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We study the late-time behaviors of pseudo-(Rényi) entropy of locally excited states in rational
conformal field theories. To construct the transition matrix, we utilize two nonorthogonal locally excited
states that are created by the application of different descendant operators to vacuum. We show that when
two descendant operators are generated by a single Virasoro generator acting on the same primary operator,
the late-time excess of pseudoentropy and pseudo-Rényi entropy corresponds to the logarithm of the
quantum dimension of the associated primary operator, in agreement with the case of entanglement
entropy. However, for linear combination operators generated by the generic summation of Virasoro
generators, we obtain a distinct late-time excess formula for the pseudo-(Rényi) entropy compared to that
for (Rényi) entanglement entropy. As the mixing of holomorphic and antiholomorphic generators enhances
the entanglement, in this case, the pseudo-(Rényi) entropy can receive an additional contribution. The
additional contribution can be expressed as the pseudo-(Rényi) entropy of an effective transition matrix in a
finite-dimensional Hilbert space.
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I. INTRODUCTION

The discovery of the AdS/CFT correspondence [1-3]
has motivated much research related to quantum informa-
tion theory in the high-energy physics community in recent ) (@] Dup
years. Among them, quantum entanglement, as a carrier of TVl = = v (1)
quantum information, plays an increasingly significant role lolw)  ulpyp,]
in probing the structure of quantum field theories (QFTs)
[4-10], the emergence of geometry [11-13], and the black
hole information paradox [14-18].

Recently, a new entanglement measure called pseudoen-
tropy was proposed in [19] as a generalization of entan-
glement entropy. Specifically, pseudoentropy is a two-state
vector version of entanglement entropy defined as follows.
Given two nonorthogonal states [y) and |@) in the Hilbert

space Hg of a composed quantum system S = A U B, we
first construct an operator called the transition matrix acting
on Hg [19,20],

The pseudoentropy of subsystem A is then obtained by
calculating the von Neumann entropy of the reduced

transition matrix 7% = try[T¥17),
S(T4") = —te[T " 10g ). 2)
Generally, the reduced transition matrix is non-Hermitian,

requiring careful consideration when discussing pseudoen-
tropy in systems with infinite-dimensional Hilbert spaces
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(such as in QFTs) since taking the logarithm of a generic
operator requires choosing a radial line in the complex
plane that does not intersect the spectrum [21]. To avoid
dealing directly with the logarithm of the non-Hermitian
matrix, in practice, one usually computes a quantity called
pseudo-Rényi entropy,

logte[(T4)],  (3)

n n W 1
sy = ST =
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instead of pseudoentropy, and the branch of the logarithm
function is chosen to be —z < Im[log(z)] < z. ForneN™,
n > 2, (3) admits an alternative expression:

1 wloy\n
L e[Shr]

(Zarn=1). @)

J

S(n) (TKW) =

where 1;(T YI7) are the ecigenvalues of 7% directly

following from a Jordan decomposition of 7%, In this
paper, we mainly focus on the pseudo-Rényi entropy for
general n(n >2). When discussing pseudoentropy, we
refer to the Shannon entropy defined by the eigenvalues

of TV,

= AT logli; (T{)). )

For finite-dimensional systems, it is clear that (2) equals
(5), and the latter can be obtained from taking an analytic
continuation of n — 1 on (4). However, as previously
mentioned, for infinite-dimensional systems, the definition
of pseudoentropy in (2) may not be well defined in general.

Pseudoentropy was originally proposed from the
study of the generalization of holography entanglement
entropy [19]. In the AdS/CFT context, the pseudoentropy
of a boundary subsystem is proposed to be dual to the area
of a minimal surface in a Euclidean time-dependent AdS
space [19]. In addition, it is found that pseudoentropy is
closely related to postselection experiments in quantum
information [19,22] (i.e., in addition to the initial state, the
system’s final state is also specified [23]). There are also
many research interests and prospects driving the study of
pseudoentropy in QFTs [24-30]. See [20,31-38] for other
related developments of pseudoentropy.

Nonequilibrium dynamics in quantum many-body sys-
tems is a subject of intensive research [39,40]. One of the
recurring themes is how quantum entanglement arises and
propagates in nonequilibrium processes known as entan-
glement dynamics. Research shows that chaotic quantum
many-body systems can nonlocally disrupt quantum
information. The scrambling of quantum information will
at least lead to the loss of local initial state information and
lead to thermalization [41-43]. A typical nonequilibrium
process in quantum many-body systems is quantum
quench [44,45]. The process usually involves two steps:
First, prepare an initial state |y), which can be the ground
state of a certain Hamiltonian A, and then evolve it with a
different Hamiltonian H’. One can also quench the system
by a local perturbation (generally called a local quench
[46,47]), for instance, acting on a local operator (generally

called a local operator quench [48,49]). Then, the entan-
glement dynamics are diagnostic about the nature of this
excitation.

The present paper aims to study the properties of
pseudo-(Rényi) entropy of states obtained by acting on
vacuum with a descendant of a local primary operator
(also referred to as descendant states in this paper) in
two-dimensional conformal field theories (2D CFTs).
Our study can be traced back to the research on entangle-
ment entropy in local operator quantum quenches in
2D CFTs [49-65]. The local operator quench exhibits
broad applicability in measuring scrambling and
thermalization effects in CFTs with large central charge
[53,54,58,66,67], which can be regarded as a mani-
festation of quantum chaos, as well as in probing the
bulk geometry [68] and characterizing bulk dynamics
[63,69-71] in the context of AdS/CFT correspondence—
an essential avenue for comprehending quantum gravity.
It is found that the excess of Rényi entropy of the local
primary or descendant excited states in rational conformal
field theories (RCFTs) saturates to a constant equal to the
logarithm of the quantum dimension [72] of the local
operator’s conformal family [51,56,57]. Such a saturation
is well explained by the picture of quasiparticle pair
propagation [49]. The related research has been extended
to the pseudoentropy in parallel [30]. Specifically, when
studying the real-time evolution of the pseudo-Rényi
entropy, such as the second pseudo-Rényi entropy, for
locally primary excited states in RCFTs, the conformal
block at early times relies on the spatial positions of two
identical primary operators, leading to a model-dependent
pseudo-Rényi entropy. Nevertheless, the pseudo-Rényi
entropy shows a universal behavior at late times, which
only depends on the quantum dimension of the primary
operator, just like the entanglement entropy. The result
suggests that the picture of quasiparticle pair propagation
is preserved in the pseudoentropy. We generalize the
previous study [30] of the pseudo-(Rényi) entropy to
descendant operators in this paper to understand the
intricate connections between fusion rules and entangle-
ment properties [73], where fusion rules play a funda-
mental role in characterizing algebraic and structural
properties of a CFT [74,75]. The algebraic and structural
properties would be encoded in the dynamics of entan-
glement. Specifically, we would like to explore the late-
time behavior of the pseudo-Rényi entropy of two
descendant operators in RCFTs. We construct the tran-
sition matrix using two locally excited states created by
the operator

Vo) = Y apyiy - [[L-nLl-sOx)  (6)
{ni}.{n;} ij
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and evaluate the pseudo-Rényi entropy using the replica
method [5] and conformal mapping. In (6), O(x) is a
primary operator in the Schrodinger picture with chiral
and antichiral conformal dimension A, L_, (L_,) are
holomorphic (antiholomorphic) Virasoro generators, and
Ay ;) € C are superposition coefficients. Since the two-

point function between descendant operators of different
levels does not vanish, the transition matrices we are
permitted to construct have more degrees of freedom than
the cases of the primary operator [76]. It is interesting to
see whether the late-time behavior of the pseudo-(Rényi)
entropy of subsystems corresponding to these transition
matrices has contributions other than the quantum
dimension.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the replica method for locally excited
states in 2D CFTs and provide our convention and some
useful formulas for the later calculations. In Sec. III, we
mainly focus on the late-time behavior of the second
pseudo-Rényi entropy of locally descendant excited states.
For simplicity, we study the cases in that a single hol-
omorphic Virasoro generator generates the descendants.
More general and complicated situations are discussed in
Sec. IV, where we derive the late-time behavior of the kth
pseudo-Rényi entropy for the generic descendant states. We
end with conclusions and prospects in Sec. V. Some
calculation details are presented in the appendixes.

