKLMCKPCLQCMNX̃PX̃QX̃N
: ð5:2Þ

Using the above in the definition of XI from (2.11), we find

qI ¼ Z

�
CIJtJ −

8X̃ICJKX̃JX̃K

CKLMCKPCLQCMNX̃PX̃QX̃N

�
: ð5:3Þ

In terms of the charge ratios ρ ¼ q1=q3 and σ ¼ q2=q3 the
above equation can be rewritten as

ρ ¼ C1JtJCKLMCKPCLQCMNX̃PX̃QX̃N − 8X̃1CJKX̃JX̃K

C3JtJCKLMCKPCLQCMNX̃PX̃QX̃N − 8X̃3CJKX̃JX̃K
;

ð5:4Þ
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σ ¼ C2JtJCKLMCKPCLQCMNX̃PX̃QX̃N − 8X̃2CJKX̃JX̃K

C3JtJCKLMCKPCLQCMNX̃PX̃QX̃N − 8X̃3CJKX̃JX̃K
:

ð5:5Þ

With X̃I being algebraic functions of tI the right-hand
sides of the above equations are only functions of the
moduli. A consistent solution to the above conditions leads
a non-BPS black hole. To find whether the resulting
configuration is stable, we need to consider the recombi-
nation factor [10]. The recombination factor R is defined as
the ratio of the black hole mass to the mass of theM2-brane
wrapping the minimum piece-wise calibrated curve in the
same homology class as the nonholomorphic curve corre-
sponding to the black hole:

R ¼ MC

MC∪
; ð5:6Þ

where MC is the mass of the M2 brane wrapping the
nonholomorphic curve C and MC∪ is the mass of the M2
brane wrapping the minimum volume piece-wise calibrated
curve C∪ in the homology class [C]. The mass of the non-
BPS black hole is given by MC ¼ ffiffiffiffiffiffiffi

Vcr
p

, the square root of
the black hole potential at the critical point. On the other
hand, if C ¼ P

αICI , then MC∪ ¼ P jαIjtI . Thus,

R ¼
ffiffiffiffiffiffiffi
Vcr

pP jαIjtI
: ð5:7Þ

If this quantity is greater than one, the black hole becomes
unstable and decays into the constituent BPS/non-BPS
pairs. Whereas, for R < 1 recombination of the brane/
antibrane pairs takes place and the non-BPS black hole
becomes stable [10].
Let us now focus on the constraint (2.13). In the case of

two parameter Calabi-Yau models [14] it took the form
X̃1xþ X̃2y ¼ 0. Thus, for the two parameter case it was
possible to obtain the expressions for XI uniquely upon
solving this constraint. However, this is not the case for
models with h1;1 > 2. In the present case the constraint
takes the form X̃1xþ X̃2yþ X̃3z ¼ 0. In terms of the
rescaled coordinates we have X̃1τ þ X̃2tþ X̃3 ¼ 0, and
hence we can at most express X̃3 in terms of tI and X̃1; X̃2.
Thus, to obtain these quantities we need to solve the full
equations of motion. In the following we will consider
examples of three parameter models where we will explic-
itly solve the equations of motion to obtain the non-BPS
attractors.

A. Examples

Wewill now consider non-BPS attractors for the both the
examples considered in the previous section. Let us first
consider the first example, say the model 1. We need the
explicit expression for the black hole effective potential to
obtain the non-BPS solutions. Substituting the intersection
numbers for the model 1 in (3.8) we find

V ¼ 3

4yðyþ zÞðxþ 2y − 2zÞ ðv11q
2
1 þ v22q22 þ v33q23 þ 2v12q1q2 þ 2v23q2q3 þ 2v31q3q1Þ; ð5:8Þ

where the functions vij are defined as follows

v11 ¼ 2x3yðyþ zÞ þ x2ð4y3 − 4yz2 þ 1Þ þ 8xðy − zÞ þ 16ð3y2 þ z2Þ;
v22 ¼ y2ð2xyðyþ zÞ þ 4y3 − 4yz2 þ 1Þ;
v33 ¼ 2y2ðxz2 þ 2Þ þ yð2xz3 − 4z4 þ 4zÞ þ 4y3z2 þ z2;

v12 ¼ yð2x2yðyþ zÞ þ xð4y3 − 4yz2 − 1Þ − 8yÞ;
v23 ¼ yð2xy2zþ yð2xz2 − 4z3 − 2Þ þ 4y3z − zÞ;
v31 ¼ 2y2ðx2zþ 6Þ þ 2yzðx2z − 2xz2 þ 4Þ þ 4xy3zþ zð4z − xÞ: ð5:9Þ

The constraint on the volume (2.2) for the Calabi-Yau manifold M becomes

2xy2 þ 2xyzþ 4y3 − 4yz2 ¼ 1: ð5:10Þ

In order to obtain the critical points, we need to extremize the black hole effective potential (5.8) using the method of
Lagrange multiplier to incorporate the constraint (5.10) on the scalar fields. Upon eliminating the Lagrange multiplier we
obtain two independent equations which after some simplifications take the form
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q21f11 þ q22f22 þ 2q23yðyþ zÞð2yþ zÞ þ f12q1q2 þ f23q2q3 þ f31q3q1 ¼ 0;

ðq1ð2x2yðyþ zÞ þ xð4y3 − 4yz2 þ 1Þ þ 8yÞ þ q2yð2xyðyþ zÞ þ 4y3 − 4yz2 − 1Þ
þ q3ð2xy2zþ 2yðxz2 − 2z3 þ 1Þ þ 4y3zþ zÞÞðq1ðx − 4zÞ − q3ðyþ zÞÞ ¼ 0: ð5:11Þ

The functions fij are defined as

f11 ¼ 2x3yð2y2 þ 3yzþ z2Þ þ x2ð20y4 þ 16y3z − 12y2z2 þ yð2 − 8z3Þ þ zÞ
þ 2xð12y5 − 16y3z2 þ 5y2 þ 4yzðz3 − 1Þ − 3z2Þ − 8ð3y3 þ 9y2zþ yz2 − z3Þ;

f22 ¼ y2ðyþ zÞð2xyðyþ zÞ þ 4y3 − 4yz2 þ 1Þ;
f12 ¼ yð2x2y2ðyþ zÞ þ xyð16y3 þ 12y2z − 8yz2 − 4z3 − 1Þ þ 2ð12y5 − 16y3z2 þ 5y2 þ 4yzðz3 þ 2Þ þ z2ÞÞ;
f23 ¼ yðyþ zÞð2xy2zþ 2xyz2 þ 4y3z − 4yðz3 þ 1Þ − zÞ;
f31 ¼ 4y3ðx2zþ 4xz2 − 8z3 − 6Þ − 2y2zð−3x2zþ 6xz2 þ 19Þ þ 2yzðx2z2 − 4xz3 − xþ 4z4 − 4zÞ

þ 20xy4zþ z2ð2z − xÞ þ 24y5z: ð5:12Þ

We can rewrite these equations in terms of the inhomogeneous coordinates and the charge ratios and eliminate z using the
constraint (5.10). The equations motion simplify remarkably to have the form

ðρτ þ 4ρtþ tþ 1Þðρðτ − 4Þ − t − 1Þ ¼ 0;

t3g1 þ t2ðg2 − 8τρ2Þ þ tð4ρ2 þ 4ρþ 1Þ − 2τtρ2ðτ − 2Þ − ρ2ðτ − 2Þ2 ¼ 0; ð5:13Þ

where g1 and g2 are functions of the charge ratios ρ and σ with the expression

g1 ¼ 12ρ2 þ ρð12 − 8σÞ þ σ2 − 2σ þ 2; g2 ¼ 36ρ2 − 8ρðσ − 2Þ þ σ2 − 2σ þ 3: ð5:14Þ

It is indeed possible to solve these equations exactly to obtain the inhomogeneous coordinates in terms of the charge
ratios. They admit four independent solutions. They are given as

τ ¼ −
8ρ2 þ 8ρ − σ þ 1

ρð2ρ − σÞ ; t ¼ 2ρþ 1

2ρ − σ
; ð5:15Þ

τ ¼ 8ρ2 þ σ − 1

ρð6ρ − σ þ 2Þ ; t ¼ −
2ρþ 1

6ρ − σ þ 2
; ð5:16Þ

τ ¼ 8ρ2 − 4ρσ þ 4ρ − σ þ 1

2ρ2 − ρσ
; t ¼ 2ρþ 1

2ρ − σ
; ð5:17Þ

τ ¼ 24ρ2 − 4ρðσ − 3Þ − σ þ 1

ρð6ρ − σ þ 2Þ ; t ¼ −
2ρþ 1

6ρ − σ þ 2
: ð5:18Þ

The last of these solutions corresponds to BPS black holes. They have been analyzed in detail in Sec. IV. On the other hand,
the first three solutions do not satisfy the BPS equations. They corresponds to non-BPS attractors.
We need to make sure that the non-BPS solutions lie within the Kähler cone. From the expression of the Kähler cone

matrix we observe that the values of t and τ − 2 must be positive. Let us analyze this condition for the first solution given
in (5.15). We find

2ρþ 1

2ρ − σ
> 0 and

ð2ρþ 1Þð6ρ − σ þ 1Þ
ρð2ρ − σÞ < 0: ð5:19Þ

Further, we consider the combination ðtþ 1Þðτ þ 2t − 2Þ which is positive inside the Kähler cone. For (5.15), this implies
ρð2ρþ 1Þ < 0. Thus, the value of ρ must lie in the range −1=2 < ρ < 0. Since 2ρþ 1 is positive, the first inequality
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in (5.19) implies 2ρ − σ > 0 and hence σ < 2ρ. The second
inequality in (5.19) now implies σ < 6ρþ 1. Thus, the
solution (5.15) remains inside the Kähler cone provided
−1=2 < ρ < 0 and σ < minf2ρ; 6ρþ 1g.
We will now focus on the Kähler cone condition for the

solution (5.16). A similar analysis tells that once again the
values of ρ lies in the range−1=2 < ρ < 0. Requiring t > 0
for a given ρ in this range now gives the bound σ > 6ρþ 2.
Requiring τ − 2 > 0 gives σ > 2ρþ 1. Thus, the solution
(5.16) lies inside the Kähler cone provided −1=2 < ρ < 0
and σ > maxf2ρþ 1; 6ρþ 2g. Finally, let us consider the

solution (5.17). In this case ρ takes values in the range
ρ > 0 or ρ < −1=2. For ρ > 0we must have σ < 2ρ and for
ρ < −1=2 the value of σ lies in the range σ > 2ρþ 1. For
these values of ρ and σ the solution (5.17) remain inside the
Kähler cone. Further, these bounds ensure that all the four
branches of solutions as given in (5.15)–(5.18) are mutually
exclusive from each other. Thus, in this model both the BPS
as well as non-BPS attractors are unique.
Let us now turn our attention to the second model

consider in Sec. IV. The black hole effective potential (3.8)
for this model takes the form

