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We describe the application of the quantum mechanical bootstrap to the solution of one-dimensional
scattering problems. By fixing a boundary and modulating the Robin parameter of the boundary conditions
we are able to extract the reflection coefficient for various potentials and compare to physical expectations.
This includes an application of semidefinite programming to solving a half line Schrodinger problem with
arbitrary Robin boundary conditions. Finally, the WKB approximation is used to numerically determine the
scattering behavior of the exponential potential of Liouville theory.
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I. INTRODUCTION

The numerical bootstrap has been the subject of much
recent work [1–7], applying techniques developed for the
conformal bootstrap to other quantum-mechanical systems.
In our previous work, we described the application of the
numerical bootstrap to the solution of one-dimensional
Hamiltonian bound-state problems with arbitrary wave
function boundary conditions [8–10]. Here, we extend
these ideas to the characterization of one-dimensional
scattering. The problem of scattering in one dimension
has been studied from multiple perspectives, from the
development of approximation schema [11–15] to theo-
rems relating the scattering phase shift to properties of the
bound-state spectrum [16–18], though the focus of the
literature on scattering is mainly on three dimensions.
For many applications of the quantum mechanical boot-

strap to work, the moments of the probability distribution
need to be finite, but the scattering problem does not have
this property. The essential idea of this paper is that the
scattering behavior of a potential may be determined by
solving a related family of bound-state problems with the
same potential, a family parametrized by the boundary
conditions at some location. One places a geometric cutoff
in the far scattering region and then solves the bound-state
problem with all the possible boundary conditions at that
cutoff. To determine the scattering phase, one uses the same
boundary condition to match to the asymptotic (plane-
wave) wave function. In this asymptotic region, if the

potential is not constant, we supplement the plane-wave
solution by a WKB approximation to the desired order of
precision.
We describe how one can determine scattering phase

shifts using any numerical eigenenergy algorithm. In parti-
cular, these include the semidefinite programming (SDP)
bootstrap algorithm of our previous work now applied to
problems on the real half line [19]. This is similar in spirit
to the program of determining scattering data by the energy
spectrum at finite volume, which can be realized on a lattice
computation [20].
To begin, consider a one-dimensional quantum system

with a one-sided potential such that VðxÞ ¼ 0 for x ≤ 0 and
V → ∞ as x → ∞ and with the Hamiltonian given by

H ¼ −∂2x þ VðxÞ:

Physically, one understands that waves come in from
x ¼ −∞, reflect off the potential barrier, and return to
x ¼ −∞ with a phase shift δðEÞ depending on the incident
energy E. In this one-dimensional, one-sided system, this
phase shift completely specifies the S matrix and hence the
physics of scattering.
Let RðEÞ ¼ expðiδÞ be the reflection coefficient for

waves with energy E ¼ k2. One has

ψðxÞ ¼ A½eikx þ RðEÞe−ikx�; x ≤ 0: ð1Þ

Imagine placing a hard boundary at x ¼ 0 and enforcing
there a Robin boundary condition,

ψð0Þ þ aψ 0ð0Þ ¼ 0 ⇒ a ¼ −
ψð0Þ
ψ 0ð0Þ : ð2Þ

Here a, the Robin parameter, is real “plus infinity” valued;
the point a ¼ ∞ corresponds to the Neumann condition.
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The variable a parametrizes self-adjoint extensions of half
line Schrodinger operators [21].
On the right-hand side x ≥ 0, the boundary condition (2)

defines a self-adjoint Hamiltonian and therefore a discrete
spectrum of energies which changes continuously with a.
Each value gives a spectrum EnðaÞ which may be inverted
to give a function aðEÞ. One then matches the value of the
wave function and its derivative at the boundary x ¼ 0. This
gives a direct relationship between the reflection coefficient
RðEÞ and the Robin parameter aðEÞ:

RðEÞ ¼ ikaðEÞ þ 1

ikaðEÞ − 1
; k ¼

ffiffiffiffi
E

p
> 0: ð3Þ

One can therefore extract the S matrix by solving a
succession of bound-state problems for different values
of the Robin parameter a. Just as bound states can be
considered as a suitably interfering set of plane waves, the
data of plane wave scattering are equivalent to a continuous
family of bound states.
Unlike analytic approaches to the S matrix, no assump-

tions are made about what happens when E becomes
complex. The numerical problem we describe is only well
defined for real energies. In fact, this is required by the self-
adjointness of the Hamiltonian with the Robin boundary
condition: the problem must have real eigenvalues. These
are the output of the numerical code we describe.
In this paper we demonstrate this approach to determin-

ing the scattering phase shift of numerous potentials. We do
so by applying the semidefinite programming bootstrap
algorithm as well other numerical methods to determine
the energy spectrum for half line problems with arbitrary
Robin conditions, and from there to extract the expected
reflection coefficients. We demonstrate the consistency of
this approach by comparing the numerics to physical
expectations for scattering. Finally, we use WKB methods
to extend the approach to potentials which are not constant
on the scattering region but that are instead slowly varying
in the asymptotic regime and for which VðxÞ < k2 in
the x < 0 region. We show as an example that we can
numerically reproduce the reflection coefficient of the zero-
mode Liouville theory by this approach.

II. HALF LINE SDP PROBLEMS

SDP is a class of convex optimization problems where
the feasible domain is a subset of the cone of convex
matrices. Their application to the bootstrap program has
long been recognized, and as a numerical tool it has been
applied with great success in the conformal bootstrap, the
lattice Yang-Mills bootstrap, and in other spin-chain lattice
theories [4,6,22].
In our previous work [19] we described how to formu-

late the one-dimensional quantum mechanical bootstrap as
a semidefinite program. We showed how this could be
applied to determine the spectrum of a polynomial potential

of arbitrary degree on the real line. The generalization of
this approach to half line problems is straightforward,
though one must include the anomaly terms discussed in
[10] to properly handle the boundary conditions.
To see the role of the anomalies, consider a potential

VðxÞ on the real half line x ≥ 0 and with a general
Robin boundary condition at the origin x ¼ 0, so that
ψ0 þ aψ 0

0 ¼ 0, writing ψx ≡ ψðxÞ. To set up the semi-
definite program one must first compute (recursively) some
positional moments hxkiψ in some undetermined state ψ .
Relations between these moments are furnished by the
bootstrap constraints. Let H be the Hamiltonian and O
some operator; these constraints, true in energy eigenstates,
are of the form

h½H;O�i þ hðH† −HÞOi ¼ 0; ð4Þ

where the second term is the anomaly. The anomaly
vanishes if O leaves the domain of H invariant; these
issues are discussed in depth in [10,23–25].
Many of these anomalies do happen to vanish. If the

wave function associated with the eigenstate is ψx, the only
nonzero anomalies1 are given by

A½nxn−1� ¼ −
1

M
ψ2
0δn;1; ð5Þ

2iA½xp� ¼ −
1

M
ψ0ψ

0
0; ð6Þ

2iA½p� ¼ 1

M
ðψ 0

0Þ2 þ 2ψ2
0ðE − Vð0ÞÞ: ð7Þ

The last of the anomalies appears in the constraint (4) for
the operator O ¼ p as

0 ¼ −hV 0ðxÞi þ 2iA½p�: ð8Þ

This is a quantum-corrected version of Newton’s second
law which now includes an anomalous contribution from
the boundary condition. With a polynomial potential V ¼P

d cmxm and Robin boundary conditions at x ¼ 0, this
lowest-level constraint allows one to determine the boun-
dary value ψ2

0 in terms of the other moments:

ψ2
0 ¼

�
2ðE − c0Þ þ

1

a2M

�
−1

·
Xd
m¼1

2mcmhxm−1i; ð9Þ

where we have additionally used the relation ψ 0
0 ¼ −ψ0=a.