II. SETUP IN 2D CFTs

A. Replica method with local operators

Our focus is on the pseudo-Rényi entropy of locally
excited states created by acting with the operator V, (6) on
the ground state in RCFTs, and the subsystem A under
consideration in this paper is always taken to be the interval
[0, 00). In this scenario, the pseudo-Rényi entropy can be
formulated in the path integral formalism using the replica
method. Given an RCFT that lives on a plane and has a
vacuum state |Q), we first prepare two locally excited states
using V, to construct a real-time evolved transition matrix
Tl‘z(t),

1) = eV, (x1)|Q), lya) = eHVy(x,)|Q),

i ) (|
12 = —iH! eiHt
T = (waly) )

Notice that an infinitesimally small parameter ¢ has been
introduced to suppress the high-energy modes [44]. We can
obtain the reduced transition matrix of subsystem A at time
t by tracing out the degrees of freedom of A¢ (the
complement of A), T47(#) = tr,[T"(2)]. It turns out that
the excess of the nth pseudo-Rényi entropy of A with

respect to the ground state, defined as AS(”)(TEZ(t)) =
SO (T(£)) = S (i, [|Q)(Q]). is of the form [30]

1 L _ _ _ -
AST0) =2 o TT Vs B Vo) ) = nlogtValon w0Vl | 9
z,

—n =1

using the replica method. In (8), £, denotes an n-sheeted Riemann surface with cuts on each copy corresponding to A, and
(Wok_1, War—1) and (wqy, W) are coordinates on the kth-sheet surface. The first term in Eq. (8) is given by a 2n-point
correlation function on X,, while a two-point function on X; gives the second term. We have

w2k_1:x1+t—i€, WszXZ+t+i€,

B. Convention and useful formulas

The 2n-point correlation function on X, in Eq. (8) can be
evaluated with the help of a conformal mapping of X, to the
complex plane X;. We can then map X, to X, using the
simple conformal mapping

w=z". (10)

Let us first focus on the case of n = 2. The calculation of

ASO(T flllz(t)) is related to the four-point function known
quite well for exactly solvable CFTs. In our convention,

V_V2k_1 =X — r+ i€,

Wy = Xp — I — €, (k=1,2,...,n). (9)

|
using Eq. (10), the four points z;, 25, 23, 24 in the complex
plane are given by

1=—23=I\/—Xx;—t+ie, Z1=—-Zz3=—Ii\/—x|+1—I¢,
== =I\/—Xy—t—le, Zp=—Z4=—I\/—Xx+1t+Ie.
(11)

The key point is that one should treat ¢+ ie as a pure
imaginary number in all algebraic calculations and take ¢ to
be real only in the final expression of the pseudo-Rényi
entropy. To evaluate the four-point correlation function, it is
useful to focus on the cross ratios [30]
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T34 (x1 +x, +21) + 2\/(x1 +1)(xy + 1) + € +ie(x; — x)

I 4/ (x) + 1) (xy + 1) + € +ie(x) — x,) ’
7o Zi2%3s _ (X1 +x2 = 20) + 24/ (x; — 1) (x, — 1) + €% — ie(x; — x5) (12)
213224 4y/(x; = 1)(xy — 1) + €* —ie(x] — x,) 7
where z;; = z; — z;, and a useful relation is
l—p— 214223 _ (13)
213224

Since we are mainly interested in the late-time (¢ — o0) behavior of pseudo-Rényi entropy, one can find some useful late-
time formulas from (11)

limz, ~ limz, ~ —/1, limz, ~ limzy ~ V1,
=00 =00 t—co t—oo °
limz, ~ limz;3 ~ —V/1, limzyy ~ limzyy ~ V7,
t—>00 t—o0 t—o0 =00
: . 1
hmz]4 ~ llm223 ~A (14)
=00 1—00 t

For the cross ratios (1,7), as shown in [30], we have

) _ (xp —x; +2i€)>  (x, — x| — 2ie)?
1 )= (1 ,— ~(1,0),
Jim (r. ) ( LT 167 (1.0

1 1 1 1, .
on~-=, 9;0;n ~—, 0;0;0kn ~ =, 0,0;000m ~— (i #j#k#I). (15)
t [ t

12

For general nth pseudo-Rényi entropy, the 2n points z;, 25, ..., 2», in the z coordinates are given by

k41/2 Lo L _ _ k+1/2 oL
Zppr = €0 (=xy — 1+ de)r, Zokpt = €0 (=xy 1= de)n,
/2

__ 27 KL
k2 = €7 1

(—xy —t—i€)r,  Zyus = e (—xy+t4ie),  (k=0,...n—1). (16)

IIL. SECOND PSEUDO-RENYI ENTROPY AS;Z) FOR DESCENDANT OPERATORS

In RCFTs, it is known that the excess of the Rényi entropy for the primary/descendant operator saturates to a constant
equal to the logarithm of the quantum dimension of the inserted primary operator [51,56,57]. To study the entanglement
entropy of local operators, one needs to use two identical operators with the same spatial coordinates to generate the density
matrix. However, as mentioned in the Introduction, pseudoentropy provides us with greater flexibility; we can use
descendant operators of different levels and with different spatial coordinates to construct the transition matrix. This section
will explore the second pseudo-Rényi entropy for some specific descendant operators.

A. ASY) for V,=L_,0, V=0

Let us initially examine the simplest scenario that deviates from the previous studies [30]: V,(x;) =
L_1O(x1), Vp(x2) = O(x,). The second pseudo-Rényi entropy, according to (8), is related to a four-point function on X,

AT () _ (L1 O(wy, 1) O (W), w3)L_ 1 O(w3,W3) O (wy, W4)), . (17)

(Lo O(wy, 1) OF (W, 2))3,

For the first descendant operators, the transformation law under the conformal mapping w = z> is given by

025014-4
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w/
2
(W)
where the prime denotes the derivative with respect to z or Z. Then the four-point function in (17) can be written in terms of
correlators on the plane as

00w, ;) = (w)4 () (<w:»>-'ac9<z,-,z,~> A o<z,~,z,~>), (18)

(L_1O(wy, 1) O (Wy, wp ) L_1 O(w3,3) O (wy, W4) )5,

_ (H wﬁ-HA) ~ (azl 9% 150(1)0' (2)00(3)0' (4))s, +A2<az‘) a—w(ai)” (OO (2)0B)O (@),
i=1

ow aW’; an 02% 0W3 az3
0z (9z3)> Pws d0z3 (9z1\? 0w
-A— (2 T(4))y —A—2 (== No (2 an 1
ow, <0W3> 023 VOO )00 (W), ows <6w1) 022 (O()0'(2)0B)0"(4))x, |, (19)

where we use the notation O(i) = O(z;, Z;). Because of the conformal symmetry, we can express the four-point functions
involved in (19) as follows:

(0O (2)0B)0(4))x, = |z13224| 4G (. 7).
24

<30(1)0T(2>0(3>0T(4)>2] = |Z13224|_4A021G(’7v )‘;\113224| ~AG(n. 1),
. . 2A _ _
<O(1)OT(2)50(3)0'(4)>21 = |Z13Z24|_4A6Z3G(’7”/[) +E‘Z13Z24| 4AG(’77’7)v

. B 2A _
(00(1)07(2)00(3) 0% (4))s, = lz132047*0.,0,,G (1. 77) + o |213204|7*4(0;, = 9.,)G (1. 77)

—2A(2A + 1)
+7

3 1213204 G (1. 7). (20)
213
where
G(n,n) = }LHDIOIZI“A(O(L 2)O(1, 1)O(n,7)0(0,0))s, . (21)

Under the conformal mapping between %, and X;, we have

(Lo O(wy, w1) O (W, W) L_ 1 O(w3, w3) OF (wy, y) )5,

_ _ ~ 1 2A 2A(2A + 1 .
= sz el {00,420, - 0) <2205 60
2123 213 213
A2 ) A 2A ) A 2A )
+-—=55Gn.i) ——— {0, ——] G(n,7) — [0‘ + }G(n,n)}- (22)
47125 4z,25 13 4Z123 213

At late times (f — o), as shown in [30], # and # approach 1 and 0, respectively, which leads to the following late-time
behavior of G(,7) for RCFTs:

imG(n. 77) ~ dg' (1 —n) 247724, (23)

1—00

where d, is so called the quantum dimension, and by using modular S matrix S, this is given by dp, = Sy,/Spo [75,77].
Hence, we can obtain

200 4 240
limo., G(n.7) ~—<— el g do (=) 28e, }Lrgoaz3G(n,ﬁ)~?“;;7dél(l—77)‘”77‘“,
2Aa]ax ) nan  2AQ2A+1)0,n0.n o
limo, 9., G(n.77) ~ ﬁdo'(l—n) 25 4 (1_,7)5 S dy! (11— ) 728728 (24)

025014-5
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On the other hand, the two-point function in (17) is

1 -2A 1

L_O(w,w O (w,, w =9, = . . 25
< 1 ( 1 l) ( 2 2)>21 1 |W12|4A Wi ‘W12|4A ( )
Substituting (22), (24), and (25) into (17) and setting z3 = —z;, 24 = —Z», We obtain, at late times,
> g 24024+ el ga22sE
—AS (T”z(t)) W12 I’[ZA( )ZA{ —1 |: 8232, 6412 4732, _ A(ZA + 1)
4n? 4z1 [(1=n)do (1-n)*do u(l=ndo  2z3do
Z Z Z
+ A2 A |:2A8Z27 A A |:2A81z122 + A:|}
4zido 473 |( )do Z1do 1 L(L=ndo  z1do
~ d@l. (26)

In going from the second to the third line, we use Eq. (11)
and perform the Laurent expansion at infinity. The late-time
limit of the second pseudo-Rényi entropy is thus given by

lim AS@ (T12(z))

—00

= log do. (27)

In this simplest case, the late-time behavior of the second
pseudo-Rényi entropy of L_; O with O is the same as that
of the primary operator O. Note that the four-point
functions in the plane in Eq. (19) are also encountered
when studying the entanglement entropy of L_;O [57].
However, they are discarded as subleading terms. Our
finding shows that these subleading correlators can also
reproduce the result of log dy, as long as we consider the
pseudo-Rényi entropy instead of the Rényi entropy.

(O (1. ) O (3. 2) O (w3, 53) O (. ), ~ (

B. ASYY for V,=L_,0, V;=0O

We next consider a more complicated case in which V, is
a general n-level descendant associated with the Virasoro
generator L_,, and V is still a primary. The two-point
function of V, and V reads [78]

(n+1)A

21

(L_yO(wy, w1 )O(wy, W3))s, = Wi (28)

We then compute the four-point function on X,. Under the
conformal transformation, the n-level descendant trans-
forms as

L, 0w ;) = (W)™ (#) L, O(z1.Z)) +... (29)
The ellipsis stands for operators with lower conformal

dimensions contributing to lower-order singularities in the
correlation functions; that is, we have

4
ITw; ‘“) (W)™ (wh) (O (1O (2) 0 (3)07 (4))s,

(30)

at late times. We next pick out the most singular terms of the four-point function on the z plane in (30). According to (14)

and (A1) in Appendix A, the leading contribution at late times in (O~

" (1)07(2)0(3)O"(4))y, should be

- 1A ,
(O (107 (2)01 (3)07 (4))y, Z(nzn)<0(1)0T(2)0<‘”>(3)(97(4)>z, 7 (OO (2) 0 (3)0 (4))s, + -+
41 41
n—1)A a,\/(n=1)A o,
- (M50 ) (MR - S ) lomo oo, +
Z41 241 223 223
—1)2A2 —1)A 2A0 —1)A 2A0
:|Zl3224|_4Ad(_91(1—W)_ZAﬁ_zA((n n )n _(nn n—)l ’ z2’7_(nn_l V)l ’ i
241223 241223 1—n 2y =1
2A(2A +1)0..n-0 2A0,. 0
i (T o0l 200 ) &
241 Zz3 (1-n) l—n

025014-6



PSEUDOENTROPY FOR DESCENDANT OPERATORS IN TWO- ...

PHYS. REV. D 109, 025014 (2024)

Again, the ellipsis represents the terms that give rise to lower-order singularities in the correlatlon functions.
Combining (28)~(31) and taking the limit ¢ — co, the leading-order behavior of exp{—AS?®) (T, ‘2(t))} is given by

lim =A@ (T2 _ wi » 1 p <(n - l)zA2 (n—=1A 2401 (n—1)A 2401
=eo (n+ 12427 4724240 2023 dhay' l-n 'y 1-g
1 <2A(2A +1)a.,n-0.n N 2A6Z26Z4n>> N
' 25 (1=n)? -
1
=5t (32)

The ellipsis here denotes the subleading terms that vanish as ¢ goes to infinity. Hence, the late-time limit of the
second pseudo-Rényi entropy of the transition matrix constructed by a primary O and its n-level descendant L_, O is still

log dp.

C. ASY

for V,=L_,0, V4=L_,0O

In this subsection, we use the conformal block and operator product expansion (OPE) to show that the phenomenon
discovered in previous subsections is true for a general case: V, = L_,0, V4 = L_,0.
In terms of [78], the two-point function of V, and V reads [79]

<L_”O(W1, wl)L—n1O(W2’ "_VZ)>21 Y

yn(n? = 1) +24A(m +n)(m +n+1)(mn - 1))

I'(m+2)'(n+2)

+ 12A(A(m+ 1) (n+1) +2)>. (33)

The late-time behavior of the four-point function on X, of (8) can be derived according to (29)

O (1O (2)0
(I "‘“)

We can next pick out the most singular terms of the four-
point function on the z plane in (34). According to (14), the
leading contribution at late times in (O (1)O=")7(2)
O (3)0=m7(4))y comes from the OPE of O"(1)
OEmT(4) and O=™1(2)O")(3), and its complete result
is given by (B8) in Appendix B.

Combining (33) and (B8) and taking the limit # — oo, the

leading-order behavior of e~ ASOTL0) g
lime-as® @) — Ly (35)
=00 dO

Again, the ellipsis denotes the subleading terms that vanish
as t — oo. The late-time limit of the second pseudo-Rényi
entropy of the transition matrix constructed by an m-level

descendant operator L_, O and an n-level descendant
operator L_, O is log dy, being consistent with the studies
in previous sections.