V ¼ 3q1
2x

ðq1x3 þ 2x2ðq2yþ q3zÞ − q2Þ þ
1

8x2ðx − 9zÞ ðq
2
2V3 þ q2q3V2 þ q23V1Þ: ð5:20Þ

where, for easy reading we have introduced the functions

V1 ¼ 4xð3xz2 − 27z3 þ 1Þ;
V2 ¼ 4xð6x2yz − 54xyz2 − xþ 3zÞ;
V3 ¼ 12x3y2 − x2ð108y2z − 19Þ þ 3xð2y − 55zÞ − 18zð3yþ zÞ: ð5:21Þ

The constraint on the volume (2.2) becomes

2x3 þ x2ð2yþ zÞ − 3xz2 þ 9z3 ¼ 1: ð5:22Þ

The equations of motion is obtained upon extremizing the potential (5.20) subject to the constraint (5.22). We find

24q21x
5ðx − 9zÞ2 − q2f3ðx; y; zÞð4x2ðq1xþ q2yþ q3zÞ þ q2Þ þ 4q2q3x2f1ðx; y; zÞ

þ 12q1x2ðx − 9zÞ2ð2q2x2yþ q2 þ 2q3x2zÞ − q22f5ðx; y; zÞ − 4q23x
4 ¼ 0; ð5:23Þ

ðq2f1ðx; y; zÞ − 2q3x2Þð2x2ð2q1xðx − 9zÞ2 þ q3f2ðx; y; zÞÞ þ q2f4ðx; y; zÞÞ ¼ 0: ð5:24Þ

In the above the functions f1;…; f5 are defined as follows

f1ðx; y; zÞ ¼ x2 − 6xzþ 27z2;

f2ðx; y; zÞ ¼ 2x2z − 36xz2 þ 162z3 þ 3;

f3ðx; y; zÞ ¼ 3ðx − 9zÞ2ð6x2 þ 2xð2yþ zÞ − 3z2Þ;
f4ðx; y; zÞ ¼ 4x4y − 72x3yzþ x2ð324yz2 − 1Þ − 18xzþ 81z2;

f5ðx; y; zÞ ¼ xð19x3 þ 6x2ð2y − 55zÞ − 27xzð8y − 53zÞ þ 324z2ð3yþ zÞÞ: ð5:25Þ

We express these equations in terms of the rescaled variables τ ¼ x=z; t ¼ y=z and eliminate z using (5.22) to obtain

4τ4ð2τ3 þ ð2tþ 1Þτ2 − 3τ þ 9Þ − 12ρðτ − 9Þ2τ2ð2τ2ð1þ ρτÞ − σð4τ3 þ τ2 − 9ÞÞ
− 4στ2ð2τ5 þ ð2t − 29Þτ4 þ ð363 − 24tÞτ3 þ 9ð30t − 143Þτ2 − 27ð36tþ 29Þτ þ 972Þ
þ σ2ð74τ7 þ ð96t2 − 3408tþ 4785Þτ5 − 9ð192t2 − 1588t − 777Þτ4 þ 54ð144t2 þ 148t − 271Þτ3
− ð1259 − 194tÞτ6 − 81ð174t − 263Þτ2 þ 2187ð8tþ 5Þτ − 6561Þ ¼ 0; ð5:26Þ
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and

ð2τ2 − σðτ2 − 6τ þ 27ÞÞð2τ2ð6τ3 þ ð6tþ 5Þτ2 − 45τ þ 189Þ þ 4ρðτ − 9Þ2τ3
− σð2τ5 − ð2t − 37Þτ4 þ 3ð36t − 49Þτ3 − 18ð27tþ 7Þτ2 þ 405τ − 729ÞÞ ¼ 0: ð5:27Þ

Even though these equations look complicated, it is indeed to solve the inverse problem exactly to express the charge
ratios in terms of the inhomogeneous coordinates ðτ; tÞ. We find three independent solutions:

ρ ¼ 6τ2 þ ð4tþ 2Þτ − 3

τ2 − 6τ þ 27
; σ ¼ 2τ2

τ2 − 6τ þ 27
; ð5:28Þ

ρ ¼ −
2τ3 þ 2ð2tþ 1Þτ2 − 9τ þ 36

τðτ2 − 6τ þ 27Þ ; σ ¼ 2τ2

τ2 − 6τ þ 27
ð5:29Þ

and

ρ ¼ −
328τ5 þ 36ð6t2 þ 4t − 63Þτ3 þ ð548tþ 310Þτ4 þ ð9981 − 1134tÞτ2 þ 81ð84tþ 23Þτ þ 729

92τ5 þ 3ð30t − 763Þτ4 − 81ð28t − 121Þτ3 þ 162ð63tþ 19Þτ2 − 3645τ þ 6561

σ ¼ −
2τ2ð52τ3 þ 27ð2tþ 3Þτ2 − 567τ þ 1701Þ

92τ5 þ 3ð30t − 763Þτ4 − 81ð28t − 121Þτ3 þ 162ð63tþ 19Þτ2 − 3645τ þ 6561
ð5:30Þ

The first solution (5.28) corresponds to BPS black holes which has been considered in Sec. IV. On the other hand
solutions obtained in (5.29) and (5.30) give rise to non-BPS black holes. We will now analyze them in detail. Consider first
(5.29). We can solve them to obtain analytic expressions for the inhomogeneous coordinates ðτ; tÞ. Denoting

τ� ¼
3
�
σ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σð3 − σÞp �
ðσ − 2Þ ;

t� ¼ 1

36ðσ − 2Þ3σ ð12ð405ρ − 11Þσ2 − 8ð2187ρþ 31Þσ − 59σ4 þ 222σ3 þ 192

∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p
ð972ρσ þ 5832ρþ 55σ3 − 222σ2 þ 228σ − 8ÞÞ; ð5:31Þ

there are two independent solutions ðτþ; tþÞ and ðτ−; t−Þ.
The expression for τ in these solutions remain the same as
that of BPS black holes as given in (4.27). Thus, from the
discussion followed by (4.33) we understand that requiring
τ− to lie inside the Kähler cone for the solution ðτ−; t−Þ
gives rise to the constraint 1 < σ ≤ 3 for the possible values
of σ. Further, introducing ρ� as

ρ� ¼ 1

26244σ
ðσð185σ2 − 948σ − 396Þ

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σð3 − σÞ

p
ð167σ2 þ 18σ þ 72ÞÞ;

we find that the value t− in the solution ðτ−; t−Þ remains
positive if ρ < ρ−. At σ ¼ 3, ρ− takes its maximum possible
value ρm− ¼ −175=2916. Thus, the non-BPS configurations
ðτ−; t−Þ exist for 1 < σ ≤ 3 and ρ < −175=2916. Let us
now focus on the solution described by ðτþ; tþÞ. In this case,
for 2 < σ ≤ 3 the value of τþ remains greater than 3.
Requiring tþ > 0 in this solution, we find that ρmust satisfy
the upper bound ρ < ρþ. From the expression for ρþ we
find that ρþ ≤ 0 throughout with the equality holding at

σ ¼ 2. Thus, this branch exists when 2 < σ ≤ 3 and ρ < 0.
Further, we notice that ρ− ≤ ρþ in the range 2 < σ ≤ 3.
Thus, for 2 < σ ≤ 3 and ρ− < ρ < ρþ only ðτþ; tþÞ lies
within the Kähler cone whereas, for ρ < ρ− both the
solutions survive.
Before we turn our attention to (5.30), we would like to

compare the BPS and non-BPS solutions we have obtained
so far. Though both the set of solutions exist only when
1 < σ ≤ 3, the range of ρ is entirely different. While, for the
BPS solutions the minimum possible value of ρ is 19=6, for
the non-BPS solutions ρmust take negative values. Thus the
BPS solutions obtained from (5.28) and non-BPS solutions
derived from (5.29) do not coexist simultaneously.
We will now consider (5.30). This involves coupled

equations of degree five in ðτ; tÞ and hence it is not possible
to obtain an exact analytical expression for these variables
in terms of ðρ; σÞ. Nevertheless, it is possible to obtain the
range of charge ratios which admit attractor solutions lying
inside the Kähler cone. First thing to notice is that there
exist curves of singularities in the moduli space which do
not correspond to any possible extremal black hole
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configuration for finite values of black hole charges. These
curves are obtained by setting the denominators in the
expressions for ρ and σ in (5.30) to zero. We find

92τ5 þ 3ð30t − 763Þτ4 − 81ð28t − 121Þτ3
þ 162ð63tþ 19Þτ2 − 3645τ þ 6561 ¼ 0: ð5:32Þ

This equation can be rewritten as

t¼−
92τ5 − 2289τ4þ 9801τ3þ 3078τ2 − 3645τþ 6561

18τ2ð5τ2− 126τþ 567Þ :

ð5:33Þ

The above expression has two poles as well as two zeros.
Denote the poles as τp1; τp2 and the zeros as τz1; τz2. The
values of τp1 and τp2 are

