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In the free □
k scalar conformal field theory, there exist conserved and partially conserved higher-spin

currents. We study their anomalous dimensions associated with ϕ2n interaction in the ϵ expansion. We
derive general formulas for the leading corrections from the conformal multiplet recombination, and verify
their consistency with crossing symmetry using the Lorentzian inversion formula. The results are further
extended to the OðNÞ models.
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I. INTRODUCTION

A natural generalization of the free scalar conformal field
theory (CFT) is to consider higher powers of the Laplacian.
The higher-derivative action reads

S ∝
Z

ddxϕ□kϕ: ð1Þ

The properties of the free□k scalar CFT have been studied
in some detail in [1]. (See also [2–4].) For k ¼ 1, this is
the standard free scalar CFT. For k > 1, we have a
nonunitary CFT as Δϕ ¼ d

2
− k violates the unitarity

bound.1 Nevertheless, the higher-derivative CFT exhibits
some interesting features, such as generalized conservation
laws and extended higher-spin symmetry. Besides the well-
known higher-spin conserved currents, there exist (k − 1)
towers of partially conserved currents. They are also called
multiply conserved currents in [1]. Curiously, these addi-
tional towers of higher-spin operators do not vanish by
contracting with one derivative. Instead, they vanish upon
the action of multiple derivatives. Schematically, the
generalized conservation laws read

∂J ≠ 0; ∂…∂J ¼ 0; ð2Þ

where indices are suppressed for simplicity. More details
will be provided in Sec. II.
It is straightforward to introduce the OðNÞ global

symmetry2 by considering N copies of the free action
(1). In the AdS=CFT correspondence [5–7], the large-N
(higher-derivative) CFT is expected to be dual to a
(partially) massless higher-spin gravity on AdSdþ1 [8,9].
The latter is also known as the type-A higher-spin theory
(with higher depth) [10–19].3 A more precise dictionary is
that the single trace (partially) conserved currents of the
boundary CFT are dual to (partially) massless higher-spin
particles in the bulk [21].
In this work, we will consider the ϕ2n deformation of

the free □
k CFT.4 For k ¼ 1, the ϕ2n interactions with

n ¼ 2; 3; 4;… are generalizations of the ϕ4 Wilson-Fisher
fixed point with n − 1 relevant singlet scalar operators. For
instance, they describe the behavior of critical (n ¼ 2),
tricritical (n ¼ 3), tetracritical (n ¼ 4) phenomena. We
are interested in the higher-derivative generalizations of
these multicritical theories. The upper critical dimension is
given by

du ¼
2nk
n − 1

: ð3Þ

Above the upper critical dimension, i.e., d > du, they are
expected to be described by mean field theory. The ϕ2n

interaction is marginal at d ¼ du, but it can induce a*liwliang3@mail.sysu.edu.cn
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1The unitarity bound is derived in the standard quantization of
CFT. There may exist certain quantizations where the k > 1
theories are unitary, but the energies could be unbounded from
below.

2Here we assume the scalar fields are real. For complex scalars,
we have U(N) global symmetry.

3In accordance with the nonunitary nature of the k > 1 CFTs,
the partially massless gravities are also nonunitary. See [20] for
the case of interacting spin-2 fields.

4In this work, we only consider the perturbative ϵ expansion.
To the best of our knowledge, it is an open question whether the
k > 1 theories make sense nonperturbatively.
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relevant deformation for the generalized Gaussian fixed
point at d < du. When k and n − 1 have a common divisor,
one can also introduce deformations associated with
derivative interaction terms.5 To reach an IR fixed point,
it might be inconsistent to turn on only the ϕ2n deformation.
We will not consider these special cases and assume that k
and n − 1 have no common divisor.
For small ϵ ¼ du − d, the renormalization group (RG)

flow induced by ϕ2n is short between the free and
interacting fixed points, so one can study the interacting
theories in the perturbative ϵ expansion.6 The traditional
approach is to use diagrammatic methods to compute the
corrections based on the Lagrangian formulation, without
using the emergent conformal symmetry at the fixed points.
In light of the revival of the d > 2 conformal bootstrap

program [27–34], we will study these higher-derivative
multicritical theories directly based on the assumptions of
conformal symmetry and some consistency requirements.
Conformal symmetry implies that

(i) The states are organized into conformal multiplets.7

(ii) Correlation functions take certain specific func-
tional forms.

Besides the symmetry constraints, we will consider two
consistency requirements:

(i) The limit ϵ → 0 is smooth.
(ii) Operator product expansion (OPE) is associative.

The first requirement is intrinsic to the ϵ expansion
approach and leads to the method of conformal multiplet
recombination [36]. The second requirement gives rise to

crossing constraints, i.e., the conformal block summations
in different channels should give the same correlator. In
fact, the first requirement is implicitly using the second one
because the free theory itself is a consistent solution of
crossing constraints. Below, we will elaborate on these two
points.
A CFT is characterized by the data of local operators,

such as their scaling dimensions and OPE coefficients, i.e.,
fΔi; λijkg. For a free theory, including the k > 1 generali-
zation, the CFT data can be derived from Wick contrac-
tions. Knowing all the explicit numbers, we can think of it
as one of the many consistent solutions of the CFT axioms
and forget about the interpretation in terms of a concrete
Lagrangian of free scalar. For example, the dynamical
information of a scalar primary with Δ ¼ 3 is completely
given by the OPE coefficients involving this scalar, and we
do not need to know if it is a composite operator of a more
fundamental scalar with Δ ¼ 1. For simplicity, this abstract
CFT will still be called the free CFT, in the sense that
fΔi; λijkg coincide with those of the free theory, and wewill
refer to the operators by the corresponding operators in the
concrete free theory representation.
When considering a deformation of the free CFT, the

scaling dimensions and OPE coefficients are functions of d
and they should reduce to the freeCFTvalues in theGaussian
limit d → dfree, i.e., when d is set to the dimensions of the
undeformed free CFT. However, an arbitrary deformation at
d ¼ dfree − ϵ is singular in the Gaussian limit ϵ → 0. This is
due to the existence of zero-norm states implied by con-
formal symmetry for specific scaling dimensions. For
instance, a scalar field ϕ saturating the unitarity bound,
i.e., Δϕ ¼ d=2 − 1, should obey the equation of motion
□ϕ ¼ 0 from purely group-theoretical arguments, without
resorting to Lagrangians. If a would-be zero-norm state has
finite OPE coefficients, then the Gaussian limit ϵ → 0 of
correlators may contain divergent contributions after
inserting 1 ¼ P

O

P
α;β¼O;PO;PPO;… jαihαjβi−1hβj, where

P are momentum generators. To have a regular limit, the
OPE coefficients associated with this dangerous state should
also vanish.
A subtlety arises as a change in the normalization of a

would-be zero-norm state may lead to a finite norm as well
as finite OPE coefficients in the Gaussian limit, so it
remains a physical state and gives rise to finite contribu-
tions in the free OPEs, as in the standard l’Hôpital’s rule.
This is precisely the case of the Wilson-Fisher CFT with
k ¼ 1 and n ¼ 2, whose fΔi; λijkg in the Gaussian limit is
identical to the free CFT. For example, the descendant
ϵ−1□ϕWF with Δ ¼ 3þOðϵÞ becomes a scalar primary
with Δ ¼ 3 in the Gaussian limit

lim
ϵ→0

ϵ−1□ϕWF ∝ ϕ3
free; ð4Þ

corresponding to ϕ3 in the free CFT. Therefore, the two free
multiplets at d ¼ du recombine into one Wilson-Fisher
multiplet at d ¼ du − ϵ

5To construct Z2-even derivative terms, we replace an even
number of ϕ’s in ϕ2n with an even number of derivatives. Note
that the scaling dimension of ϕ is k

n−1 at d ¼ du. For ∂…∂ϕ2ðn−jÞ,
the scaling dimension of the derivatives, 2j k

n−1, should be an even
integer. If k and n − 1 have no common divisor, then we have
j ¼ tðn − 1Þ, where t is a positive integer. But the remaining
number of ϕ in the derivative term is 2n − 2tðn − 1Þ ≤ 2, so it can
only be the kinetic term. On the other hand, if k and n − 1 have
a common divisor, we can assume that k

n−1 ¼ a1
a2
, where the

integers a1 and a2 satisfy a1 < k and a2 < n − 1. Then we can
take j ¼ ta2, corresponding to ∂

2ja1ϕ2ðn−ta2Þ. In particular, when
t ¼ 1, the number of ϕ satisfies 2n − 2ta2 > 2n − 2ðn − 1Þ ¼ 2,
and thus this is not a kinetic term. See [22,23] for more
discussions about derivative interactions.

6The OðNÞ fixed points might be RG-unstable. For example, in
the case of k ¼ 1 and n ¼ 2, the lowest rank-4 symmetric
traceless scalar made up of four fundamental fields becomes
relevant when N is greater than Nc. The value of Nc has been
studied earlier by the high-order ϵ expansion [24] and more
recently by the nonperturbative numerical bootstrap [25]. See
also the references in [24,25]. The RG instability of the k ¼ 1 and
n ¼ 3 theory has also been examined in [26]. To the best of our
knowledge, the RG instability of the OðNÞ fixed points has not
been discussed for the k > 1 cases. It would be interesting to
study the RG instability of these higher-derivative theories.

7In nonunitarity CFTs, there exist reducible but indecompos-
able representations, such as the Jordan block form [35]. For □k

CFTs, one also encounters “extended Verma modules” in some
special cases [1].
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fϕgWF ≈ fϕgfree þ fϕ3gfree; ð5Þ

which is called the conformal multiplet recombination [36].
To have a smooth limit ϵ → 0, the deformed data should
reduce to the free data, leading to nontrivial constraints
on the leading corrections. The solution is precisely the
Wilson-Fisher data. This also generalizes to the deforma-
tion around some special scaling dimensions below the
unitarity bound, corresponding to the □

k free scalar CFT
deformed by ϕ2n interaction, which will be called the
generalized Wilson-Fisher CFTs [37–39].
The multiplet recombination approach initiated in [36]

has been extended in various aspects and achieved
considerable success in different CFTs [37–50]. See
also [22,51–70] for the closely related studies with more
emphasis on the equations of motion from concrete
Lagrangians, which is sometimes called the Dyson-
Schwinger or Schwinger-Dyson equations.8 At the
moment, only leading order corrections have been derived
from this approach in the literature. It was suggested in [36]
that it may be useful to consider four-point functions.
This is because the second consistency requirement
mentioned earlier leads to nontrivial crossing constraints.
In fact, the crossing constraints with some spectral assump-
tions are expected to be strong enough to determine the
deformed data by themselves, based on the nonperturbative
numerical results [30–34] and the perturbative analytic
results [71,72].
In this work, we will derive new results for the leading

terms of the broken higher-spin currents in the higher-
derivative generalization of multicritical theories. The more
standard theories, such as k ¼ 1 or n ¼ 2, 3, are covered as
special cases of our general formulas. As a necessary step
of merging the two consistency-requirement approaches for
the generalized Wilson-Fisher CFTs, we use the Lorentzian
inversion formula [73] to verify that our general results
from the multiplet recombination method are compatible
with the crossing constraints.9

In Sec. II, we give an introduction to higher-spin sym-
metries and partially conserved currents. In Sec. III, we
briefly review the embedding formalism, especially the case
of scalar-scalar-(spin l) three-point function. In Sec. IV, we

derive the anomalous dimensions of broken higher-spin
currents using the conformal multiplet recombination, then
we use the Lorentzian inversion formula to verify the
consistency with crossing symmetry. In Sec. V, the results
are extended to theOðNÞmodels. InAppendixA,we provide
the leading order expressions of some OPE coefficients
involving ϕ2n−2, ϕ2n, and the OðNÞ generalization of the
former one. In Appendix B, we present the calculation of the
ratios of three-point function coefficients. The expressions of
the light cone expansion of conformal blocks are given in
Appendix C. We provide some details of the inversion
procedure at subleading twist, and sub-subleading twist in
Appendix D.