IV. kTH PSEUDO-RENYI ENTROPY FOR
GENERIC DESCENDANT STATES

In the previous section, we found that the second
pseudo-Rényi entropy corresponding to L_,O and
L_,,O is the same as the second pseudo-Rényi entropy
of the corresponding primary operator O at late times,
ie., the logarithm of the quantum dimension of the
primary operator O. In this section, we shall investigate
the kth pseudo-Rényi entropy for general descendant
states and take k — 1 to obtain the corresponding
pseudoentropy.

025014-7
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A. ASY for V,=L_,0, Vy=L_, O

We begin with studying the case discussed above: V, = L_,0, Vy = L_, O. According to (29), the 2k-point function on
%, at late times can be reformulated as the 2k-point function on Z; as follows:

(O (wy, 1) O (wy, 10)... O (Wop_y , Wg— ) O™ (Wi, g ) ),
~ F (Wi, Wa, oeny Woy, i, 1, A)((’)(_")(l)(’)(‘m”(Z). ol (Zk - 1)(’) (2k)> . (36)

where

F(wi,wy, ocoywyp,m,n, A) <H|w’| 2A> TWh) T (Whyy )T (W) T (37)

is the leading factor coming from the conformal transformation between correlation functions on X, and correlation
functions on X;, and the ellipsis denotes terms contributing to lower-order singularity in the correlation functions.

Based on (16), it can be found that during the late time, 2k holomorphic coordinates and 2k antiholomorphic coordinates
approach each other in distinct pairings [30],

2mitt W1 = W2

tl_i{g(zzjﬂ — Zyji4) ~ €F Tt " 0,
o - _op 2 Wy — W .
tlgg(zzjﬂ —Dyjpa)~e M~ 0, (J=0.1...k=Lzy12 = 22). (38)

k'
Hence, at late times, the most divergent part of the 2k-point correlation function on the plane in (36) arises from the OPE of
OEM(2j 4+ 1)OT(2) + 4), e

(O (1)OEM(2)...0E (2k = 1)O™T(2k))g, ~ Dy 4Ds6... Dat—3 2k Dot 2{O(1)O7(2)...0(2k = 1)O7 (2k))5,.  (39)

where D,; 2,4 1s a derivative operator that only contains constants related to the information of two descendant operators

and derivatives coming from the most singular part of the OPE of O (2i 4+ 1)O"™7(2i +4), ie., Daiyy2ips =
D(05;1 1, 02i14;m, 1, c, A). See Appendix B for a concrete example of the D operator. We need to pick up the proper channel
to expand the 2k-point function into the holomorphic and the antiholomorphic part, as graphically shown in Fig. 1. In each
channel, only the identity operator contributes to the final result. Hence, the 2k-point function breaks up into k two-point
functions for the holomorphic part (and k for the antiholomorphic part),

(O (1)OM(2)...0 (2k — 1)O™1T(2Kk) )y,
~ (FoolO)*' D14 D32k Pote1.2(O(21) O (24) )5, - - {O(2ak=3) O (224)) 5, (O 221 ) O (22) )5,
X <O(21)OT(22)>2] -(O(224=3) O™ (Z2k=2) )5, (O (Z241) O" (220 ),
~ (Foo[O])" (O (2 1)0(_"”%(24»21-'-(0( >(sz—3)o(_mﬁ(22k)>z, <O<_n)(22k—1)O(_m”(zz»zl

x (0(z )OT(Z2)>Z, ---<O(sz—3)OT(sz—z)>zl (O(Zo—1 )OT(sz»zlv (40)
|

where we formally decompose the operator O(z,Z) into a "Y \(5 ”\2(2“ 1\(“ 3 "’\r" w g
product of a holomorphic operator O(z) and an antiholo- o Fool0) | 22:1 ‘
morphic operator O(Z), in the sense of the two-point function —
(O(H0Q2)) = z7°2i3* = (0(21)0(22)){0(21)O(22))- S R oo
In the last line, the fact that D,; , | 5; 4 is a linear operator, and (Foo [0 H = ot we
coordinates z; and z; are independent for i # j, has been ’ - 1 ‘
applied. FIG. 1. k—1 fusion transformations to obtain ASEP.
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Changing back into the w coordinate, with the leading divergent term being transformed homogeneously and keeping the
most divergent term, we find that

(O (w, ) T (W, W3)...O (W g ) O (Wag, Wy )y, ~ (FoolO) I F(wy, wa, ..o wop, m,n, A)
(Ol <Z1) (24)> (O (zg4_5) O (z20))s, (o= (sz—1)0(_m)'r(22)>zl
X <O(21)OT(22)>21 - {O(z43) O" (Zak—2))s, (O(24-1)O" (Zok))s,
~ (Foo[O]) (O (wy )O(_mﬁ(wzt))& (o= (wz,(_3)(”)("””(w2k)>zk (O (wayy )O<_m>+(wz)>zk
x (O(w))O" (W), - (O(Ws—3) O (W2 )5, (O(Wo—1 ) OF (W) )5, - (41)

By utilizing Egs. (16), (29), and (38), we find that in the late-time limit, the correlation functions of both holomorphic and
antiholomorphic two-point functions on X, are equal to those on X;, up to a unitary factor,

(O (13 )O (o)), ~ €D (O (3 ) O (o)
(O(W2)41) O (W2j42))5, ~ €2 IH2A(O(w)) O (#5))y, (J=12, k= Lwyn =w,). (42)
Substituting (42) into (41), the 2k-point function on X is reduced to
(O (wy, ) O™ (1w, V_Vz)---O(_")(WZk—l,wzk,l)O(_m) (Wars W), ~ diy KO (wy, ) O (wy, W2)>k . (43)
where we use the relation between the quantum dimension and the fusion matrix: dp = 1/F[O)].
Finally, in accordance with Eq. (43), the excess of the kth pseudo-Rényi entropy of L_,O and L_,,O at late times can be

deduced as equal to

(O (wy,0y)... O™ (W W) ),

mAS® (T 2(1)) = lim lo
=00 ( A ( )) 11— 1 - k g <O(_n> (Wl ) w])(’)(—'”)T(W2, 1/_1/2)>1§1
= logdp, o

which is independent of the level k and consistent with the results of the second pseudo-Rényi entropy in the previous
sections. Based on the above results, we can conclude that the late-time excess of the pseudoentropy of L_,O and L_,,O is
consistent with the entanglement entropy of L_,O and also equals log d.

B. ASX‘) for linear combination of descendant operators

Let us consider two linear combination operators constructed by operators in (’s conformal family,
M -
= Z CiViww),  Viw,w) = L_xL_gg,O(w. W),
Z CLV'(w, i Vi(w.w) = L_gx, Ly O(w, ), (45)

where L_ {K}EL—le—kz L—k ’(O<ki1<ki2< <k ) and L {I_(}EL—/_(IL—/_CZ L—/_c ,(0<]_(i1 S]_( <. ]_(*l)
and likewise for L_x/y and L_ &) If the combination coefficients C; (C}) are required to be dimensionless, all V; (w w
(Vi(w,w)) should have the same mass dimension denoted as N (N’). This indicates that {K;} and {K’} satisfy

)
n; n;

K|+ K| =N, |K|+|K|=N' (|Kl-| = k. |Ki| = Zkij). (46)
j=1 j=1

First, the two-point function of V, and V/Z on X, is given by
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M M