τp1¼
9

5

�
7−

ffiffiffiffiffi
14

p �
≃5.865; τp1¼

9

5

�
7þ

ffiffiffiffiffi
14

p �
≃19.335;

and the zeros τz1; τz2 are approximately τz1 ≃ 5.859; τz2≃
19.266. The value of t as given in (5.33) remains positive in
the intervals ðτz1; τp1Þ and ðτz2; τp2Þ. Thus, there are two
curves of singularities. They form a pair of almost straight
lines which start respectively from τz1 and τz2 at t ¼ 0 and
asymptote to τ ¼ τp1 and τ ¼ τp2 lines as z → ∞. Any
point inside the Kähler cone which does not lie on either of
these two curves correspond to an extremal non-BPS black
hole configuration for some suitably chosen charges.
The singularity curves naturally divide the moduli space

into three regions. We denote the region bounded by the
singularity curve asymptote to the line τ ¼ τp1 and the
τ ¼ 3 boundary of the Kähler cone as region 1, the region
bounded by the curve asymptote to the line τ ¼ τp2 and the
boundary τ ¼ ∞ as region 2 and the region bounded by the
two curves of singularities as region 3. If we treat σ and ρ
as functions of ðt; τÞ, then they do not possess any
extremum in regions 1 and 2. In region 1, σ takes a
maximum value −79=257 at the boundary point t ¼ 0,
τ ¼ 3. As we move away from this point, σ becomes more
and more negative and σ → −∞ as we approach the
singularity curve. In region 2, σ attains a maximum value
of −26=23 in the limit τ → ∞. It takes a smaller value for
any point interior to this region and as we approach the
singularity curve, σ → −∞. In region 3, σ → ∞ as we
approach either of the singularity curves from an interior
point of this region. However, it remains positive through-
out inside the region 3 and hence form a valley shaped
surface. To find the minimum value of σ in this region we
set both the partial derivatives ∂σ

∂t and
∂σ
∂τ to zero to obtain:

ðτ − 9Þ5 ¼ 0

and

ðτ − 9Þð729ð28t2 þ 36tþ 143Þτ4 þ 8ð6tþ 2635Þτ6
þ 144ð276tþ 17Þτ5 − 1458ð30tþ 217Þτ3
þ 6561ð4tþ 13Þτ2 − 275562τ þ 413343Þ ¼ 0:

Thus σ has a line of minima given by τ ¼ 9, with the
minimum value σm ¼ 3.
We now focus on the range of values for ρ that admits

attractor solutions. In region 1 as well as region 2 it does not
admit an extremum. At the boundary point t ¼ 0, τ ¼ 3 of
region 1 it takes the maximum value ρ ¼ −575=514. As we
move away from this point, it becomes more negative and
diverges as we approach the singularity curve. Similarly, in
region 2, it has a maximum value ρ ¼ −82=23 in the limit
τ → ∞. It becomes more negative at finite τ and as we
approach the singularity curve, ρ diverges. In the interior of
region 3, ρ takes positive values and ρ → ∞ as we approach
the singularity curves from any point in the interior. To find
the minimum value of ρ in this region, we set ∂ρ

∂t and
∂ρ
∂τ to

zero. A numerical computation indicates that these equa-
tions do not admit any solution in the interior of region 3.
For any fixed t it admits a minimum for some τ. The value
of this minimum decreases with t. Thus, the functional
form of ρ defines a valley which slopes downward toward
smaller values of t. To find the smallest allowed value of ρ,
we set t ¼ 0 in it and extremize. We find

ð1640τ4þ1240τ3−6804τ2þ19962τþ1863Þ
× ð92τ5−2289τ4þ9801τ3þ3078τ2−3645τþ6561Þ
− ð460τ4−9156τ3þ29403τ2þ6156τ−3645Þð328τ5
þ310τ4−2268τ3þ9981τ2þ1863τþ729Þ¼ 0: ð5:34Þ

This admits a unique solution τm in region 3. Numerically
we find τm ≃ 9.03. The value of ρ corresponding to this
point is ρm ≃ 9.277.
From the above analysis we find that, for σ > 3 and ρ >

ρm we have multiple non-BPS solutions in region 3. If −
26=23 < σ < −79=257 and −82=23 < ρ < −575=514 we
have a unique non-BPS attractor in region 1 for a given set
of charges. Finally, for σ < −26=23 and ρ < −82=23 we
have two non-BPS attractors for a given set of charges one
of which lies in region 1 and the other in region 2. No
attractors exist for charges lying in the range −79=257 <
σ < 3 and −575=514 < ρ < ρm. Further, we note that since
the above solutions exist only when σ > 3 or σ < −79=257,
whereas the solutions obtained from (5.28) and (5.29) exist
only when 1 < σ ≤ 3, all the three set of solutions are
mutually exclusive.
As an example, consider the values σ ¼ 4, ρ ¼ 16. It

gives a pair of solutions for ðτ; t; zÞ with approximate
values (7.101,2.231,10.225) and (12.281,4.102,17.682),
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both lying in region 3. If we take σ ¼ −2; ρ ¼ −7 we find
one solution in region 1 with τ ≃ 4.853 and t ≃ 0.61 and
another in region 2 with τ ≃ 55.008 and t ≃ 10.363. In this
case z takes the approximate values 6.506 and 73.587
respectively. On the other hand, for σ ¼ −1; ρ ¼ −7=2 we
find a unique solution in region 1 with τ ≃ 4.298, t ≃ 0.383
and z ≃ 5.724.

B. Stability

Now we will analyze the stability of the non-BPS black
holes obtained in the previous subsection. For this purpose
we need to obtain the recombination factors of the respec-
tive black hole configurations. Let the non-BPS black hole
results from wrapping a M2 brane on a nonholomorphic
curve C ¼ α1C1 þ α2C2 þ α3C3 of the Calabi-Yau mani-
fold M. The charges qI of the black hole are given by

qI ¼
Z
C
JI ¼ α1C1 · JI þ α2C2 · JI þ α3C3 · JI: ð5:35Þ

The intersection numbers CI · JL can be obtained from the
expression for the Kähler cone matrix (4.13) corresponding
to the THCY manifold M. We find

q1 ¼ α1 − 2α3; q2 ¼ α2; q3 ¼ α3: ð5:36Þ

From the above we find the coefficients αI in terms of the
black hole charges qJ as α1¼q1þ2q3¼ð2ρþ1Þq3;α2¼
q2¼σq3 and α3 ¼ q3. Thus the recombination factor (5.7)
corresponding to the non-BPS black holes in model 1 have
the expression

R ¼
ffiffiffiffiffiffiffi
Vcr

p
zjq3jðjð2ρþ 1Þjτ þ jσjtþ 1Þ : ð5:37Þ

Here Vcr is the value of the effective black hole potential at
the critical point. Substituting the expression for the effective
black hole potential (5.8), using the volume constraint (5.10)
and simplifying, we find

R ¼

3ðρ2ðτ2 − 4τ þ 8Þ þ 4ρþ t2ð24ρ2 þ ρð12 − 8σÞ þ σ2 − 2σ þ 2Þ þ tð4ρ2τ þ 8ρþ 2Þ þ 1Þ

p
ðjð2ρþ 1Þjτ þ jσjtþ 1Þ ð5:38Þ

We need to substitute the solutions in the three branches
of non-BPS black holes to obtain the corresponding
recombination factors in each of the cases. Consider the
solution (5.15) first. Recall that, the allowed values of ρ and
σ for this solution are negative, whereas 2ρþ 1 > 0.
Keeping this in mind and substituting (5.15) in (5.38)
we find the recombination factor to have the form

R ¼ −
3ρð2ρþ 1Þð4ρ − σ þ 1Þ

16ρ3 þ 2ρ2ðσ þ 11Þ þ 10ρ − σ þ 1
: ð5:39Þ

The black hole becomes unstable when R > 1. This
happens for

σ >
40ρ3 þ 40ρ2 þ 13ρþ 1

4ρ2 þ 3ρþ 1
: ð5:40Þ

However, recall that for the solution (5.15) to remain inside
the Kähler cone we need to impose the bound
σ < minf2ρ; 6ρþ 1g. This may not be always compatible
with (5.40). We find that (5.40) does not hold when ρ takes
values in the range ð ffiffiffiffiffi

17
p

− 9Þ=32 < ρ < 0 or −1=2 < ρ <
ð ffiffiffiffiffi

17
p

− 9Þ=16. For these values of ρ the recombination
factor R is always smaller than one and the corresponding
black hole solutions are stable. For ð ffiffiffiffiffi

17
p

− 9Þ=16 < ρ <
ð ffiffiffiffiffi

17
p

− 9Þ=32 we can choose σ to satisfy (5.40). In that case
the resulting non-BPS black holes become unstable.
However, we can also choose σ not to satisfy this bound.

The non-BPS black holes for those values of σ remain stable
against decay into constituent BPS/anti-BPS pairs.
Next consider the second branch of solutions given

by (5.16). Here the charge ratios take values in the interval
−1=2 < ρ < 0 and σ > maxf2ρþ 1; 6ρþ 2g. Hence the
values of σ and 2ρþ 1 always remain positive. Substituting
(5.16) in (5.38) and simplifying we find

R ¼ −
3ρð2ρþ 1Þð4ρ − σ þ 1Þ

16ρ3 − 2ρ2ðσ − 7Þ þ σ − 1
: ð5:41Þ

In order to get R > 1 the charge ratios need to satisfy the
bound

σ >
40ρ3 þ 32ρ2 þ 3ρ − 1

8ρ2 þ 3ρ − 1
: ð5:42Þ

However, for −1=2 < ρ < 0, the right-hand side (rhs) of the
above equation is always smaller than maxf2ρþ 1;
6ρþ 2g. Since the Kähler condition implies σ > max
f2ρþ 1; 6ρþ 2g, all such values of σ satisfy the bound
(5.42). Thus, the recombination factor is always greater than
one and hence the resulting non-BPS black holes in this
branch are all unstable.
Finally, for the branch (5.17), the recombination factor

takes the form
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R ¼
���� 3ρð2ρþ 1Þð4ρ − σ þ 1Þ
j2ρþ 1jð8ρ2 − 4ρðσ − 1Þ − σ þ 1Þ þ ρð2ρjσj þ jσj þ 2ρ − σÞ