II. PARTIALLY CONSERVED CURRENTS
AND SYMMETRIES

According to Noether’s theorem, a Noether current
satisfying ∂

μJμ ¼ 0 is associated with a linearly realized
global symmetry of the Lagrangian. For the standard
free scalar CFT with k ¼ 1, the symmetric traceless
bilinear primary operators of the schematic form J ¼
ϕ∂lϕ are higher-spin conserved currents with twist
τ≡ Δ − l ¼ d − 2:

∂
μ1J μ1μ2…μl ¼ 0: ð6Þ

Noether currents can be obtained by contracting the higher-
spin conserved currents with the conformal Killing tensors

JðlÞμ ¼ J μμ1…μl−1ζ
μ1…μl−1 ; ð7Þ

where ζμ1…μl−1 is symmetric and traceless.10 One can show
that the Lagrangian is invariant up to a total derivative
under the symmetry transformation

δζϕ ¼ ζμ1…μl−1∂μ1…∂μl−1ϕþ…; ð9Þ

where the last ellipsis indicates other terms with derivatives
acting on ζ. For instance, the spin-2 conserved current, i.e.,
the stress tensor, is associated with the global conformal

transformation δϕ ¼ ζμ∂μϕþ Δϕ

d ð∂μζμÞϕ.
For k > 1, we can consider higher-derivative primary

bilinear operators of the schematic form J ðmÞ
l ¼ ϕ∂l□mϕ

with twist τ≡ Δ − l ¼ d − 2kþ 2m, where m ¼
0; 1;…; k − 1 is related to the number of contracted
derivative-indices. In principle, the explicit expressions

of J ðmÞ
l are determined by the conditions that they are

8The division may not be completely definite, as some results
can be derived from both perspectives.

9In principle, some operators could have vanishing OPE
coefficients in the Gaussian limit, so they only exist in the
deformed CFT, such as the evanescent operators at noninteger d
[74]. Constraints on subleading terms can be derived from the
absence of new low-lying states in the crossing solutions related
to the mixed OPEs in the multiplet recombination (this is work in
progress [75]). The decoupling requirements can be viewed as the
null state conditions from the null bootstrap perspective [76,77].
Furthermore, there may exist a correspondence between null
states in the interacting theory and in the free limit, such as the
free and interacting equations of motion, which can lead to more
nontrivial constraints.

10The conformal Killing equation is

∂
ðμ1ζμ2…μlÞT ¼ 0; ð8Þ

where T indicates the traceless part, so this is a conformal version
of the usual Killing equation.
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primary and symmetric traceless.11 We believe that J ðmÞ
l

are nondegenerate, but we do not have a general proof.12

Intuitively, the m > 0 trajectories do not vanish auto-
matically because the equation of motion □

kϕ ¼ 0 is of
higher derivatives.13 The highest trajectory with m ¼ k − 1
has twist τ ¼ d − 2 and corresponds to the usual conserved
higher-spin currents satisfying (6). For m < k − 1, they are
the partially conserved higher-spin currents satisfying

∂
μ1…∂

μcJ ðmÞ
μ1…μl ¼ 0; l ≥ c≡ 2ðk −mÞ − 1; ð10Þ

which do not vanish if the number of contracted derivatives
is less than c. They are nonunitary as their twists violate the
unitarity bound, i.e., τ < d − 2. In addition, the operators
with spin lower than c do not satisfy the partial conserva-
tion laws. A concrete example with k ¼ 2 is the triply
conserved current

J ðm¼0Þ
μνρσ ¼

�ðd− 4Þðd− 2Þ
3dðdþ 2Þ ϕ∂μ∂ν∂ρ∂σϕ

−
4ðd− 2Þ

3d
∂μϕ∂ν∂ρ∂σϕþ ∂μ∂νϕ∂ρ∂σϕ

�
ST
; ð11Þ

where ST indicates symmetric and traceless projection.
This spin-4 current vanishes when contracted with 3
derivatives on the equation of motion □

2ϕ ¼ 0.
One can also construct Noether currents by contracting

the partially conserved currents with higher-order gener-
alization of the conformal Killing tensors14

Jðl;cÞμ ¼
Xc−1
i¼0

ð−1Þi∂μ1…∂
μiJ ðmÞ

μμ1μ2…μl−1∂
μiþ1…∂

μc−1ζμc…μl−1 :

ð13Þ

The corresponding symmetry transformation reads

δζϕ ¼ ζμ1…μl−c∂μ1…∂μl−c□
c−1
2 ϕþ…; ð14Þ

where the last ellipsis indicates other terms with different
derivative contractions and they are determined by the
invariance of the Lagrangian up to a total derivative.
The global symmetries should form a closed algebra.

The commutator of two transformations should be asso-
ciated with a linear combination of certain Killing tensors

δζ1δζ2 − δζ2δζ1 ¼ δ½ζ1;ζ2� þ ðtrivialÞ; ð15Þ

then the global symmetry leads to a Lie algebra structure.
This is the nontrivial symmetries of the equation of motion
□

kϕ ¼ 0, which generalizes the k ¼ 1 higher-spin algebra
hs1 to the higher-order counterpart hsk [9,81–85].
At (generalized) Wilson-Fisher fixed points, most of the

(partial-)conservation laws are broken and the correspond-
ing currents acquire anomalous dimensions.15 We would
like to compute their leading corrections using CFT
methods.

III. EMBEDDING FORMALISM

In this section, we will give a brief introduction to the
embedding formalism in which the conformal transforma-
tions are linearly realized and thus the consequences of
conformal symmetry can be readily deduced. To avoid the
complication of explicit tensor structures, we will apply the
index-free notation to the correlators involving spinning
operators by contracting them with auxiliary polarization
vectors.
For d > 2, the conformal symmetry is finite-dimensional.

The symmetry generators are associated with the Poincaré
transformations, dilatation, and special conformal transfor-
mations. The first two kinds of symmetries mean that a
physical field is labeled by spin16 and scaling dimension.
However, the implications of special conformal transforma-
tions are less transparent, especially for spinning fields, due
to the fact that they are not realized linearly.17

11An operatorO is primary if it satisfies ½Kμ;Oð0Þ� ¼ 0, where
Kμ are the generators of special conformal transformations. In
some peculiar cases of the free□k CFT, there exist operators that
are neither primary nor descendant [1], which occurs only when
d ¼ 3; 5;…; 2k − 1 or d ¼ 2kþ 2; 2kþ 4;…; 4k − 2. In this
work, we consider the upper critical dimension at
du ¼ 2nk=ðn − 1Þ > 2k. To be in a peculiar case, du should
be an even integer. Since n and n − 1 are coprime, du is even only
if n ¼ 2, or k is a multiple of n − 1. The case n ¼ 2 implies
du ¼ 4k, and this is outside the range of the peculiar cases. The
other possibility is ruled out by our assumption that k and n − 1
have no common divisor. Therefore, the peculiar cases do not
appear in our discussion.

12Following [78–80], we solve for the explicit expressions of
J ðmÞ

l using the primary and the symmetric traceless conditions.
For generic Δϕ and l, we can determine J ðmÞ

l at specific m. The
solution at each m is unique up to normalization, so there seems
no degeneracy in J ðmÞ

l . We have checked this for high values of
m, and we believe that J ðmÞ

l are not degenerate. In Appendix D of
[80], the conjectured expression for the general solution of J ðmÞ

l
is unique up to normalization.

13Together with ½Kμ;J
ðmÞ
l ð0Þ� ¼ 0 and the symmetric traceless

condition, the equation of motion □
kϕ ¼ 0 implies that J ðmÞ

l
vanishes for m > k − 1.

14The generalized conformal Killing equation is

∂
ðμ1…∂

μcζμcþ1…μlÞT ¼ 0: ð12Þ

15In the AdS=CFT correspondence, the bulk fields become
massive due to a Higgs-like mechanism [86].

16We will focus on bosonic fields of the symmetric traceless
type and will not consider anti-symmetric or mixed-symmetry
fields.

17One may view a special conformal transformation as the
“conjugate” of a translation, which can be produced by a
composition of inversion, translation, and inversion. Although
the translation symmetries are not realized linearly, their conse-
quences are easy to understand.
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The conformal group of a Euclidean conformal field
theory is SO(dþ 1, 1), so it is natural to consider the
Minkowski space Rdþ1;1 as first proposed by Dirac [87].
The physical space Rd of d dimensions should be a
subspace of this (dþ 2)-dimensional embedding space.18

The use of the embedding space in the study of conformal
field theory has a long history [27,91–93]. At the price of
introducing two more dimensions and potentially redun-
dant degrees of freedom, the conformal group is now
realized as the Lorentz group of linear isometries and thus
their implications become more manifest.
We will follow the discussions in [94,95] and refer to

them for more details. We use uppercase letters to indicate
embedding space objects and lowercase letters for those of
physical space. To reduce two dimensions, we can consider
the light cone of the embedding space and identify the
physical space as the Poincaré section. The light cone
coordinates of Rdþ1;1 are

XA ¼ ðXþ; X−; XaÞ; ð16Þ

and the metric ηAB is given by

dS2 ¼ ηABXAXB ¼ −dXþdX− þ
Xd
a¼1

ðdXaÞ2: ð17Þ

The Poincaré section is given by Xþ ¼ 1 whose coordi-
nates are

XA
Poincaré ¼ ð1; x2; xaÞ: ð18Þ

As shown in Fig. 1, a point x in the Poincaré section lies
in a null ray XA ¼ λð1; x2; xaÞ in the embedding space,
and g∈SO (dþ 1, 1) transforms this light ray to the light
ray that meets the Poincaré section at x0. In this way, we
can define the action of g on a physical point x by the
Lorentz transformations of the light rays. This is indeed a
conformal transformation as it induces a local rescaling
of the physical metric, which is associated with the
change in λ.
The next step is to extend the transformations of fields

to the embedding space counterparts. We first need to
uplift the physical fields to the light cone. This provides a
more economical way to derive the constraints of conformal
symmetry on correlation functions. There is a corres-
pondence between a symmetric traceless primary field
fa1;…;alðxÞ with spin-l and scaling dimension Δ and a
symmetric, traceless, homogeneous, and transverse SOðdþ
1; 1Þ tensor FA1;…;Al

ðXÞ defined on the light cone. An
embedding tensor of homogeneity −Δ satisfies

FA1;…;Al
ðλXÞ ¼ λ−ΔFA1;…;Al

ðXÞ; ð19Þ
for λ > 0. The transversality condition reads

XAiFA1;…;Ai;…;Al
¼ 0: ð20Þ

The homogeneity condition extends the definition of fields in
the Poincaré section to the complete light cone. The trans-
versality constraint eliminates one redundant component for
each index.We can recover the physical tensor by projecting
F onto the physical space

fa1;…;alðxÞ ¼
∂XA1

Poincaré

∂xa1
…

∂XAl
Poincaré

∂xal
FA1;…;Al

ðXPoincaréÞ:
ð21Þ

This projection gives us a symmetric traceless field f. The
symmetric property follows immediately from the fact thatF
is symmetric. The traceless property comes from the trace-
lessness and transversality of F. Some redundant degrees of
freedom are removed by the fact that terms proportional to
XAi are orthogonal to the projection vector due to X2 ¼ 0.
Finally, the projection (21) of F under SOðdþ 1; 1Þ trans-
formations produce the correct transformations of a sym-
metric traceless primary field of spin-l [93,96].
In the index-free notation, the index structure of a

symmetric traceless tensor fa1;…;alðxÞ is encoded in a
polynomial of polarization vector z

fðx; zÞ ¼ fa1;…;alðxÞza1…zal ; ð22Þ

where z∈Cd and we can set z2 ¼ 0 because fa1;…;al is
symmetric traceless.19 In the embedding space, FA1;…;Al

ðXÞ
can be encoded by a polynomial

FIG. 1. In the light cone of the embedding space, the physical
space is associated with the Poincaré section. An SO(dþ 1, 1)
transformation maps the light ray associated with the physical
point x to that of another physical point x0.