(Va(wi, w)V(wa. 2))y, = Z Z CiC (Lo} Ow1) Ly O (w2))5, (L_ g O(W1)L gy O (92)),

i=1 j=1

ffi’w* o{KIAKD  a(R KD

, L (47)
) PRTRTRT (5 P HRIHIR,

i=1 j=1

Similar to the previous subsection, in the above, we formally decompose the operator L_{Kl_}l_,_{,-(i}O(w,w) into a
holomorphic operator L_,; O(w) and an antiholomorphic operator L_ (k.1 O(W) in the sense of the two-point function. ¢

and ¢ in Eq. (47) are, respectively, the coefficients of the holomorphic and antiholomorphic two-point correlation function.
We then deal with the 2k-point function on X,. At late times, the 2k-point function is given by

<Va(W17W1)V/T3(W27W2)---V (W2k—lv"_VZk—l)V;(W2k’W2k)>
= Z Z CZICZ sz,CZkW (W1,W1)VT(W2,W2) Viz,H(Wzk—17"_"2k—1)V2k(W2k,V_V2k)>2k

503, slopt J2Jas---Jok

~d1 k Z Z C,]C’* lzklc;zk
J2k

103, ol 2]

X <L—{K,-1}O(W1>L—{K;4}O} (Wa))g, - (L—ik,, }O(W2k—1)L—{K;2k+2}01-(wzk+2)>2k (2k+2=2)
X <Z—{I'<,-l}O("_Vl)I:—{I'(}Z}OT("_VZ»Zk~--<I:—{I'<» . }O("_"Zk—l)Zf—{f(}Zk}OT(WZk»Z

" . oK 1K) }) co{Ki, ,}. {K}, 1) co{Ki,  } {K,})
Ndl * Z Z C11C lzk lC./Zk( - )2A+|K [+K" | * - -

- 2A+|K; K 2A+|K; K’
150350k JosJase--Jok —-wW3 (Wl - 2) i ha 3H| ]Zk‘ (Wl - W2) ol = I‘H ,2|
oK) AR (R ) KD us)

(v'vl _ w2)2A+\K,I\+\K;.2| (Wl _ WZ)ZAHK’” 1\+\Km\

In the above derivation, from the first equation to the first tilde, we follow the approach outlined in the preceding subsection:
First, we map the 2k-point function on X, to the plane through conformal transformation w = z* and extract its leading
behavior; subsequently, using Eq. (38) and fusion transformation k — 1 times, we decompose the leading 2k-point function on
the plane into k£ holomorphic two-point functions and k antiholomorphic two-point functions, and finally, map the 2k two-
point functions back to 2. From the first tilde to the second tilde, we utilize a late-time relation similar to (42) as follows:

(L_(gyOWajs1 ) L_xy O (Wajia))s, ~ e 2 IHNCAHKIHKD (L0 O(wy)L_xy O (1))
(L_(gyO(Waj ) L_ gy OF (Waj12)) 5, ~ e ITNCAHKIERI(L_ e O()L_(71 O (W,))5,
(j:1,2,...,k—1;W2k+25W2), (49)

’
1

which can be readily derived using Eqgs. (16), (29), and (38).

Upon substituting Eqs. (47) and (48) into the kth pseudo-Rényi entropy expression (8) and attempting to eliminate w ,,
we encounter some subtleties. Specifically, after analytic continuation, the expressions for wy , and w; , (9) imply that when
X| # X, we have w| — wy, = W — W, = x| — X, in the limit ¢ — 0. Consequently, based on the initial constraint (46), we
can extract the power of x; — x, in (48) from the summation, which is equal to (x; — xz)‘k(“A*N +N) [for Eq. (47), it is
(x; — x,)~4A+N+N)] The late-time excess formula of the kth pseudo-Rényi entropy is thus given by

limAS® (T V(1)) = log do

1—00
+ 1 10g< ?1/1,1'3,--»1'21{71:1 %-]4 ----- jZkZIH ClZu 1CI CO({KQ“ 1} { ]2”2}) ({KQM 1} { ]2“})>
bk (505, G eo{K 1 AR DZ({R T K 1)F
(for xy # X232k +2=2). (50)
However, things become slightly different when x; = x,. This is because, in this case, w; — wy = —(W; — w,) = —2ie.

When attempting to eliminate the normalization parameter € by dividing Eq. (48) by the kth power of Eq. (47), we will be
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left with a negative power in both the numerator and denominator summations, leading to another late-time excess formula

for the kth pseudo-Rényi entropy,

LmAS® (T (1))

=0

M M

k
=logdy+ 1 log( i3, ig1 =1 jz-,j4-»~~-,jzk=1H ( )
1-k (>i,(-1

(forx; =x,;2k+2=2).

DFec 8 e, - e eo({Ky, Y AKD,  Deo({K, 1K, >>
KK CClr e (K ) K (KL [R))

(51)

Indeed, one can absorb such a negative power in Eq. (51) into the coefficient of the holomorphic two-point function to

obtain a formula similar to Eq. (50),

HmAS® (T (1)

1—00

=logdy

M M’

J2sJas =1

] 1503505 00k—1

(for x| = x,32k + 2 = 2),

where co({K'}.{K:}) = (=174 K K o (K} (K7 )).
When we delve into a detailed analys1s of these two
formulas, we may find that Eq. (51) [or Eq. (52)] is
compatible with the late-time excess formula for entangle-
ment entropy given in [57]. This can be verified by simply
removing the prime from Eq. (51) [or Eq. (52)]. However,
generally speaking, since Eq. (50) is not equal to Eq. (51),
Eq. (50) cannot be reduced to the formula for entanglement
entropy. We verify the discontinuity of the pseudo-Rényi
entropy in these two cases (i.e., x; = x, and x; # X,)
through numerical calculations in the critical Ising model;
see Fig. 2. Mathematically, we can attribute this disconti-
nuity of pseudo-Rényi entropy to the noncommutativity of
the limits as € — 0 and x; — x,. It would be interesting to
comprehend this point from a physical perspective.

More importantly, regardless of the case (whether x; = x,
or x| # x;), the late-time excess of the pseudo-Rényi
|

Xij =/ CiC} - co({K}. {K}}),
bo'Q
T ogf i= = i =1,2,...
eff tr[XXT] P (l s &y

We refer to 7 . as an effective transition matrix because
T is usually non-Hermitian, and we will see that it
characterizes the additional pseudo-Rényi entropy at the
late time. With the help of 7 s, Eq. (50) can be equivalently
written as

lim AS®) (T4(1))

1—00

1
=logdo + y— log t[(Te) ). (54)

Mij=1,2,....M).

[Tzt Cip,  Cc0(KS, 3 (K, DEo({Ksy, ) {f(}z"})>

(3, CiCeo({ K} {K i eo({Ki} AK 1)

(52)

[

entropy of two linear combination operators is composed
of two parts. The first part is the logarithm of the quantum
dimension of the corresponding primary operator, which
reflects the entanglement properties of the primary/descend-
ant operators used to construct the linear combination
operators. The second part involves the coefficients of the
superposition C;, the coefficients of the holomorphic and
antiholomorphic two-point functions, which reflect the
additional entanglement generated by the process of linear
combination. We can express this part of the additional
entanglement contribution as the entanglement entropy
(pseudoentropy) of an effective density (transition) matrix
in a finite-dimensional Hilbert space. Taking Eq. (50) as an
example [Eq. (51) shares a similar treatment], we use the
superposition coefficients, the coefficients of holomorphic
and antiholomorphic two-point functions to define the
following M x M matrix 7 :

Xij = \/ Cl* ¢ ({K} {K/})

(53)

I
From the above equation, it is clear that the additional
pseudo-Rényi entropy generated by the linear combination
process equals the pseudo-Rényi entropy of an effective
transition matrix in an M-dimensional Hilbert space,
and the additional pseudoentropy thus is equal to
—tr[7 e log T oy .