����: ð5:43Þ

For this solution to be inside the Kähler cone we can have
either ρ > 0; σ < 2ρ or ρ < −1=2; σ > 2ρþ 1. We will
treat the stability conditions for ρ > 0; 0 < σ < 2ρ and
ρ > 0, σ < 0 separately. Consider first the case
ρ > 0; 0 < σ < 2ρ. Analyzing the formula (5.43) we find
that for ρ > ð2 − ffiffiffi

2
p Þ1=3ð21=3 þ ð2þ ffiffiffi

2
p Þ2=3Þ=4 the value

of the recombination factor always becomes greater than one
irrespective of the value of σ and the black holes become
unstable. However, for 0 < ρ < ð2 − ffiffiffi

2
p Þ1=3ð21=3 þ

ð2þ ffiffiffi
2

p Þ2=3Þ=4 the black holes become unstable if
σ > 1 − 8ρ3=ð3ρþ 1Þ, and stable if σ < minf2ρ; 1 − 8ρ3=
ð3ρþ 1Þg. In the case ρ > 0, σ < 0, black holes become
stable if σ < minf0; ð1þ 3ρ − 8ρ3Þ=ð1þ 5ρþ 4ρ2Þg and
unstable otherwise. Similarly, for ρ < −1=2; σ > 0 we find
stable non-BPS black holes provided σ > maxf0; ð1þ 3ρ−
4ρ2 − 8ρ3Þ=ð1þ 3ρþ 4ρ2Þg. For ρ < −1=2; 2ρþ 1 <
σ < 0 there are no stable attractors if ρ < ρ0 where ρ0 ≃
−0.776 is a root of 8ρ3 þ 4ρ2 − 3ρ − 1 ¼ 0. For ρ0 < ρ <
−1=2 we have stable attractors if σ takes values in the
interval maxf2ρþ 1;−ð8ρ3 þ 4ρ2 − 3ρ − 1Þ=ðρþ 1Þg.
We will now analyze the stability of the non-BPS black

holes in model 2. Let the corresponding M2 brane wraps a

nonholomorphic curve C ¼ P
αICI . Using the expression

for the Kähler cone matrix in (4.25), we find the charges qI
of the black hole to be

q1 ¼ α3; q2 ¼ α1; and q3 ¼ α2 − 3α3: ð5:44Þ

Thus, the coefficients αI are given in terms of the charges
qI as α1 ¼ q2 ¼ σq3; α2 ¼ 3q1 þ q3 ¼ ð3ρþ 1Þq3 and
α3 ¼ q1 ¼ ρq3. The recombination factor (5.7) can be
expressed as

R ¼
ffiffiffiffiffiffiffi
Vcr

p
zjq3jðjσjτ þ jð3ρþ 1Þjtþ jρjÞ : ð5:45Þ

Using the constraint (5.22) in (5.20), the recombination
factor takes the form

R ¼ 1

2τðjσjτ þ jð3ρþ 1Þjtþ jρjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṽ

2ðτ − 9Þ

s
; ð5:46Þ

where we have introduced

Ṽ ¼ σ2ð38τ5 − 311τ4 − 258τ3 þ 24t2ðτ − 9Þτ2 þ 648τ2 þ 2tð25τ4 − 216τ3 − 54τ2 þ 108τ − 243Þ − 1431τ − 162Þ
þ 4τ2ð3ρ2ðτ − 9Þτ2 þ 6ρðτ − 9Þτ þ 2τ3 þ ð2tþ 1Þτ2 − 18Þ − 4στð3ρð2τ4 − 17τ3 − 12τ2 þ 36τ − 81Þ
þ 2τ4 þ ð2t − 5Þτ3 − 6ð2tþ 1Þτ2 þ 18ð3tþ 1Þτ − 27Þ: ð5:47Þ

The black hole becomes stable for R < 1. By directly substituting specific values of charges and the corresponding solutions
t and τ we find stable black holes for a wide range of charges. In the following we consider a class of configurations for
stable as well as unstable black holes.
We choose a specific value of the charge ratio σ ¼ 3=2. In this case, the equations of motion admit a unique solution

given by ðτ−; t−Þ in (5.31). Substituting σ ¼ 3=2 in ðτ−; t−Þ we find the solution to have the simple form

τ− ¼ 9
� ffiffiffi

2
p

− 1
�

and t− ¼ 1

36

�
141 − 161

ffiffiffi
2

p �
− 3

� ffiffiffi
2

p
− 1

�
ρ: ð5:48Þ

For t− > 0 we need ρ to satisfy the bound ρ < −ð181þ 20
ffiffiffi
2

p Þ=108 ≃ −1.938. We substitute these values for τ− and t−
[and σ ¼ 3=2)] in (5.46) to obtain the following simple expression for the recombination factor:

R ¼
9ð1þ ffiffiffi

2
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11664ð17 − 12

ffiffiffi
2

p Þρ2 þ 216ð1952 ffiffiffi
2

p
− 2765Þρ − 317524

ffiffiffi
2

p þ 449721

q
2ð324ð ffiffiffi

2
p

− 1Þρ2 þ ð591 ffiffiffi
2

p
− 567Þρþ 647

ffiffiffi
2

p
− 627Þ :

It can be easily verified that R < 1 provided

ρ < −
1

216

�
367þ 8

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð28101þ 80

ffiffiffi
2

p
Þ

q �
≃ −3.49: ð5:49Þ
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Thus, for σ ¼ 3=2 we obtain non-BPS attractors as given by (5.48). The Kähler cone condition requires that ρ≲ −1.938.
These non-BPS black holes remain unstable in the range −3.49≲ ρ≲ −1.938 and become stable when ρ≲ −3.49.
We will now take the value σ ¼ 5=2. In this case there are two solutions ðτþ; tþÞ and ðτ−; t−Þ with

τ� ¼ 3
�
5�

ffiffiffiffiffi
10

p �
; t� ¼−

1

180

�
108

�
5�

ffiffiffiffiffi
10

p �
ρ�271

ffiffiffiffiffi
10

p
þ1423

�
: ð5:50Þ

The solution ðτ−; t−Þ exists when ρ < −ð4405þ 68
ffiffiffiffiffi
10

p Þ=1620 and the solution ðτþ; tþÞ exists when ρ < −ð4405−
68

ffiffiffiffiffi
10

p Þ=1620. Thus, we have multiple solution for ρ < −ð4405þ 68
ffiffiffiffiffi
10

p Þ=1620. We can substitute these solutions in (5.46)
to find the respective recombination factors

R� ¼
15

ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6480ð89� 28

ffiffiffiffiffi
10

p Þρ2 − 216ð13375� 4208
ffiffiffiffiffi
10

p Þρ� 1138324
ffiffiffiffiffi
10

p þ 3618013

q
2ð540ð7� 2

ffiffiffiffiffi
10

p Þρ2 þ 3ð3595� 1026
ffiffiffiffiffi
10

p Þρ� 5426
ffiffiffiffiffi
10

p þ 19025Þ

Introducing ρs� as

ρs� ¼ −
8695 ∓ 8

ffiffiffiffiffi
10

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
87877865� 72560

ffiffiffiffiffi
10

pp
3240

we find that R� < 1 provided ρ < ρs�. Hence, the solution
ðτ−; t−Þ is unstable for ρs− < ρ < −ð4405þ 68

ffiffiffiffiffi
10

p Þ=1620
and becomes stable for ρ < ρs− whereas the solution
ðτþ; tþÞ is unstable for ρsþ < ρ < −ð4405 − 68

ffiffiffiffiffi
10

p Þ=
1620 and becomes stable for ρ < ρsþ. Since ρs− < ρsþ,
both the solutions in (5.50) become stable when ρ < ρs−.
We will now analyze the stability of solutions for (5.30).

In this case it is not possible to obtain any analytical results.
We can numerically solve the equations of motion for
various choices of ρ and σ and obtain the recombination
factor for each of the solutions. As we have noted
previously, in this case there exist two singularity curves
which divide the moduli space into three regions. We first
consider σ > 3 and ρ > ρm for which the solutions lie in
region 3. We took the value ρ ¼ 45 and varied σ from 4 to
14. In each of these cases, there are two distinct solutions.
Upon computing the recombination factor we observe that
for a fixed ρ and for small values of σ the black holes

become stable. The recombination factor increases mono-
tonically and the black holes become unstable for larger
values of σ. We also observe that, for fixed values of ðρ; σÞ
with a smaller value σ, the recombination factors corre-
sponding to the two distinct solutions almost coincide with
each other. In the following, we plot the solutions for τ and t
in Fig. 1. We can clearly see two branches of solutions in
both the cases. Since the recombination factors correspond-
ing to the two branches of solutions are close to each other,
we plot it for the lower branch of solutions. Further, we plot
the difference of the two recombination factors separately
(see Fig. 2).
We will now consider the solutions in regions 1 and 2. In

this case, we have a unique non-BPS attractor in region 1
when σ and ρ lies in the range −26=23 < σ < −79=257
and −82=23 < ρ < −575=514 and multiple non-BPS
attractors when σ < −26=23; ρ < −82=23. We will first
focus on the unique solutions in region 1. We chose σ to be
valued in the range −21=20 ≤ σ ≤ −11=20 and ρ ¼ −7=2.
The resulting solution for τ and t are plotted in Fig. 3. We
notice that t monotonically increases with σ, while τ
decreases as we increase it. We have numerically computed
the corresponding recombination factors (see Fig. 6). We
find stable non-BPS black holes for smaller values of σ.

FIG. 1. Two branches of solutions for τ and t with ρ ¼ 45 and 4 ≤ σ ≤ 14.
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Further, we choose the value ρ ¼ −15 for various
σ in the range −23=5 ≤ σ ≤ −13=5. Multiple solutions
occur for these values of the charge ratios. We find one
solution in region 1 and the other in region 2. The
solutions for ðτ; tÞ in region 1 are plotted in Fig. 4 and
solutions for ðτ; tÞ in the region 2 are plotted in Fig. 5. The
corresponding recombination factors are plotted in Fig. 6.

The lower curve in Fig. 6 corresponds to recombination
factors in region 1 and upper curve in it corresponds to
recombination factors in region 2. The black hole sol-
utions with a larger value of σ remain stable. The value
of R increases gradually as we decrease σ with a fixed
value of ρ and the black holes become unstable after a
critical value.