One can therefore express all the nonzero anomalies as
linear combinations of moments hxki of order k ≤ d − 1.
Higher moments hxki with k ≥ d can then be computed

1If the boundary condition were at some x ≠ 0, the anomalies
would continue to persist at higher orders in the recursion.
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recursively using the constraints (4). Like in the real line
case, the higher moments may be written as linear functions
of the d − 1 primal moments hxi; hx2i;…; hxd−1i. Their
coefficients will depend (nonlinearly) on the energy E and
the Robin parameter a.
The formulation and solution of the SDP then proceeds

as described in [19], with the salient modification being the
required positivity of two K × K moment matrices:

Mij ¼ hxiþji; M0
ij ¼ hx1þiþji; 0 ≤ i; j;≤ K − 1: ð10Þ

The necessity of these two positivity constraints can be
shown as follows. Consider an operator O ¼ P

cnxn for
arbitrary complex cn. Furthermore, on the half line x ≥ 0,
we can construct the well-defined operator O0 ¼ ffiffiffi

x
p

O.
The positivity constraints on M, M0 then follow from the
inequalities

hO†Oi ¼
X
n;m

c�nhxnþmicm ≥ 0; ð11Þ

hO0†O0i ¼
X
n;m

c�nhx1þnþmicm ≥ 0; ð12Þ

which must hold for any complex cn.
One maximizes the minimal eigenvalue of both of

these matrices simultaneously, defining the optimization
problem:

maximize t

subject to

�
M 0

0 M0

�
− tId ≽ 0;

ð13Þ

at fixed energy E and Robin parameter a. This is a
linear semidefinite program with d primal variables
ðt; hxi;…; hxd−1iÞ written in the dual or linear-matrix-
inequality form. Pairs ðE; aÞ are deemed physically allow-
able at size K if the optimal objective t⋆ is positive. The
convergence property of the bootstrap ensures that if a pair
is unphysical at some K it will continue to be unphysical at
all higher matrix sizes.
It should be noted that the Mathematica function

NDEigensystem now supports Robin (or generalized
Neumann) boundary values. At the level of machine
precision, this finite element-based algorithm runs orders
of magnitude more efficiently than the SDP algorithm
described here, which runs on a multiple-precision solver
[26]. As a demonstration of the application to half line
problems, some of the data in the following sections are
generated via the bootstrap algorithm. However, the dis-
cussion of the scattering phenomenology and role of the
Robin parameter is independent of the algorithm used. It
depends only on being able to numerically solve the
spectrum of a one-sided differential eigensystem with a
Robin boundary condition.

III. BOOTSTRAPPING PURE REFLECTION

In the case of pure reflection, the quantity of interest
is the reflection coefficient. In terms of the wave number
k ¼ ffiffiffiffi

E
p

> 0 and Robin parameter a it is given by

RðkÞ ¼ ikaþ 1

ika − 1
¼ eiδðkÞ: ð14Þ

The phase shift is the complex argument of RðkÞ; using the
identity

arg
1þ it
1 − it

¼ 2 tan−1ðtÞ; ð15Þ

one may write the phase shift δðkÞ as

δðkÞ ¼ 2 tan−1 ðkaÞ: ð16Þ

By determining aðEÞ one has determined the phase shift,
and hence all the information about scattering off the one-
dimensional, one-sided potential.

A. The half-harmonic wall

In the case of a half-harmonic potential wall one
can compute the function aðEÞ—and therefore the phase
shift—exactly; we compare this to data obtained by solving
a succession of bound-state problems using the SDP
algorithm described previously.
To be precise, let VðxÞ ¼ x2 for x ≥ 0 and zero other-

wise. Consider the half line x ≥ 0 where the Schrodinger
equation is

−ψ 00ðxÞ þ x2ψðxÞ ¼ EψðxÞ ð17Þ

in units where ℏ ¼ 2m ¼ 1;ω ¼ 2. The general solution
is given by parabolic cylinder functions Uða; zÞ (see
Chapter 12 in [27]) as

ψðxÞ ¼ c1Uð−E=2;
ffiffiffi
2

p
xÞ þ c2UðE=2; i

ffiffiffi
2

p
xÞ: ð18Þ

Asymptotically, one finds that only the solution with real
argument is normalizable as x → ∞. Up to a formal
normalization constant, the feasible solution is