It is evident that the late-time additional contributions for
all levels of pseudo-Rényi entropy resulting from a linear
combination are zero only when 7 . possesses a single
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log2)[
Vi = (G180 + (1 = C)3)sw, 1) w0

[ Vs = (C10 + (1 = C)e(ws, 1)

o
=

x| # X2

T2 (1)

04r

lim AS @
1—o00

—_—
(=}
aQ
—_
Sl
—_
T

G

FIG. 2. The late-time excess of the second Rényi entropy (in
blue) or the second pseudo-Rényi entropy (in orange) of the linear
combination operator (C;0 + (1 — C;)d)e, where ¢ is the energy
density operator in the critical Ising model. We have d,. = 1. The
hollow circles represent the numerical data obtained by using the
known four-point function of &, while the solid lines represent the
theoretical result obtained by using Eq. (51) [(or (52)] (corre-
sponding to the blue line) and Eq. (50) (corresponding to the
orange line). It should be noted that when the linear combination
operator is the equally weighted sum of L_je and L_e¢, i.e.,
Cy = 1/2, the late-time excess of the Rényi entropy (x; = x,) is
log?2, while the late-time excess of the pseudo-Rényi entropy
(x1 # xp) is log {3 18 ~0.057.

nonzero eigenvalue of 1. We show that the physical origin
of these additional corrections is attributed to the mixing of
holomorphic Virasoro generators and antiholomorphic
Virasoro generators. Considering

Vo= il Lm0 Vp=2 CiL-ii) L) O:
! J

(55)
|

limAS® (T (1)) =logdo

t—00

—lo

the holomorphic and antiholomorphic Virasoro generators
in V) appear in the form of product (not mixed). Based
on Eq. (53), we can write down the matrix element of 7 .,

(Teff)ij = (a;i'(?j,

= VTS Creo({K AR,
(B), = 2{K}. {K'})/C;. (56)

Evidently, 7 . under this scenario takes the form of the
pure state transition matrix (1), resulting in a single nonzero
eigenvalue of 1 for 7 . Therefore, we prove that the linear
combination process does not generate any additional
correction in this case. To provide a heuristic understanding
of this result, we may draw an analogy to [49]: When
V) (w,w) takes the form of ), C;,L_x L iz O(w, W),
Vap) can be decomposed into a holomorphic operator
> CiL_x3O(w) and an antiholomorphic operator
L_;z;O(w) in the sense of the two-point function (VQVD,
producing a product state ) ; C;[L_(x,O)y, ® |I:_{,-(}O>ﬂ
in the Verma module H ® H when acting on the vacuum
state. However, when V5 (w.w) =, C;L_(x)L_(z,
O(w.,w), where L_gx L_(z,O(w, W) can each be decom-
posed into a holomorphic operator L_gxO(w) and an
antiholomorphic operator L _ (k1 O(W) in the sense of two-
point functions, V, acting on the vacuum state produces an
entangled state Y, C;|L_(x,;O)y ® |L_z,O)5, enhanc-
ing the entanglement.

Finally, we consider the late-time excess formula (50) for
the second pseudo-Rényi entropy

o({Ki }.{K]

to show the phenomenon of “mixing enhancing the
entanglement.”
(i) Example 1 with V,(w;,w
Vs(Wa ) =(L_1+L_y)
function is

D=Ly +L_)O(wy,wy),
O(w,,w,). The two-point

_ _ —4A(4A + 1)
<Va(W1,W1)V/T5(W2’W2)>2. = NdAi

a (X1 = x2) (58)

(le is 2270, € Ci, €3 €l co (K 1 (KT, P eo ({K i, } KT, e
(2222, GiCTeo({Ki} {K/})CO({K} {K3})?

})EO({kig}’{I_(;'4}))

(57)

Formula (58) is easy to check. Here, we replace
X1 + t and x, + ¢ with wy and w, in the final result.
The four-point function at the late time is

(Va(wi, W)V (wa, W2) Vo (ws, 3) V] (w4, 4)) 5,

1 8A%(1 + 16A 2A
L+ 16a(1 +24) (59)
“do (x) —x)%4%
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Additional Correction
0.7

0.6

05 — log(2)

~lo! 1-;)
g( 2(1+4A)2
0.4 s .
— log(2)-log|2+ ——— - ———

9@ g[ (s+6van2?  3+6a+4n2

0.3
0.2

0.1

2 4 6 8 10

FIG. 3. Additional correction of the late-time ASf) due to the
mixing of holomorphic and antiholomorphic Virasoro generators.
The horizontal axis is the conformal dimension of the primary
operator O.

From (58) and (59), we have

tlimASff) (1) =logdp—log (1 - (60)

In this case, the correlation function of V, and V/

cannot be divided into the product of the holomor-

phic part and antiholomorphic part, and AS®

contains an extra correction log (1 —W) be-
sides log dp. The relation between extra correction
and the conformal weight is shown in Fig. 3 (the
orange curve). Note that the extra correction will be
log2 when we consider another late-time excess
formula (51), reproducing the result of entanglement
entropy in [57].

(ii) Example 2 with V,(w;,w)=(L_L_;+
O(wy, 1),
O(wy, Wy). The two-point function is

(Va(wi, W) Vy(wa, wy))s,

_ 8A(1+42A)(3+ 6A +4A?)
- )—4(1+A)

(x) —x, (61)

The four-point function at the late time is

(Va(wi, W) Vp(wa, w2) Vo (w3, w3) Vs (wa, 4))s,
32A%(14+2A)2(9+8A(3+2A)(2+A(3+24)))
) (5 =2) 50 |

(62)

Combining (61) and (62), the second pseudo-Rényi
entropy is given by

lim ASf) (t) = logdop + log2

=00
—log|2 + 3
5T (51 6a+4A%)
4
S S— 63
3+6A+4A2} (63)

Notice that there is an additional correction depend-
ing on the conformal weight of the corresponding
primary operator, and its relation with the conformal
weight can be seen in Fig. 3 (the green curve). For
two general linear combination operators, its
pseudo-Rényi entropy may also acquire extra cor-
rection depending on the central charge and con-
formal weight of the theory at the late time, and one
can calculate the extra correction in general cases.

V. CONCLUSION AND PROSPECTS

In this paper, we investigate the pseudo-Rényi entropy of
local descendant operators in RCFTs, extending the pre-
vious studies in [30,51,57]. In [30,57], it has been found
that the late-time excess of the pseudo-Rényi entropy of
two primary states and the Rényi entropy of a descendant
state equal the logarithmic quantum dimension of the
primary operator in RCFTs. It is a natural question to
consider the pseudo-Rényi entropy of the descendant states.

First, we show that in some special cases: V, = L_;O,
Vy=0and V,=L_,0, Vs = O with O being primary,
the late-time excess of the second pseudo-Rényi entropy (8)
is still logarithmic of the quantum dimension of the primary
operator. Using the conformal block and operator product
expansion, we compute the second pseudo-Rényi entropy
constructed by two descendant operators with different
Virasoro generators. We show that their second pseudo-
Rényi entropy is the same as their primaries for such states.
Although the calculation looks quite complicated, the
leading divergent terms in the late-time limit are simple,
behaving as the one for primary operators.