FIG. 3. Solutions for the inhomogeneous coordinates τ and t in region 1 for ρ ¼ −7=2 and −21=20 ≤ σ ≤ −11=20.

FIG. 2. Recombination factor for the lower branch of solutions and the difference of two recombination factors. The recombination
factors take slightly higher values in the upper branch of solutions.

FIG. 4. Solutions for the inhomogeneous coordinates τ and t in region 1 for ρ ¼ −15 and −23=5 ≤ σ ≤ −13=5.
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VI. NON-BPS BLACK STRINGS

We will now consider black strings in our supergravity
theory. These are magnetically charged objects with charges
pI . They are obtained upon wrapping M5 branes on a four
cycle of the Calabi-Yau manifold. The central charge
associated with the black string is given by

Z ¼ CIJKpItJtK: ð6:1Þ

The effective potential corresponding to the black string is

V ¼ 3Z2 − 2CIJpIpJ: ð6:2Þ

To obtain the equation of motion, we need to extremize this
effective black string potential. Note that the moduli tI are
constrained to satisfy (2.2). We can use the method of
Lagrange multipliers to extremize the potential. The result-
ing equation of motion is given by

6ZðpJ−ZtJÞ−CJKCKLMpLpMþCLMpLpMtJ ¼ 0: ð6:3Þ

Upon introducing XI ≡ pI − ZtI , the above equation can be
rewritten as [14]

4ZXI þ XJXKCJKLðtLtI − CLIÞ ¼ 0: ð6:4Þ

Setting XI ¼ 0 we obtain BPS solutions. Upon simplifica-
tion, they take the form

tI ¼ pI

ðCJKLpJpKpLÞ1=3 : ð6:5Þ

Thus, for any five dimensional supergravity the resulting
BPS black string solutions are unique. Solutions of the
equation of motion (6.4) with XI ≠ 0 correspond to non-
BPS black strings.
For non-BPS black strings, using (2.2) we can show that

XI satisfies the constraint

CIJKtItJXK ¼ 0: ð6:6Þ

Multiplying XI on (6.4) we can show that

FIG. 6. Recombination factors for the above solutions. The figure in the left corresponds to recombination factors for solutions in
region 1 with ρ ¼ −7=2 and −21=20 ≤ σ ≤ −11=20. The figure in right corresponds to recombination factors for the multiple solutions
with ρ ¼ −15 and −23 ≤ σ ≤ −13=5.

FIG. 5. Solutions for the inhomogeneous coordinates τ and t in region 2 for ρ ¼ −15 and −23 ≤ σ ≤ −13=5.
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4ZCIJXIXJ − CIJKXIXJXK ¼ 0: ð6:7Þ

Setting XI ¼ X̌X̃I in the above we find

X̌ ¼ 4ZCMNX̃MX̃N

CIJKX̃IX̃JX̃K : ð6:8Þ

and X̃I satisfies the constraint CIJKtItJX̃K ¼ 0
In the present work we will focus on three parameter

models. Using the expression for CIJKtJtK given in (3.5)
we find the central charge (6.1) to have the form

Z ¼ ðA1xþ A2yþ A3zÞp1 þ ðA2xþ A4yþ A5zÞp2

þ ðA3xþ A5yþ A6zÞp3: ð6:9Þ

Similarly, using (3.2) we find

CIJpIpJ ¼ A1ðp1Þ2 þ A4ðp2Þ2 þ A6ðp3Þ2 þ 2ðA2p1p2

þ A3p1p3 þ A5p2p3Þ: ð6:10Þ

Substituting these values in (6.2) we can obtain the
expression for the black string effective potential. We will
once again focus on the explicit examples we have
considered in the previous sections to study BPS and
non-BPS black holes. Let us consider the model 1 first. The
effective black string potential for this model is given by

V ¼ 4

3
ðp1yðyþ zÞ þ p2xð2yþ zÞ þ 6p2y2 − 2p2z2 þ p3yðx − 4zÞÞ2

−
4

3
ðp1p2ð2yþ zÞ þ p3yðp1 − 2p3Þ þ ðp2Þ2ðxþ 6yÞ þ p2p3ðx − 4zÞÞ ð6:11Þ

Upon extremization with respect to the scalar fields x, y, z subject to the constraint (5.10) we find the equations of motion to
be of the form

ðyþ zÞðp2ðp1 − 4p3Þ − 2ðyðp1 − 4p3Þ þ p2ðx − 4zÞÞðp1yðyþ zÞ þ p2xð2yþ zÞ
þ 6p2y2 − 2p2z2 þ p3yðx − 4zÞÞÞ þ ðx − 4zÞð2ðp2ð2yþ zÞ þ p3yÞðp1yðyþ zÞ
þ p2xð2yþ zÞ þ 6p2y2 − 2p2z2 þ p3yðx − 4zÞÞ − p2ðp2 þ p3ÞÞ ¼ 0;

yðx − 4zÞð2ðp1ð2yþ zÞ þ 2p2ðxþ 6yÞ þ p3ðx − 4zÞÞðp1yðyþ zÞ þ p2xð2yþ zÞ
þ 6p2y2 − 2p2z2 þ p3yðx − 4zÞÞ − 2p1p2 − p3ðp1 − 2p3Þ − 6ðp2Þ2Þ þ ðxð2yþ zÞ
þ 6y2 − 2z2Þðp2ðp1 − 4p3Þ − 2ðyðp1 − 4p3Þ þ p2ðx − 4zÞÞðp1yðyþ zÞ
þ p2xð2yþ zÞ þ 6p2y2 − 2p2z2 þ p3yðx − 4zÞÞÞ ¼ 0: ð6:12Þ

As before we will introduce the inhomogeneous coordinates τ ¼ x=z; t ¼ y=z and eliminate z using the constraint (5.10). In
addition, we will rescale the magnetic charges pI as p1 ¼ rp3 and p2 ¼ sp3. The equations of motion (6.12) simplify a lot
upon expressing in terms of the inhomogeneous coordinates τ, t and charge ratios r, s. We find

ðrtþ r − sτ þ 4s − 4t − τÞðrtþ rþ 4stþ sτ þ τ − 4Þ ¼ 0;

tðτ − 4Þðð2rtþ rþ 2sð6tþ τÞ þ τ − 4Þðtðrtþ rþ τ − 4Þ þ sð6t2 þ 2τtþ τ − 2ÞÞ
−tðtþ 1Þð2rsþ rþ 6s2 − 2Þð2tþ τ − 2ÞÞ þ ð6t2 þ 2τtþ τ − 2Þððr − 4Þstðtþ 1Þ
ð2tþ τ − 2Þ − ððr − 4Þtþ sðτ − 4ÞÞðtðrtþ rþ τ − 4Þ þ sð6t2 þ 2τtþ τ − 2ÞÞÞ ¼ 0: ð6:13Þ

It is possible to solve the above equations exactly to find the attractor values of the moduli in terms of the magnetic charges.
Apart from the BPS solution τ ¼ r, t ¼ s, there are three additional solutions to the above equations. These solutions
correspond to non-BPS black strings. They have the simple form

τ ¼ 4 − r − 4s; t ¼ s; ð6:14Þ

τ ¼ rþ 8s
1þ 2s

; t ¼ −
s

1þ 2s
; ð6:15Þ
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τ ¼ 4 − rþ 4s
1þ 2s

; t ¼ −
s

1þ 2s
: ð6:16Þ

Requiring the solution to satisfy the Kähler cone condition
τ > 2, t > 0 we find the supersymmetric solutions for
r > 2, s > 0. For the first branch of non-BPS solutions
(6.14), we have s > 0; r < −2ð2s − 1Þ. For the second

branch (6.15) we have −1=2 < s < 0 and r > 2ð1 − 2sÞ.
For the third branch −1=2 < s < 0 and r < 2. All these
branches of solutions are mutually exclusive from each
other. Moreover, the resulting solution for a given set of
charges is always unique.
Now we will analyze non-BPS black strings in model

2. For this case, the effective black string potential takes
the form

V ¼ 1

3
ðf̃1ðp1Þ2 þ 4x4ðp2Þ2 þ f̃2ðp3Þ2 þ f̃3p1p2 þ f̃4p1p3 þ f̃5p2p3Þ; ð6:17Þ

where we have introduced the functions

f̃1 ¼ 36x4 þ 24x3ð2yþ zÞ þ 16x2ðy2 þ yz − 2z2Þ − 12xð2yz2 þ z3 þ 1Þ − 4yþ 9z4 − 2z;

f̃2 ¼ x4 − 12x3zþ 90x2z2 − 324xz3 þ 6xþ 729z4 − 54z;

f̃3 ¼ 4xð6x3 þ 2x2ð2yþ zÞ − 3xz2 − 2Þ;
f̃4 ¼ 2ð6x4 þ x3ð4y − 34zÞ − 3x2zð8y − 49zÞ þ 2xð54yz2 þ 36z3 − 1Þ − 81z4 þ 6zÞ;
f̃5 ¼ 4x2ðx2 − 6xzþ 27z2Þ: ð6:18Þ

We will extremize this potential to obtain the equations of motion. We need to use the method of Lagrange multipliers to
incorporate the constraint (5.22). We find

ðp1Þ2ð−12x4ð2yþ zÞ − 16x3ðy − zÞðyþ 2zÞ þ 18x2z2ð2yþ zÞ þ 2xð2y − 9z4 þ zÞ − 3z2Þ
þ 2p1xðx3zð2p2 − 17p3Þ þ xð2p2 þ p3Þð2x2ð3xþ yÞ − 1Þ − 54p3xyz2 − 36p3xz3 þ 81p3z4Þ
þ 8ðp2Þ2x5 þ p3x2ð8p2x3 − 36p2xzðx − 3zÞ þ p3ð2ðx − 3zÞðx2 − 6xzþ 27z2Þ þ 3ÞÞ ¼ 0;

ðp3x − p1zÞðp1ð2xððx − 9zÞð6x2 þ 2xð2yþ zÞ − 3z2Þ − 1Þ þ 9zÞ þ 4p2x3ðx − 9zÞ
þ p3xð2ðx − 9zÞðx2 − 6xzþ 27z2Þ þ 9ÞÞ ¼ 0: ð6:19Þ