ψðxÞ ∼Uð−E=2;
ffiffiffi
2

p
xÞ: ð19Þ

The values of the function U and its derivative at zero are
known; to construct the Robin function aðEÞ we take their
ratio. This no longer depends on the normalization and is
given by

aðEÞ ¼ −
ψð0Þ
ψ 0ð0Þ ¼

1

2

Γð1
4
− E

4
Þ

Γð3
4
− E

4
Þ : ð20Þ

This function already contains all the spectral information
of the harmonic oscillator. The full harmonic potential onR
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is even, so all states are of odd or even parity. These states
satisfy Dirichlet (D) or Neumann (N) conditions at the
origin x ¼ 0, respectively. Therefore, the odd states of
the harmonic oscillator should correspond to a ¼ 0 and the
even states to a ¼ ∞.
The Robin function (20) is zero precisely when the

gamma function in the denominator diverges and infinite
when the numerator diverges. This leads to two quantiza-
tion rules for the energies En depending on the boundary
condition in question:

En ¼
�
3þ 4n; ðDÞ;
1þ 4n; ðNÞ; ð21Þ

for n ≥ 0 in each. Together these rules describe the entire
harmonic spectrum, which is at En ¼ 2nþ 1 for n ≥ 0 in
our units.
Wemay compare the function aðEÞ determined here to the

bootstrap results. Using the SDP algorithm described in the
previous section, we determine the first few harmonic energy
levels EnðaÞ∈ ½0; 10� for a range of Robin parameter values
a∈ ½−5; 5�. We then invert the spectrum EnðaÞ to find the
(single-valued) functionaðEÞ. These data and the exact curve
are shown in Fig. 1, showing excellent agreement.

B. Resonant scattering

The function aðEÞ contains information not just about
bound states but also metastable ones. Consider the
Hamiltonian

H ¼ p2 þ 1

2
x2ðx − 3Þ2 ð22Þ

on the half line x ≥ 0. This potential has a (local) minimum
at x ¼ 3 where V ¼ 0. Such a local minimum will tend to

confine states for a short amount of time, with tunneling to
x < 0 leading to metastability.
It is generally known that bound and metastable states

are reflected in the analytic structure of the S matrix or, in
our case, the reflection coefficient [28]. In the complex E
plane, bound states correspond to purely imaginary poles in
the upper half plane and metastable states to poles in the
lower half plane. Our numerical method does not assume
this property, but the intuition on metastable states does.
The signatures of these metastable poles are reflected

in the phase shift δðEÞ, and in particular its derivative. Let
such a metastable pole occur at Em ¼ E0 − iΓ where Γ > 0
is the width of the metastable state, its characteristic life-
time in the time-dependent picture. For a narrow resonance,
the pole is close to the real axis. Near E ≈ Em, the reflection
coefficient RðEÞ should reflect this singular structure and
be a pure phase. On general grounds, this implies that near
Em one has

RðEÞ ≈ E − E0 − iΓ
E − E0 þ iΓ

: ð23Þ

The phase shift is δ ¼ argR; with the identity (15) one
finds that the derivative of δðEÞ near the resonant energy
Em ¼ E0 − iΓ behaves as

δ0ðEÞ ≈ 2Γ
ðE − E0Þ2 þ Γ2

; ð24Þ

forming a Lorentz/Cauchy distribution centered at E0 with
width Γ. In the context of decay widths, this is often
referred to as the Breit-Wigner distribution, and is studied
in numerous texts [28,29].
As before, the phase shift may be numerically deter-

mined by the spectral flow of H for various values of
the Robin parameter a, with the results shown in Fig. 2.

FIG. 1. Bootstrapped harmonic spectrum versus Robin param-
eter for two depths, K ¼ 10, 14. At higher energies the intervals
of positivity are larger; their size shrinks asK increases. The exact
relation (20) is shown in black.