Further, we compute kth pseudo-Rényi entropy with two
descendant operators L_, O and L_,,O. We extract the most
divergent term of the 2k-point function on X; with an
overall factor F (36), and then associate the 2k-point
function of descendant operators with the 2k-point function
of primary operators (39) with some derivative operators of
the form

Dyit1pips = D(0siq1, 0nipasm,n, ¢, A). (64)

We find the 2k-point function breaks up into k two-point
functions for the holomorphic part (and k for the anti-
holomorphic part). The two-point function only depends on
the conformal weight and some constant (42). As a result,
in this case, the pseudoentropy of the descendant operators
is the same as the primaries.
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Finally, we discuss the most generic descendant operators, which are two linear combination operators constructed by

operators in (O’s conformal family

lewl

ZC V WI,WI

V/} Wws, Wz

Z Wz» Wz (65)

We derive the formula for the kth pseudo-Rényi entropy of linear combination operators at the late time

lim ASW (T12(z))

t—00

M
i1,i3,. i1 =1 Jz]4 ----- Jo= 11—[ C

1
:1 1 11,13,
ogdp + T—% 0g<

(for X1 ;é .X'Z;Zk +2= 2),

s O, 4K, 1K, e (K, 1K, )>
22 CiC}*CO({Ki},{K}})CO({KI-},{K}}))

which is quite different from the formula derived when x; # x,,

lim ASW (T2 (z))

t—00

M
i1,03,0 i1 =1 17 Jase-Jou= 11—[ ( )

=logdn+ 10g<
-k (2,(-1

(forx; =x,;2k+2=2).

el tle,  Cfco({Ka, 34K, DE({Ka, 3 ARG, >>
)\K1|+\K;|Cic;*co([](i]’[K;.DCO([Ki],[K}D)

For convenience, we also introduce an effective transition matrix 7 .,

Xij=4/CiCico({Ki}. {K}),

_XXT
eff *— tr[X)_(T] s

to simplify the formula (66) [Eq. (67) shares a similar
treatment]. Using the formula (50), we find that the pseudo-
Rényi entropy of linear combination operators is generally
different from that of the primary operator O. The pseudo-
Rényi entropies are the same as the ones of the primary
when the correlation function of V, and V3 can be divided
into the product of the holomorphic part and the anti-
holomorphic part. A typical example is

Vo(wy,wy) = ZCiL—{Ki}Z—{I_(I}O(WhV_Vl)’

= ZC}L_{K;}Z_{I‘(&}O(WZ,V_VQ). (69)

J

V(wa, W)

Otherwise, there is an extra contribution due to the mixing

of the holomorphic and antiholomorphic Virasoro gener-

ators. A typical example of extra contribution is
Va(wi,wy) = (Loy + Lo
Vig(wa, ;) = (L_y + L_

1Oy, wy),
1)O(wy,0,). (70)

In general, the kth pseudo-Rényi entropy for two linear
combination operators at the late time only depends on the

(i=1.2 ..,

(67)
Xij = /CiCreo({Ki}, {K}),
M: j=1,2,....M) (68)

quantum dimension and the contribution from a finite-
dimensional Hilbert space,

limAS®) (T'2(1)) = logdp + 1 1

logtr[(Ter)'].  (71)
t—00 —k
Noticing the current results in RCFTs, one can directly
calculate the pseudoentropy of generic local operators in
Liouville CFT, holographic CFTs, nondiagonal CFTs, etc.
Since the spectra in such theories have different structures,
the associated pseudoentropy will be highly different from
those in RCFTs. In particular, since holomorphic and
antiholomorphic conformal blocks have different structures
in nondiagonal CFTs, the late-time behavior of the entan-
glement entropy and pseudoentropy associated with locally
excited states will not be the same as the ones demonstrated
in the current paper. We would like to leave them to
future work.
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APPENDIX A: REDUCTION OF (O(="(1)07(2)0(="(3)O"(4))y,
Following the standard way [78], we compute the four-point function (O=")(1)O"(2)O0=")(3)O"(4))s, in this section.
(OO (2)0"(3)0" (4))s,

2mZ § e TROMO @O0 @)
I (OO0 @), _ 0,010 (20 (HO'4)
(ea) (

2y
N +reg(z —z
2mi Joi) (2= 21)"! (z—2)? -2 &l 2)}

-1 dz n(n* —1)c/12 4 2nA
i 2_7”'7{&3) (z- 21)”‘1 { (z —z3)""? (OB s,

&L (n+ (0O 2)OR)(3)0T(4))y, | (A +n)(O(1)O0'(2)0(3)0(4))y,
2> - z3>'<+2 ’ -u)
t(2)0(-1) (3) O
OO RGO W,
=l dz {MO(1)(9"'(2)(9“")2(3)(9"'(4)>zl +0z4<0(1)0"'(2)0(‘”>(3)(9"'(4)>z] +reg(z_z4)}
27i Jee (2= 21)"! (z—z4) 2=y
(n—1)A

= <0(1)OT(2)0“”)(3)(9*(4)>z|+_,,aff<0(1)0T(2)0“”)(3)0*(4)>z|
21 221

+ DR 00 )0 3101 @):, + 5% OO IO B0 @)
41 41
ey (n(n® = 1)¢/12 4 2nA)(2n — 1)1 (O(1)O(2)O(3) O (4))5,
(n+1)!(n =2)! 3
) n+k)' (OO (2)OT(3)07 (4))s,
Wy

k
-2)! 2y

—) (OO RO FHO @)y, + -5 (OO R)ON (30" @)y, (A1)

APPENDIX B: REDUCTION OF (O(=")(1)0(=™)(2)0(=")(3)O0(=™)7(4))5
In terms of (14), the most divergent term of (O (1)O(=")(2)O(-") (3)(’)("””(4»2] should only contain z;4 and z,3, as
any terms containing z;3, Zo4, Z12, and zz,4 are subleading. So, we can first expand O(1)’s Virasoro generator,
(O (1O ()0 (30T (4))s,
v OO ()0 (30 ),
27i Je,) (2= 2)"! ]
1 dz
27 Joiey (2= )"
= (m+k)
p (Z _ Z4)k+2

<O(1)O(—m)T(2>O(—nJ (3) (m(m2 (_Z 1_)2)13; 2mA )

(=m)t
+ O-(m=k(4) + (A+m) O™ (4) + M) >
%

(z— 24)2 T2
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(n+m—=1)! m(m®>—-1)c/12 +2mA
(m+1)(n—2)! P

~ (1)

(OO ()OI (3)0T(4))s,

1

S (et k=1)! (mtk) i » i
Y G OO IO GO @),
B2 VBEM o1)0mi )0t 3)06m1 (4),

2 1
- OO QIO FIO )y, (B1)

The correlation function with four Virasoro generators is deformed into correlation functions containing no more than three
Virasoro generators. We can then expand O(4)’s Virasoro generator,

<(’)(])(’)(—m>T(2)(’)(—n> (3)(’)(—m)T(4)>2
1 dz

N (T(2)O(1) O (2)0 (3) 07 (4))x
271 Je(zy) (z=z4)" I

dz A 9,0(1) ) B
N_jé(m(z—a)""l <<(Z—Z1)20(1)+Z—21>O( 0 )<3)O+(4)>zl

1

~Z DR (01)0 (20 EI0 @)y, - L (OO QIO HO @) (B

From (B1) and (B2), we can read the exact form of D, 4 introduced in (39)

(n+m—=1)" m(m?*=1)c/12 +2mA L (ntk=1)! (m+k) ((m—k—l)A 0, )
Dy, = (-1)" + (-1 § -
e R CES] & R I [ R ST T
-1)(A - 1)A 0] 0 - 1A 0
+(” )E, +m) ((m m) _ ml—l)_ nil ((m m) _ ml ) (B3)
41 214 214 o 214 214

We can expand O(2)’s Virasoro generator and ((3)’s Virasoro generator in a similar way,

(OO RONHO @), ~~f e ONTEO OO @),
dz oo (n(n?=1)c/1242nA
e owe o (L o
L (n41) . (A+n) o5
+1 1#%)”20 | l>(3)+(2—23)20 (3)+Z—Z3O< >(3)>OT(4)>21
n m nnz— C n
< e R 000 @00 @),