18The embedding formalism has also been used in the study of
higher-spin fields in de Sitter and anti de Sitter space [88,89],
which is also called the ambient space formalism (see [90] for
example).

19The symmetric traceless tensor fa1;…;al can be recovered
from fðx; zÞjz2¼0.
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FðX; ZÞ ¼ FA1;…;Al
ðXÞZA1…ZAl ; ð23Þ

where Z∈Cdþ2. We can set Z2 ¼ 0 and Z · X ¼ 0 because
F is symmetric, traceless, and transverse.
In the present work, it suffices to consider the scalar-

scalar-(spin-l) three-point function

hF1ðX1ÞF2ðX2ÞF3ðX3; Z3Þi: ð24Þ

Since Z2
3 ¼ 0 and Z3 · X3 ¼ 0, we know that Z3 only

appears in Z3 · X1 and Z3 · X2. It turns out that the
transversality condition leads to the following building
block ðZ3 · X1ÞðX2 · X3Þ − ðZ3 · X2ÞðX1 · X3Þ. Together
with SOðdþ 1; 1Þ invariance, homogeneity, and spin-l
conditions, the three-point function is fixed up to a
constant

hF1ðX1ÞF2ðX2ÞF3ðX3; Z3Þi ¼
constantððZ3 · X1ÞðX2 · X3Þ − ðZ3 · X2ÞðX1 · X3ÞÞl

ðX1 · X2Þ
Δ1þΔ2−Δ3þl

2 ðX1 · X3Þ
Δ1þΔ3−Δ2þl

2 ðX2 · X3Þ
Δ2þΔ3−Δ1þl

2

: ð25Þ

As the embedding and physical coordinates are related by

Xi · Xj ¼ −
1

2
ðxi − xjÞ2; Z · Xi ¼ z · ðxi − x3Þ; ð26Þ

the three-point function in the physical space reads

hO1ðx1ÞO2ðx2ÞO3ðx3; zÞi ¼
constant

�
z ·

�
x13
x2
13

− x23
x2
23

��
l

xΔ1þΔ2−Δ3þl
12 xΔ1þΔ3−Δ2−l

13 xΔ2þΔ3−Δ1−l
23

; ð27Þ

where xij ≡ jxi − xjj. Below, we will consider the action of Laplacians with respect to x1, x2 on this three-point function.
Despite the simplicity of the index-free notation, the action of higher-order Laplacians on the three-point function can lead
to complicated expressions. Inspired by [39], we simplify the functional form of the three-point function by focusing on the
leading term in the limit x3 → ∞:

hO1ðx1ÞO2ðx2ÞO3ðx3; zÞi ¼
constantðz · x12Þl
xΔ1þΔ2−Δ3þl
12 x2Δ3

3

þO
�
x−ð2Δlþ1Þ
3

�
: ð28Þ

Then it is straightforward to derive the general results of
higher-order Laplacians acting on (28). In the radial
quantization, the x3 → ∞ limit means the out state is given
by hO3j ¼ limx→∞x

2ΔO
3 h0jO3ðx3Þ, so we extract the O3ðx1Þ

contribution in the OPE O1ðx1Þ ×O2ðx2Þ to the in state.

IV. ANOMALOUS DIMENSIONS OF PARTIALLY
CONSERVED CURRENTS

In this section, we study the anomalous dimensions of
partially conserved currents J ðmÞ

l in the ϕ2n deformation of
the free □k CFT. We first use the multiplet recombination
method to deduce the general results, then we examine the
results using the analytic conformal bootstrap. As men-
tioned in Sec. I, we will assume that k and n − 1 have no
common divisor, so we do not need to consider derivative
interactions.
The Lagrangian formulation of the ϕ2n theory in

d ¼ du − ϵ reads

S ∝
Z

ddx ðϕ□kϕþ gμðn−1Þϵϕ2nÞ; ð29Þ

where the upper critical dimension is du ¼ 2nk=ðn − 1Þ.
We are interested in the CFT describing the IR fixed point
of the RG flow triggered by ϕ2n. The IR CFT itself can be
thought of as a consistent deformation of the free CFT,
parametrized by the dimension d.

A. Multiplet recombination

In a smooth deformation, the free CFT states should
extend to the deformed CFT. On the other hand, the scaling
dimensions and three-point function coefficients of the
deformed operators can change as smooth functions of ϵ,
which should reduce to the free values in the limit ϵ → 0.
For notational simplicity, we use Of to denote the free CFT
operator and O the corresponding deformed CFT operator,
without adding the subscript WF. The deformed operators
can be interpreted as the renormalized operators in the
Lagrangian formulation.
As discussed in the introduction, the lowest scalar

primary ϕf in the free CFT satisfies the equation of motion

□
kϕf ¼ 0: ð30Þ
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From the CFT perspective, the null state condition on the
descendant □kϕf is a consequence of conformal symmetry
and Δϕf

¼ du=2 − k, without referring to a Lagrangian des-
cription. In the interacting CFT, it is expected that the
corresponding operator ϕ acquires an anomalous dimension

γϕ ¼ Δϕ − d=2þ k; ð31Þ

so the descendant□kϕ ≠ 0 is a physical state at d ¼ du − ϵ.
All the physical operators in the free CFT should have
interacting counterparts.20 Furthermore,we assume that□kϕ
corresponds to a physical operator in the Gaussian limit, but
we need to change the normalization of □kϕ to obtain a
finite-norm state. By ϕ2n deformation, we mean that the
Gaussian limit of □kϕ corresponds to ϕ2n−1

f

lim
ϵ→0

α−1□kϕ ¼ ϕ2n−1
f ; ð32Þ

where α ¼ αðϵÞ is a function of ϵwith limϵ→0 α ¼ 0, i.e., we
introduce a singular change in the normalization of □kϕ to
obtain a finite-norm state. In other words, we identify a
descendant of ϕ with the deformed operator of ϕ2n−1

f

□
kϕ ¼ αϕ2n−1: ð33Þ

One can check that the scaling dimensions match
the Gaussian limit, i.e., limϵ→0Δϕ þ 2k ¼ Δϕf

þ 2k ¼
ð2n − 1ÞΔϕf

. Although ϕ2n−1
f is a primary in the free theory,

its deformed version is a descendant of ϕ. In this sense, the
free multiplets fϕgfree and fϕ2n−1gfree recombine to form the
Wilson-Fisher multiplet fϕgWF.
To determine the leading behavior of αðϵÞ, let us

examine the two-point function of □ϕ. As an illustrative
example, we consider the standard case of k ¼ 1, n ¼ 2

h□ϕðx1Þ□ϕðx2Þi ¼ □x1□x2hϕðx1Þϕðx2Þi
¼ 16ΔϕðΔϕ þ 1ÞðΔϕ − d=2þ 1Þ

× ðΔϕ − d=2þ 2Þ λϕϕ1

x
2Δϕþ4

12

¼ 32γϕð1þ…Þ λϕϕ1

x
2Δϕþ4

12

; ð34Þ

where limϵ→0Δϕ ¼ Δϕf
¼ 1 and the ellipses indicate sub-

leading terms in ϵ. The two-point function coefficient λϕϕ1
is finite in the limit ϵ → 0. We have used the identity

□x1

�
1

x2Δ12

�
¼ 4ΔðΔ − d=2þ 1Þ 1

x2ðΔþ1Þ
12

: ð35Þ

Therefore, the finite-norm condition of α−1□ϕ implies

α ∝ ðγϕÞ1=2ð1þ…Þ; ð36Þ

where the proportionality factor should be finite as ϵ → 0.
In the Gaussian limit, the Wilson-Fisher correlator reduces
to the Gaussian correlator

lim
ϵ→0

α−2h□ϕðx1Þ□ϕðx2Þi ¼ hϕ3
f ðx1Þϕ3

f ðx2Þi ¼
λϕ3

f ϕ
3
f 1

x
2Δϕf
12

;

ð37Þ

so we have

lim
ϵ→0

32α−2γϕ ¼
λϕ3

f ϕ
3
f 1

λϕfϕf1
: ð38Þ

where limϵ→0 λϕϕ1 ¼ λϕfϕf1 is used. The matching condi-
tion in the Gaussian limit only determines the leading
behavior of α in the ϵ expansion, not the full functional
form of αðϵÞ, as the choice of normalization is not fixed at
subleading orders in ϵ. From this simple example (38), we
can see the general structure of matching conditions:

(i) The left-hand side involves the Gaussian limit of a
combination of α and scaling dimensions. The action
of□k leads to Pochhammer symbols. Furthermore, a
factor needs more care if its Gaussian limit vanishes.

(ii) The right-hand side is given by a ratio of Gaussian
OPE coefficients. If the OPE coefficient in the
denominator vanishes in the Gaussian limit, then
we should move it back to the left-hand side.

In a systematic analysis of the leading-order matching
conditions, it is sufficient to consider only two- and three-
points functions, as they encode all the local CFT data. The
WF correlators should reduce to the free ones in the
Gaussian limit ϵ → 0:

lim
ϵ→0

hO1O2…i ¼ hO1;fO2;f…i: ð39Þ

For the free theory operators, we use the normalization that
the three-point function coefficients λO1;fO2;fO3;f

are given by
Wick contractions, so the two-point function coefficients of
composite operators will be different from one. For
composite operators associated with multiple ϕ and deriv-
atives, we assume that the operators under consideration are
nondegenerate, otherwise we need to first solve the mixing
problem to derive more useful constraints. For a deformed
operator of the schematic form O ¼ ∂

i1ϕi2
f in the Gaussian

limit, the anomalous dimension is defined as

γO ¼ ΔO − i1 − i2ðd=2 − kÞ: ð40Þ

Since Δϕ2n−1 ¼ Δ□
kϕ ¼ Δϕ þ 2k, there is a relation

between the anomalous dimensions of ϕ;ϕ2n−1
20However, some operators in the deformed CFT can decouple

in the Gaussian limit.

ANOMALOUS DIMENSIONS OF PARTIALLY CONSERVED … PHYS. REV. D 109, 025015 (2024)

025015-7



γϕ2n−1 ¼ ðn − 1Þϵþ γϕ: ð41Þ

For general k, the matching condition of the two-point
function of the descendant □kϕ is

lim
ϵ→0

α−2h□kϕðx1Þ□kϕðx2Þi ¼ hϕ2n−1
f ðx1Þϕ2n−1

f ðx2Þi; ð42Þ

Using (35), one can verify that the functional dependence
on xi matches. Then the matching of coefficients gives

lim
ϵ→0

α−242kðΔϕÞ2kðΔϕ − d=2þ 1Þ2k ¼
λϕ2n−1

f ϕ2n−1
f 1

λϕfϕf1
: ð43Þ

Since γϕ vanishes in the limit ϵ → 0, we can omit some
subleading terms. Substituting with the free theory data, we
obtain

42k
�

k
n − 1

�
2k
ð1 − kÞk−1k!lim

ϵ→0
ðα−2γϕÞ ¼ ð2n − 1Þ!; ð44Þ

where ðxÞy ¼ Γðxþ yÞ=ΓðxÞ is the Pochhammer symbol
and ΓðxÞ is the Gamma function. Note that the factor γϕ ¼
Δϕ − d=2þ k comes from ðΔϕ − d=2þ 1Þ2k.
Then we consider the three-point functions with finite

λijk in the Gaussian limit on both sides21

lim
ϵ→0

α−1h□kϕðx1Þϕpðx2Þϕpþ1ðx3Þi

¼ hϕ2n−1
f ðx1Þϕp

f ðx2Þϕpþ1
f ðx3Þi: ð45Þ

For p ≠ 2n − 1; 2n − 2, the left-hand side can be derived
from the action of Laplacians on the correlator of primary
operators. Using (28) and (35), we obtain

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1ðγ1 þ γp − γpþ1ÞÞ

¼ λ2n−1;p;pþ1

λ1;p;pþ1

; ð46Þ

where γp is the anomalous dimension of ϕp, and λp1;p2;p3

is the free three-point function coefficient of ϕp1

f , ϕp2

f ,
and ϕp3

f :