FIG. 2. A strong energy resonance in the phase shift for a
potential with metastable states. A regression to a Cauchy
distribution is included in black. In blue, the transformation of
spectral numerical data.
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Here, we do the numerics using the Mathematica function
NDEigensystem to solve for the lowest three eigenstates of the
potential (22) at a range of Robin parameter values
a∈ ½−20;−20�. We invert the spectrum to obtain the func-
tion aðEÞ, then construct the phase shift using Eq. (16) and
its derivative numerically, using a spline interpolation to
decrease noise. An energy resonance is clear in Fig. 2,
corresponding to the existence of a metastable state of the
potential and consistent with physical expectations. Namely,
in a harmonic oscillator potential at the minimum x ¼ 3, one
would expect an approximate metastable ground state with
energy aroundω=2 ≃ 2.1whereω2 ¼ 18. It must also have a
negative correction to the energy arising from second order
perturbation theory. The fit to a Breit-Wigner resonance is a
good approximation to the data. At maximum value, the
energy is close to the back of the envelope prediction in
energy and displays the expected negative correction.

IV. LIOUVILLE SCATTERING

The potentials considered in the previous sections are
unique and hand picked in that they are identically zero on
the negative real axis. This allows an exact solution of the
Schrodinger equation in the x < 0 region and subsequent
matching of boundary conditions to extract the phase shift
from dependence of the Robin parameter on the energy.
In many situations, the potential may be nonzero but

slowly varying and weak at large negative x. This is the
case for the exponential potential which famously arises as
the potential in the semiclassical Liouville theory [30,31].
To be precise, after canonical quantization the zero-mode
Hamiltonian is

H0 ¼
p2

2
þ 2πμe2bx; ð25Þ

ignoring any zero-point energy. From the perspective of the
fundamental dilaton field this Hamiltonian follows by con-
sidering spatially uniform solutions: the “mini-superspace”
approximation. We are not concerned with the physical
origin of the theory so much as applying the tools of the
previous section to the one-sided exponential potential.
The Schrodinger equation corresponding to the

Hamiltonian (25) is

−
1

2
ψ 00ðxÞ þ 2πμe2bxψðxÞ ¼ k2

2
ψðxÞ; ð26Þ

where now we use the dispersion E ¼ k2=2. This is solved
by a linear combination of Bessel functions whose proper-
ties are well known. By demanding regularity at x ¼ ∞ and
matching to the plane wave ansatz (1), one finds that the
reflection coefficient RðkÞ is given by

RðkÞ ¼ −ðπμ=b2Þ−ik=b Γð1þ ik=bÞ
Γð1 − ik=bÞ : ð27Þ

We will reproduce this, at least approximately, by combin-
ing the bound-state approach with a WKB approximation
to the wave function. One sets a boundary and solves a one-
sided bound-state problem with Robin boundary condition
on the right-hand side of the boundary, as before. Placing
the boundary at some modestly large, negative position L
then ensures that the semiclassical (WKB) approximation is
valid and accurate to the left of the boundary, at least for
potentials which smoothly go to zero. This is certainly true
for the exponential potential V ¼ e2bx, which, along with
its derivative, goes to zero very quickly as x → −∞. For
our purposes, we need a regime where k2 ≫ VðxÞ and V
varies slowly on the scale of k [any feature of V needs to
occur on a region that is long compared to local wave-
length 1=kðxÞ ∼ 1=k].

A. The WKB wave function

Any wave function can be written in the form

ψðxÞ ∝ expðλðxÞ þ iωðxÞÞ: ð28Þ

In the WKB approximation, the functions λðxÞ, ωðxÞ
(modulating the amplitude and phase, respectively) are
expanded in powers of the formally small parameter ℏ as

ωðxÞ ¼ 1

ℏ
S0ðxÞ þ ℏS2ðxÞ þOðℏ3Þ; ð29Þ

λðxÞ ¼ S1ðxÞ þ ℏ2S3ðxÞ þOðℏ4Þ: ð30Þ

The functionsSnðxÞ satisfy a hierarchy of equations found by
substituting the ansatz (28) into theSchrodinger equation and
solving order by order in ℏ. In particular, the lowest-order
correction S0ðxÞ solves the eikonal equation