Y e s e oo @00 )

+W<0(1)0"<2)0 (30" 4))s, = (OO QO B0 (4)s,

Finally, we have
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MO @O0 W), ~ "6~ 2, (8
23 23

where G is (O(1)O(2)O(3)O0"(4))y,, and in the late-time limit, it is dg' (1 —n) 247724,
Combining (B1), (B2), (B4), and (BS5), we have

(OO Q)0 F)OM @)y
. (m+m=1)1 m(m®—1)c/12 +2mA , (n+m=1! n(n*=1)c/12+2nA
~ =) (m+1)!(n—2)! i {(_1) (n+1)!(m —2)! 5" “

+(_1)m"2 (m+1-1)! (n—l—l)<(n—l—1)AG 0, G)

(l+ )(m 2); Zm+l Zn3l ngl 1

+(m_1)(A+n)<(n_1)AG 0, ) 1 <n(n—])AG+(n—1)A63G_(n—1)02G 0302G>}

m n n— m—1 n+1 n n n—1
i3 223 23 232 223 223 223 3

nm n+k—1 (m+k) ((m—k—1)A , (n+m—=1"! n(n*-1)c/12 4 2nA
Wt e | e

214
+(—1)’”ni (m+1-1)! (n+l)<(n—l—1)AG_ 0, G)

Crotm=20 2 g

m
=1 214

e (=D gy L (MDA (1 Da (=0 )]
i3 223 223 232 3 223 223 223
1 L (n+m=1) n(n*—1)c/12+42nA
T m—k—1 (_ ) 1 2 m+n alG
an (n+1)1(m—=2)! 3

H‘”’"i (m+1-1)! (n+1) <(n—l—1)AalG_ 910, G)Jr(m—l)(A—l-n) <(”;1)A01G—MG>
2

(14 1)I(m —2)! ! 235" 25! 2 3 25!

_ 1 (I’l n—l)AalG+(n— 3A6163G_(n—1)6162(}_6133(132(%}}
273 223 223 223

(n=1D(A+m) [(m=DAT (n+m-=1)!" n(n®>-=1)c/12+2nA
’ e

+(_1>mnz_:( (m+1-1)! (n+1) <(n—l—1)AG_ ”a? 1G)

I+ 1)I(m—2)! gt o 253

+(m—1)(A+n) <(n_1)AG—iG> 1 <n(n—1)AG+(n—1)A03G_(n—1)02G_0302G>}

n
241

23 23 253! 5! 253" 3 23 253!
1 -1 2-1De/12 +2nA
T m—1 |:(_1)n <n T ) |n(n )Zin e alG
<14 (n+1)!(m—2)! <32
m“ m+l—l (4D ((n=1=1A . 010 -\ . (m=1)(A+n) (n=1)A_ . %0, .
Z m 2)' Zm-&-l Zn—l 1 _Zn—l—l zm " |
=1 23 23 23 32 23 23
—1)A0,0 —1)0,0 0,050

m— 1< ( n+1 ( 21 1 3G_(n n) 1 2G_ 1n312G>:|}

Z3z 223 223 223
m( (1) (n+m—1)! n(nz—l)c/12+2nAG

Z41 Z'1"4+1 (n+1)!(m —2)! "
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+(_l)mn—l (m+1-1)! (n+l)<(n—l—1)AG_ 0y G)+(m—1)(A+n)<(n—1)AG_ 0> G>

n—I

= (I+1)!(m-2)! 5 23 223 73 23 255!
1 - 1A —1)Ao —1)o 050
T m—=1 <nnn+1) G+(n n) SG_(n n)zG_ fl—fG>:|
3 273 223 223 223
(m—=1)A [( ) (n+m—1)! n(n2—l)c/12—|—2nAaG
i (n+1)!(m-2)! Lo *

+(_1>m§ (m+1=1)! (n+1) ((n—z—1)Aa4G_ﬂG>

— (I+1)!(m=2)! Zg’;‘l zgl Z1213—l—1

L (m=1)(8 +n) <(n - 1)A04G_a402G)

35 253 255"
1 - DA —1)Ao40 - 1)d,40 04030
- (”(nnﬂ) 64G+(n 3 4 3G_(” n) 492 - _ 4n312G>}
32 223 223 223 23
(m—1) {( r (n+m-—1)! n(nz—l)c/12+2nAaG
zr, (n+1)!(m —2)! 25 ‘

+(_1>m"i (m+1-1)! (n+1) <(”_l_1>Aalc— 0,0, G>+(m—1)(A+n) ((n—l)AalG_@G>

_ m+1 n—I n—I-1 m n n—1
— (I+1)!(m=2)! 2} 23 223 23 3 23

_ 1 <7l n— 1)A01G+ (}’l— 1)A0103G_ (n— 1)6162G_0]0382 G>:|

a5\ 5y 3 23 e
1 [( v (n+m—1)! n(nz—l)c/12+2nAaaG
! (n+41)!(m—2)! et 471
n—1
(m+1-1) (n+1) ((n—l—l)A 04010,
+(_1)m m n— 6401G—n_—_G
;(1"'1)!(’"_2)! 25 253! 25!
-1)(A - 1A 0,0,0
+ (m )}El + n) <(n n ) 04016 - 4}1112 G)
232 223 23
_ n}_l <l’l(7l ;Hl)A 64()1G + (i’l - 1)?046103 G _ (l’l - 12[046162 G _ 04():,??()2 G>:| } (B6)
i3 23 223 223 223

The correlation function of four descendant operators becomes the correlation functions of their corresponding primary
operators with some constants and derivatives. For i # j # k # [, we have

240,
0,6 = 2%,
L=n
200,01 . 2A(2A +1)0;19;
ajalG: / ”G"’ < )er] nG,
1—n (1=n)
280,90, 0;0m04n + 9;0u10im + 0910, 24 +2)07010
0,0,0,G =~ K%M "G+2A(2A+1)[’ 190 + 0,010 + 9dmdym i, ( )1"3’7"’7(;}
-1 (1=n) (1=n)
0,00y + 0;04m0 + 0,9,10; 2A +2)0,70m9
~2A(2A+1){’ i m+(,1 K1 )727+ kIindpn . ( +(1 ) ]:;3,;7 k1 ]
- -

200,0,0;0m . (2A(2A + 1))
1—n (1—-n)?

alaké)jaiG = (akaja,n()m + aka]aﬂ]aﬂ'] + 61016,110,(11 + akala,l’[aji’]

2A(2A + 1)(2A +2)
(1-n)?
+ 0,0;n0;N0y + 00,110,101 + 0,;010kN;1 + 0,0,nd;10;1)G

(0;0m0k10m + 0;0,n0indm
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2024 + 1)(2A + 1)(2A + 3)
+
(I=n)*

(0,0;10,0,n + 0;0,n0;01 + 0;010;0;1)G +

9;no jﬂak’?aﬂlG

_(2A(2A +1))
(1—n)?

+ 0,0;10;10y1 + 0,010,111 + 0,00NA;1 + 0;0,10Md;11)G +

2A(2A + 1)(2A + 1)
(1-n)
2A2A + 1)(2A +2)(2A + 3)
(I=n)*

From (B6), (B7), (19), (15), and (34) we derive the leading behavior of (O=")(1)O=7(2)O=")(3)O-")7(4)) at the
late-time limit,

(0;0:10,n0y + 0;0,n0mAm

omomomomG.  (B7)

(O (1O RO E)IO (@),
4

< (T2 ) o = w7 =) G ) 1)
1
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