γp ≡ γϕp ; λp1;p2;p3
≡ λϕp1

f ϕ
p2
f ϕ

p3
f
: ð47Þ

Here the parameter Δ in (35) is given by ðΔϕ þ iþ
Δϕp − Δϕpþ1Þ=2. For p ¼ 2n − 2; 2n − 1, the correlator
involves the descendant ϕ2n−1 ¼ α−1□kϕ, so we consider
the matching conditions involving one more ϕ

lim
ϵ→0

α−1h□kϕðx1Þϕðx2Þϕ2n0 ðx3Þi
¼ hϕ2n−1

f ðx1Þϕfðx2Þϕ2n0
f ðx3Þi; ð48Þ

and

lim
ϵ→0

α−2h□kϕðx1Þ□kϕðx2Þϕ2n0 ðx3Þi
¼ hϕ2n−1

f ðx1Þϕ2n−1
f ðx2Þϕ2n0

f ðx3Þi; ð49Þ

where n0 ¼ n, n − 1, and n0 > 1.22 We can again use (28)
and (35) to derive the independent constraints

4k
�ð1 − n0Þk

n − 1

�
k

�ð1 − n0 − nÞk
n − 1

þ 1

�
k
lim
ϵ→0

ðα−1λϕϕϕ2n0 Þ

¼ λ2n−1;1;2n0 ; ð51Þ

and

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1ðγ1 þ γ2n−1 − γ2nÞÞ

¼ λ2n−1;2n−1;2n
λ1;2n−1;2n

; ð52Þ

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1ð−γ1 þ γ2n−2 − γ2n−1ÞÞ

¼ λ2n−1;2n−2;2n−1
λ1;2n−2;2n−1

: ð53Þ

The solutions of (51) are presented in Appendix A. The
constraint (52) can be viewed as (46) with p ¼ 2n − 1. This
also applies to (53), which can be seen as the case with
p ¼ 2n − 2, as (44) implies

lim
ϵ→0

α−1γ1 ¼ 0: ð54Þ

Therefore, the p ¼ 2n − 1; 2n − 2 matching constraints
can be written in a general p form

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1ðγp − γpþ1ÞÞ

¼ λ2n−1;p;pþ1

λ1;p;pþ1

: ð55Þ

21There is only one way to construct an operator of the form
ϕp, so we do not need to worry about degeneracies.

22For n0 ¼ 1 and n ¼ 2, (48) yields

22k−1ðk − 1Þ!ð1 − 2kÞklim
ϵ→0

ðα−1ð2γ1 − γ2ÞÞ ¼ 3; ð50Þ

which is consistent with (55) upon using (54). Moreover, as
noticed in [53], the matching condition (49) with n0 ¼ 1 and
n ¼ 2 is satisfied automatically given γ2 ¼ 1

3
ϵþOðϵ2Þ, which is

derived in (60).

YONGWEI GUO and WENLIANG LI PHYS. REV. D 109, 025015 (2024)

025015-8



This is related to the fact that ϕ2n−1 becomes a primary in
the Gaussian limit, so the descendant corrections are of
higher order in ϵ.23 The case of k ¼ 1, n ¼ 2 was already
noticed in [36]. A sum of (55) from p ¼ 1 to p ¼ 2n − 2
gives

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1ðγ1 − γ2n−1ÞÞ

¼
X2n−2
p¼1

λ2n−1;p;pþ1

λ1;p;pþ1

; ð56Þ

where the ratio of three-point function coefficients is

λ2n−1;p;pþ1

λ1;p;pþ1

¼ p!ð2n − 1Þ!
n!ðn − 1Þ!ðp − nþ 1Þ! : ð57Þ

Together with (41) and (54), we obtain

α¼ ð−1Þkþ14kk!
ðn!Þ3

ð2nÞ!ð2n− 1Þ!
�

k
n− 1

þ 1

�
k−1

ϵþOðϵ2Þ:

ð58Þ

Since the leading correction is of first order, we assume that
the ϵ expansion of the ϕ2n theory gives rise to integer power
series in ϵ. The matching constraint (44) gives

γ1 ¼ 2ð−1Þkþ1nðn − 1Þ
�ðn!Þ2
ð2nÞ!

�
3 ð k

n−1 þ 1Þk−1
ð nk
n−1Þk

ϵ2 þOðϵ3Þ;

ð59Þ

where the first order anomalous dimension of ϕ vanishes

γð1Þ1 ¼ 0. Now we can solve (55) and the solution reads

γp ¼ n − 1

ðnÞn
ðp − nþ 1ÞnϵþOðϵ2Þ; ð60Þ

which is independent of k. These general k results for ϕp

were obtained previously in [37,38].24 Using the result (60),
we obtain

Δϕ2n − d ¼ ðn − 1ÞϵþOðϵ2Þ; ð61Þ

which means that the operator ϕ2n is irrelevant Δϕ2n > d.
Furthermore, we can use the matching condition (51) to

determine the first-order terms of λϕϕϕ2ðn−1Þ ; λϕϕϕ2n , which
are given in Appendix A. Let us emphasize that the
discussion of ϕp is based on the assumption that all ϕp

with p ≠ 2n − 1 are primary operators.
Above, we use the matching condition associated

with hϕϕOi to determine the ϕ2n and ϕ2ðn−1Þ anomalous
dimensions. It is more natural to consider the primary
bilinear operators

J ðmÞ
l;f ∼ ϕf∂

l
□

mϕf ; ðl ¼ 0; 2; 4;…Þ; ð62Þ

as they already appear in the free OPE ϕf × ϕf . Although
the would-be-eaten multiplets do not appear in this OPE
due to their odd spin, it turns out that the action of
Laplacians on ϕ still gives rise to useful matching con-
straints. As shown in [39], one can indeed determine
the leading anomalous dimensions of broken higher-spin
currents for k ¼ 1 using the matching conditions. The
discussions in [39] are based on five-point functions, but, in
our opinion, the nontrivial constraints are encoded in two-
and three-point functions if OPE associativity is not taken
into account. Let us emphasize that we do not make use of
the fact that the higher-spin currents are (partially) con-

served in the free theories. In fact, J ðmÞ
l;f are not (partially)

conserved at low spin, i.e., at l < c, as indicated in (10). In
principle, the computation of anomalous dimensions can be
generalized to other nondegenerate primaries, which do not
need to obey any conservation law. See [39] for related
discussions in the case of k ¼ 1.25

To study the anomalous dimensions of broken currents,
we consider the matching condition

lim
ϵ→0

α−2h□kϕðx1Þ□kϕðx2ÞJ ðmÞ
l ðx3; zÞi

¼ hϕ2n−1
f ðx1Þϕ2n−1

f ðx2ÞJ ðmÞ
l;f ðx3; zÞi: ð63Þ

We assume that J ðmÞ
l are primary operators at the interact-

ing fixed points. For the spinning case, the identity (35) has
a simple generalization

23One needs to be more careful at subleading orders, as the
differences between descendant and primary are not negligible.

24Note that [37,38] studied the recombination at the level of
conformal block expansion of four-point functions, and consid-
ered ϕ2n−1 as a primary operator.

25In practice, there could exist some technical difficulties if one
wants to generalize the computation to arbitrary nondegenerate
primaries. First, we need to write down all the nondegenerate
primaries, which requires some careful examination. Second, we
need to know the ratios of OPE coefficients in the matching
conditions, which could be technically involved for arbitrarily
complicated operators. In fact, the most technically challenging
part of the present work is to obtain the ratio of OPE coefficients
(102) and (103). Third, another problem arises when the free
correlator on the right-hand side of the matching condition
vanishes. This usually leads to the vanishing of the anomalous
dimension at low order. To compute the anomalous dimension at
leading nonvanishing order, we need to know the expression of
the first nonzero order on the right-hand side of the matching
condition, which cannot be directly derived from the (general-
ized) free theory.
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□x1

ðz · x12Þl
x2Δþl
12

¼ 4

�
Δþ l

2

��
Δ −

l
2
−
d
2
þ 1

� ðz · x12Þl
x2ðΔþ1Þþl
12

:

ð64Þ

Together with (28), we obtain

lim
ϵ→0

�
α−242k

�
Δϕ −

1

2
Δ

J ðmÞ
l

þ l
2

�
2k

×

�
Δϕ −

1

2
ΔJ ðmÞ

l
−
l
2
−
d
2
þ 1

�
2k

�
¼ R; ð65Þ

where R is the ratio of three-point function coefficients26

R ¼
λ
ϕ2n−1
f ϕ2n−1

f J ðmÞ
l;f

λ
ϕfϕfJ

ðmÞ
l;f

¼ ð2n − 1Þ2ð2n − 2Þ!: ð66Þ

According to (40), the anomalous dimension of J ðmÞ
l is

defined by

ΔJ ðmÞ
l

¼ 2

�
k

n − 1
−
ϵ

2

�
þ 2mþ lþ γJ ðmÞ

l
: ð67Þ

The explicit matching constraint is

lim
ϵ→0

�
α−2

�
γ1 −

1

2
γ
J ðmÞ

l

�

×

�
γ1 −

1

2
γJ ðmÞ

l
þ ϵ

2
þ 1 − l −m −

du
2

�
2k

�

¼ ð2n − 1Þ2ð2n − 2Þ!
42kð−mÞmð2k −m − 1Þ! : ð68Þ

There are two possible scenarios:
(i) γJ ∼ ϵ2

In the generic case, the remaining Pochhammer
symbol ð…Þ2k has a finite Gaussian limit, so we have

γJ ðmÞ
l

¼ 2γ1 − 2α2

×
ð2n − 1Þ2ð2n − 2Þ!

42kð−mÞmð2k −m − 1Þ!ðmþ l − k n−2
n−1Þ2k

þOðϵ3Þ; ð69Þ

which is consistent with the double-twist asymptotic
behavior γJ → 2γ1 at large spin l. Note that α is
given in (58) and γ1 is given in (59). As expected, the
spin-2 operator on the highest trajectory m ¼ k − 1
has no anomalous dimension, i.e., γ

J ðm¼k−1Þ
l¼2

¼ 0,

since it corresponds to the stress tensor. The for-
mula (69) generalizes the k ¼ 1 result in [39].

(ii) γJ ∼ ϵ1

We should be more careful at low spin l ≤ 2k −
m − du=2 if the upper critical dimension du ¼
2nk=ðn − 1Þ is an even integer. Since we assume
that k and n − 1 have no common divisor, the upper
critical dimension du is an even integer if and only if
n ¼ 2. Then we have du ¼ 4k, so the exceptional
operator is associated with l ¼ m ¼ 0, i.e., the spin-
0 operator on the lowest trajectory. The matching
constraint becomes

lim
ϵ→0

γ2ðγ2 − ϵÞ
ϵ2

¼ −
2

9
; ð70Þ

where γ1 is omitted and the k dependence is canceled
by α in (58) with n ¼ 2. There are two solutions

γ2 ¼
ϵ

2
� ϵ

6
þOðϵ2Þ; ð71Þ

which are related by the shadow transformation
Δ → d − Δ. For n ¼ 2 with general k, the γp
formula (60) implies that the physical solution
corresponds to the case with a minus sign.27

The formula for the higher-spin currents (69) with n ¼ 2
and m ¼ 0 is singular at l ¼ 0. Motivated by analyticity in
spin [73], we perform the analytic continuation of the
generic formula (69) with n ¼ 2 in the conformal spin
h̄ ¼ τ=2þ l. Then we impose the matching condition on
the spin-0 anomalous dimensions

γ2 ¼ γJ ðh̄Þjh̄→k−ϵ
2
þγ2

2
; ð72Þ

which leads to the constraint on the anomalous dimension
of ϕ2

γ2 ¼ −
2ϵ2

9

1

γ2 − ϵ
þOðϵ2Þ: ð73Þ

This is precisely the same quadratic equation as (70), so we
again find the two solutions in (71). A first-order formula in
ϵ can be derived from a second-order one because the
special cases are related to the poles in the general formula.
The order of γJ ðh̄Þ is lowered by one and becomes first
order in ϵ due to the factor γ2 − ϵ in the denominator. The
matching with the spin-0 data by analytic continuation was
noticed in the analytic bootstrap study of the k ¼ 1, n ¼ 2
case [71]. See also [72,99,100] for further investigations.