½S00ðxÞ�2 ¼ 2ðE − VðxÞÞ: ð31Þ

If one takes V → 0 in this equation, one finds S0ðxÞ ¼
� ffiffiffiffiffiffi

2E
p

x ¼ �kx, reproducing the free plane-wave solution
seen earlier.
Because the potential is real, on general grounds the

semiclassical (WKB) wave function is given by the linear
combination,

ψ scl ¼ AeλðxÞeiωðxÞ þ BeλðxÞe−iωðxÞ: ð32Þ

The data of the reflection coefficient RðkÞ are contained
in the asymptotic relative normalization of these two
solutions: roughly the ratio B=A as x → −∞. The semi-
classical wave function interpolates between the asymptotic
limit, where the S matrix is defined, and a finite value
L < 0, where the potential is slowly varying. In the region
where the WKB approximation is valid we place a
boundary at x ¼ L < 0. On the right-hand side, one defines
a bound-state problem with Robin boundary condition
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ψðLÞ þ aLψ 0ðLÞ ¼ 0: ð33Þ

Solving this determines a spectrum EnðaLÞ which is sub-
sequently inverted to obtain a function aLðEÞ as described
in the previous section.
By continuity of the wave function and its derivative at

the point x ¼ L, the semiclassical wave function should
define the same Robin parameter:

aL ¼ −
ψ sclðLÞ
ψ 0
sclðLÞ

: ð34Þ

Substituting Eq. (32), one can determine a relation between
the ratio of coefficients B=A of the semiclassical wave
function and the Robin parameter aL at finite L:

B=A ¼ −e2iωðLÞ
1þ aLλ0ðLÞ þ iaLω0ðLÞ
1þ aLλ0ðLÞ − iaLω0ðLÞ ; ð35Þ

where the aL; λðxÞ, and ωðxÞ all implicitly depend on the
energy E.
On the other side of the domain, relating the reflection

coefficient R to the ratio B=A requires another matching
formula. Define the angle θ0 as the limit

θ0 ≡ lim
x→−∞

ωðxÞ − kx; ð36Þ

recalling that here k ¼ ffiffiffiffiffiffi
2E

p
. This limit is finite in general

due to the known asymptotic behavior of the function
S0ðxÞ, which dominates the expansion of the function
ωðxÞ at large negative x. With this angle appearing as a
decorating phase, the asymptotic reflection coefficient is

RsclðkÞ ¼ −e−2iθ0e2iωðLÞ
1þ aLλ0ðLÞ þ iaLω0ðLÞ
1þ aLλ0ðLÞ − iaLω0ðLÞ : ð37Þ

Taking the argument of this function yields the WKB-
corrected phase shift as a function of the wave number
k ¼ ffiffiffiffiffiffi

2E
p

:

δsclðkÞ ¼−πþ 2 tan−1
�

aLω0ðLÞ
1þaLλ0ðLÞ

�

þ 2ðωðLÞ− θ0Þ mod 2π: ð38Þ

The WKB approximation may then be carried out to
any order in calculating the functions ωðxÞ and λðxÞ
to determine increasingly accurate expressions for the
phase shift.
As the potential V → 0, one finds that λ0 → 0 while

ω0 → k. In this limit one also has ωðLÞ − θ0 → kL. This
limit reproduces the expression (16) for a boundary at
x ≠ 0. In this way the zero-order WKB approximation
reduces to the results determined earlier.

We note that generally there is a calculational trade-off in
the location of the cutoff L. As one takes L → −∞ and the
potential weakens in strength, the WKB approximation
grows increasingly accurate. However, the bound-state
problem, defined on ½L;∞Þ, has low-lying eigenenergies
with wavelengths of order jLj. It is these low-lying states
for which this matching procedure determines the physics
of scattering. Higher energy states require more computa-
tions to solve accurately. For example, in the SDP method
one has to go to larger matrices to solve the problem (this
is readily visible in Fig. 1 for K ¼ 10, where the allowed
regions grow larger at larger energy). The precision gained
by making L larger is countered by the fact that one needs
to perform the SDP algorithm with much larger matrices at
the same value of E. A similar issue arises in other methods
to determine energy eigenstates: higher energy eigenstates
are more costly to produce with the same numerical
accuracy as the lowest states. Similarly, one should make
sure that one is well within a regime where the WKB is
valid, so L cannot be too small either.