To simplify these equations, we will use charge ratios defined as r ¼ p1=p3 and s ¼ p2=p3 and the inhomogeneous
coordinates τ ¼ x=z and t ¼ y=z. In terms of these variables the above equations read as

r2ð4ð2t2 þ 2t − 7Þτ3 þ 8ð2tþ 1Þτ4 − 9ð2tþ 1Þτ2 − 9ð4tþ 1Þτ þ 27Þ
− 2rτðð8sþ 4Þτ4 þ ð6sþ 3Þτ2 − 9τð2sþ 6tþ 5Þ − 18τ3 þ 81Þ
− τ2ð8ðs2 þ sþ 1Þτ3 − 3τ2ð12s − 2tþ 5Þ þ 27ð4sþ 3Þτ − 135Þ ¼ 0; ð6:20Þ

ðr − τÞðrð8τ4 þ 4ðt − 22Þτ3 − 27ð2tþ 1Þτ2 þ 9τ þ 81Þ þ τð4ðsþ 5Þτ3
− 3τ2ð12s − 6tþ 7Þ þ 135τ − 405ÞÞ ¼ 0 ð6:21Þ

We will now solve these equations to obtain black string configurations. It can easily be seen that τ ¼ r, t ¼ s solves
these equations. This set of solutions corresponds to the BPS string. To obtain the non-BPS black string solutions we will
first consider the inverse problem where we express the charge rations r and s in terms of the inhomogeneous coordinates τ
and t. This can be easily obtained from the equations of motion. We find two independent solutions for non-BPS black
strings:

r ¼ τ; s ¼ −
1

τ2
ð2τ3 þ τ2ðtþ 1Þ − 3τ þ 9Þ; ð6:22Þ
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and

r ¼ −
τð56τ3 − ð27 − 54tÞτ2 þ 405τ − 1215Þ

24τ4 þ 4ð6t − 65Þτ3 − 9ð30tþ 13Þτ2 þ 27τ þ 243
; ð6:23Þ

s ¼ −
2τ2ð4τ2 − 34τ3 þ 27t2 − 24Þ þ tð64τ3 − 99τ2 þ 405τ − 1215Þ þ 144τ − 324

24τ4 þ 4ð6t − 65Þτ3 − 9ð30tþ 13Þτ2 þ 27τ þ 243
: ð6:24Þ

The first set of equations (6.22) can be easily solved for the scalar moduli to obtain

τ ¼ r; t ¼ −
1

r2
ð2r3 þ r2ðsþ 1Þ − 3rþ 9Þ: ð6:25Þ

Thus, for a given set of charges, we have a unique solution in this branch. The resulting solution will lie inside the Kähler
cone if r > 3 and s < −ð2r3 þ r2 − 3rþ 9Þ=r2.
We will now analyze the second branch of non-BPS solutions given in (6.23) and (6.24). First solve (6.23) for t to obtain

t ¼ −
rð24τ4 − 260τ3 − 117τ2 þ 27τ þ 243Þ þ τð56τ3 − 27τ2 þ 405τ − 1215Þ

6τ2ðrð4τ − 45Þ þ 9τÞ ð6:26Þ

Substituting this expression for t in (6.24) and simplifying we obtain

2τ4ð12r2 þ 4rð3sþ 8Þ þ 27sþ 9Þ − rτ3ð268rþ 270sþ 135Þ − 27ðr − 15Þrτ2 þ 27ðr − 45Þrτ þ 243r2 ¼ 0: ð6:27Þ

This is a quartic equation in τ. Thus we can express the
exact analytic solutions for τ in terms of the charge ratios r
and s. However, before we consider the exact solutions, we
will qualitatively analyze the relevant equations for this
branch of solutions.
From (6.23) and (6.24) we find that the charge ratios r

and s are expressed as rational functions of τ and t. The
denominators of these rational functions vanish when

24τ4 þ 4ð6t − 65Þτ3 − 9ð30tþ 13Þτ2 þ 27τ þ 243 ¼ 0:

ð6:28Þ

This defines a singularity curve in the moduli space. To see
this, solve the above equation for t to obtain

t ¼ −
24τ4 − 260τ3 − 117τ2 þ 27τ þ 243

6τ2ð4τ − 45Þ ð6:29Þ

The numerator has a single zero at τ ¼ τ0 ≃ 11.2506 in the
τ > 3 region. The denominator vanishes at τ ¼ 45=4. The
value of t in the above equation remains positive for
45=4 < τ < τ0. This gives rise to a line in the moduli
space which starts at τ ¼ τ0 when t ¼ 0 and asymptotes to
τ ¼ 45=4 line as t → ∞. Points on this curve do not
correspond to any extremal black string configuration.
This singularity curve divides the moduli space into two
regions, say region 1 and region 2. As we approach it from
either of the regions the charge ratios diverge. Any point
interior to either of the regions corresponds to a possible
non-BPS black string configuration. The equations of

motion (6.23) and (6.24) guarantee the existence of such
attractor configurations. In region 1, at the boundary point
ðτ ¼ 3; t ¼ 0Þ the charge ratios take values r ¼ 141=215
and s ¼ −56=215. These are the minimum possible values
for r and s in region 1. These values change from point to
point and they diverge as we approach the singularity curve
from the left. Similarly we can notice that, in region 2 the
charge ratios take the maximum values r ¼ −7=3 and s ¼
−1=3 as τ → ∞. For any finite t these values decrease
monotonically with τ in this region and diverge as we go
closer to the singularity curve from the right.
The above analysis indicates that these solutions are

mutually exclusive to the first branch of solutions given in
(6.25). We would like to investigate whether there exist
multiple black string configurations for the second branch
of solution. We first consider extremizing s in (6.24) as a
function of τ and t. Numerically solving the equations
∂s=∂τ ¼ ∂s=∂t ¼ 0 we find that they do not admit any
solution inside the Kähler cone. We can further check if
there exists an extremum in τ for a fixed value of t. Setting
∂s=∂τ ¼ 0 for fixed t, we find

108τ4t2 þ 36τð6τ4 þ τ3 þ 45τ2 − 459τ þ 1458Þt
þ ð112τ6 − 108τ5 þ 3561τ4 − 27522τ3

þ 71685τ2 þ 24786τ − 10935Þ ¼ 0: ð6:30Þ

This is a quadratic equation in t with positive coefficients in
the τ > 3 region. Thus, it does not admit any solution with
t > 0. As a result, s does not admit an extremum in τ for a
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fixed t inside the Kähler cone. Hence there cannot be any multiple solution for a given set of charges in this model.
We will now consider the exact solution of the quartic (6.27) for a given value of r and s. Introducing the notation

d0 ¼ 243r2; d1 ¼ 27rðr − 45Þ; d2 ¼ −27rðr − 15Þ;
d3 ¼ −rð268rþ 270sþ 135Þ; d4 ¼ 2ð12r2 þ 4rð3sþ 8Þ þ 27sþ 9Þ; ð6:31Þ

the Eq. (6.27) can be rewritten as

X4
k¼0

dkτk ¼ 0:

Depending on the sign of the coefficients dk this can admit zero, two or four real roots. As we have argued above, for a given
choice of the charge ratios at most one of these real roots will lie inside the Kähler cone. Denoting the solutions as τ1� and
τ2� we have

τ1� ¼ −
1

12d4

0
B@3d3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð9d23 − 24d2d4 − 2XÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6X þ 18

ffiffiffi
3

p ðd33 − 4d2d3d4 þ 8d1d24Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð9d23 − 24d2d4 − 2XÞ

p
s 1

CA;

τ2� ¼ −
1

12d4

0
B@3d3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð9d23 − 24d2d4 − 2XÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6X þ 18

ffiffiffi
3

p ðd33 − 4d2d3d4 þ 8d1d24Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð9d23 − 24d2d4 − 2XÞ

p
s 1

CA:

Here, for easy reading we have introduced the notations

e1 ¼ d22 − 3d1d3 þ 12d0d4; e2 ¼ 2d32 − 9d2ðd1d3 þ 8d0d4Þ þ 27ðd0d23 þ d21d4Þ;

in terms of which we define

e3 ¼ e2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 − 4e31

q
and X ¼ 3d23 − 8d2d4 − 22=3e1=33 d4 − 24=3e−1=33 e1:

Though we obtained multiple black hole solutions in
these three parameters THCY models, the black string
solutions for a given set of magnetic charges are unique.
While this might be true for the examples studied here this
is not the case in general. To see this we will consider an
explicit example of three parameter model admitting
multiple black string solutions. The polytope ID associated
with this specific THCY is 146. It has Hodge numbers
h1;1 ¼ 3; h2;1 ¼ 81 and Euler number χ ¼ −156. The
resolved weight matrix for this manifold is

Q ¼

0
B@

0 0 1 1 1 0 1

0 1 0 1 0 1 1

1 0 0 1 0 0 1

1
CA: ð6:32Þ

The nonvanishing intersection numbers associated with the
THCY M are f ¼ 1=2; g ¼ 4=3i ¼ 4=3; j ¼ 8. Thus, the
volume of M is given by

V ¼ 3xyzþ 4xz2 þ 4yz2 þ 8z3: ð6:33Þ

The corresponding Mori cone matrix is

Mi
j ¼

0
B@

−1 0 1 0 1 0 0

−1 1 0 0 0 1 0

1 0 0 1 0 0 1

1
CA: ð6:34Þ

The divisor class fDig is obtained from the (1,1) homology
basis of M as D1 ¼ J3 − J1 − J2; D2 ¼ J2; D3 ¼ J1D4

¼ J3; D5 ¼ J1; D6 ¼ J2; D7 ¼ J3. From the expression for
the Mori cone matrix, we find the Kähler cone matrix to be
3 × 3 identity matrix. Thus the Kähler cone conditions are
x > 0, y > 0, z > 0 or, in terms of the inhomogeneous
coordinates τ > 0, t > 0 and z > 0. Using V ¼ 1 constraint
we can show that the condition z > 0 can be derived from
τ > 0, t > 0 and need not be imposed separately.