26See Appendix B for more details about the calculation of R.

27The missing one can be viewed as a null state. See also
Sec. 4.4.2 in [97] for the perspectives from the mixing effects and
the redundant operators [98].
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B. Analytic bootstrap

In this subsection, we use the analytic bootstrap to
examine if the multiplet recombination results are consis-
tent with OPE associativity. More concretely, we deduce
the implications of crossing constraints, i.e., spinning
anomalous dimensions, from the Lorentzian inversion
formula. Systematic investigations of the standard ϕ4

theory (k ¼ 1, n ¼ 2) had been carried out in [71,72].
We generalize the discussions of the leading anomalous
dimensions to the □k theory with ϕ2n interaction, based on
the spin-0 input from the multiplet recombination method.
We consider the four-point function of identical scalars

hϕðx1Þϕðx2Þϕðx3Þϕðx4Þi ¼
Gðu; vÞ
x
2Δϕ

12 x
2Δϕ

34

; ð74Þ

where u, v are the conformally invariant cross ratios

u ¼ zz̄ ¼ x212x
2
34

x213x
2
24

; v ¼ ð1 − zÞð1 − z̄Þ ¼ x214x
2
23

x213x
2
24

: ð75Þ

The crossing equation reads

Gðu; vÞ ¼ uΔϕ

vΔϕ
Gðv; uÞ: ð76Þ

The conformal block expansion of the right-hand side reads

Gðv; uÞ ¼ 1þ
X
i

λ̃2ϕϕOi
GΔi;lið1 − z; 1 − z̄Þ: ð77Þ

We have introduced the OPE coefficient λ̃ϕϕOi
¼ λϕϕÕi

where the two-point function of Õ is unit-normalized, i.e.,
λÕ Õ 1 ¼ 1. The explicit example of λ̃2

ϕϕϕ2ðn−1Þ can be found

in (90). In the analytic bootstrap, the leading behavior is
associated with the contribution of the identity operator,
which implies the existence of double-twist trajectories
[101,102]

τm;l ¼ 2Δϕ þ 2mþ…; ð78Þ

with squared OPE coefficients [79]

λ̃2ϕϕOm;l
¼ ð1þ ð−1ÞlÞ½ðΔϕÞmþlðΔϕ − d=2þ 1Þm�2

m!l!ðd=2þ lÞmð2Δϕ − dþ 1þmÞmð2Δϕ þmþ l − d=2Þmð2Δϕ þ 2mþ l − 1Þl
þ…; ð79Þ

where the ellipses indicate subleading terms at large spin.
For m ≥ k, the order ϵ0 term of the leading OPE coefficient
vanishes due to the factor ðΔϕ − d=2þ 1Þm≥k ∼ γ1 ∼ ϵ2.
The case of m ¼ k − 1 corresponds to the conserved
currents, while those of 0 ≤ m < k − 1 are related to the
partially conserved currents. According to the double-twist
behavior, it is also natural to define the anomalous
dimension γ̃J ðmÞ

l
with respect to 2Δϕ

γ̃J ðmÞ
l

¼ ΔJ ðmÞ
l

− ð2Δϕ þ 2mþ lÞ; ð80Þ

which involves the full scaling dimension of Δϕ.
For simplicity, we focus on the case of the leading

trajectory ϕ∂lϕ with m ¼ 0, but our analysis extends to
higher twists.28 Accordingly, we take the light cone limit of
the Lorentzian inversion formula, which reduces to the
SLð2;R) inversion integral [71,73]

Cðz; hÞ ¼ ð2h̄ − 1ÞΓðh̄Þ4
π2Γð2h̄Þ2

Z
1

0

dz̄
z̄2

z̄h̄2F1ðh̄; h̄; 2h̄; z̄Þ

× dDisc½Gðu; vÞ�jz→0; ð81Þ

where the double discontinuity is defined by analytic
continuation around z̄ ¼ 1

dDisc½fðz̄Þ� ¼ fðz̄Þ − 1

2
f↺ðz̄Þ − 1

2
f↻ðz̄Þ: ð82Þ

To derive the anomalous dimensions of the leading tra-
jectory, we expand the inversion result as

Cðz; h̄Þ ¼ zΔϕ λ̃2ϕϕO

�
1þ 1

2
γ̃O log zþ…

�
þ…; ð83Þ

so the leading anomalous dimension can be obtained by
dividing the coefficients of the log z term by (79). The
concrete inversion procedure depends on n, which can be
divided into two types:

(i) Type I: n ¼ 2

This is the k > 1 generalization of the standard ϕ4

theory at d ¼ 4 − ϵ.
(ii) Type II: n > 2 (k and n − 1 have no common

divisor)
This generalizes the standard ϕ6 theory at d ¼

3 − ϵ to generic k, n.
In both cases, the leading corrections are associated with
the cross-channel scalar ϕ2ðn−1Þ with

28Using the light cone expansion of conformal blocks in
Appendix C, we also examine the cases of subleading and sub-
subleading trajectories. The details can be found in Appendix D.
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Δϕ2ðn−1Þ ¼ 2kþOðϵÞ: ð84Þ

For type I, we have ϕ2ðn−1Þ ¼ ϕ2, which appears already in
the free OPE ϕf × ϕf , and the leading contribution is
associated with squared anomalous dimension ðγ2Þ2 ∼ ϵ2.

For type II, the free OPE ϕf × ϕf does not contain ϕ2ðn−1Þ
f ,

but this operator can appear in the ϕ × ϕ OPE because the
ϕ2n interaction leads to a first order OPE coefficient, i.e.,
λ̃2
ϕϕϕ2ðn−1Þ ∼ ϵ2. To derive the anomalous dimensions, we

need to know the log z term of the light cone expansion of
the ϕ2ðn−1Þ block

GðdÞ
Δ;0ð1 − z̄; 1 − zÞjlog z ¼ ð−1Þ ΓðΔÞ

ΓðΔ=2Þ2 ð1 − z̄ÞΔ=22F1

×

�
Δ
2
;
Δ
2
;Δ −

d
2
þ 1; 1 − z̄

�
þOðzÞ; ð85Þ

which should be multiplied by zΔϕ z̄Δϕ=ð1 − z̄ÞΔϕ before
evaluating the double discontinuities.

1. Type I: n = 2

Let us explain why the leading corrections of anomalous
dimensions are associated with ϕ2 in the ϕ4 theory with
k ≥ 1. Since Δϕf

¼ k, the double discontinuity of a Z2-
even operator ∂2i1ϕ2i2 in the ϕ × ϕ OPE is proportional to
γ̃2O. To compute second order corrections in ϵ, we need to
use λ̃ϕϕO ∼ ϵ0 and γ̃O ∼ ϵ.29 The first condition restricts
the choice to the double-twist operators ϕ∂l□mϕ with
m ≤ k − 1. For the second condition, the lowest scalar ϕ2 is
special in that it is the only one with nonzero anomalous
dimension γ̃ at order ϵ. The leading double discontinuity of
Gðu; vÞ is given by

−
π2

2

ΓðΔÞ
ΓðΔ=2Þ2 λ̃

2
ϕϕϕ2ðγ̃ϕ2Þ2zΔϕ z̄Δϕ

2F1

×

�
Δϕ2

2
;
Δϕ2

2
;Δϕ2 −

d
2
þ 1; 1 − z̄

�
; ð86Þ

where dDisc½log2ð1 − z̄Þ� ¼ 4π2 is used. According to (60),
the first-order anomalous dimension of ϕ2 is

γ̃ð1Þ
ϕ2 ¼ γð1Þ2 ¼ 1

3
; ð87Þ

so it is independent of k. The free theory values for the
other input parameters are

λ̃2ϕϕϕ2 ¼ 2þOðϵÞ; Δϕ2 ¼ 2kþOðϵÞ; d ¼ 4kþOðϵÞ:
ð88Þ

Then we evaluate the inversion integral (81) and perform
the substitution h̄ → kþ lþOðϵÞ. The result reads

γ̃J ð0Þ
l

¼ −
ð2k − 1Þ!ðl − 1Þ!
9ð2kþ l − 1Þ! ϵ2 þOðϵ3Þ; ð89Þ

which is precisely (69) with n ¼ 2,m ¼ 0. We also confirm
the consistency for m ¼ 1, 2 and more details can be found
in Appendix D.

2. Type II: n > 2 (k and n− 1 have no common divisor)

As the anomalous dimensions of all double-twist oper-
ators are of second order in ϵ, their double discontinuities
are of order ϵ4. We should instead consider new operators
that are absent in the free OPE ϕf × ϕf . As discussed in
[103], a natural candidate in ϕ2n theory is the scalar ϕ2ðn−1Þ
(see Fig. 2). The OPE coefficient can also be deduced from
the multiplet recombination (51)

λ̃2
ϕϕϕ2ðn−1Þ ¼

λ2
ϕϕϕ2ðn−1Þ

ð2n − 2Þ! ; ð90Þ

where the leading term of λϕϕϕ2n−2 can be found in
Appendix A. Since Δϕ2ðn−1Þ ¼ 2kþOðϵÞ, the leading dou-
ble discontinuity reads

− 2 sin

�
πðn − 2Þk
n − 1

�
λ̃2ϕϕϕ2n−2zΔϕ z̄

k
n−1ð1 − z̄Þðn−2Þkn−1

Γð2kÞ
ΓðkÞ2 2F1

×

�
k; k; 2k −

nk
n − 1

þ 1; 1 − z̄

�
: ð91Þ

Then we evaluate the inversion integral (81) and make the
substitution h̄ → k=ðn − 1Þ þ lþOðϵÞ. The result again
agrees with the generic formula (69) from the multiplet
recombination. We also verify the consistency between the

FIG. 2. In the Lagrangian description of a type II theory, the
leading correction from ϕ2n−2 contributes at order g2 ∼ ϵ2 due to
the gϕ2n vertices.

29We assume that the ϵ expansion of the CFT data gives integer
power series in ϵ.
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results from multiplet recombination and those from
analytic bootstrap for the subleading and sub-subleading
trajectories.
The explicit expression of λϕϕϕ2n−2 in Appendix A is not

valid for n ¼ 2, as it diverges in the n → 2 limit due to the
assumption of vanishing zeroth-order term. However, since
the double discontinuity goes to zero, the formal product of

dDisc½ð1 − z̄Þðn−2Þkn−1 � and λ̃2ϕϕϕ2n−2 remains finite in the singular
limit n → 2. The resulting inversion integral yields the
same result as (89). This matching from analytic continu-
ation in n is similar in spirit to the analytic continuation in
spin of the second-order formula (69), which reproduces
the first-order results in the singular spin-0 limit.

V. OðNÞ models

We would like to generalize the results in Sec. IV to the
cases with global OðNÞ symmetry. We use φa to denote
the fundamental field transforming in the vector represen-
tation. In the free theory, the higher-spin currents are
bilinear operators of the schematic form φ∂l□mφ. The
tensor product decomposition reads:

ð92Þ

where V is the vector representation, S is the singlet repre-
sentation, T is the rank-2 symmetric traceless representation
and A is the rank-2 anti-symmetric representation. As a
result, we have three sets of broken currents with different
anomalous dimensions. We refer to [97] for a recent review
about the φ4 OðNÞ model with a canonical kinetic term.

A. Multiplet recombination

The N ¼ 1 recombination equation (32) has a direct
generalization for general N:

lim
ϵ→0

α−1N □
kφa ¼ ðφaφ

2n−2Þf ; ð93Þ

where φ2q ≡ ðPN
a¼1 φaφaÞq and we use the subscript N to

indicate the OðNÞ generalization. To remind the reader, we
use f to indicate free theory values and we will write it as a
subscript of h…i to simplify the notation. The matching
condition of the two-point function

lim
ϵ→0

α−2N h□kφaðx1Þ□kφbðx2Þi ¼ hφaφ
2n−2ðx1Þφbφ

2n−2ðx2Þif
ð94Þ

gives

42k
�

k
n − 1

�
2k
ð1 − kÞk−1k!lim

ϵ→0
ðα−2γφÞ ¼ 4n−1ðn − 1Þ!