B. The exponential potential

As a demonstration, we show the accuracy of the WKB
approach to approximating the scattering phase (27), setting
μ ¼ 1=2π andb ¼ 1 for definiteness. First, one can explicitly
compute the lowest-orderWKB functionsSnðxÞ, fromwhich
the amplitude and phase modulation may be constructed.
Defining the semiclassical momentum

pðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VðxÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − e2xÞ

q
; ð39Þ

the first four WKB functions SnðxÞ are given by

S0ðxÞ ¼ pðxÞ − k tanh−1
�
pðxÞ
k

�
; ð40Þ

S1ðxÞ ¼ −
1

2
logpðxÞ; ð41Þ

S2ðxÞ ¼
2Eþ 3e2x

24
ffiffiffi
2

p
pðxÞ3 ; ð42Þ

S3ðxÞ ¼
p00ðxÞ
8pðxÞ3 −

3p0ðxÞ2
16pðxÞ4 : ð43Þ

While the corrections S1, S3 are universal, the corrections S0,
S2 depend on the potential. The correction S0 is by far the
largest in absolute numerical terms and increases in size as
x → −∞. A large phase is to be expected, as the eikonal or
first-order WKB approximation is equivalent to a saddle
point or stationary phase path integral.
Most applications of the WKB method include only the

first two corrections: S0, S1. Indeed we find that these
corrections are more than sufficient to reproduce the exact
phase shift law (27) by solving bound-state problems and
applying the approximation of Eq. (38). These data are
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shown in Fig. 3 along with the exact curve for a boundary
at L ¼ −5.

V. CONCLUSION

In this paper we have described how to apply numerical
solutions to bound-state problems, with Robin boundary
conditions, to the numerical solution of scattering off one-
sided potentials. The intuitive picture is that just as bound
states are equivalent to properly interfering sets of scatter-
ing states, the information of scattering states can be
represented as continuous families of bound states. We
gave examples of this correspondence, comparing numeri-
cal and analytical results. We also described a semiclassical
generalization using the WKB approximation.
In the context of previousworkon the quantum-mechanical

bootstrap, this paper adds control over the problem of
scattering, thereby almost completing the bootstrap’s appli-
cation to “textbook” one-dimensional quantum mechanics.

We say almost as there are problems naturally suggested here
that we have not addressed. Most notably these include
computing not only reflection but also transmission ampli-
tudes, and from these constructing a nontrivialSmatrix. From
the perspective of this work, determining transmission and
reflection would involve solving a bound-state problem on a
finite interval, rather than on the half line. The same problem
would occur when considering reflection in a rotationally
symmetric scattering problem in higher dimensions: one
would need to solve a bound-state problem on the radial
directionon a finite interval ð0; LÞwith an angularmomentum
barrier. On such a domain—the traditional home of Sturm-
Liouville theory—anomalies arise at both boundaries depen-
dent on the (independent) conditions ascribed to each boun-
dary. In principle, solving bound-state problems on the
finite interval is well understood, and is easily approached
by finite-element methods or by spectral methods. In order to
complete the discussion of scattering one should be able
to characterize both reflection and transmission entirely in
terms of a bound-state problem in an interval in analogy to the
present discussion of pure reflection. This generalization is
beyond the scope of this paper.
Finally, let us point out that it would be very interesting if

one could extend the numerical methods presented here to
complex energy E in order to better understand the S
matrix. With the methods known to us, problems with
complex energy E do not fall into the category of semi-
definite programing problems that our implementation of
the numerical bootstrap can handle. From the perspective of
the SDP solution of the bound-state problem, the positivity
constraint M ≽ 0 is inherited from unitarity which is in
turn inherited from self-adjointness of the Hamiltonian H.
The difficulty lies in that we are fundamentally using the
Hermitian properties of the Hamiltonian (with boundary
conditions) and the connection between its eigenvalues and
eigenstates to solve the problem. These eigenvalues, which
characterize EðaÞ, must be real.
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