ANSHUL MISHRA and PRASANTA K. TRIPATHY PHYS. REV. D 109, 026001 (2024)

026001-22



We will study black string solutions in this model. The effective black string potential is given by

V ¼ 1

3
ððzð3p1yþ 4p1zþ 3p2xþ 4p2zÞ þ p3xð3yþ 8zÞ þ 8p3zðyþ 3zÞÞ2

− 2ðp2ð3p1zþ 3p3xþ 8p3zÞ þ p3ðp1ð3yþ 8zÞ þ 4p3ðxþ yþ 6zÞÞÞÞ: ð6:35Þ

The equations of motion are given by

ð3yþ 4zÞð−p3ð3p1 þ 4p3Þ þ ð3p3xþ 3p1zþ 8p3zÞð8p3zðyþ 3zÞ þ p3xð3yþ 8zÞ
þ zð3p2xþ 3p1yþ 4p1zþ 4p2zÞÞÞ þ ð3xþ 4zÞðp3ð3p2 þ 4p3Þ − ð3p3yþ 3p2zþ 8p3zÞ

ð8p3zðyþ 3zÞ þ p3xð3yþ 8zÞ þ zð3p2xþ 3p1yþ 4p1zþ 4p2zÞÞÞ ¼ 0;

ð8zðyþ 3zÞ þ xð3yþ 8zÞÞðp3ð3p2 þ 4p3Þ − ð3p3yþ 3p2zþ 8p3zÞð8p3zðyþ 3zÞ
þ p3xð3yþ 8zÞ þ zð3p2xþ 3p1yþ 4p1zþ 4p2zÞÞÞ þ zð3yþ 4zÞð−8p3ðp2 þ 3p3Þ
− p1ð3p2 þ 8p3Þ þ ð8p3ðxþ yþ 6zÞ þ p2ð3xþ 8zÞ þ p1ð3yþ 8zÞÞð8p3zðyþ 3zÞ
þ p3xð3yþ 8zÞ þ zð3p2xþ 3p1yþ 4p1zþ 4p2zÞÞÞ ¼ 0: ð6:36Þ

We now express these equations in terms of the rescaled quantities to find

ðrð3tþ 4Þ − 3sτ − 4sþ 4t − 4τÞðrð3tþ 4Þ þ sð3τ þ 4Þ þ 4ðtþ τ þ 4ÞÞ ¼ 0;

r2ð3tþ 4Þ2ð3tþ 8Þ þ 8rð3tþ 4Þð−4sþ 3t2 þ 18tþ 16Þ
− 4s2ð9τ2 þ 42τ þ 40Þ − 32sð3τ2 − 3ðt − 4Þτ þ 20Þ − 27τ2t3 − 72τt3

− 108τ2t2 − 360τt2 þ 160t2 − 128τ2 − 144τ2t − 448τtþ 640t − 512τ ¼ 0: ð6:37Þ

It is not instructive to express the analytical expressions for
τ, t in terms of r, s. Instead, we will focus on the inverse
problem and express the charge ratios as rational functions
of the inhomogeneous coordinates. We find the BPS
solution r ¼ τ, s ¼ t and three branches of non-BPS
attractors. They are given by

r ¼ τ; s ¼ −t −
8ðτ þ 2Þ
3τ þ 4

; ð6:38Þ

r ¼ −3τ −
8ðtþ 2Þ
3tþ 4

; s ¼ t; ð6:39Þ

r¼−
3τ2ð3tþ4Þ2þ32ð3t2þ4t−4Þþ36τð3t2þ10tþ8Þ

ð3tþ4Þð9τtþ12ðτþ tÞ−40Þ ;

s¼−
3t2ð3τþ4Þ2þ32ð3τ2þ4τ−4Þþ36tð3τ2þ10τþ8Þ

ð3τþ4Þð9τtþ12ðτþ tÞ−40Þ :

ð6:40Þ

We can easily invert (6.38) and (6.39) to express the
inhomogeneous coordinates in terms of r, s. We find

τ ¼ r; t ¼ −s −
8ðrþ 2Þ
3rþ 4

; ð6:41Þ

τ ¼ −r −
8ðsþ 2Þ
3sþ 4

; t ¼ s: ð6:42Þ

The first solution (6.41) lies within the Kähler cone for
r > 0 and s < −8ðrþ 2Þ=ð3rþ 4Þ where as the second
solution (6.42) lies within the Kähler cone for s > 0
and r < −8ðsþ 2Þ=ð3sþ 4Þ.
To invert (6.40), we will first do a shift and rescale the

quantities as τ¼4ðτ̃−1Þ=3;t¼4ðt̃−1Þ=3;r¼4ðr̃−1Þ=3
and s ¼ 4ðs̃ − 1Þ=3. The equations take a simpler form
in terms of these variables. We find

r̃ t̃ð2t̃ τ̃−7Þ þ 2t̃2τ̃2 þ 3t̃ τ̃−3 ¼ 0;

s̃ τ̃ð2t̃ τ̃−7Þ þ 2t̃2τ̃2 þ 3t̃ τ̃−3 ¼ 0: ð6:43Þ

Solving the above equations we find τ̃ ¼ t̃ r̃ =s̃ with
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t̃1� ¼ −
1

4

0
B@s̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2 þ 4g̃

q
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2ðr̃ s̃−34Þ
2r̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2 þ 4g̃

p þ r̃s̃2 − 2g̃ r̃− 6s̃
2r̃

s 1
CA;

t̃2� ¼ −
1

4

0
B@s̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2 þ 4g̃

q
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2ðr̃ s̃−34Þ
2r̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃2 þ 4g̃

p þ r̃s̃2 − 2g̃ r̃− 6s̃
2r̃

s 1
CA: ð6:44Þ

where g̃ is given by

g̃ ¼ s̃

232=3r̃
ðð225ð2r̃ s̃þ1Þ þ f̃Þ1=3

þ ð225ð2r̃ s̃þ1Þ − f̃Þ1=3 − 232=3Þ: ð6:45Þ

In the above we have used the notation

f̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð13068þ 24489r̃ s̃þ39924r̃2s̃2 − 1372r̃3s̃3Þ

q
:

ð6:46Þ

The solution will remain inside the Kähler cone for
τ̃ > 1; t̃ > 1. Though there are four solutions in (6.44) for a
given value of r̃; s̃, all of those do not satisfy the Kähler
cone condition simultaneously. We need to find how many
of those solutions lie inside the Kähler cone. This of course
will depend on the values of r̃; s̃. Since τ̃ ¼ t̃ r̃ =s̃we cannot
have solutions satisfying the Kähler cone condition if r̃ and
s̃ have opposite signs. In our notation, the Kähler cone
condition for (6.41) is r̃ > 1; s̃ < −1 − 1=r̃, and for (6.42)
it is s̃ > 1; r̃ < −1 − 1=s̃. Thus the three solutions (6.41),
(6.42), and (6.44) are mutually exclusive. Let us now
consider the case when r̃ and s̃ have the same sign. To
understand this in detail let us eliminate τ from the
equations of motion described by (6.43) to obtain the
following quartic in the variable t̃

2r̃2t̃4 þ 2r̃2s̃t̃3 þ 3r̃ s̃ t̃2 − 7r̃s̃2 t̃ − 3s̃2 ¼ 0: ð6:47Þ

First consider the case when both r̃ and s̃ are positive. In the
quartic (6.47) the coefficients change sign only once. Thus,
according to Descartes rule of signs there is only one
positive root for t̃. By suitable choice of the charge ratios
we can make t̃ > 1 to obtain a unique non-BPS black string
solution inside the Kähler cone. However, since the BPS
solutions also exist for r̃ > 1; s̃ > 1 region, these two
solutions are not mutually exclusive from each other.
Finally consider the case where both r̃ and s̃ are negative.
For charge ratios valued in this range the coefficients in the
quartic (6.47) change three times. Thus the equation can
admit three positive roots for t̃. By suitable choice of the
charge ratios it might be possible to have more than one
non-BPS attractors existing inside the Kähler cone. This is
indeed the case as a numerical analysis shows. Here we
numerically solve the Eq. (6.47) for t̃ upon setting r̃ ¼
−6n; s̃ ¼ −5n with n ¼ 2; 3;…; 10. In each case there are
three positive roots for t̃ with two of them having values
greater than 1. Since τ̃ ¼ t̃ r̃ =s̃ > t̃ for these choices of
charge ratios, we have multiple non-BPS black strings. In
Fig. 7 we have presented the two black string solutions
obtained for different values of n.

A. Stability

We will now analyze stability of these non-BPS black
strings. For this we need to compute the recombination

FIG. 7. Multiple non-BPS black strings in model 3 for r̃ ¼ −6n; s̃ ¼ −5nwith n ¼ 2; 3;…; 10. In the first case the value of t̃ decreases
with increasing n whereas in the second case it increases with n.