�
1þ N

2

�
n−1

: ð95Þ

The OðNÞ generalizations of the three-point matching condition (45) are:

lim
ϵ→0

α−1N h□kφaðx1Þφbφ
2q−2ðx2Þφ2qðx3Þi ¼ hφaφ

2n−2ðx1Þφbφ
2q−2ðx2Þφ2qðx3Þif ; ð96Þ

lim
ϵ→0

α−1N h□kφaðx1Þφ2qðx2Þφbφ
2qðx3Þi ¼ hφaφ

2n−2ðx1Þφ2qðx2Þφbφ
2qðx3Þif : ð97Þ

As the recursion relations involve operators in the singlet and vector representations, there are two scenarios corresponding
to (96) and (97). The explicit constraints are again given by (55)

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1N ðγ2q−1 − γ2qÞÞ ¼
λ2n−1;2q−1;2q
λ1;2q−1;2q

; ð98Þ

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1N ðγ2q − γ2qþ1ÞÞ ¼
λ2n−1;2q;2qþ1

λ1;2q;2qþ1

; ð99Þ

where ϕp is replaced by φ2q for even p and substituted by fφaφ
2q;φbφ

2qg for odd p. Here γ2q is the anomalous dimension
of φ2q, and γ2qþ1 is the anomalous dimension of φaφ

2q

γ2q ≡ γφ2q ; γ2qþ1 ≡ γφ2qþ1 ; ð100Þ

where φ2qþ1 means φaφ
2q with the OðNÞ index suppressed. The free three-point function coefficient of φq1

f , φq2
f , and φq3

f is
denoted by λq1;q2;q3

λq1;q2;q3 ≡ λφq1
f φ

q2
f φ

q3
f
: ð101Þ
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The ratios of three-point function coefficients for general q, N are30

λ2n−1;2q−1;2q
λ1;2q−1;2q

¼ 2n−2ðnþ 1Þnðq − nþ 1Þn−1
n! 3F2

"
1
2
− n

2
;− n

2
; 1 − n − N

2

q − nþ 1; 1
2
− n

; 1

#
; ð102Þ

λ2n−1;2q;2qþ1

λ1;2q;2qþ1

¼ 2n−2ðnþ 1Þnðq − nþ 2Þn−1
n! 3F2

"
1
2
− n

2
; 1 − n

2
; 1 − n − N

2

q − nþ 2; 1
2
− n

; 1

#
: ð103Þ

The 3F2 hypergeometric series terminate for integer n due to the first two parameters. A sum of (98) and (99) from q ¼ 1 to
q ¼ n − 1 gives

22k−1ðk − 1Þ!
�
1 −

nk
n − 1

�
k
lim
ϵ→0

ðα−1N ðγ1 − γ2n−1ÞÞ ¼
Xn−1
q¼1

�
λ2n−1;2q−1;2q
λ1;2q−1;2q

þ λ2n−1;2q;2qþ1

λ1;2q;2qþ1

�
: ð104Þ

As in the N ¼ 1 case, we have limϵ→0ðα−1N γ1Þ ¼ 0 and limϵ→0ðα−1N γ2n−1Þ ¼ ðn − 1Þ limϵ→0ðα−1N ϵÞ due to (93) and (95). We
obtain

αN ¼ ð−1Þkþ122k−nðn − 1Þðk − 1Þ!ð k
n−1 þ 1Þk

ðnÞn3F2

"
1
2
− n

2
;− n

2
; 1 − n − N

2

1; 1
2
− n

; 1

# ϵþOðϵ2Þ; ð105Þ

where the 3F2 hypergeometric series is associated with summing those appearing in the ratios of three-point function
coefficients. Then the solution to (95) reads

γ1 ¼
4n−2k−1ðn − 1Þ!ð1þ N

2
Þn−1

ð k
n−1Þ2kð1 − kÞk−1k!

α2N þOðϵ3Þ; ð106Þ

which is the k > 1 generalization of the Eq. (4.103) in [98]. As before, the first order anomalous dimension of φa vanishes,

i.e., γð1Þ1 ¼ 0. The anomalous dimensions for other scalar primaries are

γ2qþ1 ¼
2q − nþ 2

nðn − 2Þ! ðq − nþ 2Þn−1
3F2

"
1−n
2
;− n

2
; 1 − n − N

2

q − nþ 2; 1
2
− n

; 1

#

3F2

"
1−n
2
;− n

2
; 1 − n − N

2

1; 1
2
− n

; 1

#þOðϵ2Þ; ð107Þ

and

γ2q ¼ γ2qþ1 −
ðq − nþ 2Þn−1

ðn − 2Þ!
3F2

"
1−n
2
; 1 − n

2
; 1 − n − N

2

q − nþ 2; 1
2
− n

; 1

#

3F2

"
1−n
2
;− n

2
; 1 − n − N

2

1; 1
2
− n

; 1

# þOðϵ2Þ: ð108Þ

These generalize the n ¼ 2, 3 results obtained in [37,38]. Moreover, we obtain an OðNÞ generalization of (61)

30Let us explain how we derive these ratios. The coefficient of Ni in the N expansion can be computed by counting the number
of configurations with i loops. Based on some concrete examples, we notice that the decomposition of these ratios in terms of
ð1 − n − N=2Þj leads to simple coefficients in which the q dependence is encoded in Pochhammer symbols. Then we use the N ¼ 1

expression to fix the complete coefficients and determine the general N formulas.

YONGWEI GUO and WENLIANG LI PHYS. REV. D 109, 025015 (2024)

025015-14



Δφ2n − d ¼ ðn − 1ÞϵþOðϵ2Þ; ð109Þ

which is independent of N. Therefore, φ2n is an irrelevant operator with Δφ2n > d.
Then we consider the matching conditions involving the broken higher-spin currents

lim
ϵ→0

α−2N h□kφaðx1Þ□kφbðx2ÞJ ðmÞ
l ðx3; zÞi ¼ hφaφ

2n−2ðx1Þφbφ
2n−2ðx2ÞJ ðmÞ

l ðx3; zÞif : ð110Þ

The explicit constraints can be derived from (68) by substituting ϕp with φ2q for even p and fφaφ
2q;φbφ

2qg for odd p

lim
ϵ→0

�
α−2N

�
γ1 −

1

2
γJ ðmÞ

l

��
γ1 −

1

2
γJ ðmÞ

l
þ ϵ

2
þ 1 − l −m −

du
2

�
2k

�
¼ RN

42kð−mÞmð2k −m − 1Þ! : ð111Þ

The solutions of three kinds of broken currents depend on the corresponding ratios of three-point function coefficients

RN ¼
λ
φ2n−1φ2n−1J ðmÞ

l

λ
φφJ ðmÞ

l

¼

8>><
>>:

4n−1ð2n − 1Þðn − 1Þ!ðN
2
þ 1Þn−1 singlet

22n−3ð4nþ N − 2Þðn − 1Þ!ðN
2
þ 2Þn−2 symmetric traceless

4n−1ðn − 1Þ!ðN
2
þ 1Þn−1 anti-symmetric;

ð112Þ

which are derived in Appendix B. As in the N ¼ 1 case, we
find two possibilities:

(i) γJ ∼ ϵ2

In the generic case, we have

γJ ðmÞ
l

¼ 2γ1 − 2α2N

×
RN

42kð−mÞmð2k −m − 1Þ!ðmþ l − k n−2
n−1Þ2k

þOðϵ3Þ; ð113Þ
which takes almost the same form as (69). The
anomalous dimensions of the broken currents are
expressed in terms of αN in (105), γ1 in (106), and
RN in (112). One can check that the spin-2 singlet
and the spin-1 antisymmetric operators on the
highest trajectories, i.e., m ¼ k − 1, have vanishing
anomalous dimensions. They correspond to the
stress tensor and the OðNÞ symmetry currents.

(ii) γJ ∼ ϵ1

As in the N ¼ 1 case, we should be more careful
when l≤2k−m−du=2 with even du. The assump-
tion that k and n − 1 have no common divisor
implies n ¼ 2 at even du. Again, the exceptional
operators are the spin-0 operators on the lowest
trajectory with m ¼ 0. The matching condition
(111) then gives

γφ2
S
¼ ϵ

2
� 4 − N
2ðN þ 8Þ ϵþOðϵ2Þ;

γφ2
T
¼ ϵ

2
� N þ 4

2ðN þ 8Þ ϵþOðϵ2Þ; ð114Þ

which are independent of k at leading order. The
solutions with different signs are related by the

shadow transform Δ → d − Δ. Note that φ2
S ¼ φ2

is the singlet operator, and φ2
T;ab ¼ φaφb −

δab
N φ2 is

the symmetric traceless operator. The spin-0 oper-
ator on the lowest trajectory in the anti-symmetric
representation does not exist. The physical solutions
correspond to those with the minus sign. The case of
γφ2

S
can be obtained from γ2q formula (108).31

As in the N ¼ 1 case [71], we can also obtain the spin-0
anomalous dimensions (114) from (113) by analytic
continuation in conformal spin [72]. According to (114),
the two solutions in the singlet case are degenerate at
N ¼ 4þOðϵÞ. To have a better understanding of the N
dependence, we examine the Chew-Frautschi plot at

31As in [36], the anomalous dimension of the symmetric
traceless operator φ2q

T can be derived from the matching condition
with n ¼ 2

lim
ϵ→0

α−1N h□kφaðx1Þφbφ
2q−2ðx2Þφ2q

T;ceðx3Þi

¼ hφaφ
2ðx1Þφbφ

2q−2ðx2Þφ2q
T;ceðx3Þif : ð115Þ

The matching condition above leads to

22k−1ðk − 1Þ!ð1 − 2kÞklim
ϵ→0

α−1ðγφ2q−1 − γφ2q
T
Þ ¼ 2ð3p − 2Þ: ð116Þ

From the solutions of α and γφ2q−1 in (105) and (107), we obtain

γφ2q
T
¼ −N þ qðN þ 6q − 4Þ

N þ 8
; ð117Þ

which is independent of k. In particular, the q ¼ 1 case gives
γφ2

T
¼ 2

Nþ8
ϵþOðϵ2Þ. In the q ¼ 2 case, we verify that φ4

T is an
irrelevant operator because Δφ4

T
− d ¼ 8

Nþ8
ϵþOðϵ2Þ. See also

[37,38] for the case of n ¼ 3.
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different N. Following [100], the analytic continuation of
the leading trajectories with lowest twist, i.e., τ¼2Δφ þ
Oðϵ2Þ, is given by

ðΔ − d=2Þ2 ¼ ð2k − ϵþ lþ γJ ð0Þ
l
− d=2Þ2

¼ l2 − lϵþ
�
1

4
þ
�ð−1Þkþ1ðkþ 1Þk−1

ð2kÞk
l

−
3ð2k − 1Þ!
ðlþ 1Þ2k−1

�
2ðN þ 2Þ
ðN þ 8Þ2

�
ϵ2 þOðϵ3Þ;

ð118Þ

where the 1=l poles cancel at each order in the ϵ expansion
and ðΔ − d=2Þ is analytic in l near l ¼ 0. Setting l ¼ 0,
we obtain the same solutions (114) from the analytic
continuation in conformal spin.

Using (118), we plot the trajectories in the real
(Δ − d=2,l)-plane. A simple example of Chew-Frautschi
plot with k ¼ 1, N ¼ 1 can be found in Fig. 3. For generic
N, the singlet trajectory has two different intersections with
the horizontal line l ¼ 0. However, there exists a special
value

N�jgenerick ¼ 4þOðϵÞ; ð119Þ

at which the two intersections coincide and become
degenerate at Δ ¼ d=2, as noticed above from (114). To
see the l ¼ 0 intersections more clearly, we zoom in on the
region near l ¼ 0 for k ¼ 1 in Fig. 4, where N ranges from
2 to 6. For generic k, we find:

(i) After resolving the mixing of Regge trajectories near
the leading intercept, there exist two solutions to
Δ ¼ d=2:

l�
� ¼

�
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðN þ 2Þp
N þ 8

�
ϵþOðϵ2Þ; ð120Þ

which is independent of k at leading order. The
higher solution l�þ is known as the Regge intercept.
As we increase N, the distance between the two
intercepts grows for N < N�, but decreases for
N > N�. In particular, the lower intercept l�

− van-
ishes at the transition value N ¼ N� and thus the
spin-0 intersections coincide.

(ii) As N increases, the physical intersection with the
l ¼ 0 line moves smoothly from left to right, which
is possible due to the vanishing lower intercept l�

−
at the transition value N ¼ N�. Accordingly, the
scaling dimension of the singlet operator φ2

S is
smaller than d=2 for N < N� and greater than
d=2 for N > N�.

FIG. 4. The singlet trajectories near l ¼ 0 from (118). The intersection associated with the singlet operator φ2
S is represented by the

green points. As N increases, the trajectory near l ¼ 0 moves downward for N < 4 and then upward for N > 4. The physical
intersection associated with φ2

S moves from left to right. At N ¼ 4, the trajectory is tangent to the horizontal line l ¼ 0, and the two
solutions for φ2

S in (114) become degenerate. The plots are made at k ¼ 1 with ϵ ¼ 0.3. (a) N ≤ 4. (b) N ≥ 4.

FIG. 3. Chew-Frautschi plot of the leading Regge trajectory
near the intercept from (118) with k ¼ 1; N ¼ 1; ϵ ¼ 0.3.
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In general, we can define the transition value N� by the degeneracy condition Δφ2
S
¼ d=2. In the canonical case k ¼ 1, we

can make use of the high order expression of Δφ2
S
derived in the traditional diagrammatic approach [97]. The corresponding

k ¼ 1 transition value is

N�jk¼1 ¼ 4 − 4ϵþ 1þ 7ζ3
2

ϵ2 þ 31 − 89ζ3 þ 189ζ4 − 730ζ5
72

ϵ3

þ −140þ 709ζ3 − 4824ζ23 − 3204ζ4 þ 14298ζ5 − 43800ζ6 þ 110691ζ7
3456

ϵ4 þOðϵ5Þ; ð121Þ

where ζi ¼ ζðiÞ denotes the value of the Riemann zeta function at integer i. Some higher-order terms can also be computed
easily, but they are not presented here for brevity. The transition valueN� is not necessarily an integer due to the existence of
higher order terms in ϵ. Using the order ϵ4 expression for the singlet currents [104], we can also derive the higher-order
terms of the two intercepts at k ¼ 1:

l�
�jk¼1 ¼

�
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðN þ 2Þp
N þ 8

�
ϵ −

�
7ðN þ 2Þ
2ðN þ 8Þ2 �

ð5N2 þ 26N þ 68Þ
ðN þ 8Þ3

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 2

6

r �
ϵ2

þ
�

N þ 2

8ðN þ 8Þ4 ð272þ 152N þ 41N2 þ 16ðN þ 8Þ2ζ2Þ

� 1

12ðN þ 8Þ5
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 2

6

r
ð18752þ 14080N þ 1524N2 − 254N3 − N4 þ 12ðN þ 8Þ4ζ2

þ 72ðN − 4ÞðN þ 8Þð5N þ 22Þζ3Þ
�
ϵ3 þOðϵ4Þ; ð122Þ

which are consistent with [97,100]. To determine the
extreme value of the lower intercept, we impose that
l�
−jk¼1 is stationary with respect to N:

∂

∂NðiÞ l
�
−jk¼1 ¼ 0; i ¼ 0; 1; 2;…; ð123Þ

where NðiÞ is defined by the perturbative expansion
N ¼ P∞

i¼0N
ðiÞϵi. The solution Nð0Þ ¼ 4; Nð1Þ ¼ −4;

Nð2Þ ¼ ð1þ 7ζ3Þ=2 gives precisely the first three coeffi-
cients of N�jk¼1 in (121). The corresponding extreme value

l�
−jk¼1;extreme ¼ Oðϵ4Þ ð124Þ

is consistent with our general expectation that
l�
−jN¼N� ¼ 0.

B. Analytic bootstrap

We again use the Lorentzian inversion formula to verify
the consistency of the multiplet recombination results with
OPE associativity. The four-point function of fundamental
fields reads

hφaðx1Þφbðx2Þφcðx3Þφeðx4Þi ¼
Gabceðu; vÞ
x
2Δφ

12 x
2Δφ

34

: ð125Þ

As the intermediate operators transform in three irreducible
representations of the OðNÞ symmetry, we introduce the
basis of tensor structures:

Gabceðu; vÞ ¼ GSðu; vÞTS
abce þ GTðu; vÞTT

abce þ GAðu; vÞTA
abce; ð126Þ

where

TS
abce ¼ δabδce; TT

abce ¼
δacδbe þ δaeδbc

2
−

1

N
δabδce; TA

abce ¼
δacδbe − δaeδbc

2
: ð127Þ

The 1 ↔ 3 crossing equation vΔφGabceðu; vÞ ¼ uΔφGcbaeðv; uÞ results in three crossing equations for the three tensor
structures respectively:

vΔφGSðu; vÞ ¼ uΔφ

�
1

N
GSðv; uÞ þ

ðN − 1ÞðN þ 2Þ
2N2

GTðv; uÞ −
N − 1

2N
GAðv; uÞ

�
; ð128Þ
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vΔφGTðu; vÞ ¼ uΔφ

�
GSðv; uÞ þ

N − 2

2N
GTðv; uÞ þ

1

2
GAðv; uÞ

�
; ð129Þ

vΔφGAðu; vÞ ¼ uΔφ

�
−GSðv; uÞ þ

N þ 2

2N
GTðv; uÞ þ

1

2
GAðv; uÞ

�
: ð130Þ

To order ϵ2, we need to consider the cross-channel

scalars φ2ðn−1Þ
S;T in the singlet and the symmetric traceless

representations

φ2ðn−1Þ
S ¼ φ2ðn−1Þ; φ2ðn−1Þ

T;ab ¼
�
φaφb −

δab
N

φ2

�
φ2ðn−2Þ:

ð131Þ

The anti-symmetric counterpart of φ2q does not exist. We
use the same classification of the two types of inversions as
in the N ¼ 1 case:

(i) Type I: n ¼ 2

The double discontinuity at order ϵ2 involves the
anomalous dimensions of φ2

S and φ2
T

γφ2
S
¼ N þ 2

N þ 8
ϵþOðϵ2Þ; γφ2

T
¼ 2

N þ 8
ϵþOðϵ2Þ;

ð132Þ

where γφ2
S
¼ γ2 has been derived in (108) and the

computation of γφ2
T
can be found in footnote 31.

The inversion procedure is similar to theN ¼ 1 case.
The results are consistent with those from the
multiplet recombination, and we have checked this
for the cases of m ¼ 0, 1, 2.

(ii) Type II: n > 2 (k and n − 1 have no common
divisor)
To order ϵ2, the operators contributing to the

double discontinuity are φ2n−2
S and φ2n−2

T , with OPE
coefficients obtained in Appendix A:

λ̃2φφφ2n−2
S

¼
λ2
φφφ2n−2

S

4n−1ðn − 1Þ!ðN
2
Þn−1

;

λ̃2φφφ2n−2
T

¼
λ2
φφφ2n−2

T

22n−3ðn − 2Þ!ðN
2
þ 2Þn−2

: ð133Þ

The inversion results are also compatible with the
multiplet recombination results, which is verified for
m ¼ 0, 1, 2.

Therefore, we confirm the consistency of the multiplet
recombination and analytic bootstrap results for OðNÞ
models.

VI. DISCUSSION

In this work, we have studied the higher-derivative
generalizations of the Ising multicritical CFTs, i.e., the
□

k scalar CFTs deformed by ϕ2n interactions, and their
OðNÞ extensions. We derived the general formulas (69)
and (71) for the leading anomalous dimensions of con-
served and partially conserved higher-spin currents. We
first computed them from the multiplet recombination and
then used the Lorentzian inversion formula to verify that
they are compatible with crossing symmetry. In addition,
we extended the results to the OðNÞ models in (113) and
(114). In the OðNÞ case, we further discussed the N
dependence of the Chew-Frautschi plot and pointed out
the existence of a special value N� at which the two spin-0
intersections become degenerate. The explicit expressions
of N� are given in (119) and (121). We plan to study the
higher-derivative defect CFTs and deduce the defect CFT
data for generic fk; n; Ng.
Besides the spinless multiplet recombination (32), there

exist spinning multiplet recombination phenomena. The
shortening condition for the spinning current J ðmÞ

l is

broken at the generalized WF fixed points, so J ðmÞ
l should

recombine with another spinning multiplet to form a long
multiplet, except for the stress tensor and the OðNÞ global
symmetry currents. The k ¼ 1 case had been studied in
[45,51,52,55]. It is curious to see how the multiplets of
partially conserved currents recombine in the generalized
WF CFTs.
It would be interesting to investigate these higher-

derivative multicritical CFTs at integer dimensions if
they indeed exist. As the Gaussian CFTs with higher
derivatives are nonunitary, we expect that the interacting
CFTs violate unitarity as well. To perform the nonpertur-
bative study, we need to use the conformal bootstrap
methods that do not rely on positivity constraints
[105–114].
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APPENDIX A: SOME OPE COEFFICIENTS

The three-point function coefficients λϕϕϕ2ðn−1Þ ; λϕϕϕ2n

are constrained by the matching conditions (51). The
solutions are

λϕϕϕ2ðn−1Þ ¼ −
k!ðn!Þ3ð1þ k

n−1Þk−1
4k−1ð2nÞ!ð3

2
Þk−1ð− ðn−2Þk

n−1 Þk
ϵþOðϵ2Þ; ðA1Þ

λϕϕϕ2n ¼ −
ðn!Þ3ð1þ k

n−1Þk−1
ð2n − 1Þ!ð1 − ð2n−1Þk

n−1 Þk
ϵþOðϵ2Þ: ðA2Þ

The type II inversion in OðNÞ models involves the OPE
coefficients λφaφbφ

2n−2
S

and λφaφbφ
2n−2
T

. We consider the OðNÞ
generalizations of (48)

lim
α→0

α−1N h□kφaðx1Þφbðx2Þφ2n−2
S ðx3Þi

¼ hφaφ
2n−2ðx1Þφbðx2Þφ2n−2

S ðx3Þif ; ðA3Þ

lim
α→0

α−1N h□kφaðx1Þφbðx2Þφ2n−2
T;ce ðx3Þi

¼ hφaφ
2n−2ðx1Þφbðx2Þφ2n−2

T;ce ðx3Þif : ðA4Þ

In the basis δab and
δacδbeþδaeδbc

2
− 1

N δabδce for the singlet and
symmetric traceless cases respectively, we obtain

λφφφ2n−2
S

¼ 4n−2kðn − 1Þ!ð1þ N
2
Þn−1

ð3
2
Þk−1ð1 − k

n−1Þk
αN þOðϵ2Þ; ðA5Þ

λφφφ2n−2
T

¼ 4n−2kðn − 1Þ!ð2þ N
2
Þn−2

ð3
2
Þk−1ð1 − k

n−1Þk
αN þOðϵ2Þ: ðA6Þ

APPENDIX B: RATIOS OF THREE-POINT
FUNCTION COEFFICIENTS

The ratio of three-point function coefficients (66) is
obtained by considering the following four-point functions

hϕfðx1Þϕfðx2Þϕfðx3Þϕfðx4Þi ¼
G1ðu; vÞ
x
2Δϕf
12 x

2Δϕf
34

; ðB1Þ

hϕ2n−1
f ðx1Þϕ2n−1

f ðx2Þϕfðx3Þϕfðx4Þi ¼
G2ðu; vÞ

x
2ð2n−1ÞΔϕf
12 x

2Δϕf
34

;