ANSHUL MISHRA and PRASANTA K. TRIPATHY PHYS. REV. D 109, 026001 (2024)

026001-24



factor for the black string. The recombination factor is
defined as the ratio of the volume of the nonholomorphic
divisor on which theM5 brane wraps to give rise to the non-
BPS black string, to the volume of minimal piece-wise
calibrated cycle in the same homology class as the non-
holomorphic divisor under consideration. For double
extremal black strings, the asymptotic volume of the non-
holomorphic divisor is given by the square root of the
effective black string potential at the attractor value. For a
black string of charge pI, the volume of the minimal piece-
wise calibrated cycle is

P
I jpIjCI , where CI is the volume

of the divisor JI:

CI ¼
Z
JI

J ∧ J ¼ CIJKtJtK: ð6:48Þ

Denoting R as the recombination factor, we have

R ¼
ffiffiffiffiffiffiffi
Vcr

pP
IjpIjCI

: ð6:49Þ

For a three parameter model, the recombination factor is
given as

R ¼
ffiffiffiffiffiffiffi
Vcr

p
jp1jC1 þ jp2jC2 þ jp3jC3

; ð6:50Þ

where the volumes CI are given in (3.5). We can substitute
the expression for the black string solution in it to obtain
the value of R. We will first compute the recombination
factor for non-BPS black strings in model 1 before turning
our discussion into the stability issues solutions in model
2. In the case of model 1, there are three branches of non-
BPS solutions. Let us first consider the recombination
factor for the first branch of solutions given in (6.14). In
this case s > 0 and r < 2–4s. We will consider the cases
0 < r < 2–4s and r < 0 separately. Substituting the
explicit expressions for the solution (6.14) in (6.50) and
simplifying, we find the recombination factor in the case
s > 0 and 0 < r < 2–4s to have the form

R ¼ 3ð2sðsþ 1Þð2 − r − 2sÞÞ1=3: ð6:51Þ

In this case, R always remains greater than one if s > s0,
where s0 ≃ 0.09 is a root of the equation 108ðs3 þ s2Þ ¼ 1
and the resulting black strings are all unstable. For 0 < s <
s0 the black strings are stable if maxf0;−ð108s3 − 108sþ
1Þ=54sðsþ 1Þg < r < 2–4s and unstable otherwise.
For s > 0 and r < minf0; 2 − 4sg the recombination

factor becomes

R ¼ 3ð2sðsþ 1ÞÞ1=3ð2 − r − 2sÞ4=3
ð2 − 3r − 2sÞ : ð6:52Þ

In this case R > 1 for in the entire range of allowed values
for r and s. Thus, in this case the black strings are all
unstable.
For the second branch (6.15), r and s are valued in the

range −1=2 < s < 0; r > 2 − 4s. The recombination factor
for this branch is given by

R ¼ 3ð−2sÞ1=3ððsþ 1Þð2sþ r − 2ÞÞ4=3
ð2sþ 1Þðrðsþ 3Þ − 2ðs2 þ 3ÞÞ ð6:53Þ

From the above expression we find that there is no stable
attractor for −1=2 < s < −1=3 irrespective of the values
taken by r. For −1=3 < s < 0, the attractors become stable
if 2 − 4s < r < r0, where the value of r0 is obtained by
solving R ¼ 1 in (6.53) for r for a fixed value of s.
Finally we consider the third branch of solutions (6.16).

In this case −1=2 < s < 0 and r < 2. We will first consider
the range −1=2 < s < 0; 0 < r < 2. In this case the recom-
bination factor is

R ¼ 3ð−2sÞ1=3ððsþ 1Þðrþ 2s − 2ÞÞ4=3
ð2sþ 1Þð2s2 − rsþ rþ 8s − 2Þ : ð6:54Þ

In this case the black strings are unstable for −1=2 <
s < s0, where s0 ≃ −0.26 is a root of 108s2ðsþ 1Þ4−
ðsþ 3Þ3ð2sþ 1Þ3 ¼ 0. For s0 < s < 0 the black strings
become unstable in the range 0 < r < r0 and stable for
r0 < r < 2, where the value of r0 for a fixed s is determined
by 54sðsþ 1Þ4ðrþ 2s − 2Þ4 − ð2sþ 1Þ3ð2s2 − rsþ rþ
8s − 2Þ3 ¼ 0.
Consider now the third branch of solutions (6.16) with

−1=2 < s < 0 and r < 0. In this case the recombination
factor becomes

R ¼ 3ð−2sÞ1=3ððsþ 1Þðrþ 2s − 2ÞÞ4=3
ð2sþ 1Þðrðsþ 3Þ þ 2ðs2 þ 4s − 1ÞÞ : ð6:55Þ

In this case the attractors are unstable for −1=2 < s < s0
where s0≃ ¼ −0.036 is a root of the equation
2048sðsþ 1Þ5 þ ðsþ 3Þ4ð2sþ 1Þ3 ¼ 0. For s0 < s < 0
the attractors are stable for r2 < r < r1 where r1;2 are
obtained by solving R ¼ 1 in (6.55) for r for a fixed
value of s.
Let us focus on the recombination factor for non-BPS

black strings in model 2. We will first consider the solution
(6.25). In this case, the recombination factor (6.50) takes
the simple form

R ¼ 3rð2r2 þ 2rsþ r − 3Þ þ 27

rð2r2 þ 6rsþ r − 3Þ þ 9
: ð6:56Þ

Recall that the solution (6.25) exists for r > 3 and
s < −ð2r3 þ r2 − 3rþ 9Þ=r2. For any given r, the recom-
bination factor takes the minimum value R ¼ 3=5 when s
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takes the maximum value s ¼ −ð2r3 þ r2 − 3rþ 9Þ=r2.
The value of R increases as s becomes more negative and
approaches the value R ¼ 1 as s → −∞. Thus R < 1 for all
the black strings in this branch of solutions and hence they
are all stable.
We will now consider the recombination factor for the

second branch of solutions described by (6.26) and (6.27).
The resulting expression is complicated and it is not
possible to extract any insight from it. In what follows,
we will numerically solve the equations of motion for
various choices of the charge ratios and substitute the
resulting solutions to obtain the values of the respective
recombination factors. We first consider a fixed value for
s; ðs ¼ 3=2Þ and vary r in the range 1 ≤ r ≤ 5=2. This
leads solutions in region 1. We notice the value of τ
increases monotonically with the increase of r while the
value of t decreases. The plot for the inhomogeneous
coordinates τ and t are given in Fig. 8. Further we consider
the value s ¼ −3=2 and vary r in the range −24 ≤ r ≤ −3
to obtain solutions in region 2. In this case, both the
inhomogeneous coordinates increase with r. The results are
given in the Fig. 9.
The recombination factors for solutions in both the

regions are depicted in Fig. 10. In region 1 the value of

recombination factor increases with r whereas in region 2 it
decreases. We observe that the value of R remains less than
one in both the regions and it tends to saturate to 1 as we
approach the singularity curve. Thus the corresponding
black strings in the interior of regions 1 and 2 are all stable.
We have considered a wide range of charges and numeri-
cally evaluated the recombination factor for all these
choices. We could not find any case with R > 1. This
suggests that the black strings corresponding to the second
branch of solutions are also stable.
Finally we turn our attention to the stability of non-BPS

black strings in model 3. Wewill first consider the solutions
given in (6.41) and (6.42). The recombination factors for
these two cases are given respectively as

R¼ 3ð3rsþ 4rþ 4sþ 8Þ
9rsþ 4rþ 12sþ 8

and R¼ 3ð3rsþ 4rþ 4sþ 8Þ
9rsþ 12rþ 4sþ 8

:

ð6:57Þ

In both these cases the value of R remains less than 1 in the
allowed range of the charge ratios. We can check this easily
by expressing R in terms of the inhomogeneous coordi-
nates. In both the cases, R has a minimum value of 3=5 and
it increases monotonically with τ and t and approaches the

FIG. 9. Non-BPS black string solutions in region 2 with s ¼ −3=2 and −24 ≤ r ≤ −3.

FIG. 8. Non-BPS black string solutions in region 1 with s ¼ 3=2 and 1 ≤ r ≤ 5=2.
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maximum value R ¼ 1 when either of these coordinates
becomes infinite. Thus the corresponding black strings are
all stable. For the solutions (6.47) we have obtained the
recombination factors numerically. As we can see from
Fig. 11, depending the value of n the recombination factor
becomes larger or smaller than one. Thus, in this case we
have both stable as well as unstable non-BPS black string
solutions.

VII. CONCLUSION

In this paper we have studied BPS as well as non-BPS
black branes in five dimensional supergravity theories
arising from the compactification of M-theory on three
parameter Calabi-Yau manifolds. We considered two
explicit examples of toric Calabi-Yau manifolds with
h1;1 ¼ 3 and obtained all BPS and non-BPS black hole
configurations in them. For the first model, the resulting
BPS solutions were unique for a given set of charges.
However, for model 2, we found multiple BPS black hole
solutions when their charges are valued in a particular range.
The non-BPS black holes for model 1 admit three inde-
pendent solutions. However, they are mutually exclusive

from each other and for a given set of black hole charges,
there is a unique solution. For the non-BPS black holes in
model 2, the moduli space admits two singularity curves.
Points on the singularity curves do not correspond to any
black hole solution. They divide the moduli space into three
regions. Any point in a given region corresponds to a
possible non-BPS attractor for some suitable choice of black
hole charges. As we change the charges the points move
within a given region. But they never cross the singularity
curves for finite values of black hole charges. This model
also admits multiple non-BPS black holes. We considered
the stability of doubly extremal non-BPS black hole
configurations in these models and found that the black
holes become stable for a range of charges. This is in
contrast to the examples studied in [10] and the two
parameter models in [14] where the non-BPS black hole
configurations were all unstable. Moreover none of the
models considered in [10,14] admitted multiple black hole
solutions.
Subsequently we have studied non-BPS black string

solutions in these models. Once again we found three
independent non-BPS solutions in model 1. They were all
mutually exclusive and hence we have unique non-BPS

FIG. 11. Recombination factors for the multiple solutions corresponding to Fig. 7.

FIG. 10. Recombination factors corresponding to the solutions in both the regions. The figure in the left corresponds to recombination
factors in region 1 and the one in the right corresponds to recombination factors in region 2.
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black string solution for a given set of charges. Model 2
admitted two branches of solutions. The second branch of
solutions admitted a singularity curve which divided the
moduli space into two regions. Points on the singularity
curve did not correspond to non-BPS attractors for any
choice of the black string charges. Further, we found that for
a given set of charges the resulting black string solution was
always unique. To demonstrate the existence of multiple
non-BPS black string solutions we considered one more
three parameter Calabi-Yau model. We obtained all black
string solutions in this model and observed that it admits
multiple non-BPS solutions in a given range of black string
charges. We have also analyzed the stability of the doubly
extremal black string configurations corresponding to all the
attractor values we have obtained. It is interesting to observe

so much rich structure for attractor configurations in three
parameter Calabi-Yau models. It would be worth investigat-
ing the behavior of both BPS as well as non-BPS multiple
attractor configurations in more detail. In four dimensions,
incorporating D6 branes gives a rich structure both in the
BPS as well as non-BPS sector [26–29]. Extending the
analysis of [15] to incorporate the D6 branes and relating
them with the solutions studied here using the 4D–5D
correspondence [30] is another interesting aspect that needs
to be explored. We hope to analyze these issues in future.
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