ðB2Þ

where u ¼ zz̄ and v ¼ ð1 − zÞð1 − z̄Þ. Recall that we have
normalized the correlators such that the three-point func-
tion coefficients are exactly given by Wick contractions

G1ðu; vÞ ¼ 1þ uΔϕf

�
1þ 1

vΔϕf

�
; ðB3Þ

G2ðu;vÞ ¼ ð2n− 1Þ!þð2n− 1Þ2ð2n− 2Þ!uΔϕf

�
1þ 1

vΔϕf

�
;

ðB4Þ
which have the same u, v dependencies up to the factor
ð2n − 1Þ2ð2n − 2Þ!. When expanded into conformal
blocks, the three-point function coefficients should satisfy

λ
ϕ2n−1
f ϕ2n−1

f J ðmÞ
l;f
λ
ϕfϕfJ

ðmÞ
l;f

¼ ð2n− 1Þ2ð2n− 2Þ!λ2
ϕfϕfJ

ðmÞ
l;f

; ðB5Þ

which gives the ratios of the three-point function coeffi-
cients (66).
For the OðNÞ model, we consider four-point functions

hφaðx1Þφbðx2Þφcðx3Þφeðx4Þif ¼
G1ðu; vÞ
x
2Δφf
12 x

2Δφf
34

; ðB6Þ

hφaφ
2n−2ðx1Þφbφ

2n−2ðx2Þφcðx3Þφeðx4Þif
¼ G2ðu; vÞ

x
2ð2n−1ÞΔφf
12 x

2Δφf
34

: ðB7Þ

We introduce the following basis of tensor structures:

Gðu; vÞ ¼ GSðu; vÞTS
abce þ GTðu; vÞTT

abce þ GAðu; vÞTA
abce;

ðB8Þ

where

TS
abce ¼ δabδce; TT

abce ¼
δacδbe þ δaeδbc

2
−

1

N
δabδce;

TA
abce ¼

δacδbe − δaeδbc
2

: ðB9Þ

So the G functions are

GS;1ðu; vÞ ¼ 1þ 1

N
uΔφf

�
1þ 1

vΔφf

�
; ðB10Þ

GS;2ðu; vÞ ¼ 4n−1ðn − 1Þ!
�
N
2
þ 1

�
n−1

þ 4n−1ð2n − 1Þðn − 1Þ!ðN
2
þ 1Þn−1

N

× uΔφf

�
1þ 1

vΔφf

�
; ðB11Þ

GT;1ðu; vÞ ¼ uΔφf

�
1þ 1

vΔφf

�
; ðB12Þ

GT;2ðu; vÞ ¼ 22n−3ð4nþ N − 2Þðn − 1Þ!

×

�
N
2
þ 2

�
n−2

uΔφf

�
1þ 1

vΔφf

�
; ðB13Þ
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GA;1ðu; vÞ ¼ uΔφf

�
1 −

1

vΔφf

�
; ðB14Þ

GA;2ðu; vÞ ¼ 4n−1ðn − 1Þ!
�
N
2
þ 1

�
n−1

uΔφf

�
1 −

1

vΔφf

�
;

ðB15Þ
where the u, v dependencies of the two correlators are the
same up to a factor for each component. Then we can derive
the ratios of three-point function coefficients in (112).

APPENDIX C: LIGHT CONE EXPANSION
OF CONFORMAL BLOCKS

Consider the four-point function hϕðx1Þϕðx2Þ×
ϕðx3Þϕðx4Þi. The conformal blocks satisfy the Casimir
equation [115]

C2G
ðdÞ
Δ;lðz; z̄Þ ¼ ðhðhþ 1−dÞþ h̄ðh̄− 1ÞÞGðdÞ

Δ;lðz; z̄Þ; ðC1Þ
where the quadratic Casimir operator is

C2 ¼ Dz þDz̄ þ ðd − 2Þ zz̄
z − z̄

ðð1 − zÞ∂z − ð1 − z̄Þ∂z̄Þ;
ðC2Þ

with

Dz ¼ z2∂zð1 − zÞ∂z: ðC3Þ

The boundary condition is GðdÞ
Δ;lðz; z̄Þ ¼ zhz̄h̄ð1þ…Þ as

z → 0, z̄ → 0. The small z expansion of conformal block
reads [116]:

GðdÞ
Δ;lðz; z̄Þ ¼

X∞
i¼0

zhþi
Xi

j¼−i
cðdÞi;j ðh; h̄Þz̄h̄þj

× 2F1ðh̄þ j; h̄þ j; 2ðh̄þ jÞ; z̄Þ; ðC4Þ

where h ¼ Δ−l
2
, h̄ ¼ Δþl

2
, and 2F1 is the Gaussian hyper-

geometric function. The coefficient cðdÞi;j ðh; h̄Þ can be
determined by solving the Casimir equation order by order
in z, To study the leading, subleading and sub-subleading

trajectory, we need to know the coefficient cðdÞi;j ðh; h̄Þ with
i ¼ 0, 1, 2. Their explicit expressions are

cðdÞ0;0ðh; h̄Þ ¼ 1; ðC5Þ

cðdÞ1;−1ðh; h̄Þ ¼ −
ðd − 2Þðh − h̄Þ
d − 2hþ 2h̄ − 4

; ðC6Þ

cðdÞ1;0ðh; h̄Þ ¼
h
2
; ðC7Þ

cðdÞ1;1ðh; h̄Þ ¼
ðd − 2Þh̄2ðhþ h̄ − 1Þ

4ð2h̄ − 1Þð2h̄þ 1Þð2 − dþ 2hþ 2h̄Þ ; ðC8Þ

cðdÞ2;−2ðh; h̄Þ ¼
ðd− 2Þdðh− h̄Þðh− h̄þ 1Þ

2ðd− 2hþ 2h̄− 6Þðd− 2hþ 2h̄− 4Þ ; ðC9Þ

cðdÞ2;−1ðh; h̄Þ ¼ −
ðd − 2Þðhþ 1Þðh − h̄Þ
2ðd − 2hþ 2h̄ − 4Þ ; ðC10Þ

cðdÞ2;0ðh; h̄Þ ¼ −
1

32
ðd − 2h − 3Þðdþ 2hÞ þ 1

64
ð3d2 − 10dþ 6Þ

−
ð2h̄ − 3Þð2h̄þ 1Þ

32ðd − 2h − 3Þðd − 2h − 2h̄ − 2Þðd − 2hþ 2h̄ − 4Þ

þ d2 − 6dþ 6

16ðd − 2h − 3Þðd − 2h − 2h̄ − 2Þðd − 2hþ 2h̄ − 4Þ

þ ðd − 2Þdðd − 2h − 5Þð2h − 3Þð2h − 1Þ
64ðd − 2h − 3Þðd − 2h − 2h̄ − 2Þð2h̄ − 3Þð2h̄þ 1Þðd − 2hþ 2h̄ − 4Þ

þ ð−dþ 2hþ 5Þðd3 − 8d2 þ 20d − 17Þ
32ðd − 2h − 2h̄ − 2Þðd − 2hþ 2h̄ − 4Þ

þ d4 − 16d3 þ 83d2 − 174dþ 132

64ðd − 2h − 2h̄ − 2Þðd − 2hþ 2h̄ − 4Þ ; ðC11Þ

cðdÞ2;1ðh; h̄Þ ¼ −
ðd − 2Þðhþ 1Þh̄2ðhþ h̄ − 1Þ

8ðd − 2h − 2h̄ − 2Þð2h̄ − 1Þð2h̄þ 1Þ ; ðC12Þ

cðdÞ2;2ðh; h̄Þ ¼
ðd − 2Þdh̄2ðh̄þ 1Þ2ðhþ h̄ − 1Þðhþ h̄Þ

32ðd − 2h − 2h̄ − 4Þðd − 2h − 2h̄ − 2Þð2h̄ − 1Þð2h̄þ 1Þ2ð2h̄þ 3Þ : ðC13Þ
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APPENDIX D: INVERSION AT SUBLEADING AND SUB-SUBLEADING TWISTS

In this appendix, we discuss the inversion procedure for the subleading and sub-subleading trajectories. We consider the
scalar block [117]

GðdÞ
Δ;0ð1 − z̄; 1 − zÞjlog z ¼ ð1 − z̄ÞΔ=2 ΓðΔÞ

ΓðΔ=2Þ2
	
−2F1

�
Δ
2
;
Δ
2
; 1 −

d
2
þ Δ; 1 − z̄

�

þ 1

4
Δ
�
ð2 − ΔÞ2F1

�
Δ
2
;
Δ
2
; 1 −

d
2
þ Δ; 1 − z̄

�

þ ðd − 2ÞΔ
d − 2ðΔþ 1Þ ð1 − z̄Þ2F1

�
1þ Δ

2
; 1þ Δ

2
; 2 −

d
2
þ Δ; 1 − z̄

��
z

þ 1

64
Δ
�
ðΔ − 2Þð−Δ2 þ 2Δ − 8Þ2F1

�
Δ
2
;
Δ
2
; 1 −

d
2
þ Δ; 1 − z̄

�

þ 2ΔðΔ2 þ 4Þðd − 2Þ
d − 2ðΔþ 1Þ ð1 − z̄Þ2F1

�
1þ Δ

2
; 1þ Δ

2
; 2 −

d
2
þ Δ; 1 − z̄

�

−
dðd − 2ÞΔðΔþ 2Þ2

ðd − 2ðΔþ 1ÞÞðd − 2ðΔþ 2ÞÞ ð1 − z̄Þ22F1

�
2þ Δ

2
; 2þ Δ

2
; 3 −

d
2
þ Δ; 1 − z̄

��
z2 þOðz3Þ



;

ðD1Þ

and the crossing factor

zΔϕ z̄Δϕ

ð1 − zÞΔϕð1 − z̄ÞΔϕ
: ðD2Þ

As in the leading trajectory calculation, there are also type I
and II inversions in the subleading and sub-subleading cases.
We substitute Δ ¼ 2Δϕ þ γ̃ϕ2 into (D1) for the type I
inversion, and we substitute Δ ¼ 2kþOðϵÞ into (D1) for
the type II inversion. After multiplying the results by the
crossing factor (D2), we evaluate the double discontinuities.
In the cases of higher trajectories, the anomalous

dimensions are given by the inversion integral (81) at
higher orders in z. For subleading twist calculations, we are
interested in the inversion at order zΔϕþ1. The log z part of
the inversion integral in (81) corresponds to

1

2
c0;0ðhþ 1; h̄Þ

�
λ̃2
ϕϕJ ð1Þ

l

γ̃J ð1Þ
l

�
l→h̄−Δϕ

þ 1

2

X1
j¼−1

c1;jðh; h̄ − jÞ
�
λ̃2
ϕϕJ ð0Þ

l

γ̃J ð0Þ
l

�
l→h̄−j−Δϕ

: ðD3Þ

The result contains the contributions from the leading
trajectory. We obtain the anomalous dimensions γ̃J ð1Þ

l
of

bilinear operators in the subleading twist trajectory after
subtracting the leading trajectory contribution. The sub-
subleading twist calculations are similar. We are then
interested in the inversion at order zΔϕþ2. The result of
the inversion integral corresponds to the terms

1

2
c0;0ðhþ 2; h̄Þ

�
λ̃2
ϕϕJ ð2Þ

l

γ̃
J ð2Þ

l

�
l→h̄−Δϕ

þ 1

2

X1
j2¼−1

c1;j2ðhþ 1; h̄ − j2Þ
�
λ̃2
ϕϕJ ð1Þ

l

γ̃
J ð1Þ

l

�
l→h̄−j2−Δϕ

þ 1

2

X2
j1¼−2

c2;j1ðh; h̄ − j1Þ
�
λ̃2
ϕϕJ ð0Þ

l

γ̃J ð0Þ
l

�
l→h̄−j1−Δϕ

; ðD4Þ

and we obtain the anomalous dimensions γ̃
J ð2Þ

l
of bilinear

operators in the sub-subleading twist trajectory. All the
results agree with those from the multiplet recombination
method.
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